Improving Classification of Metamorphic Malware by Augmenting Training Data with a Diverse Set of Evolved Mutant Samples
(2020)
Presentation / Conference Contribution
Babaagba, K., Tan, Z., & Hart, E. (2020, July). Improving Classification of Metamorphic Malware by Augmenting Training Data with a Diverse Set of Evolved Mutant Samples. Presented at The 2020 IEEE Congress on Evolutionary Computation (IEEE CEC 2020), Glasgow, UK
Detecting metamorphic malware provides a challenge to machine-learning models as trained models might not generalise to future mutant variants of the malware. To address this, we explore whether machine-learning models can be improved by augmenting t... Read More about Improving Classification of Metamorphic Malware by Augmenting Training Data with a Diverse Set of Evolved Mutant Samples.