Skip to main content

Research Repository

Advanced Search

Outputs (77)

Frequency-Domain Functional Links For Nonlinear Feedback Cancellation In Hearing Aids (2023)
Presentation / Conference Contribution
Nezamdoust, A., Gogate, M., Dashtipour, K., Hussain, A., & Comminiello, D. (2023, June). Frequency-Domain Functional Links For Nonlinear Feedback Cancellation In Hearing Aids. Presented at 2023 IEEE International Conference on Acoustics, Speech, and Signal Processing Workshops (ICASSPW), Rhodes Island, Greece

The problem of feedback cancellation can be seen as a function approximation task, which often is nonlinear in real-world hearing assistive technologies. Nonlinear methods adopted for this task must exhibit outstanding modeling performance and reduce... Read More about Frequency-Domain Functional Links For Nonlinear Feedback Cancellation In Hearing Aids.

Sentiment Analysis Meets Explainable Artificial Intelligence: A Survey on Explainable Sentiment Analysis (2023)
Journal Article
Diwali, A., Saeedi, K., Dashtipour, K., Gogate, M., Cambria, E., & Hussain, A. (2024). Sentiment Analysis Meets Explainable Artificial Intelligence: A Survey on Explainable Sentiment Analysis. IEEE Transactions on Affective Computing, 15(3), 837-846. https://doi.org/10.1109/taffc.2023.3296373

Sentiment analysis can be used to derive knowledge that is connected to emotions and opinions from textual data generated by people. As computer power has grown, and the availability of benchmark datasets has increased, deep learning models based on... Read More about Sentiment Analysis Meets Explainable Artificial Intelligence: A Survey on Explainable Sentiment Analysis.

Steel surface defect detection based on self-supervised contrastive representation learning with matching metric (2023)
Journal Article
Hu, X., Yang, J., Jiang, F., Hussain, A., Dashtipour, K., & Gogate, M. (2023). Steel surface defect detection based on self-supervised contrastive representation learning with matching metric. Applied Soft Computing, 145, Article 110578. https://doi.org/10.1016/j.asoc.2023.110578

Defect detection is crucial in the quality control of industrial applications. Existing supervised methods are heavily reliant on the large amounts of labeled data. However, labeled data in some specific fields are still scarce, and it requires profe... Read More about Steel surface defect detection based on self-supervised contrastive representation learning with matching metric.

Arabic Sentiment Analysis Based on Word Embeddings and Deep Learning (2023)
Journal Article
Elhassan, N., Varone, G., Ahmed, R., Gogate, M., Dashtipour, K., Almoamari, H., El-Affendi, M. A., Al-Tamimi, B. N., Albalwy, F., & Hussain, A. (2023). Arabic Sentiment Analysis Based on Word Embeddings and Deep Learning. Computers, 12(6), Article 126. https://doi.org/10.3390/computers12060126

Social media networks have grown exponentially over the last two decades, providing the opportunity for users of the internet to communicate and exchange ideas on a variety of topics. The outcome is that opinion mining plays a crucial role in analyzi... Read More about Arabic Sentiment Analysis Based on Word Embeddings and Deep Learning.

Towards individualised speech enhancement: An SNR preference learning system for multi-modal hearing aids (2023)
Presentation / Conference Contribution
Kirton-Wingate, J., Ahmed, S., Gogate, M., Tsao, Y., & Hussain, A. (2023, June). Towards individualised speech enhancement: An SNR preference learning system for multi-modal hearing aids. Presented at 2023 IEEE International Conference on Acoustics, Speech, and Signal Processing Workshops (ICASSPW), Rhodes Island, Greece

Since the advent of deep learning (DL), speech enhancement (SE) models have performed well under a variety of noise conditions. However, such systems may still introduce sonic artefacts, sound unnatural, and restrict the ability for a user to hear am... Read More about Towards individualised speech enhancement: An SNR preference learning system for multi-modal hearing aids.

