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Abstract

Urban traffic is a system prone to overload, often approaching breakdown during rush
hour times. Well-adjusted modifications of traffic policies, with appropriate interven-
tions, promise potential improvements by inducing change in both individual as well
as global system behaviour. However, truly effective measures are hard to identify,
and testing in vivo is at least expensive and often hardly feasible. Agent-based traffic
simulations are an established instrument to develop and assess policy interventions
in silico but need to be further researched. In particular, better access to real-time
information and a growing portfolio of mobility services have improved the flexibility
in the personal mobility of individuals and thus require simulations to capture a more
detailed modelling of the goals and purpose in their travel behaviour. Therefore, this
thesis provides a systematic survey of existing traffic simulators, examining their ability
to model individuals and their behaviour, and presents a modelling method based on
semantic technology that allows preferences and personal objectives of individuals to
be modelled as determining factors of agent decisions. The use of semantic technology
helps to reduce the complexity during the modelling process. Furthermore, this thesis
proposes a graphical notation that can capture the hierarchical structure of cause-effect
relations in multi-agent models as well as a method to automatically extract cause-effect
relations from the simulation at runtime. This allows implementations of simulation
models to be reverse engineered, ensuring that the increasing complexity of the model
does not further compromise the ability to understand the internal mechanisms of
the simulation, which holds the potential to become an integral part of the structural
validation of agent-based simulations. The thesis provides examples of implementation
and gives demonstration of the proposed methods for artificial use cases.
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; Chapter 1 <

Introduction

A well-functioning transport system is an indispensable prerequisite for economic

prosperity and development [14]. With the rapid increase in economic output and a

growing world population, more people are drawn to urban centers. Common reasons

for people relocating from rural areas to urban centers are better health care access,

schools and career options [15]. This development is particularly noticeable within

the younger generation, which induces rural exodus for the area. By 2050, 70% of the

population are predicted to live in cities while only 30% remain in rural areas [16]. While

the demand for living and office space in urban areas increases, available space and

resources are limited [17]. Therefore, the majority of the urban population has moved

into surrounding areas, and consequently causes higher traffic volume due to increasing

commuter flows [18]. The need for individual mobility has grown to an unprecedented

extent. Private road traffic such as daily commuting makes up a significant amount

of the total traffic volume in urban areas (in 2016 commuting accounted for up to

74% of the total traffic) [16]. The repercussions for urban traffic are evident. Frequent

traffic jams and the perpetual lack of parking space, are obvious indicators of a system in

overload mode (infrastructure reaching a critical number of vehicles in the network) [19].

This shows that the current demand for flexible and individual mobility has exceeded

the capacity limits of available infrastructure. In order to cope with these challenges, a

fundamental change is required in the design of urban mobility.

Traffic simulation is an established means for studying and analysing current trends

1



CHAPTER 1. INTRODUCTION

and patterns in mobility as well as their potential effects on future scenarios (e.g. [20],

[21]). Global system behaviour is the result of the behaviour of a large set of individuals

that perform actions following their personal objectives. The decision-making process

of individuals is based on personal attitude as well as available world knowledge. New

information that affects either of these aspects can lead to changes in individual beha-

viour. For example, the availability of smartphones as well as the increasing number of

digital services both have led to changes in the behaviour of individuals in the context

of personal mobility (see [22]). Information about routes, traffic jams or public trans-

port connections can be accessed in real-time and thus has empowered individuals

to determine their best travel option under almost complete information. While indi-

viduals used to carefully plan their trip prejourney, it has become remarkably easier to

make spontaneous decisions en route. This has resulted in the increase of multimodal

travel (travellers flexibly switching modes during their journey) that can be observed in

urban traffic [23]. The growing supply of modern on-demand mobility services such

as ride-hailing or sharing services targets precisely this type of short-term behaviour

and will thus continue to intensify this development. With regard to research on traffic

simulation, this signifies that the decision-making behaviour of individuals and their

interactions with other individuals, objects and services in their surrounding envir-

onment is becoming more and more important and therefore needs to be considered

when building simulation models. State-of-the-art research has been investigating

traffic as an emergent phenomenon, rather than a problem that can be modelled from

a global perspective where system behaviour is specified using aggregated and abstract

parameters (e.g. [20], [21]). Higher-level system properties, such as the flow of traffic,

emerge from the interactions of lower-level subsystems (e.g. individuals with personal

objectives and autonomous behaviour) [24] which makes the application of multi-agent

models a natural instrument.

As urban mobility is increasingly driven by personalised services, individuals are

facing a growing number of travel options. This leads to individuals being more flexible

in their personal mobility but also causes a growing complexity of decision-relevant

information. Trying to appropriately reflect these changes in personal mobility places

2



CHAPTER 1. INTRODUCTION

new requirements on traffic simulations. This research deals with the development of

necessary concepts and methods to cope with the challenges involved in the implement-

ation and application of individual-based traffic simulations. In particular, placing the

individual and their behaviour in the center of attention requires elaborate techniques

so that more details about personal objectives and decision behaviour can be modelled.

