Skip to main content

Research Repository

Advanced Search

Algorithm selection using deep learning without feature extraction (2019)
Conference Proceeding
Alissa, M., Sim, K., & Hart, E. (2019). Algorithm selection using deep learning without feature extraction. In GECCO '19: Proceedings of the Genetic and Evolutionary Computation Conference Companion (198-206). https://doi.org/10.1145/3321707.3321845

We propose a novel technique for algorithm-selection which adopts a deep-learning approach, specifically a Recurrent-Neural Network with Long-Short-Term-Memory (RNN-LSTM). In contrast to the majority of work in algorithm-selection, the approach does... Read More about Algorithm selection using deep learning without feature extraction.

A new rich vehicle routing problem model and benchmark resource (2018)
Conference Proceeding
Sim, K., Hart, E., Urquhart, N. B., & Pigden, T. (2018). A new rich vehicle routing problem model and benchmark resource. In Advances in Evolutionary and Deterministic Methods for Design, Optimization and Control in Engineering and Sciences. https://doi.org/10.1007/978-3-319-89988-6_30

We describe a new rich VRP model that captures many real-world constraints, following a recently proposed taxonomy that addresses both scenario and problem physical characteristics. The model is used to generate 4800 new instances of rich VRPs which... Read More about A new rich vehicle routing problem model and benchmark resource.

A hybrid method for feature construction and selection to improve wind-damage prediction in the forestry sector (2017)
Conference Proceeding
Hart, E., Sim, K., Gardiner, B., & Kamimura, K. (2017). A hybrid method for feature construction and selection to improve wind-damage prediction in the forestry sector. In GECCO '17 Proceedings of the Genetic and Evolutionary Computation Conference (1121-1128). https://doi.org/10.1145/3071178.3071217

Catastrophic damage to forests resulting from major storms has resulted in serious timber and financial losses within the sector across Europe in the recent past. Developing risk assessment methods is thus one of the keys to finding forest management... Read More about A hybrid method for feature construction and selection to improve wind-damage prediction in the forestry sector.

On Constructing Ensembles for Combinatorial Optimisation (2017)
Journal Article
Hart, E., & Sim, K. (2018). On Constructing Ensembles for Combinatorial Optimisation. Evolutionary Computation, 26(1), 67-87. https://doi.org/10.1162/evco_a_00203

Although the use of ensemble methods in machine-learning is ubiquitous due to their proven ability to outperform their constituent algorithms, ensembles of optimisation algorithms have received relatively little attention. Existing approaches lag beh... Read More about On Constructing Ensembles for Combinatorial Optimisation.

A hyper-heuristic ensemble method for static job-shop scheduling. (2016)
Journal Article
Hart, E., & Sim, K. (2016). A hyper-heuristic ensemble method for static job-shop scheduling. Evolutionary Computation, 24(4), 609-635. https://doi.org/10.1162/EVCO_a_00183

We describe a new hyper-heuristic method NELLI-GP for solving job-shop scheduling problems (JSSP) that evolves an ensemble of heuristics. The ensemble adopts a divide-and-conquer approach in which each heuristic solves a unique subset of the instance... Read More about A hyper-heuristic ensemble method for static job-shop scheduling..

Genetic Programming (2015)
Conference Proceeding
Machado, P., Heywood, M. I., McDermott, J., Castelli, M., García-Sánchez, P., Burelli, P., …Sim, K. (2015). Genetic Programming. In Genetic Programming. https://doi.org/10.1007/978-3-319-16501-1

The 18th European Conference on Genetic Programming (EuroGP) took place during April 8–10, 2015. Copenhagen, Denmark was the setting, and the Nationalmuseet was the venue. EuroGP is the only conference exclusively devoted to the evolutionary gener... Read More about Genetic Programming.

A Novel Heuristic Generator for JSSP Using a Tree-Based Representation of Dispatching Rules (2015)
Conference Proceeding
Sim, K., & Hart, E. (2015). A Novel Heuristic Generator for JSSP Using a Tree-Based Representation of Dispatching Rules. In GECCO Companion '15 Proceedings of the Companion Publication of the 2015 Annual Conference on Genetic and Evolutionary Computation (1485-1486). https://doi.org/10.1145/2739482.2764697

A previously described hyper-heuristic framework named NELLI is adapted for the classic Job Shop Scheduling Problem (JSSP) and used to find ensembles of reusable heuristics that cooperate to cover the heuristic search space. A new heuristic generato... Read More about A Novel Heuristic Generator for JSSP Using a Tree-Based Representation of Dispatching Rules.

A research agenda for metaheuristic standardization. (2015)
Presentation / Conference
Hart, E., & Sim, K. (2015, June). A research agenda for metaheuristic standardization. Paper presented at 11th Metaheuristics International Conference

We propose that the development of standardized, explicit, machine-readable descriptions of metaheuris- tics will greatly advance scientific progress in the field. In particular, we advocate a purely functional description of metaheuristics — separat... Read More about A research agenda for metaheuristic standardization..

