Uzma Farooq
Advances in machine translation for sign language: approaches, limitations, and challenges
Farooq, Uzma; Rahim, Mohd Shafry Mohd; Sabir, Nabeel; Hussain, Amir; Abid, Adnan
Authors
Abstract
Sign languages are used by the deaf community around the globe to communicate with one another. These are gesture-based languages where a deaf person performs gestures using hands and facial expressions. Every gesture represents a word or a phrase in the natural language. There are more than 200 different sign languages in the world. In order to facilitate the learning of sign languages by the deaf community, researchers have compiled sign language repositories comprising of gestures. Similarly, algorithms have been proposed to translate the natural language into sign language, which is subsequently converted into gestures using avatar technology. On the other hand, several different approaches for gesture recognition have also been proposed in the literature, many of which use specialized hardware. Similarly, cell phone applications have been developed for learning and translation of sign languages. This article presents a systematic literature review of these multidisciplinary aspects of sign language translation. It provides a detailed analysis of carefully selected 147 high-quality research articles and books related to the subject matter. Specifically, it categorizes different approaches used for each component, discusses their theoretical foundations, and provides a comparative analysis of the proposed approaches. Lastly, open research challenges and future directions for each facet of the sign language translation problem have been discussed. To the best of our knowledge, this is the first comprehensive survey on sign language translation that discusses state-of-the-art research from multi-disciplinary perspectives.
Citation
Farooq, U., Rahim, M. S. M., Sabir, N., Hussain, A., & Abid, A. (2021). Advances in machine translation for sign language: approaches, limitations, and challenges. Neural Computing and Applications, 33, 14357-14399. https://doi.org/10.1007/s00521-021-06079-3
Journal Article Type | Article |
---|---|
Acceptance Date | Apr 20, 2021 |
Online Publication Date | May 18, 2021 |
Publication Date | 2021-11 |
Deposit Date | Jun 3, 2021 |
Journal | Neural Computing and Applications |
Print ISSN | 0941-0643 |
Electronic ISSN | 1433-3058 |
Publisher | Springer |
Peer Reviewed | Peer Reviewed |
Volume | 33 |
Pages | 14357-14399 |
DOI | https://doi.org/10.1007/s00521-021-06079-3 |
Keywords | Sign language, Natural to sign language translation, Gesture recognition, Avatar technology, Sign language repositories |
Public URL | http://researchrepository.napier.ac.uk/Output/2777286 |
You might also like
MTFDN: An image copy‐move forgery detection method based on multi‐task learning
(2024)
Journal Article
Transition-aware human activity recognition using an ensemble deep learning framework
(2024)
Journal Article
Downloadable Citations
About Edinburgh Napier Research Repository
Administrator e-mail: repository@napier.ac.uk
This application uses the following open-source libraries:
SheetJS Community Edition
Apache License Version 2.0 (http://www.apache.org/licenses/)
PDF.js
Apache License Version 2.0 (http://www.apache.org/licenses/)
Font Awesome
SIL OFL 1.1 (http://scripts.sil.org/OFL)
MIT License (http://opensource.org/licenses/mit-license.html)
CC BY 3.0 ( http://creativecommons.org/licenses/by/3.0/)
Powered by Worktribe © 2024
Advanced Search