
1

A Multi-tier Offloading Optimization Strategy for
Consumer Electronics in Vehicular Edge Computing

Haiyang Lin, Bo Xiao, Xiaokang Zhou, Yonghong Zhang, Xiaodong Liu

Abstract—In the domain of consumer electronics, vehicular
edge computing (VEC) technology is emerging as a novel data
processing paradigm within vehicular networks. By sending tasks
related to vehicular applications to the edge, this model makes
it easier for computing power to be spread out. This lets inter-
active services respond quickly. Nevertheless, the computational
resources at edge servers are inherently limited and often tasked
with handling multiple concurrent operations. The inefficacious
allocation of these resources significantly impairs the efficiency
of task offloading. Additionally, indiscriminate offloading could
overwhelm the servers, detrimentally impacting the performance
of subsequent tasks. To circumvent these challenges, this study
introduces a multi-tier offloading model predicated on game
theory principles. This framework aims to optimize resource
utilization at the edge while accounting for server load to ensure
the timely execution of latency-sensitive tasks. To evaluate this
model, this paper created a simulation environment specifically
for video game tasks in consumer electronics. The experimental
results show that the multi-tier offloading model can effectively
relieve the load pressure on the edge server. The task failure rate
of the multi-tier offloading model remains at the lowest level
compared with several state-of-the-art algorithms, significantly
reducing the execution delay of tasks and being able to meet the
requirements of consumer electronics applications.

Index Terms—Vehicular Edge Computing; Resource Alloca-
tion; Task Offloading

I. INTRODUCTION

A. Background

AS 5G communication technology and the Internet of
Vehicles advance, a multitude of vehicular network ap-

plications have emerged, including self-driving vehicles, live
traffic updates, and virtual reality experiences within vehicles
[1], [2]. To safeguard drivers and passengers and improve the
driving experience, these applications necessitate the effective
handling of vast amounts of computational data [3]. The com-
putational and storage resources of individual vehicle devices

This work has received funding from National Natural Science Foundation
of China (No. 42275157). (Haiyang Lin and Bo Xiao contributed equally to
the work.) (Corresponding author: Xiaokang Zhou.)

Haiyang Lin is with the School of Software, Nanjing University of
Information Science and Technology, Nanjing 210044, China (e-mail:
202212490371@nuist.edu.cn).

Bo Xiao is with Jiangsu Province Engineering Research Center of Ad-
vanced Computing and Intelligent Services, Nanjing 210044, China, and also
with the School of Chemistry and Materials Science, Nanjing University
of Information Science and Technology, Nanjing 210044, China (e-mail:
002479@nuist.edu.cn).

Xiaokang Zhou is with the Faculty of Business Data Science, Kansai
University, Osaka 565-0823, Japan (e-mail: zhou@kansai-u.ac.jp).

Yonghong Zhang is with the School of Automation, Nanjing University
of Information Science and Technology, Nanjing 210044, China (e-mail:
zyh@nuist.edu.cn).

Xiaodong Liu is with the School of Computing, Edinburgh Napier Univer-
sity, Edinburgh EH10 5DT, U.K. (e-mail: x.liu@napier.ac.uk).

are limited and cannot support the processing of such compute-
intensive applications, highlighting the need for collaborative
work among multiple node resources [4]. Cloud computing is
a centralized resource pool sharing model [5], requiring data
in the internet of vehicles to be transmitted over long distances
to cloud centers for processing and then fed back to edge de-
vices [6]. The inevitable network fluctuations and transmission
interruptions during data transmission increase security risks
and affect service quality [7]. VEC, by deploying small data
centers at the network edge, provides computing services to
vehicles near the data terminals, effectively reducing reliance
on public network transmission, fully utilizing edge device
resources, and enhancing the distributed processing capability
of the overall network resources, making it a suitable solution
for the Internet of Vehicles scenario [8].

The development of VEC technology provides conve-
nience for addressing the strict communication requirements
of compute-intensive vehicular application tasks [9]. Edge
servers have a portion of the computing power of cloud servers
and are closer to vehicle terminals [10]. Vehicles no longer
need to obtain computation offloading services from remote
cloud data centers but can rely on the computing and caching
resources provided by edge servers deployed at the vehicle
access network side to enhance the processing capabilities
of terminal devices significantly [11]. The shorter transmis-
sion distances provided by VEC technology can bring lower
propagation, computation, and communication delays. This
also helps reduce the risk of round-trip network congestion,
meeting the low latency and ultra-reliability requirements of
vehicular application tasks. However, in the face of growing
service applications in the VEC, edge servers have limited
computing resources and cannot accommodate all vehicles
for offloading at the same time [12]. The computing and
storage capabilities of edge servers cannot match those of
cloud servers [13], and blindly offloading computational tasks
under the conditions of limited edge server resources can
easily lead to competition for communication, computation,
and storage resources among different vehicles [14], resulting
in substantial waiting delays and resource wastage, thereby
affecting the execution efficiency of tasks and even possibly
failing to meet the normal computational needs of some
applications [15].

In recent years, many scholars have studied task offload-
ing, but there are also some limitations. In some works, a
scheduling center is required to implement some functions of
task offloading (such as formulating offloading strategies and
resource allocation) [16]. However, when the number of vehi-
cles and the volume of vehicle requests increase, centralized

2

facilities will experience a sharp increase in problem scale,
leading to slower processing efficiency, increased vehicle
waiting delays, and increased device energy consumption [17].
Moreover, centralized architectures are prone to single points
of failure, which can affect the performance of the entire
system and increase vehicle waiting delays. Some works only
focus on optimizing offloading decisions and use edge server
resources extensively. When the number of vehicles increases,
edge servers will experience continuous overload, affecting the
execution of subsequent tasks [18].

B. Solutions and Contributions

This study delves into the challenge of task computation
offloading for multiple devices in the context of VEC. To
optimize the distribution of resources at edge servers, game
theory is employed to formulate the task offloading problem as
a non-cooperative multi-vehicle computation offloading game,
and a multi-tier offloading model is developed. The specific
contributions are as follows:

1) A pricing scheme that considers the workload of edge
servers is proposed. The real-time processing capability
of an edge server is related to its workload. Vehicles
should pay proportionally based on the remaining com-
puting resources of the edge server, the vehicle’s CPU
resource usage, and the amount of data offloaded to
alleviate the overload problem of edge servers.

2) The offloading of tasks is defined in two stages: the
dynamic game offloading stage and the equilibrium
offloading stage. The dynamic game offloading stage
refines the use of edge server resources by formulating
the task offloading problem as a Stackelberg game. In
the equilibrium offloading stage, edge servers recom-
mend the server resources and the quantity of data to
be offloaded based on the server’s workload and the
latency constraints of the tasks, guiding vehicles in task
offloading and reducing the failure rate of tasks.

3) This paper constructs a simulation environment based
on the characteristics of video game tasks in the con-
sumer electronics field. Experimental comparisons with
existing algorithms show that the proposed multi-tier
offloading model can reasonably use the resources of
edge servers and meet the execution requirements of
tasks.

In this paper, related work is introduced in Section 2, and
the system model is presented in Section 3. The dynamic
game equilibrium analysis is conducted in Section 4, and
the offloading algorithm is introduced in Section 5. The
performance of the proposed algorithm is evaluated in Section
6. Conclusions are given in Section 7.

II. RELATED WORK

The swift progress in artificial intelligence (AI) technology
has markedly enhanced daily life with cutting-edge applica-
tions like self-driving vehicles and live traffic surveillance
[19], [20]. As a technology that demands high volumes of
data and processing speeds, AI requires extensive training with
representative data to enhance its accuracy and reliability [21].

In reality, the computational resources available in vehicles
are frequently inadequate to fulfill the high-quality service
demands of AI tasks [22]. Therefore, VEC has emerged
as a new computational paradigm. This technology offloads
compute-intensive tasks to edge servers closer to the vehicle,
reducing the impact of data transmission [23]. Compared to
traditional centralized servers, edge servers are positioned
closer to vehicles [24], further reducing communication-
induced latency. Research in the field of VEC is dedicated to
proposing optimization strategies aimed at achieving optimal
resource allocation to maximize energy efficiency or minimize
execution latency [25]. These resources include computational
and communication resources of the servers [26].

