Skip to main content

Research Repository

Advanced Search

Pheno-Deep Counter: a unified and versatile deep learning architecture for leaf counting

Giuffrida, Mario Valerio; Doerner, Peter; Tsaftaris, Sotirios A.

Authors

Mario Valerio Giuffrida

Peter Doerner

Sotirios A. Tsaftaris



Abstract

Direct observation of morphological plant traits is tedious and a bottleneck for high‐throughput phenotyping. Hence, interest in image‐based analysis is increasing, with the requirement for software that can reliably extract plant traits, such as leaf count, preferably across a variety of species and growth conditions. However, current leaf counting methods do not work across species or conditions and therefore may lack broad utility. In this paper, we present Pheno‐Deep Counter, a single deep network that can predict leaf count in two‐dimensional (2D) plant images of different species with a rosette‐shaped appearance. We demonstrate that our architecture can count leaves from multi‐modal 2D images, such as visible light, fluorescence and near‐infrared. Our network design is flexible, allowing for inputs to be added or removed to accommodate new modalities. Furthermore, our architecture can be used as is without requiring dataset‐specific customization of the internal structure of the network, opening its use to new scenarios. Pheno‐Deep Counter is able to produce accurate predictions in many plant species and, once trained, can count leaves in a few seconds. Through our universal and open source approach to deep counting we aim to broaden utilization of machine learning‐based approaches to leaf counting. Our implementation can be downloaded at https://bitbucket.org/tuttoweb/pheno-deep-counter.

Citation

Giuffrida, M. V., Doerner, P., & Tsaftaris, S. A. (2018). Pheno-Deep Counter: a unified and versatile deep learning architecture for leaf counting. Plant Journal, 96(4), 880-890. https://doi.org/10.1111/tpj.14064

Journal Article Type Article
Acceptance Date Aug 7, 2018
Online Publication Date Sep 11, 2018
Publication Date Nov 13, 2018
Deposit Date Sep 23, 2019
Publicly Available Date Sep 23, 2019
Journal The Plant Journal
Print ISSN 0960-7412
Publisher Wiley
Peer Reviewed Peer Reviewed
Volume 96
Issue 4
Pages 880-890
DOI https://doi.org/10.1111/tpj.14064
Keywords image‐based plant phenotyping, machine learning, deep learning, leaf counting, multimodal, night images
Public URL http://researchrepository.napier.ac.uk/Output/2150655

Files

Pheno-Deep Counter: A Unified And Versatile Deep Learning Architecture For Leaf Counting (626 Kb)
PDF

Publisher Licence URL
http://creativecommons.org/licenses/by/4.0/

Copyright Statement
©2018 The Authors. This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.





Downloadable Citations