By leveraging the ideas and concepts from semantic technology this type of informa-

tion can be efficiently structured and the complexity of the modelling process can be

reduced. Meanwhile, simulation models are becoming more complex and opaque due

to the increased level of detail. Identifying and finding an appropriate representation

for relevant cause-effect relations generates more insights into the internal mechanisms

of the simulation at runtime.

1.1 Motivation

Traffic policies define the basic conditions under which individuals make decisions

regarding their personal mobility. Changing them can have a significant impact on the

behavioural patterns of individuals in traffic. Before designing and implementing new

policies, the cause and effect of the current traffic situation must be scrutinised in order

to develop measures that are accepted by the public and can eventually provide relief.

However, identifying appropriate measures can be difficult as there is a wide range

of policies that vary in their effectiveness as well as in the costs and time needed for

their implementation. For example, raising awareness of the environmental effects of

transportation choices can lead to changes in the short term. However, efforts to foster

pro-environmental behaviour based on education and awareness have demonstrated

the lowest success rate and thus can only lead to changes to a limited extent [25]. In

contrast, the shift to new driving technologies such as electric vehicles can achieve more

significant effects when it comes to reducing environmental pollution but is associated

with considerable costs and can only be implemented in the long term. Creating a

comprehensive charging infrastructure for electric vehicles is a large-scale project that

involves a significant amount of capital investment and takes years to accomplish [26].

3
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Public institutions and private companies are already working intensely on alternative

strategies that exploit contemporary technological innovation [27], but need more

elaborate tools for working out new mobility concepts that enable more flexibility in

personal mobility and at the same time cope with the ongoing challenges of urban

traffic. Available traffic simulations have focused on simulating traffic as the primary

subject, thus not prioritising individuals pursuing personal objectives and the purpose

of their journeys, such as travelling to work or going to shop for groceries. In order to

achieve personal objectives, the movement of individuals to a different location should

merely be regarded as a necessary means to an end. Consequently, road traffic itself

should not be considered the sole focus when modelling traffic scenarios as individual

traveller objectives are just as relevant. Thus, there is a need for traffic simulations to

focus on the goals and purpose in the travel behaviour of individuals as this is crucial

to appropriately reflect the current developments e.g. urban traffic is more and more

driven by digital services that aim to facilitate real-time decisions in personal mobility.

1.2 Problem Statement

Placing the individual and their behaviour at the center of attention in traffic simulations

creates additional complexity due to the modelled level of detail. It is therefore import-

ant to develop appropriate methods to facilitate the development of traffic simulations

that are based on the actions of the individual. Building traffic simulations typically

involves abstracting complex real-world processes into a reduced model that captures

presumably the most important concepts and their relations for a given scenario, and

implementing it as an executable piece of software. What is commonly referred to as

the modelling process is a series of complex activities that require structured procedures

(methods) as well as appropriate software tools. Simulation models are typically created

for specific research objectives. For this purpose, information from various data sources

needs to be collected and processed to formulate assumptions about the real world.

This process of surveying data requires substantial effort and therefore simulations

are often based on publicly accessible information sources. Assumptions are then
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transformed into a formal representation that can be implemented into an executable

simulation software. To place the focus of traffic simulations on the individual, more

details and thus more information about the individuals, their knowledge and their

decision-making behaviour have to be incorporated into the simulation. This leads

to new requirements in the activities of model development. For example, the addi-

tional complexity caused by the detailed modelling of individuals requires innovative

modelling techniques. Furthermore, it is important to ensure that the increasing com-

plexity of the model does not further compromise the ability to understand the internal

mechanisms of the simulation.

The intention of this research is to develop and propose a set of methods that can

be used to effectively build and work with individual-based traffic simulations. For this

purpose, the current state of implementation in traffic simulation will be reviewed to

evaluate and discuss gaps and limitations when it comes to simulating individuals and

their behaviour in road traffic. Based on this, appropriate methods will be proposed to

address relevant issues when placing the individual at the center of attention.

1.3 Aims

As early implementations of traffic simulations date back to the 1960s [28], a broad

range of agent-based traffic simulators has been developed that each focus on different

aspects of the transportation system. Therefore, traffic simulations also differ in the

level of detail to which they consider individuals and their behaviour. Consequently, de-

pending on the scope of application, different aspects of individual behaviour may have

been included. The first aim of this research is to get an overview of the contemporary

challenges in mobility as well as the wide spectrum of simulators and their scope of

application. In this context, this research will specifically look at the role of individuals

and the capabilities of simulators for modelling individuals and their behaviour. Based

on the contemporary challenges in mobility, there will be new requirements for traffic

simulations. Findings of the review on existing simulators will indicate gaps and limit-

ations for which further research is required. The aim is then to develop appropriate
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concepts and methods to facilitate the modelling of individuals in traffic simulations.

Furthermore, as the detailed modelling of individuals may lead to additional complexity

in the simulation models, this thesis also aims to develop a method to generate more

insights into the internal mechanisms of the simulation. Summarising this, the aims of

this research include:

• Identify the limitations of existing traffic simulators in modelling individuals for

contemporary challenges in mobility.

• Establish appropriate methodologies to improve the process of modelling indi-

viduals based on the identified requirements for traffic simulations.

• Develop a method to extract cause-effect relations in agent-based traffic simula-

tions.