A Lifelong Learning Hyper-heuristic Method for Bin Packing (2015)
Journal Article
Hart, E., Sim, K., & Paechter, B. (2015). A Lifelong Learning Hyper-heuristic Method for Bin Packing. Evolutionary Computation, 23(1), 37-67. https://doi.org/10.1162/EVCO_a_00121

We describe a novel Hyper-heuristic system which continuously learns over time to solve a combinatorial optimisation problem. The system continuously generates new heuristics and samples problems from its environment; representative problems and heur... Read More about A Lifelong Learning Hyper-heuristic Method for Bin Packing.

On the life-long learning capabilities of a NELLI*: a hyper-heuristic optimisation system. (2014)
Conference Proceeding
Hart, E., & Sim, K. (2014). On the life-long learning capabilities of a NELLI*: a hyper-heuristic optimisation system. In Proceedings of PPSN, 13th International Conference on Parallel problem Solving from Nature (282-291). https://doi.org/10.1007/978-3-319-10762-2_28

Real-world applications of optimisation techniques place more importance on finding approaches that result in acceptable quality solutions in a short time-frame and can provide robust solutions, capable of being modified in response to changes in the... Read More about On the life-long learning capabilities of a NELLI*: a hyper-heuristic optimisation system..

An improved immune inspired hyper-heuristic for combinatorial optimisation problems. (2014)
Conference Proceeding
Sim, K., & Hart, E. (2014). An improved immune inspired hyper-heuristic for combinatorial optimisation problems. In C. Igel (Ed.), Proceedings of GECCO 2014 (Genetic and Evolutionary Computation Conference) (121-128). https://doi.org/10.1145/2576768.2598241

The meta-dynamics of an immune-inspired optimisation sys- tem NELLI are considered. NELLI has previously shown to exhibit good performance when applied to a large set of optimisation problems by sustaining a network of novel heuristics. We address th... Read More about An improved immune inspired hyper-heuristic for combinatorial optimisation problems..

A real-world employee scheduling and routing application. (2014)
Conference Proceeding
Hart, E., Sim, K., & Urquhart, N. B. (2014). A real-world employee scheduling and routing application. In C. Igel (Ed.), GECCO 2014 Proceedings of the Companion Publication of the 2014 Annual Conference on Genetic and Evolutionary Computation (1239-1242). https://doi.org/10.1145/2598394.2605447

We describe a hyper-heuristic application developed for a client to find quick, acceptable solutions to Workforce Schedul- ing and Routing problems. An interactive fitness function controlled by the user enables five different objectives to be weight... Read More about A real-world employee scheduling and routing application..

Learning to solve bin packing problems with an immune inspired hyper-heuristic. (2013)
Conference Proceeding
Sim, K., Hart, E., & Paechter, B. (2013). Learning to solve bin packing problems with an immune inspired hyper-heuristic. In P. Liò, O. Miglino, G. Nicosia, S. Nolfi, & M. Pavone (Eds.), Advances in Artificial Life, ECAL 2013 (856-863). https://doi.org/10.7551/978-0-262-31709-2-ch126

Motivated by the natural immune system's ability to defend the body by generating and maintaining a repertoire of antibodies that collectively cover the potential pathogen space, we describe an artificial system that discovers and maintains a reperto... Read More about Learning to solve bin packing problems with an immune inspired hyper-heuristic..

Generating single and multiple cooperative heuristics for the one dimensional bin packing problem using a single node genetic programming island model. (2013)
Conference Proceeding
Sim, K., & Hart, E. (2013). Generating single and multiple cooperative heuristics for the one dimensional bin packing problem using a single node genetic programming island model. In E. Alba (Ed.), Proceedgs of GECCO 2013 (1549-1556). https://doi.org/10.1145/2463372.2463555

Novel deterministic heuristics are generated using Single Node Genetic Programming for application to the One Dimensional Bin Packing Problem. First a single deterministic heuristic was evolved that minimised the total number of bins used when applie... Read More about Generating single and multiple cooperative heuristics for the one dimensional bin packing problem using a single node genetic programming island model..

A Hyper-Heuristic classifier for one dimensional bin packing problems: Improving classification accuracy by attribute evolution. (2012)
Conference Proceeding
Sim, K., Hart, E., & Paechter, B. (2012). A Hyper-Heuristic classifier for one dimensional bin packing problems: Improving classification accuracy by attribute evolution. In Parallel Problem Solving from Nature: PPSN XII (348-357). https://doi.org/10.1007/978-3-642-32964-7_35

A hyper-heuristic for the one dimensional bin packing problem is presented that uses an Evolutionary Algorithm (EA) to evolve a set of attributes that characterise a problem instance. The EA evolves divisions of variable quantity and dimension that r... Read More about A Hyper-Heuristic classifier for one dimensional bin packing problems: Improving classification accuracy by attribute evolution..