For example, Bozorgchenani et al. [27] proposed an online
learning algorithm based on the multi-armed bandit theory
and an off-policy learning algorithm to minimize the task loss
caused by vehicle mobility. Ren et al. [28] decomposed the
task into multiple independent subtasks. Different subtasks
have partially identical input data. All related subtasks can
be offloaded to the same edge node by uploading the data
only once. Li et al. [29] introduced an Internet of Vehicles
fog-edge computing paradigm and formulated the computing
task offloading as a multi-stage Stackelberg game to handle
it, aiming to optimize the energy consumption of vehicles.
Zhang et al. [30] minimized the offloading cost by effectively
integrating service matching mining and intelligent offload-
ing scheduling in the digital twin and physical network. A
generalized FRL method has been proposed based on meta-
learning techniques to achieve lower task processing latency,
as referenced in [31]. References [32] and [33] analyzed the
interactions between the requesting vehicles and VEC servers
through Stackelberg game and found the optimal strategies for
them.

However, these studies primarily focus on optimizing over-
all network performance, neglecting strategic behavior induced
by user offloading preferences, leading to fairness issues in
IoT devices and rationality problems in edge server resource
utilization. To address this issue, numerous studies have been
conducted. Chen et al. [34] introduced a decentralized task
offloading algorithm based on game theory. In this approach,
each user independently determines their offloading decision.
Sun et al. [35] designed a collaborative resource allocation
and task offloading algorithm, including two parts: an incentive
mechanism based on a bargaining game for resource allocation
and pricing within servers, aimed at promoting collaboration
between tasks (vehicles) and servers; and a many-to-one
matching mechanism for task offloading between servers, to
stimulate edge collaboration and edge-cloud collaboration.
Wang et al. [36] proposed the TM algorithm and the game-
theoretic COMO algorithm based on vehicle offloading deci-
sions to optimize resource usage.

Although the aforementioned works have significantly im-
proved the performance of VEC networks, they do not ade-
quately describe some vehicles’ willingness to use edge server
resources and the resource usage situation of edge servers,
leading to persistent server overload issues. Unlike previous
works, this study investigates the resource allocation and task
offloading problems in VEC networks, taking into account the

3

latency requirements of tasks, the fairness of task offloading,
vehicles’ offloading willingness, and the load situation of edge
servers.

III. SYSTEM MODEL

Fig. 1. System model.

As shown in Fig. 1, this system model takes into account
that the edge server is executing some tasks offloaded from
vehicles while new vehicles are waiting to be offloaded. In
the figure, the red vehicle initiates an offloading request to
the edge server. The green vehicle is in the first offloading
stage. The blue vehicle is in the second offloading stage. At
this time, the resource utilization rate of the edge server is
constantly rising. The red vehicle needs to reasonably offload
tasks while meeting the delay constraints of the tasks and avoid
overloading the edge server, which may affect the execution
of subsequent tasks. The purpose of the vehicles is to reduce
the execution delay of their tasks through offloading, thereby
enhancing their experience. The goal of the edge server is
to optimize resource utilization while preventing high-load
situations on the premise of meeting the needs of the vehicles.
Tasks can be regarded as partially offloaded, allowing them to
send part of the data to the server through the roadside unit
(RSU) for processing.

The overall flow between the server and vehicles includes
two stages in Fig. 2. At the beginning of offloading, vehicles
initially report the tasks’ relevant information to the server.
During the first stage (the dynamic game offloading stage), the
edge server determines a bidding function based on the task
information reported by vehicles, who in turn decide how to
offload according to this bidding function. If a vehicle is keen
to offload and the volume of data and CPU capacity occupied
meet the execution requirements of the task, the offloading
proceeds. Tasks that cannot be offloaded in the dynamic game
offloading stage move to the equilibrium offloading stage. In
this stage, to benefit vehicles and enhance service quality, the
edge server suggests the CPU capacity to be occupied and
calculates the volume of data to be offloaded based on the
remaining CPU capacity and the task’s latency constraints,
guiding vehicles in the offloading process.

The optimal decision-making strategy for vehicles involves
reducing the execution delay of their tasks while considering
the costs involved. The edge server sets an appropriate CPU
capacity unit price to maximize its revenue.

A. Payment Model

This paper introduces a more innovative pricing scheme to
address the limitations of traditional approaches. It assumes
that once an edge server allocates a certain CPU capacity
for a task, that task will occupy this CPU capacity until its
completion.

f (Co) = γ
Co

Cr
+ δ (1)

where Co represents the CPU capacity occupied by the vehicle,
and Cr denotes the remaining CPU capacity of the edge
server (Cr > 0), tasks can only be offloaded when the edge
server’s remaining CPU capacity is greater than 0. γ and δ
are adjustment coefficients, greater than 0, determined by the
edge server.

The bidding function f(Co) is a function related to the
edge server’s available CPU capacity that is unused and the
CPU capacity occupied by the vehicle. Since the available
CPU capacity of the edge server is already determined when
a new vehicle wishes to offload, the bidding function increases
proportionally to the CPU capacity used by the vehicle.

The unit price is related to the edge server’s remaining CPU
capacity and the CPU capacity occupied by the vehicle. It is
the product of the ratio of the CPU capacity occupied by the
vehicle to the edge server’s available CPU capacity and the
bidding function.

punit =
Co

Cr
f(Co) (2)

The tasks focused on in this paper are partially offloadable,
meaning that part of the data can be offloaded. The total
amount of data is D (in bits), and the quantity of data
transferred to the server is d (in bits, d ≥ 0). The amount
of CPU cycles required to process 1 bit of data is represented
by e. Therefore, the processing time of the task on the server
can be represented as:

tedge =
de

Co
(3)

The vehicle’s payment cost is expressed as follows:

P =
depunit
Co

(4)

Under this payment model, the greater the amount of data
offloaded and the higher the CPU capacity occupied by the
vehicle, the higher the cost to the vehicle, which is also
related to the edge server’s available CPU capacity. When the
volume of data offloaded by the vehicle remains constant, if
the server has a higher remaining CPU capacity, the cost to the
vehicle increases slowly when the vehicle occupies the edge
server’s available CPU capacity. However, if the edge server
is under high load (i.e., the edge server has less remaining

4

CPU capacity), changes in the CPU capacity occupied by the
vehicle result in significant changes in the vehicle’s cost. For
example, if the amount of data offloaded by the vehicle, d, is
1× 106 bits, and the parameter, e, is 1000, then the vehicle’s
cost will vary depending on the available CPU capacity of the
edge server. Assuming the adjustment coefficients γ and δ are
100 and 10, respectively, and the vehicle uses 1 × 109 CPU
cycles per second. When the edge server’s remaining CPU
capacity is 100 × 109 cycles per second, the vehicle’s cost
is 0.0011. When the edge server’s remaining CPU capacity is
10×109 cycles per second, the vehicle’s cost is 0.2. Therefore,
vehicles should pay more when the server is under high load.

B. Dynamic Game Offloading Stage

In this section, the edge server and vehicles are modeled
as participants in a Stackelberg game. The primary objective
of the dynamic game offloading stage is to rationally plan the
resources of the server to maintain lower delays for tasks.

When a new task arrives, the vehicle reports the CPU
capacity of the vehicle Cloc, the total amount of data D,
the vehicle’s payment weight η, the task’s delay constraint τ ,
and the parameter e to the edge server, which then calculates
its remaining CPU capacity Cr. Based on these data, the
edge server calculates the adjustment coefficients γ and δ
and provides the bidding function. At this point, the vehicle
can decide how much data to offload to the edge server and
how much CPU capacity to occupy. If the vehicle incurs a
smaller cost, it means occupying less CPU capacity of the edge
server and offloading less data, resulting in a higher execution
delay for the task. Conversely, when a vehicle desires a lower
execution delay and is willing to pay a higher cost, it indicates
the use of more resources. Vehicles should take into account
both the task’s execution delay and the cost incurred, finding
a balance between the two.

