Skip to main content

Research Repository

Advanced Search

Outputs (31)

Arabic sentiment analysis using dependency-based rules and deep neural networks (2022)
Journal Article
Diwali, A., Dashtipour, K., Saeedi, K., Gogate, M., Cambria, E., & Hussain, A. (2022). Arabic sentiment analysis using dependency-based rules and deep neural networks. Applied Soft Computing, 127, Article 109377. https://doi.org/10.1016/j.asoc.2022.109377

With the growth of social platforms in recent years and the rapid increase in the means of communication through these platforms, a significant amount of textual data is available that contains an abundance of individuals’ opinions. Sentiment analysi... Read More about Arabic sentiment analysis using dependency-based rules and deep neural networks.

Artificial intelligence-enabled social media analysis for pharmacovigilance of COVID-19 vaccinations in the United Kingdom: Observational Study (2022)
Journal Article
Hussain, Z., Sheikh, Z., Tahir, A., Dashtipour, K., Gogate, M., Sheikh, A., & Hussain, A. (2022). Artificial intelligence-enabled social media analysis for pharmacovigilance of COVID-19 vaccinations in the United Kingdom: Observational Study. JMIR Public Health and Surveillance, 8(5), Article e32543. https://doi.org/10.2196/32543

Background:
The roll-out of vaccines for SARS-CoV-2 in the United Kingdom, started in December 2020. Uptake has been high, and there has been a subsequent reduction in infections, hospitalisations and deaths in vaccinated individuals. However, vacci... Read More about Artificial intelligence-enabled social media analysis for pharmacovigilance of COVID-19 vaccinations in the United Kingdom: Observational Study.

A novel temporal attentive-pooling based convolutional recurrent architecture for acoustic signal enhancement (2022)
Journal Article
Hussain, T., Wang, W., Gogate, M., Dashtipour, K., Tsao, Y., Lu, X., Ahsan, A., & Hussain, A. (2022). A novel temporal attentive-pooling based convolutional recurrent architecture for acoustic signal enhancement. IEEE Transactions on Artificial Intelligence, 3(5), 833-842. https://doi.org/10.1109/TAI.2022.3169995

Removing background noise from acoustic observations to obtain clean signals is an important research topic regarding numerous real acoustic applications. Owing to their strong model capacity in function mapping, deep neural network-based algorithms... Read More about A novel temporal attentive-pooling based convolutional recurrent architecture for acoustic signal enhancement.

Synchronization of Monostatic Radar Using a Time-Delayed Chaos-Based FM Waveform (2022)
Journal Article
Abd, M. H., Al-Suhail, G. A., Tahir, F. R., Ali Ali, A. M., Abbood, H. A., Dashtipour, K., Jamal, S. S., & Ahmad, J. (2022). Synchronization of Monostatic Radar Using a Time-Delayed Chaos-Based FM Waveform. Remote Sensing, 14(9), Article 1984. https://doi.org/10.3390/rs14091984

There is no doubt that chaotic systems are still attractive issues in various radar applications and communication systems. In this paper, we present a new 0.3 GHz mono-static microwave chaotic radar. It includes a chaotic system based on a time-dela... Read More about Synchronization of Monostatic Radar Using a Time-Delayed Chaos-Based FM Waveform.

Personalized wearable electrodermal sensing-based human skin hydration level detection for sports, health and wellbeing (2022)
Journal Article
Liaqat, S., Dashtipour, K., Rizwan, A., Usman, M., Shah, S. A., Arshad, K., Assaleh, K., & Ramzan, N. (2022). Personalized wearable electrodermal sensing-based human skin hydration level detection for sports, health and wellbeing. Scientific Reports, 12(1), Article 3715. https://doi.org/10.1038/s41598-022-07754-8

Personalized hydration level monitoring play vital role in sports, health, wellbeing and safety of a person while performing particular set of activities. Clinical staff must be mindful of numerous physiological symptoms that identify the optimum hyd... Read More about Personalized wearable electrodermal sensing-based human skin hydration level detection for sports, health and wellbeing.

