Skip to main content

Research Repository

Advanced Search

Outputs (3)

U-Shape Lossy Mode Resonance Optical Fiber Sensor for Temperature Detection of Lithium-Ion Batteries (2024)
Presentation / Conference Contribution
Alcock, K. M., Goh, K., Beg, M., Melendi-Espina, S., & Hernaez, M. (2024, September). U-Shape Lossy Mode Resonance Optical Fiber Sensor for Temperature Detection of Lithium-Ion Batteries. Poster presented at 2024 Frontiers in Optics + Laser Science meeting, Denver, Colorado , USA

This study develops a Polyethylenimine/Graphene Oxide thin film-based Lossy Mode Resonance U-shaped optical fiber sensor for lithium-ion battery temperature measurement. The study encourages further development of this device further as it compares w... Read More about U-Shape Lossy Mode Resonance Optical Fiber Sensor for Temperature Detection of Lithium-Ion Batteries.

Biodegradable biopolymers for electrochemical energy storage devices in a circular economy (2024)
Journal Article
Beg, M., Saju, J., Alcock, K. M., Mavelil, A. T., Markapudi, P. R., Yu, H., & Manjakkal, L. (2025). Biodegradable biopolymers for electrochemical energy storage devices in a circular economy. RSC Sustainability, 3(1), 37-63. https://doi.org/10.1039/d4su00468j

The rising trend of green energy has made it necessary to utilise efficient green materials in electrochemical energy storage devices (EESDs) under a green economy. The need for sustainable energy storage technologies due to the rising demand for ene... Read More about Biodegradable biopolymers for electrochemical energy storage devices in a circular economy.

An innovative approach for the passive cooling of batteries: An empirical investigation of copper deposition on polyurethane foam for the enhancement of phase change material (2024)
Journal Article
Alcock, K. M., Shearer, N., Santos, F. V., Cai, Z., & Goh, K. (2024). An innovative approach for the passive cooling of batteries: An empirical investigation of copper deposition on polyurethane foam for the enhancement of phase change material. Applied Materials Today, 38, Article 102221. https://doi.org/10.1016/j.apmt.2024.102221

A proof-of-concept utilising Copper-Plated Polyurethane Foam (CPPF) and Phase Change Material (PCM) for passive thermal management of lithium-ion batteries is demonstrated in this study. The aim of this research is to assess the effectiveness of CPPF... Read More about An innovative approach for the passive cooling of batteries: An empirical investigation of copper deposition on polyurethane foam for the enhancement of phase change material.