The task’s execution delay can be represented as follows:

texe = max(toff , tloc)

toff = tup + tedge + tdown

(5)

where texe represents the task’s execution delay, toff denotes
the total time for task offloading and processing on the edge
server, tloc indicates the task’s local processing time, tup is
the task’s upload time, and tdown is the task’s download time.

The upload and download times of a task are influenced
by various factors, but this method primarily focuses on the
transmission rate, assuming ideal conditions during upload and
download. tup and tdown can be represented as follows:

tup =
d

rup

tdown =
diod

rdown

(6)

where rup denotes the upload rate, rdown denotes the down-
load rate, and dio represents the ratio of the amount of data
before the task execution to the amount of data after the task
execution.

After the task is offloaded, the vehicle processes the re-
maining amount of data locally, which is D − d. The task‘s
processing time on the vehicle is expressed as:

tloc =
(D − d) e

Cloc
(7)

According to equations (3), (5), (6), and (7), the execution
delay of the task can be further expressed as follows.

texe = max

(
d

rup
+

de

Co
+

diod

rdown
,
(D − d) e

Cloc

)
(8)

The cost function of the vehicle may be expressed as
follows.

M (Co, d) = texe + ηP (9)

where η represents the vehicle’s payment weight, which is
always positive. When the payment weight η is low, it indicates
that the vehicle is more concerned about the current task’s
execution delay and does not mind incurring a higher cost.
Conversely, when the payment weight η is high, the vehicle
is less inclined to offload.

Fig. 2. The overall flow between the server and vehicles.

5

After the vehicle offloads, the server earns revenue. The
server’s objective is to maximize its revenue. Once the pro-
cessing of the offloaded task is finished, the edge server will
receive income. Assuming the offloaded data volume is dopt

and the resources of the edge server occupied are Copt
o , the

utility function of the server is expressed as:

E (γ, δ) =
eγdoptCopt

o

C2
r

+
eδdopt

Cr
(10)

The edge server acts as the leader, aiming to maximize
its utility function, while the vehicle, serving as the fol-
lower, seeks to minimize the cost function. On this basis, the
Stackelberg dynamic game offloading stage is formulated. The
offloading objective of this stage is to refine the use of edge
server resources while ensuring delay constraints are met, and
to avoid situations where the edge server experiences high
load.

C. Equilibrium Offloading Stage

During the dynamic game offloading stage, the edge server’s
bidding function is inversely proportional to its remaining
CPU capacity. This setting considers the real-time processing
capability of the edge server and avoids high-load situations
but also introduces certain issues. In the actual offloading
process, when the edge server’s remaining CPU capacity is
scarce, the bidding function’s value can become very large,
leading to a correspondingly high unit price calculated using
this bidding function. Although the edge server’s remaining
CPU capacity may be sufficient to complete the task, the high
cost of offloading may deter vehicles from proceeding with
the offload, thus reducing service quality. For example, if the
vehicle’s offloaded data volume d is 1×103 bits, the parameter
e is 1000, the vehicle uses 1 × 106 CPU cycles per second,
and the adjustment coefficients γ and δ are respectively 100
and 10. When the edge server’s remaining CPU capacity is
1×106 cycles per second, the edge server’s computing power
can meet the task execution requirements, but the vehicle’s
cost of payment is 110.0. Therefore, this paper introduces the
equilibrium offloading stage. The main goal of this stage is to
address the issue of certain tasks being unable to offload due
to the constraints of the bidding function and Nash equilibrium
during the dynamic game offloading stage, reducing the failure
rate of tasks.

In the equilibrium offloading stage, this paper proposes
that the amount of data offloaded needs to ensure that the
task’s local processing time is equal to the total time of task
processing after offloading to the edge server. So, the offloaded
data volume d can be expressed in terms of the CPU capacity
Co occupied by the vehicle, as shown in equation (11). At
this point, the offloaded data volume d is referred to as the
equilibrium data volume dm(Co).

dm(Co) =
DeCo

eCloc +ACoCloc
(11)

where A represents 1/rup + dio/rdown + e/Cloc.
According to the definition of task offloading delay texe

from equation (8), this paper considers the longer duration

between tloc and toff as the task’s offloading delay. When the
amount of data offloaded equals the equilibrium data volume,
the local processing time tloc and the total offloading time
toff are equal, as indicated by equation (12).

texe = toff

= tloc

=
(D − dm(Co)) e

Cloc

(12)

The delay, texe, should be less than or equal to the task’s
delay constraint, τ .

(D − dm (Co)) e

Cloc
≤ τ (13)

i.e.

Co ≥ Cloce (De− Clocτ)

De2 −ACloc (De− Clocτ)
(14)

In the equilibrium offloading stage, the edge server may
already be under a high load. Therefore, the CPU capacity Co

occupied by the vehicle takes the minimum value, which is

Csec
o = max

(
0,

Cloce (De− Clocτ)

De2 −ACloc (De− Clocτ)

)
(15)

where Csec
o represents the CPU capacity occupied by the

vehicle during the equilibrium offloading stage.
If Csec

o ≤ Cr, the task is offloaded to the edge server.
The equilibrium data volume dm(Co) can be determined by
substituting the CPU capacity Csec

o occupied by the vehicle
during the equilibrium offloading stage into equation (11).
The values of the vehicle’s cost function M(Co, d) and the
edge server’s utility function E(γ, δ) can then be calculated
using equations (9) and (10), respectively (with the values of γ
and δ already determined during the dynamic game offloading
stage).

IV. DYNAMIC GAME EQUILIBRIUM ANALYSIS

This section analyzes the equilibrium strategy during the
dynamic game offloading stage and solves for the Nash
equilibrium point.

The ideal offloading approach for vehicles is to minimize the
cost function M(Co, d) by offloading an appropriate amount of
data d and occupying an appropriate CPU capacity Co, while
satisfying relevant offloading constraints. The optimization
problem for the vehicle’s offloading decision is formulated
as follows.

min
Co,d

max

(
d

rup
+

de

Co
+

diod

rdown
,
(D − d) e

Cloc

)
+ ηP

s.t.

0 ≤ Co ≤ Cr

texe ≤ treq

0 < γ, 0 < δ, 0 < dio, 0 < η.

(16)

In equation (16), to ensure that a task can be offloaded,
the task’s execution delay texe must be less than or equal

6

to the task’s delay constraint τ ; offloading that does not
meet this condition is considered ineffective and can impact
service quality. Secondly, the CPU capacity Co occupied by
the vehicle should be less than the Cr, which is determined by
the objective environment. Finally, the adjustment coefficients
γ and δ, the dio, and the offloading weight η are all numbers
greater than 0, determined by the constructed system model.

Based on the equilibrium data volume dm(Co), the texe can
be represented as follows.

texe =max(toff , tloc)

=

d

rup
+

de

Co
+

diod

rdown
, if d > dm(Co)

(D − d)e

Cloc
, otherwise.

(17)

The partial derivative of the vehicle’s cost function
M(Co, d) with respect to the data volume d offloaded can
be represented as follows:

∂M(Co, d)

∂d

=

{
1

rup
+ e

Co
+ dio

rdown
+ ηeγCo

C2
r

+ ηeδ
Cr

, ifd > dm(Co)
ηeγCo

C2
r

+ ηeδ
Cr

− e
Cloc

, otherwise.
(18)

Let S(Co) denote the partial derivative of ηeγCo/C
2
r +

ηeδ/Cr with respect to the data volume d offloaded to the
edge server. The shape of the vehicle’s cost function M(Co, d)
will change according to the variations in S(Co). A detailed
analysis follows.