Live Demonstration: Real-time Multi-modal Hearing Assistive Technology Prototype (2023)
Presentation / Conference Contribution
Gogate, M., Hussain, A., Dashtipour, K., & Hussain, A. (2023, May). Live Demonstration: Real-time Multi-modal Hearing Assistive Technology Prototype. Presented at 2023 IEEE International Symposium on Circuits and Systems (ISCAS), Monterey, California

Hearing loss affects at least 1.5 billion people globally. The WHO estimates 83% of people who could benefit from hearing aids do not use them. Barriers to HA uptake are multifaceted but include ineffectiveness of current HA technology in noisy envir... Read More about Live Demonstration: Real-time Multi-modal Hearing Assistive Technology Prototype.

Live Demonstration: Cloud-based Audio-Visual Speech Enhancement in Multimodal Hearing-aids (2023)
Presentation / Conference Contribution
Bishnu, A., Gupta, A., Gogate, M., Dashtipour, K., Arslan, T., Adeel, A., Hussain, A., Sellathurai, M., & Ratnarajah, T. (2023, May). Live Demonstration: Cloud-based Audio-Visual Speech Enhancement in Multimodal Hearing-aids. Presented at 2023 IEEE International Symposium on Circuits and Systems (ISCAS), Monterey, California

Hearing loss is among the most serious public health problems, affecting as much as 20% of the worldwide population. Even cutting-edge multi-channel audio-only speech enhancement (SE) algorithms used in modern hearing aids face significant hurdles si... Read More about Live Demonstration: Cloud-based Audio-Visual Speech Enhancement in Multimodal Hearing-aids.

The P vs. NP Problem and Attempts to Settle It via Perfect Graphs State-of-the-Art Approach (2023)
Presentation / Conference Contribution
Heal, M., Dashtipour, K., & Gogate, M. (2023, March). The P vs. NP Problem and Attempts to Settle It via Perfect Graphs State-of-the-Art Approach. Presented at 2023 Future of Information and Communication Conference (FICC), San Francisco, CA

The P vs. NP problem is a major problem in computer science. It is perhaps the most celebrated outstanding problem in that domain. Its solution would have a tremendous impact on different fields such as mathematics, cryptography, algorithm research,... Read More about The P vs. NP Problem and Attempts to Settle It via Perfect Graphs State-of-the-Art Approach.

Interactive Effect of Learning Rate and Batch Size to Implement Transfer Learning for Brain Tumor Classification (2023)
Journal Article
Usmani, I. A., Qadri, M. T., Zia, R., Alrayes, F. S., Saidani, O., & Dashtipour, K. (2023). Interactive Effect of Learning Rate and Batch Size to Implement Transfer Learning for Brain Tumor Classification. Electronics, 12(4), Article 964. https://doi.org/10.3390/electronics12040964

For classifying brain tumors with small datasets, the knowledge-based transfer learning (KBTL) approach has performed very well in attaining an optimized classification model. However, its successful implementation is typically affected by different... Read More about Interactive Effect of Learning Rate and Batch Size to Implement Transfer Learning for Brain Tumor Classification.

A Novel Hierarchical Extreme Machine-Learning-Based Approach for Linear Attenuation Coefficient Forecasting (2023)
Journal Article
Varone, G., Ieracitano, C., Çiftçioğlu, A. Ö., Hussain, T., Gogate, M., Dashtipour, K., Al-Tamimi, B. N., Almoamari, H., Akkurt, I., & Hussain, A. (2023). A Novel Hierarchical Extreme Machine-Learning-Based Approach for Linear Attenuation Coefficient Forecasting. Entropy, 25(2), Article 253. https://doi.org/10.3390/e25020253

The development of reinforced polymer composite materials has had a significant influence on the challenging problem of shielding against high-energy photons, particularly X-rays and γ-rays in industrial and healthcare facilities. Heavy materials’ sh... Read More about A Novel Hierarchical Extreme Machine-Learning-Based Approach for Linear Attenuation Coefficient Forecasting.