1.4 Research Questions

This thesis looks at the new requirements placed on traffic simulations that are caused

by the ongoing developments in mobility e.g. individuals having better access to real-

time information as well as the growing portfolio of mobility services. The resulting

improvements in the flexibility of personal mobility thus require a more detailed view

of individuals in traffic simulations. From the computer science perspective, a more

detailed view of individuals and their behaviour increases the complexity of the simula-

tion models. Thus there is a need for appropriate tools to efficiently handle the added

complexity in the activities of the model development process. This thesis addresses

the research gap to develop appropriate methods that can be implemented as software

to facilitate the development of individual-based traffic simulations. To further specify

the aims of this research the following research questions have been defined:

1. What are the main deficiencies in the modelling of individuals and their behaviour

in existing agent-based traffic simulators?
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2. How can the knowledge of individuals be modelled to capture their preferences

and personal objectives as determining factors of decisions in mobility scenarios?

3. How can relevant cause-effect relations in agent-based traffic simulations be

automatically extracted and formally represented?

1.5 Objectives

Based on the aims and research questions above, a number of research objectives

have been determined in the scope of this thesis. In this section, the objectives of the

research project will be briefly outlined while refraining from going into the details of

the underlying methodology. The intention is to illustrate how the objectives have been

structured and how they are linked. Details of the chosen research methodology for

outlined objectives will be described in the relevant chapters of this thesis.

• Perform a systematic literature survey on available traffic simulators with regard to

their area of application as well as implemented features for modelling individual

behaviour and give a discussion on gaps and limitations that require further

research.

• Develop a framework to efficiently model the preferences and knowledge of trav-

eller agents, allowing the agents to be flexibly reused across different scenarios.

• Apply the modelling framework to build and simulate appropriate example use

cases.

• Develop a framework to extract relevant information on cause-effect relations

from agent-based simulations to generate a formalised representation that provides

more insights into the internal mechanisms of the simulation.

• Apply the framework to extract relevant information on cause-effect relations

from appropriate example simulations.
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1.6 Summary of Contributions

The contributions of this research can be summarised as follows:

A systematic survey of available agent-based traffic simulators, published in the

well-established journal Transportation Research Interdisciplinary Perspectives, that

looks at the ability of simulators to model individuals and their behaviour based on

contemporary areas of interest in mobility (see [4]). The synthesis of the broad range

of information allowed key concepts in the field to be demonstrated in a coherent and

organised structure. At the same time, the systematic survey provided an overview of

the current state of implementation which is helpful for other researchers to find an

appropriate simulation tool and highlight the lack of appropriate modelling concepts to

capture the decision behaviour of individuals based on their preferences and personal

objectives.

A modelling framework that is able to comprehensibly capture preferences and

personal objectives as determining factors of individual decisions. In this approach, the

implementation of agent knowledge has been separated from their operating behaviour

(action selection). Using semantic technology, the knowledge of individuals can be

structured in a form that ensures information can be easily managed. In particular, the

framework reduces complexity in the modelling process by applying computer-based

reasoning mechanisms. Furthermore, knowledge of individuals about their purpose

of travel that may vary across different scenarios can be easily replaced and extended

which improves the reusability of the implemented agents. Another aspect is that by

modelling more details of the individual travellers using the proposed method, the

effects of policies can be evaluated not only on global system behaviour but also on

individuals, which is important when developing new traffic policies.

An extension of UML activity diagrams called Multi-Agent Modelling Notation

(MAMN) that is able to model the multi-level property of cause-effect relations in

agent-based systems.

A framework to automatically extract relevant information on cause-effect relations
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in agent-based simulations and to represent these relations in the proposed MAMN

graph structure. This approach provides insight into the internal mechanisms of the

simulation, allowing implementations of simulation models to be backwards/ reverse

engineered. The systematic method helps to ensure completeness and correctness of

the produced representations.
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1.7 Outline of the Thesis

The remainder of the thesis is structured as follows:

Chapter 2: Background

This chapter provides an overview of the theoretical background of simulation

theory, model development, game theory and agent-based methods which serve

as important groundwork for this research.

Chapter 3: A Systematic Survey on Modelling Individuals Using Agent-based

Traffic Simulators

To get an overview of the current state of implementation of existing traffic simu-

lators to model individuals and their behaviour a systematic survey is given. This

chapter also includes a discussion of challenges and limitations to be addressed

in the scope of this research.

Chapter 4: Modelling Individual Preferences to Study and Predict Effects of

Traffic Policies

This chapter proposes a structured method based on semantic technology for

creating traffic simulations that are able to comprehensibly capture preferences

and personal objectives as determining factors of individual decisions. The focus

of this chapter is not to present a validated simulation model but to demonstrate

how the proposed method can be used to model and simulate what-if scenarios

when investigating the effects of policy interventions in simulations.

Chapter 5: Current State in Validation and Verification of Agent-based Simula-

tions

As the detailed modelling of individuals increases the overall complexity of simu-

lations, there is a need for appropriate methods to not further compromise the

ability of researchers to understand them. For this purpose, this chapter reflects

on current approaches for validation and verification and gives a discussion about
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the existing challenges when it comes to generating more insight into the internal

mechanisms of individual-based simulations.

