Skip to main content

Research Repository

Advanced Search

Outputs (75)

Robust Real-time Audio-Visual Speech Enhancement based on DNN and GAN (2024)
Journal Article
Gogate, M., Dashtipour, K., & Hussain, A. (online). Robust Real-time Audio-Visual Speech Enhancement based on DNN and GAN. IEEE Transactions on Artificial Intelligence, https://doi.org/10.1109/tai.2024.3366141

The human auditory cortex contextually integrates audio-visual (AV) cues to better understand speech in a cocktail party situation. Recent studies have shown that AV speech enhancement (SE) models can significantly improve speech quality and intellig... Read More about Robust Real-time Audio-Visual Speech Enhancement based on DNN and GAN.

5G-IoT Cloud based Demonstration of Real-Time Audio-Visual Speech Enhancement for Multimodal Hearing-aids (2023)
Presentation / Conference Contribution
Gupta, A., Bishnu, A., Gogate, M., Dashtipour, K., Arslan, T., Adeel, A., Hussain, A., Ratnarajah, T., & Sellathurai, M. (2023, August). 5G-IoT Cloud based Demonstration of Real-Time Audio-Visual Speech Enhancement for Multimodal Hearing-aids. Presented at Interspeech 2023, Dublin, Ireland

Over twenty percent of the world's population suffers from some form of hearing loss, making it one of the most significant public health challenges. Current hearing aids commonly amplify noises while failing to improve speech comprehension in crowde... Read More about 5G-IoT Cloud based Demonstration of Real-Time Audio-Visual Speech Enhancement for Multimodal Hearing-aids.

Application for Real-time Audio-Visual Speech Enhancement (2023)
Presentation / Conference Contribution
Gogate, M., Dashtipour, K., & Hussain, A. (2023, August). Application for Real-time Audio-Visual Speech Enhancement. Presented at Interspeech 2023, Dublin, Ireland

This short paper demonstrates a first of its kind audio-visual (AV) speech enhancement (SE) desktop application that isolates, in real-time, the voice of a target speaker from noisy audio input. The deep neural network model integrated in this applic... Read More about Application for Real-time Audio-Visual Speech Enhancement.

A hybrid dependency-based approach for Urdu sentiment analysis (2023)
Journal Article
Sehar, U., Kanwal, S., Allheeib, N. I., Almari, S., Khan, F., Dashtipur, K., Gogate, M., & Khashan, O. A. (2023). A hybrid dependency-based approach for Urdu sentiment analysis. Scientific Reports, 13, Article 22075. https://doi.org/10.1038/s41598-023-48817-8

In the digital age, social media has emerged as a significant platform, generating a vast amount of raw data daily. This data reflects the opinions of individuals from diverse backgrounds, races, cultures, and age groups, spanning a wide range of top... Read More about A hybrid dependency-based approach for Urdu sentiment analysis.

Intrusion Detection Systems Using Machine Learning (2023)
Book Chapter
Taylor, W., Hussain, A., Gogate, M., Dashtipour, K., & Ahmad, J. (2024). Intrusion Detection Systems Using Machine Learning. In W. Boulila, J. Ahmad, A. Koubaa, M. Driss, & I. Riadh Farah (Eds.), Decision Making and Security Risk Management for IoT Environments (75-98). Springer. https://doi.org/10.1007/978-3-031-47590-0_5

Intrusion detection systems (IDS) have developed and evolved over time to form an important component in network security. The aim of an intrusion detection system is to successfully detect intrusions within a network and to trigger alerts to system... Read More about Intrusion Detection Systems Using Machine Learning.

Fake News in Social Media: Fake News Themes and Intentional Deception in the News and on Social Media (2023)
Book Chapter
Idrees, H., Dashtipour, K., Hussain, T., & Gogate, M. (2024). Fake News in Social Media: Fake News Themes and Intentional Deception in the News and on Social Media. In W. Boulila, J. Ahmad, A. Koubaa, M. Driss, & I. Riadh Farah (Eds.), Decision Making and Security Risk Management for IoT Environments (219-229). Springer. https://doi.org/10.1007/978-3-031-47590-0_11

From the start of the twenty-first century, online views and clicks have only increased. Within the last twenty years that has embedded through the use of social media. Within the last ten years news can spread on social media before it is shown on t... Read More about Fake News in Social Media: Fake News Themes and Intentional Deception in the News and on Social Media.

Solving the cocktail party problem using Multi-modal Hearing Assistive Technology Prototype (2023)
Presentation / Conference Contribution
Gogate, M., Dashtipour, K., & Hussain, A. (2023, December). Solving the cocktail party problem using Multi-modal Hearing Assistive Technology Prototype. Presented at Acoustics 2023, Sydney, Australia

Hearing loss is a major global health problem, affecting over 1.5 billion people. According to estimations by the World Health Organization, 83% of those who could benefit from hearing assistive devices do not use them. The limited adoption of hearin... Read More about Solving the cocktail party problem using Multi-modal Hearing Assistive Technology Prototype.

Towards Pose-Invariant Audio-Visual Speech Enhancement in the Wild for Next-Generation Multi-Modal Hearing Aids (2023)
Presentation / Conference Contribution
Gogate, M., Dashtipour, K., & Hussain, A. (2023, June). Towards Pose-Invariant Audio-Visual Speech Enhancement in the Wild for Next-Generation Multi-Modal Hearing Aids. Presented at 2023 IEEE International Conference on Acoustics, Speech, and Signal Processing Workshops (ICASSPW), Rhodes Island, Greece

Classical audio-visual (AV) speech enhancement (SE) and separation methods have been successful at operating under constrained environments; however, the speech quality and intelligibility improvement is significantly reduced in unconstrained real-wo... Read More about Towards Pose-Invariant Audio-Visual Speech Enhancement in the Wild for Next-Generation Multi-Modal Hearing Aids.

Frequency-Domain Functional Links For Nonlinear Feedback Cancellation In Hearing Aids (2023)
Presentation / Conference Contribution
Nezamdoust, A., Gogate, M., Dashtipour, K., Hussain, A., & Comminiello, D. (2023, June). Frequency-Domain Functional Links For Nonlinear Feedback Cancellation In Hearing Aids. Presented at 2023 IEEE International Conference on Acoustics, Speech, and Signal Processing Workshops (ICASSPW), Rhodes Island, Greece

The problem of feedback cancellation can be seen as a function approximation task, which often is nonlinear in real-world hearing assistive technologies. Nonlinear methods adopted for this task must exhibit outstanding modeling performance and reduce... Read More about Frequency-Domain Functional Links For Nonlinear Feedback Cancellation In Hearing Aids.

Sentiment Analysis Meets Explainable Artificial Intelligence: A Survey on Explainable Sentiment Analysis (2023)
Journal Article
Diwali, A., Saeedi, K., Dashtipour, K., Gogate, M., Cambria, E., & Hussain, A. (2024). Sentiment Analysis Meets Explainable Artificial Intelligence: A Survey on Explainable Sentiment Analysis. IEEE Transactions on Affective Computing, 15(3), 837-846. https://doi.org/10.1109/taffc.2023.3296373

Sentiment analysis can be used to derive knowledge that is connected to emotions and opinions from textual data generated by people. As computer power has grown, and the availability of benchmark datasets has increased, deep learning models based on... Read More about Sentiment Analysis Meets Explainable Artificial Intelligence: A Survey on Explainable Sentiment Analysis.