Skip to main content

Research Repository

Advanced Search

Outputs (43)

Entropy, Search Trajectories, and Explainability for Frequency Fitness Assignment (2024)
Presentation / Conference Contribution
Thomson, S. L., Ochoa, G., van den Berg, D., Liang, T., & Weise, T. (2024, September). Entropy, Search Trajectories, and Explainability for Frequency Fitness Assignment. Presented at Parallel Problem Solving from Nature (PPSN 2024), Hagenberg, Austria

Local optima are a menace that can trap optimisation processes. Frequency fitness assignment (FFA) is an concept aiming to overcome this problem. It steers the search towards solutions with rare fitness instead of high-quality fitness. FFA-based algo... Read More about Entropy, Search Trajectories, and Explainability for Frequency Fitness Assignment.

A Deep Dive into Effects of Structural Bias on CMA-ES Performance along Affine Trajectories (2024)
Presentation / Conference Contribution
van Stein, N., Thomson, S. L., & Kononova, A. V. (2024, September). A Deep Dive into Effects of Structural Bias on CMA-ES Performance along Affine Trajectories. Presented at Parallel Problem Solving from Nature (PPSN) 2024, Hagenberg, Austria

To guide the design of better iterative optimisation heuristics, it is imperative to understand how inherent structural biases within algorithm components affect the performance on a wide variety of search landscapes. This study explores the impact o... Read More about A Deep Dive into Effects of Structural Bias on CMA-ES Performance along Affine Trajectories.

Information flow and Laplacian dynamics on local optima networks (2024)
Presentation / Conference Contribution
Richter, H., & Thomson, S. L. (2024, June). Information flow and Laplacian dynamics on local optima networks. Presented at IEEE Congress on Evolutionary Computation (IEEE CEC), Yokohama, Japan

We propose a new way of looking at local optima networks (LONs). LONs represent fitness landscapes; the nodes are local optima, and the edges are search transitions between them. Many metrics computed on LONs have been proposed and shown to be linked... Read More about Information flow and Laplacian dynamics on local optima networks.

The Easiest Hard Problem: Now Even Easier (2024)
Presentation / Conference Contribution
Horn, R., Thomson, S. L., van den Berg, D., & Adriaans, P. (2024, July). The Easiest Hard Problem: Now Even Easier. Presented at ACM Genetic and Evolutionary Computation Conference (GECCO) 2024, Melbourne, Australia

We present an exponential decay function that characterizes the number of solutions to instances of the Number Partitioning Problem (NPP) with uniform distribution of bits across the integers. This function is fitted on the number of optimal solution... Read More about The Easiest Hard Problem: Now Even Easier.

Exploring the use of fitness landscape analysis for understanding malware evolution (2024)
Presentation / Conference Contribution
Babaagba, K., Murali, R., & Thomson, S. L. (2024, July). Exploring the use of fitness landscape analysis for understanding malware evolution. Presented at ACM Genetic and Evolutionary Computation Conference (GECCO) 2024, Melbourne, Australia

We conduct a preliminary study exploring the potential of using fitness landscape analysis for understanding the evolution of malware. This type of optimisation is fairly new and has not previously been studied through the lens of landscape analysis.... Read More about Exploring the use of fitness landscape analysis for understanding malware evolution.

Explaining evolutionary feature selection via local optima networks (2024)
Presentation / Conference Contribution
Adair, J., Thomson, S. L., & Brownlee, A. E. I. (2024, July). Explaining evolutionary feature selection via local optima networks. Presented at ACM Genetic and Evolutionary Computation Conference (GECCO) 2024, Melbourne, Australia

We analyse fitness landscapes of evolutionary feature selection to obtain information about feature importance in supervised machine learning. Local optima networks (LONs) are a compact representation of a landscape, and can potentially be adapted fo... Read More about Explaining evolutionary feature selection via local optima networks.

A Bi-Level Approach to Vehicle Fleet Reduction: Successful Case Study in Community Healthcare (2024)
Presentation / Conference Contribution
Brownlee, A., Thomson, S., & Oladapo, R. (2024, July). A Bi-Level Approach to Vehicle Fleet Reduction: Successful Case Study in Community Healthcare. Presented at Proceedings of the Genetic and Evolutionary Computation Conference Companion, Melbourne, Australia

We report on a case study application of metaheuristics with Argyll and Bute Health and Social Care Partnership in the West of Scotland. The Partnership maintains a fleet of pool vehicles that are available to service visits of staff to locations acr... Read More about A Bi-Level Approach to Vehicle Fleet Reduction: Successful Case Study in Community Healthcare.

Temporal True and Surrogate Fitness Landscape Analysis for Expensive Bi-Objective Optimisation Expensive Bi-Objective (2024)
Presentation / Conference Contribution
Rodriguez, C. J., Thomson, S. L., Alderliesten, T., & Bosman, P. A. N. (2024, July). Temporal True and Surrogate Fitness Landscape Analysis for Expensive Bi-Objective Optimisation Expensive Bi-Objective. Presented at Genetic and Evolutionary Computation Conference (GECCO 2024), Melbourne, Australia

Many real-world problems have expensive-to-compute fitness functions and are multi-objective in nature. Surrogate-assisted evolutionary algorithms are often used to tackle such problems. Despite this, literature about analysing the fitness landscapes... Read More about Temporal True and Surrogate Fitness Landscape Analysis for Expensive Bi-Objective Optimisation Expensive Bi-Objective.

Understanding fitness landscapes in morpho-evolution via local optima networks (2024)
Presentation / Conference Contribution
Thomson, S. L., Le Goff, L., Hart, E., & Buchanan, E. (2024, July). Understanding fitness landscapes in morpho-evolution via local optima networks. Presented at Genetic and Evolutionary Computation Conference (GECCO 2024), Melbourne, Australia

Morpho-Evolution (ME) refers to the simultaneous optimisation of a robot's design and controller to maximise performance given a task and environment. Many genetic encodings have been proposed which are capable of representing design and control. Pre... Read More about Understanding fitness landscapes in morpho-evolution via local optima networks.

Addressing the traveling salesperson problem with frequency fitness assignment and hybrid algorithms (2024)
Journal Article
Liang, T., Wu, Z., Lässig, J., van den Berg, D., Thomson, S. L., & Weise, T. (2024). Addressing the traveling salesperson problem with frequency fitness assignment and hybrid algorithms. Soft Computing, 28, 9495–9508. https://doi.org/10.1007/s00500-024-09718-8

The traveling salesperson problem (TSP) is one of the most iconic hard optimization tasks. With frequency fitness assignment (FFA), a new approach to optimization has recently been proposed: instead of directing the search towards better solutions, t... Read More about Addressing the traveling salesperson problem with frequency fitness assignment and hybrid algorithms.