Chapter 6: A Graph-based Framework for Extracting Cause-Effect Relations

from Agent-based Traffic Simulations

To extend agent-based simulations with more explanatory capabilities on their

internal mechanisms, this chapter proposes a method for extracting relevant

information on cause-effect relations of input and output variables from a simula-

tion at runtime. Demonstration of the method is given by generating cause-effect

graphs for different simulation models.

Chapter 7: Critical Evaluation

This chapter reflects on contributions to knowledge and discusses the benefits and

limitations of the proposed methods as well as possible alternative research paths.

Furthermore, a discussion is given of the informative value of the performed

experiments as well as the current state of implementation.

Chapter 8: Conclusion and Future Research

Finally, this chapter draws final conclusions and gives suggestions for further

research.
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Background

This chapter provides an overview of the theoretical concepts and notions that serve

as important groundwork for this research. For this purpose, a description of the basic

terminology used in the area of model development and simulations is given. More

detailed coverage is given on the two subjects of modelling as well as validation and

verification. With regard to the section on modelling, this work focuses on building

models based on utility theory from economics. In particular, game theory covers

important work on the abstraction and formalisation of real-world systems into quan-

tifiable models. The analysis of these models provides insight into the behaviour of

a system, which can be particularly useful for evaluating measures in policy-making.

However, the question of correctness arises when policies are based on a reduced model

of the real world. It is therefore important to validate and verify these models and

simulations. This chapter gives a discussion of the different perspectives on simulation

validation and verification, and briefly summarises applied techniques. Furthermore,

as the focus of this research is on traffic simulation, an overview is given of the different

types of simulation models. In particular, the role of multi-agent models is given special

attention as there has been an increasing interest in their application for building traffic

simulations.
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2.1 Fundamentals on Systems, Models and Simulations

There is a wide range of literature that covers the theoretical foundations of simulation

theory discussing the basic notions from different perspectives [29]–[31]. Although there

can be minor differences in the terminology, the described concepts are in principle

consistent. Issues in the real world are typically examined in a specific context which

can also be described as a system. A system is a spatially contained, logically coherent

and temporally finite entity that comprises interdependent elements [31]. For example,

urban road traffic is a system that consists of many individuals as well as the available

road infrastructure. It is spatially contained as available infrastructure is limited and

thus can be considered a defined area. Logical coherence is an important requirement

to determine whether something in the real world is considered part of the system

which can be subjective depending on the perception of a specific human and/or a

group of humans defining the system. In particular, there are many individuals that

are located within the urban space, but only when they are moving within the road

system, are they temporally taking on the role of a traffic participant which makes them

part of the urban road traffic system. Individuals that are considered part of the traffic

system interact with different elements of the infrastructure (e.g. traffic lights, traffic

signs), as well as with each other. The decisions of one individual have an effect on the

others which makes them interdependent e.g. at intersections or through congestion.

Temporal finiteness is given when urban road traffic is viewed over a specified timeframe

e.g. a day, a week or a year.

The complexity of these real-world systems makes it difficult, if not impossible,

to describe them in their entirety [31]. Models are an abstraction of the real-world

system. They capture the dynamics of a system by focusing on relevant aspects and

their relations. Observations about the real world are recorded as empirical data which

serves as a description of the system. The complexity of a given system determines

the number of relevant aspects to be included in the model. Detailed models are likely
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the real-world system. The conceptual model is defined by objectives, model contents,

inputs, outputs as well as assumptions and simplifications [8]. Objectives describe

the purpose of the model, e.g. a specific research problem to be investigated. These

objectives have a significant impact on the model content. In particular, model content

contains a set of relevant aspects from the real-world system and their relations. Thereby,

the objectives specify the scope as well as the necessary level of detail for the model

content. For example, the same traffic system can be viewed from different perspectives.

Transportation planners typically look at the traffic system from a global perspective

and therefore focus on different aspects related to social benefit rather than a mobility

service provider that has a more customer-centric view and is looking to maximise

profits. Since the objectives of both are fundamentally different, model content probably

focuses on other aspects of the system. Inputs are variables of the research problem that

when altered may lead to changing effects on the overall behaviour of the system. These

resulting effects are captured and analysed in the output of the model. Assumptions

are made when there are uncertainties about how the real world should be modelled

whereas simplifications are deliberate abstractions to improve the manageability and

transparency of the model.

Conceptual

Model 
Design

Model 

Design

Model

Abstraction/

Simplifications

Knowledge 

Aquisition/

Assumptions

Real-world

Problem 

System

Description

Computerised

Model 
Programming

Figure 2.2: Model maturity (see [8]).

