Qiu-Feng Wang
Common Sense Knowledge for Handwritten Chinese Text Recognition
Wang, Qiu-Feng; Cambria, Erik; Liu, Cheng-Lin; Hussain, Amir
Abstract
Compared to human intelligence, computers are far short of common sense knowledge which people normally acquire during the formative years of their lives. This paper investigates the effects of employing common sense knowledge as a new linguistic context in handwritten Chinese text recognition. Three methods are introduced to supplement the standard n-gram language model: embedding model, direct model, and an ensemble of these two. The embedding model uses semantic similarities from common sense knowledge to make the n-gram probabilities estimation more reliable, especially for the unseen n-grams in the training text corpus. The direct model, in turn, considers the linguistic context of the whole document to make up for the short context limit of the n-gram model. The three models are evaluated on a large unconstrained handwriting database, CASIA-HWDB, and the results show that the adoption of common sense knowledge yields improvements in recognition performance, despite the reduced concept list hereby employed.
Citation
Wang, Q.-F., Cambria, E., Liu, C.-L., & Hussain, A. (2013). Common Sense Knowledge for Handwritten Chinese Text Recognition. Cognitive Computation, 5(2), 234-242. https://doi.org/10.1007/s12559-012-9183-y
Journal Article Type | Article |
---|---|
Acceptance Date | Aug 9, 2012 |
Online Publication Date | Aug 23, 2012 |
Publication Date | 2013-06 |
Deposit Date | Oct 11, 2019 |
Journal | Cognitive Computation |
Print ISSN | 1866-9956 |
Electronic ISSN | 1866-9964 |
Publisher | BMC |
Peer Reviewed | Peer Reviewed |
Volume | 5 |
Issue | 2 |
Pages | 234-242 |
DOI | https://doi.org/10.1007/s12559-012-9183-y |
Keywords | Common sense knowledge; Natural language processing; Linguistic context; n-gram; Handwritten Chinese text recognition |
Public URL | http://researchrepository.napier.ac.uk/Output/1793121 |
You might also like
MA-Net: Resource-efficient multi-attentional network for end-to-end speech enhancement
(2024)
Journal Article
Artificial intelligence enabled smart mask for speech recognition for future hearing devices
(2024)
Journal Article
Are Foundation Models the Next-Generation Social Media Content Moderators?
(2024)
Journal Article
Downloadable Citations
About Edinburgh Napier Research Repository
Administrator e-mail: repository@napier.ac.uk
This application uses the following open-source libraries:
SheetJS Community Edition
Apache License Version 2.0 (http://www.apache.org/licenses/)
PDF.js
Apache License Version 2.0 (http://www.apache.org/licenses/)
Font Awesome
SIL OFL 1.1 (http://scripts.sil.org/OFL)
MIT License (http://opensource.org/licenses/mit-license.html)
CC BY 3.0 ( http://creativecommons.org/licenses/by/3.0/)
Powered by Worktribe © 2025
Advanced Search