Skip to main content

Research Repository

Advanced Search

All Outputs (10)

Flexible Potentiostat Readout Circuit Patch for Electrochemical and Biosensor Applications (2020)
Conference Proceeding
Escobedo, P., Manjakkal, L., Ntagios, M., & Dahiya, R. (2020). Flexible Potentiostat Readout Circuit Patch for Electrochemical and Biosensor Applications. In 2020 IEEE International Conference on Flexible and Printable Sensors and Systems (FLEPS). https://doi.org/10.1109/fleps49123.2020.9239515

This paper presents a miniaturized potentiostat readout circuit patch developed for electrochemical or biosensors. The presented patch has been fabricated on a flexible polyimide substrate using off-the-shelf electronics. In contrast to the tradition... Read More about Flexible Potentiostat Readout Circuit Patch for Electrochemical and Biosensor Applications.

Glycine-based Flexible Biocompatible Piezoelectric Pressure Sensor for Healthcare Applications (2020)
Conference Proceeding
Hosseini, E. S., Manjakkal, L., Shakthivel, D., & Dahiya, R. (2020). Glycine-based Flexible Biocompatible Piezoelectric Pressure Sensor for Healthcare Applications. In 2020 IEEE International Conference on Flexible and Printable Sensors and Systems (FLEPS). https://doi.org/10.1109/fleps49123.2020.9239575

This work presents biocompatible flexible piezoelectric composite fabricated by self-assembly of amino acid glycine molecules inside natural chitosan polymer. Piezoelectric composite film consists of glycine spherulite structure embedded in chitosan... Read More about Glycine-based Flexible Biocompatible Piezoelectric Pressure Sensor for Healthcare Applications.

Metal Coated Fabric Based Supercapacitors (2020)
Conference Proceeding
Pullanchiyodan, A., Manjakkal, L., & Dahiya, R. (2020). Metal Coated Fabric Based Supercapacitors. In 2020 IEEE International Conference on Flexible and Printable Sensors and Systems (FLEPS). https://doi.org/10.1109/fleps49123.2020.9239537

This work reports the fabric-based supercapacitors (FSCs) using silver coated textile as the current collector. The electrochemical properties of the device in PVA-KCl gel electrolyte was studied. The performance of the device was further improved by... Read More about Metal Coated Fabric Based Supercapacitors.

Flexible Supercapacitor with Sweat Equivalent Electrolyte for Safe and Ecofriendly Energy Storage (2020)
Conference Proceeding
Manjakkal, L., Pullanchiyodan, A., Hosseini, E. S., & Dahiya, R. (2020). Flexible Supercapacitor with Sweat Equivalent Electrolyte for Safe and Ecofriendly Energy Storage. In 2020 IEEE International Conference on Flexible and Printable Sensors and Systems (FLEPS). https://doi.org/10.1109/fleps49123.2020.9239523

Textile based wearable, biocompatible and low-cost energy storage devices are highly in demand to overcome the issue of powering wearable sensors and electronic devices. In this work, we designed an environmentally friendly textile supercapacitor (SC... Read More about Flexible Supercapacitor with Sweat Equivalent Electrolyte for Safe and Ecofriendly Energy Storage.

Screen-Printed Flexible Carbon versus Silver Electrodes for Electrochemical Sensors (2020)
Conference Proceeding
Franco, F. F., Manjakkal, L., & Dahiya, R. (2020). Screen-Printed Flexible Carbon versus Silver Electrodes for Electrochemical Sensors. In 2020 IEEE International Conference on Flexible and Printable Sensors and Systems (FLEPS). https://doi.org/10.1109/fleps49123.2020.9239549

This paper presents the carbon-based screen-printed electrodes (C-SPEs) and compares them with conventional SPEs made of Ag. The electrochemical performance of the two types of electrodes is compared in the presence of common salts found in water bod... Read More about Screen-Printed Flexible Carbon versus Silver Electrodes for Electrochemical Sensors.