Creating the conceptual model is generally agreed to be the most difficult and also

the most important activity in model development. While the creation of the conceptual

model is described as a purely cognitive process that continuously takes place even

beyond the completion of a simulation study, it may or may not be formally expressed

[8]. For example, there have been different approaches for documenting the conceptual

model such as listing assumptions and simplifications or creating variations of Petri

nets, activity, logic flow or other types of process flow diagrams. Any type of documenta-

tion is considered an explicit representation of the conceptual model. The computerised

model is a specific explicitation of the conceptual model that implements theories and

assumptions from the conceptual model into an executable piece of code.
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Ideally, the simulation model demonstrates system behaviour analogous to the

observed real-world system. Based on this, it is typically assumed that the model is an

appropriate representation of the system so that it can be used to make predictions

about future behaviour [31]. Establishing trust and credibility in the output of simula-

tions requires validation and verification (V&V) of simulation models [36]–[38]. Despite

some occasional confusion or divergent uses of these notions, the relation between

validation and verification has been argued to be distinct [39]. A commonly referenced

definition of both is given by Law and Kelton [30], [40]:

• verification determines whether a conceptual model has been correctly trans-

ferred to a computerised model, whereas

• validation focuses on whether the conceptual and computerised model is an

accurate representation of the real-world problem.

Validation and verification (V&V) of the simulation lead to recalibration or redesign

of the model which makes model development a continuous activity. This concludes

the basic overview of the terminology used in the area of model development and

simulations. The following sections give a more detailed discussion on the two subjects

modelling as well as validation and verification as these are particularly relevant for

further research in this thesis.

2.2 Modelling

The abstraction of a given real-world system into a simulation model requires formalisa-

tion. In this context, a particular challenge lies in the representation of social behaviour

and interaction. There are different views on how to formalise these types of concepts

that have evolved from different disciplines e.g. psychology or economics. Each of these

approaches has its strengths and limitations, but none of them is considered better

than the others. Rather, it should be noted that theory is often not specified in such

depth that there is only one way to implement or formalise it in a model. Sometimes
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the combination of ideas from different theories can help to overcome the limitations

of one theory on its own. This research takes the utilitarian perspective from economics

to model the behaviour and interactions of individuals in social systems. This approach

relies extensively on mathematics to describe the behaviour and relations of a system

which facilitates the implementation of the computerised model and comes with a large

body of related work on model analysis and evaluation.

2.2.1 Studying Social Behaviour Using Games

Game theory is considered a subcategory of applied mathematics that is applied in

economics and computer science to study strategic interactions of individuals. The

term originally comes from strategy-based board games such as chess and was first

used in a scientific context in 1944 [41]. Since then, a growing number of scientists have

been working on this subject, discussing the problems of game theory from different

perspectives [42], [43]. The research field is committed to studying decision-making

and modelling of conflict situations in a mathematically quantified form. This enables

formal analysis of decision behaviour and allows to determine the optimal course of

action. In daily situations, when at least two individuals interact, conflict situations

arise, both knowingly or subconsciously. Especially in an environment with shared

limited resources, interaction between individuals often leads to competitive beha-

viour. Individuals observe their surrounding environment and when acting rationally,

aim to achieve the best possible outcomes for themselves according to their personal

objectives.

The same type of conflict situations can be observed in everyday mobility. Self-

interested individuals such as travellers interact in an environment with limited and

shared resources (infrastructure) and try to reach their destination through a supposedly

optimal course of action. The decisions of one traveller ultimately have an effect on

others. For example, when large groups of individuals, during rush hour, simultaneously

choose to travel in private vehicles, this can lead to prolonged travel times due to traffic

jams. This is why the application of game theoretic concepts is appropriate to create and
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analyse formal models of the traffic system, even though the vast number of travellers

makes interaction complex and thus leads to numerous outcome scenarios.

2.2.2 Assumptions

Abstraction and formalisation of real-world scenarios as games requires assumptions.

Classic game theory assumes individuals to behave completely rationally following the

model of Homo economicus (see [44]). It is assumed that individuals always choose the

most beneficial option when faced with multiple alternatives. A player in a game always

has at least two possible actions. Each combination of selected actions by the players

leads to a clear outcome. Outcomes are linked to utility functions that determine the

personal utility (payoff) of players (see [45] for a formal definition). Players aim at

maximising their personal utility while knowing the rules of the game as well as all

possible payoffs. Usually, the decisions of one player influence the outcome of other

players. It is therefore necessary for a player to anticipate the choices of other players

when making a decision, assuming that every player knows about the set of possible

options. These assumptions come with limitations in the modelling. It has been argued

that in reality, complete information is rarely the case [46]. Furthermore, individuals in

the real world often demonstrate behaviour that cannot be explained with rationality.

The ultimatum game for example describes a scenario in which two players receive a

certain payoff (e.g. 10 units) if both players accept [47]. However, the rules of the game

state that a player A is responsible for splitting the amount and player B can then either

accept or reject his share. In case of rejection, both players have to return the total

payoff. In the event of a significantly unbalanced split, for example, 9 shares for player A

and 1 share for player B , assuming completely rational behaviour, both players should

accept the offer. Rationally, 1 share for player B is still better than no share. However,

similar experiments from the real world have shown that in this situation, most of the

participants in the position of player B will reject the offer as they consider the split to

be unfair [48]. Concepts such as bounded rationality [49], evolutionary game theory [50]

as well as non-deterministic modelling using probability distributions [51], [52] can
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help to overcome some of these limitations.

