Skip to main content

Research Repository

Advanced Search

Outputs (15)

Automated Human-Readable Label Generation in Open Intent Discovery (2024)
Presentation / Conference Contribution
Anderson, G., Hart, E., Gkatzia, D., & Beaver, I. (2024, September). Automated Human-Readable Label Generation in Open Intent Discovery. Presented at Interspeech 2024, Kos, Greece

The correct determination of user intent is key in dialog systems. However, an intent classifier often requires a large, labelled training dataset to identify a set of known intents. The creation of such a dataset is a complex and time-consuming task... Read More about Automated Human-Readable Label Generation in Open Intent Discovery.

Participatory Design with Domain Experts: A Delphi Study for a Career Support Chatbot (2024)
Presentation / Conference Contribution
Wilson, M., Brazier, D., Gkatzia, D., & Robertson, P. (2024, July). Participatory Design with Domain Experts: A Delphi Study for a Career Support Chatbot. Presented at ACM Conversational User Interfaces 2024 (CUI ’24), Luxembourg, Luxembourg

We present a study of collaboration with expert participants for the purpose of the responsible design of a conversational agent. The Delphi study was used to identify and develop design and evaluation criteria for an automated career support interve... Read More about Participatory Design with Domain Experts: A Delphi Study for a Career Support Chatbot.

Responsible Design & Evaluation of a Conversational Agent for a National Careers Service (2023)
Presentation / Conference Contribution
Wilson, M., Cruickshank, P., Gkatzia, D., & Robertson, P. (2023, September). Responsible Design & Evaluation of a Conversational Agent for a National Careers Service. Presented at Symposium on Future Directions in Information Access (FDIA) 2023, Vienna, Austria

This PhD project applies a research-through-design approach to the development of a conversational agent for a national career service for young people. This includes addressing practical, interactional and ethical aspects of the system. For each asp... Read More about Responsible Design & Evaluation of a Conversational Agent for a National Careers Service.

Commonsense-enhanced Natural Language Generation for Human-Robot Interaction (2020)
Presentation / Conference Contribution
Gkatzia, D. (2020, December). Commonsense-enhanced Natural Language Generation for Human-Robot Interaction. Presented at 2nd Workshop on Natural Language Generation for Human-Robot Interaction (HRI 2020), Online

Commonsense is vital for human communication, as it allows us to make inferences without explicitly mentioning the context. Equipping robots with commonsense knowledge would lead to better communication between humans and robots and will allow robots... Read More about Commonsense-enhanced Natural Language Generation for Human-Robot Interaction.

Data-to-Text Generation Improves Decision-Making Under Uncertainty (2017)
Journal Article
Gkatzia, D., Lemon, O., & Rieser, V. (2017). Data-to-Text Generation Improves Decision-Making Under Uncertainty. IEEE Computational Intelligence Magazine, 12(3), 10-17. https://doi.org/10.1109/MCI.2017.2708998

Decision-making is often dependent on uncertain data, e.g. data associated with confidence scores or probabilities. This article presents a comparison of different information presentations for uncertain data and, for the first time, measures their e... Read More about Data-to-Text Generation Improves Decision-Making Under Uncertainty.

The REAL Corpus: a crowd-sourced corpus of human generated and evaluated spatial references to real-world urban scenes (2016)
Presentation / Conference Contribution
Bartie, P., Mackaness, W., Gkatzia, D., & Rieser, V. (2016, May). The REAL Corpus: a crowd-sourced corpus of human generated and evaluated spatial references to real-world urban scenes. Presented at 10th International Conference on Language Resources and Evaluation (LREC)

We present a newly crowd-sourced data set of natural language references to objects anchored in complex urban scenes (In short: The REAL Corpus – Referring Expressions Anchored Language). The REAL corpus contains a collection of images of real-world... Read More about The REAL Corpus: a crowd-sourced corpus of human generated and evaluated spatial references to real-world urban scenes.

How to Talk to Strangers: generating medical reports for first time users (2016)
Presentation / Conference Contribution
Gkatzia, D., Rieser, V., & Lemon, O. (2016, July). How to Talk to Strangers: generating medical reports for first time users. Presented at FUZZ-IEEE 2016

We propose a novel approach for handling first-time
users in the context of automatic report generation from timeseries
data in the health domain. Handling first-time users is
a common problem for Natural Language Generation (NLG)
and interactive... Read More about How to Talk to Strangers: generating medical reports for first time users.

From the Virtual to the RealWorld: Referring to Objects in Real-World Spatial Scenes (2015)
Presentation / Conference Contribution
Gkatzia, D., Rieser, V., Bartie, P., & Mackaness, W. (2015, September). From the Virtual to the RealWorld: Referring to Objects in Real-World Spatial Scenes. Presented at 2015 Conference on Empirical Methods in Natural Language Processing, Lisbon

Predicting the success of referring expressions (RE) is vital for real world applications such as navigation systems. Traditionally, research has focused on studying Referring Expression Generation (REG) in virtual, controlled environments. In this p... Read More about From the Virtual to the RealWorld: Referring to Objects in Real-World Spatial Scenes.