Comparing the Performance of Different Classifiers for Posture Detection (2022)
Presentation / Conference Contribution
Suresh Kumar, S., Dashtipour, K., Gogate, M., Ahmad, J., Assaleh, K., Arshad, K., Imran, M. A., Abbasi, Q., & Ahmad, W. (2021, October). Comparing the Performance of Different Classifiers for Posture Detection. Presented at 16th EAI International Conference, BODYNETS 2021, Online

Human Posture Classification (HPC) is used in many fields such as human computer interfacing, security surveillance, rehabilitation, remote monitoring, and so on. This paper compares the performance of different classifiers in the detection of 3 post... Read More about Comparing the Performance of Different Classifiers for Posture Detection.

Detecting Alzheimer’s Disease Using Machine Learning Methods (2022)
Presentation / Conference Contribution
Dashtipour, K., Taylor, W., Ansari, S., Zahid, A., Gogate, M., Ahmad, J., Assaleh, K., Arshad, K., Ali Imran, M., & Abbasi, Q. (2021, October). Detecting Alzheimer’s Disease Using Machine Learning Methods. Presented at 16th EAI International Conference, BODYNETS 2021, Online

As the world is experiencing population growth, the portion of the older people, aged 65 and above, is also growing at a faster rate. As a result, the dementia with Alzheimer’s disease is expected to increase rapidly in the next few years. Currently,... Read More about Detecting Alzheimer’s Disease Using Machine Learning Methods.

COVID-opt-aiNet: a clinical decision support system for COVID-19 detection (2022)
Journal Article
Kanwal, S., Khan, F., Alamri, S., Dashtipur, K., & Gogate, M. (2022). COVID-opt-aiNet: a clinical decision support system for COVID-19 detection. International Journal of Imaging Systems and Technology, 32(2), 444-461. https://doi.org/10.1002/ima.22695

Coronavirus disease (COVID-19) has had a major and sometimes lethal effect on global public health. COVID-19 detection is a difficult task that necessitates the use of intelligent diagnosis algorithms. Numerous studies have suggested the use of artif... Read More about COVID-opt-aiNet: a clinical decision support system for COVID-19 detection.

A Machine Learning Approach Involving Functional Connectivity Features to Classify Rest-EEG Psychogenic Non-Epileptic Seizures from Healthy Controls (2021)
Journal Article
Varone, G., Boulila, W., Lo Giudice, M., Benjdira, B., Mammone, N., Ieracitano, C., Dashtipour, K., Neri, S., Gasparini, S., Morabito, F. C., Hussain, A., & Aguglia, U. (2022). A Machine Learning Approach Involving Functional Connectivity Features to Classify Rest-EEG Psychogenic Non-Epileptic Seizures from Healthy Controls. Sensors, 22(1), Article 129. https://doi.org/10.3390/s22010129

Until now, clinicians are not able to evaluate the Psychogenic Non-Epileptic Seizures (PNES) from the rest-electroencephalography (EEG) readout. No EEG marker can help differentiate PNES cases from healthy subjects. In this paper, we have investigate... Read More about A Machine Learning Approach Involving Functional Connectivity Features to Classify Rest-EEG Psychogenic Non-Epileptic Seizures from Healthy Controls.

Intrusion Detection Framework for the Internet of Things Using a Dense Random Neural Network (2021)
Journal Article
Latif, S., Huma, Z. E., Jamal, S. S., Ahmed, F., Ahmad, J., Zahid, A., Dashtipour, K., Aftab, M. U., Ahmad, M., & Abbasi, Q. H. (2022). Intrusion Detection Framework for the Internet of Things Using a Dense Random Neural Network. IEEE Transactions on Industrial Informatics, 18(9), 6435-6444. https://doi.org/10.1109/tii.2021.3130248

The Internet of Things (IoT) devices, networks, and applications have become an integral part of modern societies. Despite their social, economic, and industrial benefits, these devices and networks are frequently targeted by cybercriminals. Hence, I... Read More about Intrusion Detection Framework for the Internet of Things Using a Dense Random Neural Network.