Skip to main content

Research Repository

Advanced Search

Outputs (15)

Explainable AI-Based DDOS Attack Identification Method for IoT Networks (2023)
Journal Article
Kalutharage, C. S., Liu, X., Chrysoulas, C., Pitropakis, N., & Papadopoulos, P. (2023). Explainable AI-Based DDOS Attack Identification Method for IoT Networks. Computers, 12(2), Article 32. https://doi.org/10.3390/computers12020032

The modern digitized world is mainly dependent on online services. The availability of online systems continues to be seriously challenged by distributed denial of service (DDoS) attacks. The challenge in mitigating attacks is not limited to identify... Read More about Explainable AI-Based DDOS Attack Identification Method for IoT Networks.

Towards The Creation Of The Future Fish Farm (2023)
Journal Article
Papadopoulos, P., Buchanan, W. J., Sayeed, S., & Pitropakis, N. (2023). Towards The Creation Of The Future Fish Farm. Journal of Surveillance, Security and Safety, 4, 1-3. https://doi.org/10.20517/jsss.2022.16

Aim: A fish farm is an area where fish raise and bred for food. Fish farm environments support the care and management of seafood within a controlled environment. Over the past few decades, there has been a remarkable increase in the calorie intake o... Read More about Towards The Creation Of The Future Fish Farm.

Trusted Threat Intelligence Sharing in Practice and Performance Benchmarking through the Hyperledger Fabric Platform (2022)
Journal Article
Ali, H., Ahmad, J., Jaroucheh, Z., Papadopoulos, P., Pitropakis, N., Lo, O., Abramson, W., & Buchanan, W. J. (2022). Trusted Threat Intelligence Sharing in Practice and Performance Benchmarking through the Hyperledger Fabric Platform. Entropy, 24(10), Article 1379. https://doi.org/10.3390/e24101379

Historically, threat information sharing has relied on manual modelling and centralised network systems, which can be inefficient, insecure, and prone to errors. Alternatively, private blockchains are now widely used to address these issues and impro... Read More about Trusted Threat Intelligence Sharing in Practice and Performance Benchmarking through the Hyperledger Fabric Platform.

GLASS: A Citizen-Centric Distributed Data-Sharing Model within an e-Governance Architecture (2022)
Journal Article
Lo, O., Buchanan, W., Sayeed, S., Papadopoulos, P., Pitropakis, N., & Chrysoulas, C. (2022). GLASS: A Citizen-Centric Distributed Data-Sharing Model within an e-Governance Architecture. Sensors, 22(6), Article 2291. https://doi.org/10.3390/s22062291

E-governance is a process that aims to enhance a government’s ability to simplify all the processes that may involve government, citizens, businesses, and so on. The rapid evolution of digital technologies has often created the necessity for the esta... Read More about GLASS: A Citizen-Centric Distributed Data-Sharing Model within an e-Governance Architecture.

Privacy-preserving and Trusted Threat Intelligence Sharing using Distributed Ledgers (2022)
Presentation / Conference Contribution
Ali, H., Papadopoulos, P., Ahmad, J., Pit, N., Jaroucheh, Z., & Buchanan, W. J. (2021, December). Privacy-preserving and Trusted Threat Intelligence Sharing using Distributed Ledgers. Presented at IEEE SINCONF: 14th International Conference on Security of Information and Networks, Edinburgh

Threat information sharing is considered as one of the proactive defensive approaches for enhancing the overall security of trusted partners. Trusted partner organizations can provide access to past and current cybersecurity threats for reducing the... Read More about Privacy-preserving and Trusted Threat Intelligence Sharing using Distributed Ledgers.

GLASS: Towards Secure and Decentralized eGovernance Services using IPFS (2022)
Presentation / Conference Contribution
Chrysoulas, C., Thomson, A., Pitropakis, N., Papadopoulos, P., Lo, O., Buchanan, W. J., Domalis, G., Karacapilidis, N., Tsakalidis, D., & Tsolis, D. (2021, October). GLASS: Towards Secure and Decentralized eGovernance Services using IPFS. Presented at 7th Workshop On The Security Of Industrial Control Systems & Of Cyber-Physical Systems (CyberICPS 2021). In Conjunction With ESORICS 2021, Darmstadt, Germany

The continuously advancing digitization has provided answers to the bureaucratic problems faced by eGovernance services. This innovation led them to an era of automation, broadened the attack surface and made them a popular target for cyber attacks.... Read More about GLASS: Towards Secure and Decentralized eGovernance Services using IPFS.

Ransomware: Analysing the Impact on Windows Active Directory Domain Services (2022)
Journal Article
McDonald, G., Papadopoulos, P., Pitropakis, N., Ahmad, J., & Buchanan, W. J. (2022). Ransomware: Analysing the Impact on Windows Active Directory Domain Services. Sensors, 22(3), Article 953. https://doi.org/10.3390/s22030953

Ransomware has become an increasingly popular type of malware across the past decade and continues to rise in popularity due to its high profitability. Organisations and enterprises have become prime targets for ransomware as they are more likely to... Read More about Ransomware: Analysing the Impact on Windows Active Directory Domain Services.

