Skip to main content

Research Repository

Advanced Search

Outputs (5)

FedCST: Federated Learning on Heterogeneous Resource-constrained Devices Using Clustering and Split Training (2024)
Presentation / Conference Contribution
Wang, Z., Lin, H., Liu, Q., Zhang, Y., & Liu, X. (2024, July). FedCST: Federated Learning on Heterogeneous Resource-constrained Devices Using Clustering and Split Training. Presented at The 24th International Conference on Software Quality, Reliability, and Security Companion (QRS-C), Cambridge, UK

With the rapid development of 5G and Internet of Things (IoT) technologies, edge devices such as sensors, smartphones, and wearable devices have become increasingly prevalent. The massive amount of distributed data generated by these devices offers u... Read More about FedCST: Federated Learning on Heterogeneous Resource-constrained Devices Using Clustering and Split Training.

A New Improved Method of Recurrent Memory Perception for Radar Echo Extrapolation (2024)
Presentation / Conference Contribution
Ji, R., Liu, Q., Zhang, Y., & Liu, X. (2024, July). A New Improved Method of Recurrent Memory Perception for Radar Echo Extrapolation. Presented at 2024 IEEE 24th International Conference on Software Quality, Reliability, and Security Companion (QRS-C), Cambridge, United Kingdom

Precipitation forecasting has long been a prominent topic in meteorology, as accurate predictions of impending rainfall are crucial for daily life and travel planning. Currently, radar echo extrapolation serves as the primary method for precipitation... Read More about A New Improved Method of Recurrent Memory Perception for Radar Echo Extrapolation.

High Intensity Radar Echo Extrapolation Based on Stacked Generative Structure (2024)
Presentation / Conference Contribution
Tao, S., Liu, Q., Zhang, Y., & Liu, X. (2024, July). High Intensity Radar Echo Extrapolation Based on Stacked Generative Structure. Presented at 2024 IEEE 24th International Conference on Software Quality, Reliability, and Security Companion (QRS-C), Cambridge, UK

In recent years, the phenomenon of severe convective disaster weather has increased significantly in the world. Due to the characteristics of small spatial scale, short occurrence period, great destructiveness and drastic changes, severe convective d... Read More about High Intensity Radar Echo Extrapolation Based on Stacked Generative Structure.

PMNet: a multi-branch and multi-scale semantic segmentation approach to water extraction from high-resolution remote sensing images with edge-cloud computing (2024)
Journal Article
Zhang, Z., Liu, Q., Liu, X., Zhang, Y., Du, Z., & Cao, X. (2024). PMNet: a multi-branch and multi-scale semantic segmentation approach to water extraction from high-resolution remote sensing images with edge-cloud computing. Journal of cloud computing: advances, systems and applications, 13(1), Article 76. https://doi.org/10.1186/s13677-024-00637-5

In the field of remote sensing image interpretation, automatically extracting water body information from high-resolution images is a key task. However, facing the complex multi-scale features in high-resolution remote sensing images, traditional met... Read More about PMNet: a multi-branch and multi-scale semantic segmentation approach to water extraction from high-resolution remote sensing images with edge-cloud computing.

An Entity Ontology-Based Knowledge Graph Embedding Approach to News Credibility Assessment (2024)
Journal Article
Liu, Q., Jin, Y., Cao, X., Liu, X., Zhou, X., Zhang, Y., Xu, X., & Qi, L. (2024). An Entity Ontology-Based Knowledge Graph Embedding Approach to News Credibility Assessment. IEEE Transactions on Computational Social Systems, 11(4), 5308 - 5318. https://doi.org/10.1109/TCSS.2023.3342873

Fake news is a prevalent issue in modern society, leading to misinformation and societal harm. News credibility assessment is a crucial approach for evaluating the accuracy and authenticity of news. It plays a significant role in enhancing public awa... Read More about An Entity Ontology-Based Knowledge Graph Embedding Approach to News Credibility Assessment.