2.2.3 Network Games

Network games are a specific subcategory of classic game theory which are particularly

suitable to capture the characteristics of road traffic as system behaviour is linked to the

provided road network. Traffic participants can be considered players in a game who

share the same resources in a network such as roads, infrastructure and mobility ser-

vices. Interaction in such networks inevitably leads to conflict situations which can be

modelled as games. Literature differentiates two types of network games [53]. The first

type deals with games that are performed on already formed networks. Route selection

on an existing road network is an example from everyday mobility. In addition to this,

the second type is referred to as network formation games. This type examines scenarios

in which a new network is formed through the establishment of links between various

vertices. For example, given a scenario in which a number of individuals is travelling on

the existing road infrastructure, there may be games that look at the formation of a new

social network. Issuing a traffic warning and observing how information spreads is an

example of this type of game (e.g. see [54] for a discussion). Sharing the information

about the traffic warning creates a link between participants in the game and thus pro-

duces a social network that demonstrates the flow of information. This thesis focuses

on games performed on formed networks. The following sections illustrate examples

that are associated with this type of game.

A particular form of network games is congestion games [55], which are non-cooperative

games in which players refrain from all communication. The payout of each player

depends on the selected resources and the number of other players that also selected

the same resource. The resources in these scenarios are shared and accessible to all

players. One of the probably best-known examples is the Braess paradox [56]: In places

where high traffic volume often leads to traffic jams and the demand for journeys is

constant for the considered period of time, it can be assumed that infrastructure has
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reached full capacity. Attempts to solve this situation often include the construction of

even larger roads or alternative routes. However, this approach causes redistribution

of the overall traffic flow which can lead to even worse outcomes. Formally, the Braess

paradox can be presented as a graph.

Let graph G be an ordered set of {V ,E ,FG } in which V is a nonempty set of vertices,

E is a set of edges, and FG is an incidence function that assigns an unordered pair of

vertices to each edge, i.e. E ⊆ V ×V . Based on this, let V = {A,B ,C ,D} and E be the

set of ordered tuples E = {e1,e2,e3,e4} with e1 = (A,B), e2 = (C ,D), e3 = (B ,D) and e4 =
(A,C ). Furthermore, the costs for travelling over the edges are defined c(e1) = c(e2) = 1,

c(e3) = n(e3) and c(e4) = n(e4) with n(e) indicating the amount of players travelling on

that particular edge. All players start at vertex A trying to reach the target destination

vertex D . In doing so, a player has to travel through a route R which in this game is an

n-tuple of edges e.g. (e1,e2) to which applies π2(e1) =π1(e2) with πi (e) being the i -th

item in a tuple e ∈ E . In particular, players can choose between two options, either to

move along the upper route (e1,e3) or to use the lower route (e4,e2) (see Figure 2.3).

In a second iteration, assume that an edge e5 = (B ,C ) is added to the graph with

c(e5) = 0. This changes the situation and it is now possible to change directions when

arriving at vertex B . With the addition of e5, costs in the system have changed and the

most efficient route appears to be traversing over the edges e1,e5 and e2. Considering

this fact, all players are now choosing the new allegedly fastest route, resulting in all

traffic being concentrated on the same edges, causing costs to be maximised. This

ultimately leads to a worse global outcome [57].

A D

B

C

c(e1) = n(e1) 

c(e5) = 0

c(e3) = 1

c(e4) = 1 c(e2) = n(e2) 

Figure 2.3: Graph representation of the Braess paradox.
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Other forms of network games include load balancing and cover games. Load

balance games are also described as scheduling problems on parallel different-capacity

channels [53]. In these scenarios, there are a number of jobs that are to be distributed

among a set of different processors. Each job can have a different job volume and

processors may be working at different speed levels. The final load of a processor

is defined by the sum of all job volumes executed on that particular processor. An

important key indicator is the delay which basically specifies the required processing

time of a job on that particular processor. This indicator is defined as the ratio of the

load of a processor and its processing speed. In the context of mobility, the application

of such games can be found in the planning of public transport schedules as well as

speed planning for road traffic. The primary objective of these games is to minimise

social costs of the overall system while players (travellers) selfishly try to minimise their

own costs such as the required travel time, by choosing their best route option. Social

costs are the aggregation of adverse effects that result from the strategic interactions

and decisions of individual players within a game.

The KP-Model is an example of a load balancing game that is often referred to in the

literature (see [58]). Assuming a graph that consists of the two vertices V = {A,B} and

E a set of edges for which applies ∀e ∈ E ,e = (A,B) (see Figure 2.4). Based on this, the

graph includes m parallel routes from vertex A to vertex B , with m being the number of

elements in set E . Each e ∈ E is assigned a cost c(e). All players are choosing a route to

move from vertex A to vertex B . The KP-model is a game with mixed strategies meaning

that each route option is assigned a probability with which it is selected. The costs of a

route c(en) are again dependent on the number of players who have chosen the same

route. Social costs are defined as
∑m

n=1 c(en) for which applies en ∈ E . Similar to the first

iteration of the Braess paradox, once a player starts moving there are no options for

changing routes. This is denoted as unsplittable traffic. The purpose of this game is to

minimise the social costs. The KP-model can also be regarded as a weighted congestion

game.

