Skip to main content

Research Repository

Advanced Search

Outputs (6)

On the advantages of mixed formulation and higher-order elements for computational morphoelasticity (2020)
Journal Article
Kadapa, C., Li, Z., Hossain, M., & Wang, J. (2021). On the advantages of mixed formulation and higher-order elements for computational morphoelasticity. Journal of the Mechanics and Physics of Solids, 148, Article 104289. https://doi.org/10.1016/j.jmps.2020.104289

In this paper, we present a mixed displacement–pressure finite element formulation that can successively model compressible as well as truly incompressible behaviour in growth-induced deformations significantly observed in soft materials. Inf–sup sta... Read More about On the advantages of mixed formulation and higher-order elements for computational morphoelasticity.

A robust and computationally efficient finite element framework for coupled electromechanics (2020)
Journal Article
Kadapa, C., & Hossain, M. (2020). A robust and computationally efficient finite element framework for coupled electromechanics. Computer Methods in Applied Mechanics and Engineering, 372, Article 113443. https://doi.org/10.1016/j.cma.2020.113443

Electro-active polymers (EAPs) are increasingly becoming popular materials for actuators, sensors, and energy harvesters. To simulate the complex behaviour of actuators under coupled loads, particularly in the realm of soft robotics, biomedical engin... Read More about A robust and computationally efficient finite element framework for coupled electromechanics.

A second-order accurate non-intrusive staggered scheme for the interaction of ultra-lightweight rigid bodies with fluid flow (2020)
Journal Article
Kadapa, C. (2020). A second-order accurate non-intrusive staggered scheme for the interaction of ultra-lightweight rigid bodies with fluid flow. Ocean Engineering, 217, Article 107940. https://doi.org/10.1016/j.oceaneng.2020.107940

This paper presents a staggered scheme with second-order temporal accuracy for fluid–structure interaction problems involving ultra-lightweight rigid bodies. The staggered scheme is based on the Dirichlet–Neumann coupling and is non-intrusive. First,... Read More about A second-order accurate non-intrusive staggered scheme for the interaction of ultra-lightweight rigid bodies with fluid flow.

New iterative and staggered solution schemes for incompressible fluid‐structure interaction based on Dirichlet‐Neumann coupling (2020)
Journal Article
Dettmer, S. G., Lovrić, A., Kadapa, C., & Perić, D. (2021). New iterative and staggered solution schemes for incompressible fluid‐structure interaction based on Dirichlet‐Neumann coupling. International Journal for Numerical Methods in Engineering, 122(19), 5204-5235. https://doi.org/10.1002/nme.6494

In the presence of strong added mass effects, partitioned solution strategies for incompressible fluid-structure interaction are known to lack robustness and computational efficiency. A number of strategies have been proposed to address this challeng... Read More about New iterative and staggered solution schemes for incompressible fluid‐structure interaction based on Dirichlet‐Neumann coupling.

Accurate iteration-free mixed-stabilised formulation for laminar incompressible Navier–Stokes: Applications to fluid–structure interaction (2020)
Journal Article
Kadapa, C., Dettmer, W. G., & Perić, D. (2020). Accurate iteration-free mixed-stabilised formulation for laminar incompressible Navier–Stokes: Applications to fluid–structure interaction. Journal of Fluids and Structures, 97, Article 103077. https://doi.org/10.1016/j.jfluidstructs.2020.103077

Stabilised mixed velocity–pressure formulations are one of the widely-used finite element schemes for computing the numerical solutions of laminar incompressible Navier–Stokes. In these formulations, the Newton–Raphson scheme is employed to solve the... Read More about Accurate iteration-free mixed-stabilised formulation for laminar incompressible Navier–Stokes: Applications to fluid–structure interaction.

A linearized consistent mixed displacement-pressure formulation for hyperelasticity (2020)
Journal Article
Kadapa, C., & Hossain, M. (2022). A linearized consistent mixed displacement-pressure formulation for hyperelasticity. Mechanics of Advanced Materials and Structures, 29(2), 267-284. https://doi.org/10.1080/15376494.2020.1762952

We propose a novel mixed displacement-pressure formulation based on an energy functional that takes into account the relation between the pressure and the volumetric energy function. We demonstrate that the proposed two-field mixed displacement-press... Read More about A linearized consistent mixed displacement-pressure formulation for hyperelasticity.