Skip to main content

Research Repository

Advanced Search

Outputs (35)

The Performance of Frequency Fitness Assignment on JSSP for Different Problem Instance Sizes (2024)
Presentation / Conference Contribution
Pijning, I., Koppenhol, L., Dijkzeul, D., Brouwer, N., Thomson, S. L., & van den Berg, D. (2024, November). The Performance of Frequency Fitness Assignment on JSSP for Different Problem Instance Sizes. Paper presented at ECTA 2024: 16th International Conference on Evolutionary Computation Theory and Applications, Porto, Portugal

This study compares the performance of the hillClimber algorithm to that of the hillClimber with a plugged in Frequency Fitness Assignment (FFA) method on the optimization of 240 Job Shop Scheduling Problem (JSSP) instances. The JSSP instances have b... Read More about The Performance of Frequency Fitness Assignment on JSSP for Different Problem Instance Sizes.

A Deep Dive into Effects of Structural Bias on CMA-ES Performance along Affine Trajectories (2024)
Presentation / Conference Contribution
van Stein, N., Thomson, S. L., & Kononova, A. V. (2024, September). A Deep Dive into Effects of Structural Bias on CMA-ES Performance along Affine Trajectories. Presented at Parallel Problem Solving from Nature (PPSN) 2024, Hagenberg, Austria

To guide the design of better iterative optimisation heuristics, it is imperative to understand how inherent structural biases within algorithm components affect the performance on a wide variety of search landscapes. This study explores the impact o... Read More about A Deep Dive into Effects of Structural Bias on CMA-ES Performance along Affine Trajectories.

Entropy, Search Trajectories, and Explainability for Frequency Fitness Assignment (2024)
Presentation / Conference Contribution
Thomson, S. L., Ochoa, G., van den Berg, D., Liang, T., & Weise, T. (2024, September). Entropy, Search Trajectories, and Explainability for Frequency Fitness Assignment. Presented at Parallel Problem Solving from Nature (PPSN 2024), Hagenberg, Austria

Local optima are a menace that can trap optimisation processes. Frequency fitness assignment (FFA) is an concept aiming to overcome this problem. It steers the search towards solutions with rare fitness instead of high-quality fitness. FFA-based algo... Read More about Entropy, Search Trajectories, and Explainability for Frequency Fitness Assignment.

Information flow and Laplacian dynamics on local optima networks (2024)
Presentation / Conference Contribution
Richter, H., & Thomson, S. L. (2024, June). Information flow and Laplacian dynamics on local optima networks. Presented at IEEE Congress on Evolutionary Computation (IEEE CEC), Yokohama, Japan

We propose a new way of looking at local optima networks (LONs). LONs represent fitness landscapes; the nodes are local optima, and the edges are search transitions between them. Many metrics computed on LONs have been proposed and shown to be linked... Read More about Information flow and Laplacian dynamics on local optima networks.

Exploring the use of fitness landscape analysis for understanding malware evolution (2024)
Presentation / Conference Contribution
Babaagba, K., Murali, R., & Thomson, S. L. (2024, July). Exploring the use of fitness landscape analysis for understanding malware evolution. Presented at ACM Genetic and Evolutionary Computation Conference (GECCO) 2024, Melbourne, Australia

We conduct a preliminary study exploring the potential of using fitness landscape analysis for understanding the evolution of malware. This type of optimisation is fairly new and has not previously been studied through the lens of landscape analysis.... Read More about Exploring the use of fitness landscape analysis for understanding malware evolution.

The Easiest Hard Problem: Now Even Easier (2024)
Presentation / Conference Contribution
Horn, R., Thomson, S. L., van den Berg, D., & Adriaans, P. (2024, July). The Easiest Hard Problem: Now Even Easier. Presented at ACM Genetic and Evolutionary Computation Conference (GECCO) 2024, Melbourne, Australia

We present an exponential decay function that characterizes the number of solutions to instances of the Number Partitioning Problem (NPP) with uniform distribution of bits across the integers. This function is fitted on the number of optimal solution... Read More about The Easiest Hard Problem: Now Even Easier.

Explaining evolutionary feature selection via local optima networks (2024)
Presentation / Conference Contribution
Adair, J., Thomson, S. L., & Brownlee, A. E. I. (2024, July). Explaining evolutionary feature selection via local optima networks. Presented at ACM Genetic and Evolutionary Computation Conference (GECCO) 2024, Melbourne, Australia

We analyse fitness landscapes of evolutionary feature selection to obtain information about feature importance in supervised machine learning. Local optima networks (LONs) are a compact representation of a landscape, and can potentially be adapted fo... Read More about Explaining evolutionary feature selection via local optima networks.

Frequency Fitness Assignment: Optimization without Bias for Good Solution outperforms Randomized Local Search on the Quadratic Assignment Problem (2024)
Presentation / Conference Contribution
Chen, J., Wu, Z., Thomson, S. L., & Weise, T. (2024, November). Frequency Fitness Assignment: Optimization without Bias for Good Solution outperforms Randomized Local Search on the Quadratic Assignment Problem. Paper presented at ECTA 2024: 16th International Conference on Evolutionary Computation Theory and Applications, Porto, Portugal

The Quadratic Assignment Problem (QAP) is one of the classical N P-hard tasks from operations research with a history of more than 65 years. It is often approached with heuristic algorithms and over the years, a multitude of such methods has been app... Read More about Frequency Fitness Assignment: Optimization without Bias for Good Solution outperforms Randomized Local Search on the Quadratic Assignment Problem.

Temporal True and Surrogate Fitness Landscape Analysis for Expensive Bi-Objective Optimisation Expensive Bi-Objective (2024)
Presentation / Conference Contribution
Rodriguez, C. J., Thomson, S. L., Alderliesten, T., & Bosman, P. A. N. (2024, July). Temporal True and Surrogate Fitness Landscape Analysis for Expensive Bi-Objective Optimisation Expensive Bi-Objective. Presented at Genetic and Evolutionary Computation Conference (GECCO 2024), Melbourne, Australia

Many real-world problems have expensive-to-compute fitness functions and are multi-objective in nature. Surrogate-assisted evolutionary algorithms are often used to tackle such problems. Despite this, literature about analysing the fitness landscapes... Read More about Temporal True and Surrogate Fitness Landscape Analysis for Expensive Bi-Objective Optimisation Expensive Bi-Objective.

Understanding fitness landscapes in morpho-evolution via local optima networks (2024)
Presentation / Conference Contribution
Thomson, S. L., Le Goff, L., Hart, E., & Buchanan, E. (2024, July). Understanding fitness landscapes in morpho-evolution via local optima networks. Presented at Genetic and Evolutionary Computation Conference (GECCO 2024), Melbourne, Australia

Morpho-Evolution (ME) refers to the simultaneous optimisation of a robot's design and controller to maximise performance given a task and environment. Many genetic encodings have been proposed which are capable of representing design and control. Pre... Read More about Understanding fitness landscapes in morpho-evolution via local optima networks.