Cover games are based on the same problem setting. Instead of minimisation of

job delay, cover games aim at maximising job delay [53]. Although this concept initially
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the equilibrium [59]. Conflict situations are commonly analysed by determining Nash

equilibria. They can be used to mathematically predict player decisions and thus,

determine the anticipated outcome of a game. Formally, the Nash equilibrium can be

described as follows. Let Si be the set of available strategies for the i -th player and S

the set of possible combinations of individual strategies (strategy profile). For each

s ∈ Si there is a payoff/reward ri (s) when evaluated in a combination of individual

strategies x ∈ S. Therefore, the payoff ri (s) of the i -th player depends on the choices

of all players and is denoted as ri (s, si ′), where si ′ represents the strategies chosen by

all other players except player i . An individual’s mixed strategy smi xed is denoted by

a probability distribution on the set of available strategies Si . This means that the

individual strategies of the i -th player s ∈ Si are selected based on probability pi . A

pure strategy spur e is a special form of a mixed strategy, for which probability pi = 1.

A Nash equilibrium n ∈ S is a special combination of individual strategies for which

ri (n) > ri ((s1, ..., si−1, si , si+1, ..., sn), si ′) for all i , where si−1, si+1 ∈ Si are strategies other

than si available to player i , and si ′ represents the strategies chosen by all other players

except player i .

The Braess paradox demonstrates inefficiency of equilibria [56]. The outcome of the

overall system can be worsened as a result of the self-interested behaviour of players

(see [60] for a discussion). An important indicator for measuring the inefficiency of

equilibrium situations is the price of anarchy [61]. This indicator measures the ineffi-

ciency that arises when individuals pursue their self-interest without coordination. In

particular, looking at the worst-case equilibrium to determine how much worse the sys-

tem may perform compared to an ideal scenario in which the behaviour of individuals

is aligned to achieve what is best for the common good. Formally, the price of anarchy is

defined as the ratio between the optimal global outcome and the worst case of possible

equilibria.

(2.1) Pr i ce o f anar chy = opti mal g lobal outcome

wor st case equi l i br i um

In addition to this, the price of stability looks at the best-case equilibrium and thus
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how close the performance of the system can get when individuals act according to

their self-interest in comparison to the ideal scenario. Hence, the price of stability can

be formally defined as follows [60].

(2.2) Pr i ce o f st abi l i t y = best case equi l i br i um

opti mal g lobal outcome

2.2.5 Mechanism Design

The Braess paradox demonstrates that systems can potentially end up in suboptimal

equilibrium states. Mechanism design aims at changing the game theoretic structure of

the system to move equilibria to more favourable states. For this purpose, it is important

to look at the rules of the game. Rules of the game refer to the set of instructions or

specifications that govern how a particular game is played. These rules define the

structure of the game, the available set of action strategies, the information that players

have, as well as the mapping from strategy choices to outcomes (see [45] for a formal

definition). In game theory, these rules are also referred to as mechanisms. Hence,

mechanism design is a specific branch of game theory that deals with changes in the

regulatory framework by superordinate entities (e.g. institutions [62]) to achieve a

desired global outcome (see [63]–[65]). Implementation of rules and incentives can be

used to reallocate resources and thus guide self-interested player behaviour towards

social benefit. In doing so, positive behaviour is promoted while negative behaviour is

impeded. For example, road traffic is responsible for a significant share of greenhouse

gases that have a negative impact on the environment. The environment is a shared

social good while personal mobility represents strategy choices of an individual. The

interactions between decisions on personal mobility and the shared environment may

cause externalities that influence the payoffs and outcomes for all players involved.

Individuals are self-interested and prefer transportation that is affordable, comfortable

and fast. As a consequence, current traffic has reached the state of a system in overload

(e.g. traffic jams or perpetual lack of parking space) in which too many individuals

travel in private vehicles. [57] has demonstrated the use of tolls to resolve the Braess
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paradoxical equilibrium and redistribute the traffic load. Other approaches look at

promoting alternative forms of mobility that avoid the emission of exhaust fumes. For

example, by subsidising tickets for public transport or improving cycling routes. These

measures aim at changing the perception of personal utility to induce behavioural

changes in the system. However, identifying appropriate and effective interventions

can be difficult. For this purpose, mechanism design theory provides conceptual tools

that allow the design and evaluation of policies in a system [66]. Social Choice functions

(SCF) are used to model social benefit that results from a given mechanism and thus can

be used to assess the effectiveness and efficiency of a regulatory framework. [67] has

discussed two important properties of SCF that mechanism design aims to achieve. The

first property is referred to as ex-post efficiency. This property describes a mechanism in

which all outcomes of the SCF are Pareto optimal (see [68]). A situation is considered

Pareto optimal when it is not possible to improve the outcome of any individual without

having to make it worse for someone else. This is the case when the rules of a game

are designed so that maximising individual utility naturally leads to an optimal global

outcome. Moreover, SCF should be non-dictatorial. In a dictatorial setting, the decisions

of the players are irrelevant and there would always be an optimal global outcome

regardless of the constellation of player choices. Research on mechanism design has

looked at various scenarios to determine systemic conditions in which social benefit

approximates ex-post efficiency and non-dictatorship.