S (Co) =
ηeγCo

C2
r

+
ηeδ

Cr
(19)

If S(Co) > e/Cloc, ∀d ∈ [0, D] and ∀Co ∈ {Co|S(Co) >
e/Cloc}, ∂M(Co, d)/∂d > 0, meaning the vehicle’s cost
function M(Co, d) is a function that increases monotonically
with respect to the data volume d offloaded to the edge server.
In this scenario, vehicles are unlikely to benefit regardless of
the amount of data they offload.

If S(Co) < e/Cloc, ∀d ∈ [0, dm(Co)) and ∀Co ∈
{Co|S(Co) < e/Cloc}, ∂M(Co, d)/∂d < 0, indicating that
the vehicle’s cost function M(Co, d) is a monotonically de-
creasing function concerning the data volume d offloaded to
the edge server. ∀d ∈ (dm(Co), D] and ∀Co ∈ {Co|S(Co) <
e/Cloc}, ∂M(Co, d)/∂d > 0, meaning the vehicle’s cost
function M(Co, d) becomes a monotonically increasing func-
tion beyond this point. When d = dm(Co), the vehicle’s
cost function M(Co, d) has a minimum value, which can be
expressed as follows:

M
(
Co, dm(Co)

)
=

De

Cloc

[
1 +

eCo

C2
rCloc

(
ηγClocCo + ηδCrCloc − C2

r

e+ACo

)] (20)

If S(Co) = e/Cloc, ∀d ∈ [0, dm(Co)] and ∀Co ∈
{Co|S(Co) = e/Cloc}, ∂M(Co, d)/∂d = 0, meaning the
vehicle’s cost function M(Co, d) is constant. In this case,

even if vehicles do not need to offload more data, they
would opt to offload the equilibrium data volume dm(Co).
∀d ∈ (dm(Co), D] and ∀Co ∈ {Co|S(Co) = e/Cloc},
∂M(Co, d)/∂d > 0, indicating that the vehicle’s cost function
M(Co, d) is a function that increases monotonically concern-
ing the data volume d offloaded to the edge server.

When S(Co) < e/Cloc, the vehicle’s cost function
M(Co, d) has a minimum value, and vehicles can benefit
from offloading, that is, offloading the equilibrium data volume
dm(Co). When S(Co) = e/Cloc, ∀d ∈ [0, dm(Co)], vehicles
may also choose to offload the equilibrium data volume
dm(Co). However, when S(Co) > e/Cloc, the vehicle’s cost
function M(Co, d) is a function that increases monotonically
concerning the data volume d offloaded to the edge server,
and vehicles cannot benefit from offloading. Therefore, only
when S(Co) ≤ e/Cloc can vehicles possibly proceed with
offloading. Based on the definition of S(Co), the upper limit of
the CPU capacity Co occupied by the vehicle can be expressed
as follows:

Co ≤ Cr

γ

(
Cr

ηCloc
− δ

)
(21)

Therefore, the vehicle’s optimal policy can be expressed by
the following equation.

d∗(Co) =

dm(Co), if Co ≤ Cr

γ

(Cr

ηCloc
− δ

)
0, otherwise

(22)

If the vehicle decides to offload, then the amount of data
offloaded is the equilibrium data volume dm(Co), and the
vehicle’s cost function M(Co, d) equals the value given by
equation (20). At this point, the tloc and the toff are equal.
The texe should be less than or equal to the τ . By combining
equations (14) and (21), the range of values for the CPU
capacity Co occupied by the vehicle can be determined as
follows:

Co ≥ Cloce (De− Clocτ)

De2 −ACloc (De− Clocτ)

Co ≤ Cr

γ

(
Cr

ηCloc
− δ

) (23)

Based on equations (16), (20), (22), and (23), the vehicle’s
uninstallation optimization problem is further formulated as
follows:

min
Co

De

Cloc

[
1 +

eCo

C2
rCloc

(
ηγClocCo + ηδCrCloc − C2

r

e+ACo

)]
s.t.0 ≤ d ≤ D

0 < γ, 0 < δ, 0 < dio, 0 < η

Co ≥ Cloce (De− Clocτ)

De2 −ACloc (De− Clocτ)

Co ≤ Cr

γ

(
Cr

ηCloc
− δ

)
(24)

In equation (24), the d is determined, but the amount of
CPU capacity Co that the vehicle needs to occupy on the edge

7

server is not specified. The following analysis will determine
how much CPU capacity Co the vehicle needs to occupy on
the edge server.

Taking the second derivative of equation (24) yields:

d2M(Co)

dC2
o

=

2De3

C2
locC

2
r

{
ηγeCloc +A(C2

r − ηδClocCr)

(e+ACo)
3

} (25)

Given the constraint from equation (21), C2
r − ηδClocCr ≥

γηClocCo, and since γηClocCo is always greater than or equal
to 0, it follows that 0 ≤ d2M(Co)/dC

2
o . This implies that

M(Co) is a convex function. Therefore, there exists a solution
that minimizes the cost function M(Co).

By setting the first derivative of the cost function M(Co)
equal to zero, the solution that minimizes M(Co) can be
determined.

C ′
o =

−ηγe±
√

η2γ2e2 − ηγeA
(
ηCrδ − C2

r

Cloc

)
ηγA

(26)

Based on the constraint from equation (21), ηCrδ−C2
r/Cloc

is always less than 0, and the CPU capacity Co occupied on
the edge server is greater than or equal to 0. Therefore, the
optimal CPU capacity Co occupied on the edge server is a
positive value, which implies that

C∗
o =

−ηγe+

√
η2γ2e2 − ηγeA

(
ηCrδ − C2

r

Cloc

)
ηγA

(27)

where C∗
o signifies the attainable Nash equilibrium of occupied

CPU capacity on edge servers.
Consequently, it can be concluded that during the dynamic

game offloading stage, the optimal offloading scheme can be
articulated as follows:

Copt
o =

{
C∗

o if ηCrδ − C2
r

Cloc
< 0, Cmin ≤ C∗

o ≤ Cmax

0, otherwise
(28)

dopt = dm
(
Copt

o

)
=

DeCopt
o

Cloc

(
e+ACopt

o

) (29)

Cmin = max

(
0,

Cloce (De− Clocτ)

De2 −ACloc (De− Clocτ)

)
(30)

Cmax = min

(
Cr,

Cr

γ

(
Cr

ηCloc
− δ

))
(31)

Herein, Copt
o represents the CPU capacity for optimal of-

floading, dopt denotes the data volume for optimal offloading,
Cmin signifies the lower limit of occupied CPU capacity on
edge servers, and Cmax illustrates the upper limit of occupied
CPU capacity on edge servers.

Algorithm 1 Task Offloading Algorithm.
1: Initialize Copt

o = 0 and Csec
o = 0 .

2: while a new task arrives do
3: vehicle reports(Cloc, D, η, τ, e).
4: Get remaining CPU capacity Cr of the edge server.
5: Compute adjustment coefficients γ and δ.
6: if ηCrδ − C2

r

Cloc
< 0 then

7: Calculate C∗
o using formula (27).

8: Calculate Cmin using formula (30).
9: if Cr

ηCloc
− δ > 0 then

10: Calculate Cmax using formula (31).
11: if Cmin ≤ C∗

o ≤ Cmax then
12: Copt

o = C∗
o

13: Calculate dopt using formula (29).
14: end if
15: end if
16: end if
17: if Copt

o == 0 then
18: Calculate Csec

o using formula (15).
19: if Csec

o ≤ Cr then
20: Calculate dm(Csec

o) by (11).
21: end if
22: end if
23: Calculate M(Co, d) by (9).
24: Calculate E(γ, δ) by (10).
25: end while

V. TASK OFFLOADING ALGORITHM

This section first introduces the algorithm for task offload-
ing, followed by an explanation of how edge servers determine
the adjustment coefficients γ and δ for the bidding function
f (Co).