A Game-Based Setup for Data Collection and Task-Based Evaluation of Uncertain Information Presentation (2015)
Presentation / Conference Contribution
Gkatzia, D., Cercas Curry, A., Rieser, V., & Lemon, O. (2015, September). A Game-Based Setup for Data Collection and Task-Based Evaluation of Uncertain Information Presentation. Presented at 15th European Workshop on Natural Language Generation (ENLG 2015), University of Brighton, Brighton, UK

Decision-making is often dependent on uncertain data, e.g. data associated with confidence scores, such as probabilities. A concrete example of such data is weather data. We will demo a game-based setup for exploring the effectiveness of different ap... Read More about A Game-Based Setup for Data Collection and Task-Based Evaluation of Uncertain Information Presentation.

A Snapshot of NLG Evaluation Practices 2005 - 2014 (2015)
Presentation / Conference Contribution
Gkatzia, D., & Mahamood, S. (2015, September). A Snapshot of NLG Evaluation Practices 2005 - 2014. Presented at Proceedings of the 15th European Workshop on Natural Language Generation (ENLG), University of Brighton Brighton, UK

In this paper we present a snapshot of endto-end NLG system evaluations as presented in conference and journal papers1 over the last ten years in order to better understand the nature and type of evaluations that have been undertaken. We find that re... Read More about A Snapshot of NLG Evaluation Practices 2005 - 2014.

Generating and Evaluating Landmark-Based Navigation Instructions in Virtual Environments (2015)
Presentation / Conference Contribution
Cercas Curry, A., Gkatzia, D., & Rieser, V. (2015, September). Generating and Evaluating Landmark-Based Navigation Instructions in Virtual Environments. Presented at 15th European Workshop on Natural Language Generation (ENLG 2015), University of Brighton, Brighton, UK

Referring to landmarks has been identified to lead to improved navigation instructions. However, a previous corpus study suggests that human “wizards” also choose to refer to street names and generate user-centric instructions. In this paper, we cond... Read More about Generating and Evaluating Landmark-Based Navigation Instructions in Virtual Environments.

Exploratory Navigation for Runners Through Geographic Area Classification with Crowd-Sourced Data (2015)
Presentation / Conference Contribution
McGookin, D., Gkatzia, D., & Hastie, H. (2015, August). Exploratory Navigation for Runners Through Geographic Area Classification with Crowd-Sourced Data. Presented at 17th International Conference on Human-Computer Interaction with Mobile Devices and Services, Copenhagen, Denmark

Navigation when running is exploratory, characterised by both starting and ending in the same location, and iteratively foraging the environment to find areas with the most suitable running conditions. Runners do not wish to be explicitly directed, o... Read More about Exploratory Navigation for Runners Through Geographic Area Classification with Crowd-Sourced Data.

Comparing Multi-label Classification with Reinforcement Learning for Summarisation of Time-series Data (2014)
Presentation / Conference Contribution
Gkatzia, D., Hastie, H., & Lemon, O. (2014, June). Comparing Multi-label Classification with Reinforcement Learning for Summarisation of Time-series Data. Presented at The 52nd Annual Meeting of the Association for Computational Linguistics, Baltimore

We present a novel approach for automatic report generation from time-series data, in the context of student feedback generation. Our proposed methodology treats content selection as a multi-label (ML)
classification problem, which takes as input ti... Read More about Comparing Multi-label Classification with Reinforcement Learning for Summarisation of Time-series Data.

Generating Verbal Descriptions from Medical Sensor Data: A Corpus Study on User Preferences (2014)
Presentation / Conference Contribution
Gkatzia, D., Rieser, V., Mcsporran, A., Mcgowan, A., Mort, A., & Dewar, M. (2014, September). Generating Verbal Descriptions from Medical Sensor Data: A Corpus Study on User Preferences. Presented at BCS Health Informatics Scotland, Glasgow

Understanding and interpreting medical sensor data is an essential part of pre-hospital care in medical emergencies, but requires training and previous knowledge. In this paper, we describe ongoing work towards a medical decision support tool, which... Read More about Generating Verbal Descriptions from Medical Sensor Data: A Corpus Study on User Preferences.

Multi-adaptive Natural Language Generation using Principal Component Regression (2014)
Presentation / Conference Contribution
Gkatzia, D., Hastie, H., & Lemon, O. (2014, June). Multi-adaptive Natural Language Generation using Principal Component Regression. Presented at International Natural Language Generation Conference (INLG)

We present FeedbackGen, a system that uses a multi-adaptive approach to Natural Language Generation. With the term 'multi-adaptive', we refer to a system that is able to adapt its content to different user groups simultaneously, in our case adapting... Read More about Multi-adaptive Natural Language Generation using Principal Component Regression.