Evaluating Tooling and Methodology when Analysing Bitcoin Mixing Services After Forensic Seizure (2021)
Presentation / Conference Contribution
Young, E. H., Chrysoulas, C., Pitropakis, N., Papadopoulos, P., & Buchanan, W. J. (2021, October). Evaluating Tooling and Methodology when Analysing Bitcoin Mixing Services After Forensic Seizure. Paper presented at International Conference on Data Analytics for Business and Industry (ICDABI) 2021 - (DATA'21), Online

Little or no research has been directed to analysis and researching forensic analysis of the Bitcoin mixing or 'tumbling' service themselves. This work is intended to examine effective tooling and methodology for recovering forensic artifacts from tw... Read More about Evaluating Tooling and Methodology when Analysing Bitcoin Mixing Services After Forensic Seizure.

Launching Adversarial Attacks against Network Intrusion Detection Systems for IoT (2021)
Journal Article
Papadopoulos, P., Thornewill Von Essen, O., Pitropakis, N., Chrysoulas, C., Mylonas, A., & Buchanan, W. J. (2021). Launching Adversarial Attacks against Network Intrusion Detection Systems for IoT. Journal of Cybersecurity and Privacy, 1(2), 252-273. https://doi.org/10.3390/jcp1020014

As the internet continues to be populated with new devices and emerging technologies, the attack surface grows exponentially. Technology is shifting towards a profit-driven Internet of Things market where security is an afterthought. Traditional defe... Read More about Launching Adversarial Attacks against Network Intrusion Detection Systems for IoT.

Privacy and Trust Redefined in Federated Machine Learning (2021)
Journal Article
Papadopoulos, P., Abramson, W., Hall, A. J., Pitropakis, N., & Buchanan, W. J. (2021). Privacy and Trust Redefined in Federated Machine Learning. Machine Learning and Knowledge Extraction, 3(2), 333-356. https://doi.org/10.3390/make3020017

A common privacy issue in traditional machine learning is that data needs to be disclosed for the training procedures. In situations with highly sensitive data such as healthcare records, accessing this information is challenging and often prohibited... Read More about Privacy and Trust Redefined in Federated Machine Learning.

Phishing URL Detection Through Top-Level Domain Analysis: A Descriptive Approach (2020)
Presentation / Conference Contribution
Christou, O., Pitropakis, N., Papadopoulos, P., Mckeown, S., & Buchanan, W. J. (2020, February). Phishing URL Detection Through Top-Level Domain Analysis: A Descriptive Approach. Presented at ICISSP 2020, Valletta, Malta

Phishing is considered to be one of the most prevalent cyber-attacks because of its immense flexibility and alarmingly high success rate. Even with adequate training and high situational awareness, it can still be hard for users to continually be awa... Read More about Phishing URL Detection Through Top-Level Domain Analysis: A Descriptive Approach.

Review and Critical Analysis of Privacy-preserving Infection Tracking and Contact Tracing (2020)
Journal Article
Buchanan, W. J., Imran, M. A., Ur-Rehman, M., Zhang, L., Abbasi, Q. H., Chrysoulas, C., Haynes, D., Pitropakis, N., & Papadopoulos, P. (2020). Review and Critical Analysis of Privacy-preserving Infection Tracking and Contact Tracing. Frontiers in Communications and Networks, https://doi.org/10.3389/frcmn.2020.583376

The outbreak of viruses have necessitated contact tracing and infection tracking methods. Despite various efforts, there is currently no standard scheme for the tracing and tracking. Many nations of the world have therefore, developed their own ways... Read More about Review and Critical Analysis of Privacy-preserving Infection Tracking and Contact Tracing.

A Privacy-Preserving Healthcare Framework Using Hyperledger Fabric (2020)
Journal Article
Stamatellis, C., Papadopoulos, P., Pitropakis, N., Katsikas, S., & Buchanan, W. J. (2020). A Privacy-Preserving Healthcare Framework Using Hyperledger Fabric. Sensors, 20(22), Article 6587. https://doi.org/10.3390/s20226587

Electronic health record (EHR) management systems require the adoption of effective technologies when health information is being exchanged. Current management approaches often face risks that may expose medical record storage solutions to common sec... Read More about A Privacy-Preserving Healthcare Framework Using Hyperledger Fabric.

A Distributed Trust Framework for Privacy-Preserving Machine Learning (2020)
Presentation / Conference Contribution
Abramson, W., Hall, A. J., Papadopoulos, P., Pitropakis, N., & Buchanan, W. J. (2020, September). A Distributed Trust Framework for Privacy-Preserving Machine Learning. Presented at The 17th International Conference on Trust, Privacy and Security in Digital Business - TrustBus2020, Bratislava, Slovakia

When training a machine learning model, it is standard procedure for the researcher to have full knowledge of both the data and model. However, this engenders a lack of trust between data owners and data scientists. Data owners are justifiably reluct... Read More about A Distributed Trust Framework for Privacy-Preserving Machine Learning.

Privacy-Preserving Passive DNS (2020)
Journal Article
Papadopoulos, P., Pitropakis, N., Buchanan, W. J., Lo, O., & Katsikas, S. (2020). Privacy-Preserving Passive DNS. Computers, 9(3), Article 64. https://doi.org/10.3390/computers9030064

The Domain Name System (DNS) was created to resolve the IP addresses of web servers to easily remembered names. When it was initially created, security was not a major concern; nowadays, this lack of inherent security and trust has exposed the global... Read More about Privacy-Preserving Passive DNS.