A. Algorithmic Process

The overall algorithm flow is depicted in Algorithm 1. It
begins by initializing the CPU capacity for optimal offloading
Copt

o and the CPU capacity occupied by vehicles during the
equilibrium offloading stage Csec

o . Upon the arrival of new
tasks at the edge server, the system enters the dynamic game
offloading stage (steps 3-16 of the algorithm). Vehicles report
to the edge server the local CPU capacity Cloc, the total data
volume D, the payment weight of the vehicle η, the τ , and
the parameter e, while the edge server calculates its remaining
CPU capacity Cr. Based on this information, the edge server
calculates the adjustment coefficients γ and δ. If the condition
ηCrδ − C2

r/Cloc < 0 holds, it indicates the existence of
an optimal offloading scheme. The CPU capacity occupied
at the edge server to achieve Nash equilibrium C∗

o and the
lower limit of the CPU capacity occupied at the edge server
Cmin are calculated using formulas (27) and (30), respectively.
When Cr/ηCloc− δ > 0, the upper limit of the CPU capacity
occupied at the edge server Cmax is calculated using formula
(31). Task offloading can proceed if the Nash equilibrium of
occupied CPU capacity at the edge server C∗

o falls within the
range of Cmin and Cmax. Let Copt

o = C∗
o . If Copt

o = 0,
it indicates that the task could not be offloaded during the

8

dynamic game offloading stage due to load issues at the edge
server or other problems. Tasks that cannot be offloaded enter
the equilibrium offloading stage (steps 17-22 of the algorithm).
Firstly, calculate the CPU capacity occupied by vehicles during
the equilibrium offloading stage Csec

o using the formula (15).
Next, if Csec

o ≤ Cr, it implies that the current resources of
the server are sufficient to execute the task, allowing for its
offloading. Lastly, sequentially calculate the volume of data
offloaded, the cost function, and the utility function (steps 23-
24 of the algorithm).

B. The Adjustment Coefficients

In this paper, the adjustment coefficients γ and δ for the
bidding function are determined by the edge server. The
optimal offloading decision of vehicles changes with variations
in the adjustment coefficients γ and δ. During the dynamic
game offloading stage, unreasonable values of γ and δ may
lead to irrational vehicle cost functions, dampening vehicles’
enthusiasm for offloading, reducing the utility of the edge
server, and consequently transitioning to the equilibrium of-
floading stage.

The main challenge in addressing this issue lies in the
difficulty of determining a fixed solution, as the adjustment
coefficients γ and δ upon which the vehicle’s offloading
decision depends are constantly changing in a complex envi-
ronment. To tackle this challenge, a heuristic search algorithm
can be employed to explore possible solutions. However, the
efficiency of heuristic searches is greatly affected by the
settings of search intervals and ranges, and the execution time
of the algorithm can significantly increase. If the edge server
stores many historical search results, a regression function can
be constructed to approximate these solutions. In this manner,
the server can quickly provide recommendations based on
the bidding mechanism when a vehicle requests offloading.
Consequently, this study proposes a supervised learning-based
approach to determine the adjustment coefficients γ and δ by
analyzing accumulated data, thereby finding effective offload-
ing strategies.

This method employs a feedforward neural network with
regression based on supervised learning. The network structure
comprises three hidden layers, with the first layer consisting
of 512 hidden neurons, the second layer of 256 hidden
neurons, and the third layer of 128 hidden neurons. All layers’
activation function is the ReLU function. The paper generated
one million data points for training and three hundred thousand
for testing. Each data point includes the Cloc, D, η, τ , e,
and the Cr. After training, the edge server obtains a model
for calculating the adjustment coefficients γ and δ. When
the system is running, it can quickly provide reasonable
adjustment coefficients γ and δ by loading the trained model.

VI. EXPERIMENTAL EVALUATION

A. Experimental Setup

In the simulation experiments, it was assumed that the size
ratio of data before and after processing, dio, is 0.2, and
the total data volume, D, is uniformly distributed within the
range of [100, 300] Kbytes. The local CPU capacities, Cloc,

of vehicles were based on the Samsung Galaxy S10 (2.84×109

cycles/second), Apple iPhone X (2.39×109 cycles/second), and
Google Pixel 3 (2.5×109 cycles/second). The edge server’s
CPU capacity was referenced to the AMD EPYC 7002 server’s
capacity [37], which is 110×109 cycles/second. The parameter,
e, was set to 2640, based on the computational intensity of
a video game with 400 frames [38]. The latency constraint,
τ , was randomly chosen from the collection {100ms, 500ms,
1000ms}. The upload and download rates were set based on
the mean 5G upload and download rates of the world’s top
10 telecom firms, at 41.2 and 360.3 Mb/s, respectively. The
task arrival rates, R, were set to 1, 2, and 3, corresponding
to 1, 2, and 3 tasks arriving every 100ms, respectively. The
experiment ran for 300 episodes, with 100 episodes each for
task arrival rates R of 1, 2, and 3.

The simulation experiments were compared against the
following baselines: executing all tasks locally, deterministic
pricing model, uniform pricing model [39], and differential
pricing model [40]. The deterministic pricing model and
uniform pricing model are classical algorithms used for task
offloading. The differential pricing model is a more novel
algorithm. These three algorithms perform well under dif-
ferent task offloading scenarios. Therefore, these algorithms
were selected for comparative experiments. The experiments
compared several performance metrics under different task
arrival rates, including the average cost to vehicles, average
execution latency, revenue for the edge server, task failure rate,
and resource utilization rate of the edge server.

Fig. 3. Average execution latency.

B. Average Execution Latency

Fig. 3 presents the experimental results of the average
execution latency for different models. The execution latencies
for the four pricing models are calculated using equation (8).

In Fig. 3, across various task arrival rates, the method of
executing all tasks locally maintains an average latency of 2.17
seconds. Compared to this, the average execution latencies of
the other three pricing models and the multi-tier offloading
model proposed in this paper are significantly lower. The
deterministic pricing model has an average execution latency
of 0.69 seconds at a task arrival rate of 1; however, its latency

9

significantly increases with the task arrival rate, reaching 1.13
seconds at a task arrival rate of 3. The uniform pricing model
maintains a low average execution latency of 0.25 seconds at
a task arrival rate of 1, outperforming the differential pricing
model, but it fails to keep a low average latency as the task
arrival rate increases, with latencies of 0.56 seconds at a rate
of 2 and 0.81 seconds at a rate of 3, significantly higher than
those of the differential pricing model. While the differential
pricing model does not perform as well at a task arrival rate
of 1, with an average latency of 0.44 seconds, its latency only
slightly increases as the number of tasks grows, with latencies
of 0.52 seconds at a rate of 2 and 0.61 seconds at a rate
of 3. The multi-tier offloading model proposed in this paper
consistently maintains the lowest average execution latency,
regardless of the task arrival rate, with corresponding latencies
of 0.17 seconds, 0.19 seconds, and 0.21 seconds for rates 1,
2, and 3, respectively.

At a task arrival rate of 1, fewer tasks are offloaded, which
does not become highly loaded, and CPU capacity is relatively
abundant. Thus, the uniform and differential pricing models
perform well. However, at a task arrival rate of 3, the edge
server experiences high load, with limited remaining CPU
capacity, and the CPU capacity for task execution cannot
always be satisfied, leading to a significant increase in average
execution latency for both the uniform and differential pricing
models. The multi-tier offloading model considers the Cr and
uses the edge server’s CPU capacity more rationally than the
uniform and differential pricing models. Despite high task
arrival rates, the multi-tier offloading model finely utilizes
CPU capacity through the bidding function. If some tasks fail
to offload in the first stage, they can be offloaded in the second
stage, maintaining a low execution latency.

Fig. 4. Average cost.

C. Average Cost
Fig. 4 displays the experimental results for the average

cost to vehicles across different models. The average cost
to vehicles for the four pricing models is determined by the
weighted aggregate of the delay and the vehicle’s payment
expense.

In Fig. 4, across various task arrival rates, the method
of executing all tasks locally has an average cost of 2.17.

