Advanced simulation methodologies for smart soft multifunctional polymeric composites
(2023)
Presentation / Conference Contribution
Kadapa, C., & Hossain, M. (2023, May). Advanced simulation methodologies for smart soft multifunctional polymeric composites. Poster presented at RubberCon 2023, Edinburgh, UK
Outputs (40)
A general theoretical scheme for shape-programming of incompressible hyperelastic shells through differential growth (2023)
Journal Article
Li, Z., Wang, J., Hossain, M., & Kadapa, C. (2023). A general theoretical scheme for shape-programming of incompressible hyperelastic shells through differential growth. International Journal of Solids and Structures, 255-256, Article 112128. https://doi.org/10.1016/j.ijsolstr.2023.112128In this paper, we study the problem of shape-programming of incompressible hyperelastic shells through differential growth. The aim of the current work is to determine one of the possible growth tensors (or growth functions) that can produce the defo... Read More about A general theoretical scheme for shape-programming of incompressible hyperelastic shells through differential growth.
Advanced FE framework for magnetoactive polymers including viscoelastic and elastodynamics effects (2022)
Presentation / Conference Contribution
Kadapa, C., & Hossain, M. (2022, August). Advanced FE framework for magnetoactive polymers including viscoelastic and elastodynamics effects. Paper presented at EUROMECH Colloquium on Mechanics of Soft Active Polymers, Southampton, United Kingdom
A comprehensive assessment of accuracy of adaptive integration of cut cells for laminar fluid-structure interaction problems (2022)
Journal Article
Kadapa, C., Wang, X., & Mei, Y. (2022). A comprehensive assessment of accuracy of adaptive integration of cut cells for laminar fluid-structure interaction problems. Computers and Mathematics with Applications, 122, 1-18. https://doi.org/10.1016/j.camwa.2022.07.006Finite element methods based on cut-cells are becoming increasingly popular because of their advantages over formulations based on body-fitted meshes for problems with moving interfaces. In such methods, the cells (or elements) which are cut by the i... Read More about A comprehensive assessment of accuracy of adaptive integration of cut cells for laminar fluid-structure interaction problems.
A short review of vapour droplet dispersion models used in CFD to study the airborne spread of COVID19 (2022)
Journal Article
Mehade Hussain, S., Goel, S., Kadapa, C., & Aristodemou, E. (2022). A short review of vapour droplet dispersion models used in CFD to study the airborne spread of COVID19. Materials Today: Proceedings, 64(3), 1349-1356. https://doi.org/10.1016/j.matpr.2022.03.724The use of computational fluid dynamics (CFD) to simulate the spread of COVID19 and many other airborne diseases, especially in an indoor environment needs accurate understanding of dispersion models. Modelling the transport/dispersion of vapour drop... Read More about A short review of vapour droplet dispersion models used in CFD to study the airborne spread of COVID19.
A unified numerical approach for soft to hard magneto-viscoelastically coupled polymers (2022)
Journal Article
Kadapa, C., & Hossain, M. (2022). A unified numerical approach for soft to hard magneto-viscoelastically coupled polymers. Mechanics of Materials, 166, Article 104207. https://doi.org/10.1016/j.mechmat.2021.104207The last decade has witnessed the emergence of magneto-active polymers (MAPs) as one of the most advanced multi-functional soft composites. Depending on the magnetisation mechanisms and responsive behaviour, MAPs are mainly classified as hard magneti... Read More about A unified numerical approach for soft to hard magneto-viscoelastically coupled polymers.
Multiscale Modeling for the Statics of Nanostructures (2021)
Book Chapter
Hoang, K.-Q., & Kadapa, C. (2021). Multiscale Modeling for the Statics of Nanostructures. In S. Chakraverty (Ed.), Nano Scaled Structural Problems: Static and Dynamic Behaviors (1-38). AIP Publishing. https://doi.org/10.1063/9780735422865_002Characterization of mechanical properties of materials is essential toward understanding their deformation behavior when subjected to external forces. For a complete understanding of the behavior of materials from the interaction of atoms at the nano... Read More about Multiscale Modeling for the Statics of Nanostructures.
Analytical study on growth-induced axisymmetric deformations and shape-control of circular hyperelastic plates (2021)
Journal Article
Li, Z., Wang, Q., Du, P., Kadapa, C., Hossain, M., & Wang, J. (2022). Analytical study on growth-induced axisymmetric deformations and shape-control of circular hyperelastic plates. International Journal of Engineering Science, 170, Article 103594. https://doi.org/10.1016/j.ijengsci.2021.103594Growth of soft material plates is commonly observed in nature. However, the relations between growth fields and shape changes of the plate samples remain poorly understood. The current work aims to derive some analytical results for the growth-induce... Read More about Analytical study on growth-induced axisymmetric deformations and shape-control of circular hyperelastic plates.
A Unified Simulation Framework for Fluid–Structure–Control Interaction Problems with Rigid and Flexible Structures (2021)
Journal Article
Kadapa, C. (2022). A Unified Simulation Framework for Fluid–Structure–Control Interaction Problems with Rigid and Flexible Structures. International Journal of Computational Methods, 19(01), Article 2150052. https://doi.org/10.1142/s0219876221500523Vortex-induced vibrations are often unwanted as they can lead to catastrophic failure of the associated structures, warranting countermeasures to mitigate or suppress these vibrations. Due to the nature of nonlinearities in fluid–structure interactio... Read More about A Unified Simulation Framework for Fluid–Structure–Control Interaction Problems with Rigid and Flexible Structures.
Towards robust and efficient solvers for fluid-structure interaction problems involving thin flexible structures (2021)
Presentation / Conference Contribution
Kadapa, C. (2021, April). Towards robust and efficient solvers for fluid-structure interaction problems involving thin flexible structures. Presented at UK Association for Computational Mechanics (UKACM) 2021 Conference, OnlineThis work proposes a new single-step implicit-explicit scheme for computationally efficient numerical solutions of fluid-structure interaction problems involving laminar incompressible fluids and thin, flexible structures. The base solver for incompr... Read More about Towards robust and efficient solvers for fluid-structure interaction problems involving thin flexible structures.