Ultrathin Ion-Sensitive Field-Effect Transistor Chips with Bending-Induced Performance Enhancement (2020)
Journal Article
Vilouras, A., Christou, A., Manjakkal, L., & Dahiya, R. (2020). Ultrathin Ion-Sensitive Field-Effect Transistor Chips with Bending-Induced Performance Enhancement. ACS Applied Electronic Materials, 2(8), 2601-2610. https://doi.org/10.1021/acsaelm.0c00489

Flexible multifunctional sensors on skin or wearables are considered highly suitable for next-generation noninvasive health care devices. In this regard, the field-effect transistor (FET)-based chemical sensors such as ion-sensitive FETs (ISFETs) are... Read More about Ultrathin Ion-Sensitive Field-Effect Transistor Chips with Bending-Induced Performance Enhancement.

A Wearable Supercapacitor Based on Conductive PEDOT:PSS‐Coated Cloth and a Sweat Electrolyte (2020)
Journal Article
Manjakkal, L., Pullanchiyodan, A., Yogeswaran, N., Hosseini, E. S., & Dahiya, R. (2020). A Wearable Supercapacitor Based on Conductive PEDOT:PSS‐Coated Cloth and a Sweat Electrolyte. Advanced materials, 32(24), Article 1907254. https://doi.org/10.1002/adma.201907254

A sweat-based flexible supercapacitor (SC) for self-powered smart textiles and wearable systems is presented. The developed SC uses sweat as the electrolyte and poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) as the active electro... Read More about A Wearable Supercapacitor Based on Conductive PEDOT:PSS‐Coated Cloth and a Sweat Electrolyte.

Metal Coated Conductive Fabrics with Graphite Electrodes and Biocompatible Gel Electrolyte for Wearable Supercapacitors (2020)
Journal Article
Pullanchiyodan, A., Manjakkal, L., Dervin, S., Shakthivel, D., & Dahiya, R. (2020). Metal Coated Conductive Fabrics with Graphite Electrodes and Biocompatible Gel Electrolyte for Wearable Supercapacitors. Advanced Materials Technologies, 5(5), Article 1901107. https://doi.org/10.1002/admt.201901107

Fabric-based supercapacitors have received considerable interest as energy storage devices for wearable systems. This work demonstrates the use of metal coated fabrics as the active material and current collector with nontoxic polyvinyl alcohol (PVA)... Read More about Metal Coated Conductive Fabrics with Graphite Electrodes and Biocompatible Gel Electrolyte for Wearable Supercapacitors.

Flexible potentiometric pH sensors for wearable systems (2020)
Journal Article
Manjakkal, L., Dervin, S., & Dahiya, R. (2020). Flexible potentiometric pH sensors for wearable systems. RSC Advances, 10(15), 8594-8617. https://doi.org/10.1039/d0ra00016g

There is a growing demand for developing wearable sensors that can non-invasively detect the signs of chronic diseases early on to possibly enable self-health management. Among these the flexible and stretchable electrochemical pH sensors are particu... Read More about Flexible potentiometric pH sensors for wearable systems.

Flexible Iridium Oxide Based pH Sensor Integrated With Inductively Coupled Wireless Transmission System for Wearable Applications (2020)
Journal Article
Marsh, P., Manjakkal, L., Yang, X., Huerta, M., Le, T., Thiel, L., …Dahiya, R. (2020). Flexible Iridium Oxide Based pH Sensor Integrated With Inductively Coupled Wireless Transmission System for Wearable Applications. IEEE Sensors Journal, 20(10), 5130-5138. https://doi.org/10.1109/jsen.2020.2970926

This work presents a pH sensor platform combining the high performance of iridium oxide (IrOx) fabricated by cyclic voltammetry with inductively-coupled wireless (ICW) transmission. Data included presents flexible potentiometric pH sensors having IrO... Read More about Flexible Iridium Oxide Based pH Sensor Integrated With Inductively Coupled Wireless Transmission System for Wearable Applications.