Compared to the other three pricing models, the average cost
of the multi-tier offloading model is significantly lower. The
average costs to vehicles for the other three pricing models are
nearly identical. However, due to the lower average execution
latency of tasks, the multi-tier offloading model results in a
lower average cost to vehicles. As the rate of task arrival
increases, the average cost to vehicles paradoxically decreases,
indicating that higher task arrival rates lead to less remaining
CPU capacity on the edge server and more tasks entering the
equilibrium offloading stage, thereby reducing the average cost
to vehicles.

Fig. 5. Revenue for the edge server.

D. Revenue for the Edge Server

Fig. 5 presents the experimental results for the revenue
of the edge server across different models. At a task arrival
rate of 1, the revenue for the deterministic pricing model is
5401.56, for the uniform pricing model it is 8169.25, for the
differential pricing model it is 7847.91, and for the multi-
tier offloading model it is 8234.64. As the rate of task arrival
increases, so does the revenue for the edge server. However,
at a task arrival rate of 3, the revenue for the deterministic
pricing model reaches 8698.62, for the uniform pricing model
it is 14099.19, for the differential pricing model it skyrockets
to 20267.96, and for the multi-tier offloading model it slightly
trails at 20119.2. The revenue from the multi-tier offloading
model is slightly lower than that of the differential pricing
model. The differential pricing model, which occupies more
of the edge server’s CPU resources, charges a higher price
per unit. When the edge server is under a high load, the
differential pricing model does not optimize for this scenario;
even with a high load, as long as resources can satisfy the
task execution, the model will still offload tasks. However,
the multi-tier offloading model, under high edge server load
conditions, charges a much higher price per unit than the
differential pricing model. Vehicles in the dynamic game
offloading stage, due to the high price per unit, will not offload
tasks to the edge server. When tasks are offloaded during the
equilibrium offloading stage, vehicles follow the edge server’s
guidance to use the minimum CPU capacity that can meet
the latency constraint for offloading. Therefore, the revenue

10

from the multi-tier offloading model is lower than that of the
differential pricing model.

Fig. 6. Task failure rate.

E. Task Failure Rate
Fig. 6 displays the experimental results for the task failure

rate across different models. A failed task is defined as one
whose execution time exceeds its latency constraint. The task
failure rates for the deterministic pricing model are 0.5, 0.65,
and 0.74; for the uniform pricing model, they are 0.25, 0.45,
and 0.58; for the differential pricing model, they are 0.27,
0.3, and 0.34; and for the multi-tier offloading model, they
are 0.15, 0.14, and 0.13, respectively. For the deterministic,
uniform, and differential pricing models, the task failure rate
increases as the task arrival rate increases. Conversely, the
multi-tier offloading model shows a decrease in task failure
rate as the rate of task arrival increases. This outcome can be
attributed to two main reasons:

1) High Task Arrival Rates and Edge Server Load Con-
sideration: During high task arrival rates, the dynamic
game offloading stage thoroughly considers the high
load issue of the edge server. When the edge server
is under high load, tasks cannot execute the optimal
offloading strategy due to high prices, and if the optimal
offloading strategy were executed, the Cr could not
satisfy the execution of subsequent tasks in a short time.
Hence, despite the high load, the edge server’s remaining
CPU capacity can still meet the task execution require-
ments, but due to the bidding function’s limitations, tasks
cannot be optimally offloaded.

2) Offloading in the Equilibrium Stage: Tasks that do
not execute the optimal offloading strategy during the
dynamic game stage proceed with offloading during
the equilibrium stage. When tasks are offloaded in the
equilibrium stage, they tend to occupy less CPU capacity
to meet their latency constraints, allowing the edge
server’s remaining CPU capacity to reduce the task
failure rate as much as possible.

F. Edge Server Resource Utilization Rate
Fig. 7 shows the server’s resource utilization rate within 10

seconds for the three models.

In Fig. 7, the first row indicates the resource utilization
rate of the server under the uniform pricing model at different
task arrival rates. Regardless of whether the task arrival rate
is low or high, the edge server is mostly under high load.
This is because, in the uniform pricing model, the vehicle’s
payment cost is only related to the size of the task being
processed, leading vehicles to occupy a significant amount of
the edge server’s resources. Coupled with the task failure rate,
the constant high load on the edge server prevents many tasks
from obtaining sufficient resources to meet latency constraints,
resulting in a higher task failure rate. This model fails to refine
the use of edge server resources effectively, leading to poor
service quality.

The second row shows the performance under the differen-
tial pricing model. At low task arrival rates, the edge server
rarely experiences high load. However, as the task arrival
rate increases, the edge server’s resources gradually reach a
bottleneck, and the task failure rate increases. Compared to
the uniform pricing model, this model reduces the overload
on the edge server but does not perform well at high task
arrival rates.

The third row in Fig. 7 shows the performance under the
multi-tier offloading model. At a task arrival rate of R=1, the
resource utilization rates of the edge server in the differential
pricing model and the multi-tier offloading model are similar.
This similarity is mainly because, at a task arrival rate of
R=1, the edge server’s remaining CPU resources are almost
equivalent to the total CPU resources, and the majority of
tasks are offloaded during the dynamic game stage. The results
of the multi-tier offloading model approximate those of the
differential pricing model. However, there are differences,
indicating that the equilibrium offloading stage ensures the
smooth execution of a small portion of tasks even at low
task arrival rates. From the resource utilization rate results
at task arrival rates of R=2 and R=3, it is evident that the
multi-tier offloading model reduces the occurrence of edge
server overload, demonstrating better performance. At higher
task arrival rates, with less remaining CPU capacity on the
edge server and higher offloading costs, vehicles are forced to
offload less data, occupying the server’s fewer resources. The
high prices in the dynamic game offloading stage might even
prevent tasks from being optimally offloaded. The equilibrium
offloading stage ensures the smooth offloading of tasks.

G. Offloading Rates of Different Task Stages

TABLE I
OFFLOADING RATES OF DIFFERENT TASK STAGES.

R=1 R=2 R=3
The first stage 0.71 0.69 0.65

The second stage 0.14 0.17 0.22

The dynamic game offloading stage is the initial phase
in the multi-tier offloading model, primarily leveraging dy-
namic game theory to optimize the utilization of edge server
resources. In this stage, each user’s offloading decision is
adjusted based on the resource usage of the edge servers to

11

Fig. 7. Edge server resource utilization rate.

achieve optimal task processing efficiency. According to Fig.
7 and Tabel I, the task processing ratios in the dynamic game
offloading stage under different user arrival rates are 0.71,
0.69, and 0.65, respectively. This indicates that the dynamic
game offloading stage maintains high task processing ratios
and resource utilization across various workloads.

The equilibrium offloading stage is the second phase in the
multi-tier offloading model, designed to handle tasks that can-
not be offloaded during the dynamic game offloading stage. In
this phase, the edge server’s resources can still accommodate
certain tasks, allowing those that were not offloaded in the
dynamic game stage to be processed. According to Fig. 7 and
Tabel I, the task processing ratios in the equilibrium offloading
stage under different user arrival rates are 0.14, 0.17, and 0.22,
respectively. Although the processing ratios are lower, this
stage effectively supplements the dynamic game offloading
stage by ensuring that the overall task processing capacity of
the system is maintained.

VII. CONCLUSION

This paper proposes a multi-tier offloading task processing
scheme in the VEC environment, aiming to refine the use of
edge server resources and improve service quality. The pro-
posed multi-tier offloading model consists of two stages. The
dynamic game offloading stage refines the use of edge server
resources, and the second stage reduces the task failure rate
to ensure service quality. This paper constructs a simulation
environment based on the characteristics of video game tasks
in the consumer electronics field. Experiments compare the
average cost of vehicles, average execution delay, income of
edge servers, task failure rate, and resource utilization rate of
edge servers under different task arrival rates. The resources
of edge servers are limited, and the model proposed in this
paper can effectively refine the use of edge server resources,
especially under high task arrival rates, effectively alleviating

the overload of edge servers and significantly reducing the task
failure rate.

There are several directions to extend this work. First, the
work in this paper focuses only on task offloading scenar-
ios for a single edge server, which limits its application to
more complex and practical multi-edge server environments.
Dynamic changes in tasks and resources tend to be more fre-
quent and complex in multi-edge server environments. Second,
algorithm performance can be evaluated in a demonstration
system under which many practical problems should be solved.
Finally, game theory and multi-agent reinforcement learning
techniques can be combined to further understand the policy
interactions among devices.

REFERENCES

[1] X. Zhou, Q. Yang, Q. Liu, W. Liang, K. Wang, Z. Liu, J. Ma, and
Q. Jin, “Spatial–temporal federated transfer learning with multi-sensor
data fusion for cooperative positioning,” Information Fusion, vol. 105,
p. 102182, 2024.

[2] L. Zeng, Q. Liu, S. Shen, and X. Liu, “Improved double deep q network-
based task scheduling algorithm in edge computing for makespan
optimization,” Tsinghua Science and Technology, vol. 29, no. 3, pp.
806–817, 2024.

[3] J. Zhang, Y. Wu, G. Min, and K. Li, “Neural network-based game theory
for scalable offloading in vehicular edge computing: A transfer learning
approach,” IEEE Transactions on Intelligent Transportation Systems, pp.
1–14, 2024.

[4] C. Liu, M. Zhao, H. Wang, B. Cheng, J. Liu, and P. Yuan, “Stackelberg-
game computation offloading scheme for parked vehicle-assisted vec and
experiment analysis,” IEEE Transactions on Intelligent Vehicles, pp. 1–
12, 2024.

[5] X. Huang, Y. Zhang, Y. Qi, C. Huang, and M. S. Hossain, “Energy-
efficient uav scheduling and probabilistic task offloading for digital
twin-empowered consumer electronics industry,” IEEE Transactions on
Consumer Electronics, vol. 70, no. 1, pp. 2145–2154, 2024.

[6] Y. Chen, J. Zhao, J. Hu, S. Wan, and J. Huang, “Distributed task
offloading and resource purchasing in noma-enabled mobile edge
computing: Hierarchical game theoretical approaches,” ACM Trans.
Embed. Comput. Syst., vol. 23, no. 1, jan 2024. [Online]. Available:
https://doi.org/10.1145/3597023

[7] Q. Liu, J. Sun, Y. Zhang, and X. Liu, “Denmerd: a feature enhanced ap-
proach to radar beam blockage correction with edge-cloud computing,”
Journal of Cloud Computing, vol. 13, no. 1, p. 32, 2024.

https://doi.org/10.1145/3597023

12

[8] J. Tian, L. Zhu, F. R. Yu, H. Wang, and T. Tang, “Optimizing edge re-
sources in intelligent railway construction: A two-level game approach,”
IEEE Transactions on Vehicular Technology, pp. 1–14, 2024.

[9] C.-C. Lin, Y. Chiang, and H.-Y. Wei, “Multi-service edge computing
management with multi-stage coalition game task offloading,” IEEE
Transactions on Network and Service Management, pp. 1–1, 2024.

[10] J. Zhang, B. Zhang, and Z. Han, “Coalition formation game based
information-energy collaboration in vehicle edge computing networks,”
IEEE Transactions on Vehicular Technology, vol. 72, no. 6, pp. 7717–
7727, 2023.

[11] Z. Ning, P. Dong, X. Wang, X. Hu, L. Guo, B. Hu, Y. Guo, T. Qiu, and
R. Y. K. Kwok, “Mobile edge computing enabled 5g health monitoring
for internet of medical things: A decentralized game theoretic approach,”
IEEE Journal on Selected Areas in Communications, vol. 39, no. 2, pp.
463–478, 2021.

[12] L. Liu, J. Feng, X. Mu, Q. Pei, D. Lan, and M. Xiao, “Asynchronous
deep reinforcement learning for collaborative task computing and on-
demand resource allocation in vehicular edge computing,” IEEE Trans-
actions on Intelligent Transportation Systems, vol. 24, no. 12, pp.
15 513–15 526, 2023.

[13] M. K. Mondal, S. Banerjee, D. Das, U. Ghosh, M. S. Al-Numay, and
U. Biswas, “Toward energy-efficient and cost-effective task offloading
in mobile edge computing for intelligent surveillance systems,” IEEE
Transactions on Consumer Electronics, vol. 70, no. 1, pp. 4087–4094,
2024.

[14] X. Zhu, Y. Luo, A. Liu, N. N. Xiong, M. Dong, and S. Zhang, “A deep
reinforcement learning-based resource management game in vehicular
edge computing,” IEEE Transactions on Intelligent Transportation Sys-
tems, vol. 23, no. 3, pp. 2422–2433, 2022.

[15] X. Zhou, X. Zheng, X. Cui, J. Shi, W. Liang, Z. Yan, L. T. Yang,
S. Shimizu, and K. I.-K. Wang, “Digital twin enhanced federated
reinforcement learning with lightweight knowledge distillation in mobile
networks,” IEEE Journal on Selected Areas in Communications, vol. 41,
no. 10, pp. 3191–3211, 2023.

[16] C. Liu and K. Liu, “Toward reliable dnn-based task partitioning and of-
floading in vehicular edge computing,” IEEE Transactions on Consumer
Electronics, vol. 70, no. 1, pp. 3349–3360, 2024.

[17] L. Li, Q. Qiu, Z. Xiao, Q. Lin, J. Gu, and Z. Ming, “A two-stage
hybrid multi-objective optimization evolutionary algorithm for comput-
ing offloading in sustainable edge computing,” IEEE Transactions on
Consumer Electronics, vol. 70, no. 1, pp. 735–746, 2024.

[18] C. Swain, M. N. Sahoo, A. Satpathy, K. Muhammad, S. Bakshi, and
J. J. P. C. Rodrigues, “A-dafto: Artificial cap deferred acceptance-based
fair task offloading in complex iot-fog networks,” IEEE Transactions on
Consumer Electronics, vol. 69, no. 4, pp. 914–926, 2023.

[19] Z. Sun, G. Sun, Y. Liu, J. Wang, and D. Cao, “Bargain-match: A
game theoretical approach for resource allocation and task offloading
in vehicular edge computing networks,” IEEE Transactions on Mobile
Computing, vol. 23, no. 2, pp. 1655–1673, 2024.

[20] X. Zhou, W. Liang, J. She, Z. Yan, and K. I.-K. Wang, “Two-layer
federated learning with heterogeneous model aggregation for 6g sup-
ported internet of vehicles,” IEEE Transactions on Vehicular Technology,
vol. 70, no. 6, pp. 5308–5317, 2021.

[21] F. Zhang and M. M. Wang, “Stochastic congestion game for load
balancing in mobile-edge computing,” IEEE Internet of Things Journal,
vol. 8, no. 2, pp. 778–790, 2021.

[22] Z. Xue, C. Liu, C. Liao, G. Han, and Z. Sheng, “Joint service caching
and computation offloading scheme based on deep reinforcement learn-
ing in vehicular edge computing systems,” IEEE Transactions on Vehic-
ular Technology, vol. 72, no. 5, pp. 6709–6722, 2023.

[23] X. Zhou, W. Liang, K. I.-K. Wang, Z. Yan, L. T. Yang, W. Wei, J. Ma,
and Q. Jin, “Decentralized p2p federated learning for privacy-preserving
and resilient mobile robotic systems,” IEEE Wireless Communications,
vol. 30, no. 2, pp. 82–89, 2023.

[24] X. Gao, R. Liu, and A. Kaushik, “Virtual network function placement
in satellite edge computing with a potential game approach,” IEEE
Transactions on Network and Service Management, vol. 19, no. 2, pp.
1243–1259, 2022.

[25] X. Xu, Q. Jiang, P. Zhang, X. Cao, M. R. Khosravi, L. T. Alex, L. Qi,
and W. Dou, “Game theory for distributed iov task offloading with
fuzzy neural network in edge computing,” IEEE Transactions on Fuzzy
Systems, vol. 30, no. 11, pp. 4593–4604, 2022.

[26] Q. Liu, L. Zeng, M. Bilal, H. Song, X. Liu, Y. Zhang, and X. Cao, “A
multi-swarm pso approach to large-scale task scheduling in a sustainable
supply chain datacenter,” IEEE Transactions on Green Communications
and Networking, vol. 7, no. 4, pp. 1667–1677, 2023.

[27] A. Bozorgchenani, S. Maghsudi, D. Tarchi, and E. Hossain, “Computa-
tion offloading in heterogeneous vehicular edge networks: On-line and
off-policy bandit solutions,” IEEE Transactions on Mobile Computing,
vol. 21, no. 12, pp. 4233–4248, 2022.

[28] H. Ren, K. Liu, C. Liu, G. Yan, and Y. Li, “An approximation algorithm
for joint data uploading and task offloading in iov,” IEEE Transactions
on Consumer Electronics, vol. 70, no. 1, pp. 3018–3030, 2024.

[29] Y. Li, B. Yang, H. Wu, Q. Han, C. Chen, and X. Guan, “Joint offloading
decision and resource allocation for vehicular fog-edge computing
networks: A contract-stackelberg approach,” IEEE Internet of Things
Journal, vol. 9, no. 17, pp. 15 969–15 982, 2022.

[30] K. Zhang, J. Cao, and Y. Zhang, “Adaptive digital twin and multi-
agent deep reinforcement learning for vehicular edge computing and
networks,” IEEE Transactions on Industrial Informatics, vol. 18, no. 2,
pp. 1405–1413, 2022.

[31] P. Consul, I. Budhiraja, D. Garg, N. Kumar, R. Singh, and A. S.
Almogren, “A hybrid task offloading and resource allocation approach
for digital twin-empowered uav-assisted mec network using federated
reinforcement learning for future wireless network,” IEEE Transactions
on Consumer Electronics, vol. 70, no. 1, pp. 3120–3130, 2024.

[32] B. Liang, R. Fan, H. Hu, Y. Zhang, N. Zhang, and A. Anpalagan,
“Nonlinear pricing based distributed offloading in multi-user mobile
edge computing,” IEEE Transactions on Vehicular Technology, vol. 70,
no. 1, pp. 1077–1082, 2021.

[33] F. Zeng, Q. Chen, L. Meng, and J. Wu, “Volunteer assisted collaborative
offloading and resource allocation in vehicular edge computing,” IEEE
Transactions on Intelligent Transportation Systems, vol. 22, no. 6, pp.
3247–3257, 2021.

[34] Y. Chen, J. Zhao, Y. Wu, J. Huang, and X. Shen, “Qoe-aware decentral-
ized task offloading and resource allocation for end-edge-cloud systems:
A game-theoretical approach,” IEEE Transactions on Mobile Computing,
vol. 23, no. 1, pp. 769–784, 2024.

[35] Z. Sun, G. Sun, Y. Liu, J. Wang, and D. Cao, “Bargain-match: A
game theoretical approach for resource allocation and task offloading
in vehicular edge computing networks,” IEEE Transactions on Mobile
Computing, vol. 23, no. 2, pp. 1655–1673, 2024.

[36] H. Wang, T. Lv, Z. Lin, and J. Zeng, “Energy-delay minimization of task
migration based on game theory in mec-assisted vehicular networks,”
IEEE Transactions on Vehicular Technology, vol. 71, no. 8, pp. 8175–
8188, 2022.

[37] E. Cuervo, A. Balasubramanian, D.-k. Cho, A. Wolman, S. Saroiu,
R. Chandra, and P. Bahl, “Maui: making smartphones last longer with
code offload,” in Proceedings of the 8th International Conference on
Mobile Systems, Applications, and Services, ser. MobiSys ’10. New
York, NY, USA: Association for Computing Machinery, 2010, p.
49–62. [Online]. Available: https://doi.org/10.1145/1814433.1814441

[38] K. Raaen and T.-M. Grønli, “Latency thresholds for usability in games:
A survey,” in Norsk Informatikkonferanse, 2014. [Online]. Available:
https://api.semanticscholar.org/CorpusID:17755392

[39] M. Liu and Y. Liu, “Price-based distributed offloading for mobile-
edge computing with computation capacity constraints,” IEEE Wireless
Communications Letters, vol. 7, no. 3, pp. 420–423, 2018.

[40] H. Seo, H. Oh, J. K. Choi, and S. Park, “Differential pricing-based task
offloading for delay-sensitive iot applications in mobile edge computing
system,” IEEE Internet of Things Journal, vol. 9, no. 19, pp. 19 116–
19 131, 2022.

Haiyang Lin received the B.S. degree in Internet
of Things Engineering from Nanjing University of
Information Science and Technology in 2022. He
is currently working toward the master’s degree in
electronic information with the School of Nanjing
University of Information Science and Technology,
Nanjing. His recent research focus is on edge com-
puting.

https://doi.org/10.1145/1814433.1814441
https://api.semanticscholar.org/CorpusID:17755392

13

Bo Xiao is with Jiangsu Province Engineering Re-
search Center of Advanced Computing and Intelli-
gent Services, Nanjing 210044, China, and also with
the School of Chemistry and Materials Science, Nan-
jing University of Information Science and Tech-
nology, Nanjing 210044, China. Her recent research
focuses on edge collaboration, edge intelligence.

Xiaokang Zhou (Member, IEEE) received the Ph.D.
degree in human sciences from Waseda Univer-
sity, Japan, in 2014. He is currently an Associate
Professor with the Faculty of Data Science, Shiga
University, Hikone, Japan. From 2012 to 2015, he
was a Research Associate with the Faculty of Human
Sciences, Waseda University, Japan. He also works
as a Visiting Researcher with the RIKEN Center
for Advanced Intelligence Project (AIP), RIKEN,
Tokyo, Japan, since 2017. He has been engaged
in interdisciplinary research works in the fields of

computer science and engineering, information systems, and social and human
informatics. His recent research interests include ubiquitous computing, big
data, machine learning, behavior and cognitive informatics, cyber-physical-
social systems, and cyber intelligence and security. Dr. Zhou is a member
of the IEEE Computer Society, and ACM, USA, IPSJ, and JSAI, Japan, and
CCF, China.

Yonghong Zhang (Member, IEEE) received the
Ph.D. degree in mechanical and power engineer-
ing from Shanghai Jiao Tong University, Shanghai,
China, in 2005. His research interests include me-
teorological disaster monitoring and warning, edge
cloud cooperation, IoT continuum, and smart grid.
His recent research interests include but are not lim-
ited to pattern recognition and intelligent systems,
remote sensing big data analysis and deep learning,
intelligent equipment and IoT system integration,
and higher education teaching management and re-

search work.

Xiaodong Liu received the Ph.D. degree in com-
puter science from De Montfort University. In 1999,
he joined Edinburgh Napier University, where he is
a Reader and currently leading the Software Systems
Research Group with IIDI. He was the Director of
the Centre for Information and Software Systems.
He is an Active Researcher in software engineering
with internationally excellent reputation and leading
expertise in contex-aware adaptive services, service
evolution, mobile clouds, pervasive computing, soft-
ware reuse, and green software engineering.

	Introduction
	Background
	Solutions and Contributions

	Related Work
	System Model
	Payment Model
	Dynamic Game Offloading Stage
	Equilibrium Offloading Stage

	Dynamic Game Equilibrium Analysis
	Task Offloading Algorithm
	Algorithmic Process
	The Adjustment Coefficients

	Experimental Evaluation
	Experimental Setup
	Average Execution Latency
	Average Cost
	Revenue for the Edge Server
	Task Failure Rate
	Edge Server Resource Utilization Rate
	Offloading Rates of Different Task Stages

	Conclusion
	References
	Biographies
	Haiyang Lin
	Bo Xiao
	Xiaokang Zhou
	Yonghong Zhang
	Xiaodong Liu