2.3 Validation and Verification

When applying game theory and mechanism design concepts to model and analyse

real-world scenarios e.g. in traffic, scenarios are obviously not limited to two-player

games but have a significantly larger number of individuals involved in a game instead.

This added complexity requires the use of computer-based simulations for the ana-

lysis and evaluation. Building simulations is a complex and error-prone process. It is

therefore important that simulations are being validated and verified [36]–[38]. Theory

describes different stages of validation and verification depending on model maturity
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that simulations can only be as reliable as the data used for building them. Validation

techniques used in operational validation include for example comparison of simulation

output to either historical data or output of other simulation models using visualisations

and statistical methods (e.g. [73]–[75]). The comparison of simulation output and

historical data does not necessarily have to be limited to values of specific performance

indicators but may also look at trends and patterns in the system. Other techniques

examine the output behaviour by performing extreme conditions tests, or changing

input variables and looking at effects on output data for already known and plausible

cause-effect relations (sensitivity analysis). Rigorous operational validation requires

both simulation output as well as output behaviour to be tested over multiple runs

under varying experimental conditions. A major difficulty in operational validation lies

in obtaining the necessary validation data. Apart from availability, this data also has to

ensure comparability as well as sufficient representativeness. Comparability refers to

whether the situational conditions in the simulation match the circumstances in which

the real data was collected. Representativeness can be understood as a sufficiently

broad range of data that allows conclusions to be drawn about the system as a whole

from the data sample. Given that operational validation takes place at the very end of

the model development process, it needs to be assumed that inconsistencies may be

caused by any of the preceding activities involved in building the simulation model. In

particular, errors may occur during the creation of the conceptual model or during the

implementation of the computerised model.

2.3.2 Conceptual Model Validation

This stage refers to activities that ensure that the conceptual model appropriately

reflects the processes and characteristics of the real world. Creating a conceptual model

is a cognitive process and therefore the conceptual model only exists intrinsically within

the mind of the modeller [8]. Validating the conceptual model requires some type of

explicit representation (e.g. flow charts, cause-effect graphs, list of assumptions), and is

based on two actions: First, theories and assumptions used for creating the conceptual
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model need to be thoroughly examined for completeness, consistency and plausibility.

This can be achieved by analysing different real-world situations of a problem entity and

crosschecking model assumptions against observational data. Second, it is important

to ensure that the mathematics and logic used to formalise the conceptual model

appropriately reflect the previously defined theories and assumptions. Validation

techniques used for this purpose include face validation and traces [9]. During face

validation, domain experts are involved to discuss and evaluate the conceptual model.

Traces describe the process of following the behaviour of specific entities throughout

the model and submodels in order to confirm the correctness and accuracy of the

applied logic and mathematics [69].

2.3.3 Computerised Model Verification

The computerised model is a specific explicit representation of the conceptual model

that has been implemented as an executable piece of code. The use of programming

languages and simulation packages may lead to deviations in the implementation of

the conceptual model. Ensuring that the implementation appropriately reflects and

executes theories and assumptions from the conceptual model is referred to as compu-

terised model verification. Verification techniques include static and dynamic testing

[69]. Static testing examines the system design (e.g. generated UML diagrams) and

correctness of algorithms (e.g. unit tests). In contrast, dynamic testing checks the com-

puterised model from a behavioural perspective for example by executing simulations

under different conditions. Note that in this step, the output of the computerised model

is not tested for whether it matches real-world data as that is part of operational valida-

tion. Instead, the output of the computerised model needs to align with the theories

and assumptions of the conceptual model. Other techniques used for dynamic testing

include animation (visually animating simulated activities), traces or face validation.
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2.4 Traffic Simulation

Computer-based simulations are an established means to research systemic patterns in

traffic. They have been used to estimate the effects of potential changes to the traffic

system. This is particularly relevant when testing in vivo is at least expensive or even

infeasible. For example, long-term changes such as the extension of infrastructure have

long implementation times and require a substantial deployment of resources. It is

therefore important for potential interventions to be carefully scrutinised in advance.

According to [28], the evolution of traffic simulations parallels the technological ad-

vancements of digital computers: Starting in the 1950s, digital computers were still in

an early stage and have been primarily developed for the military. As a result, access to

these computers as well as the available computing capacity was highly limited. Most of

the work during this time was spread across different disciplines such as mathematics,

economics, aerospace and computing, and primarily focused on theory. This produced

important groundwork and created the new field of transportation engineering. With

the 1960s, computer technology improved and became more affordable which made

it easier for researchers to get access to computers. During this time, early simulation

languages (e.g. SIMCSCRIPT) have been developed as well as the first implementations

of applied traffic simulation. In the 1970s, computers featured more computing capacity

which allowed simulations to cover larger road networks and to simulate traffic in more

detail. 1980 marks the spread of personal computers which led to even more researchers

being able to work on traffic simulations. As a result, the first simulations for rural areas

appeared during this time. Since then, traffic simulation has had a wide spectrum of

applications that each deal with different aspects of the transport system. Over the

years, research has continued to find new methods to improve the simulation for vari-

ous problem scenarios and thus incrementally produced more elaborate simulation

models. This section gives a brief overview of the different types of simulation models

and reflects on the use of multi-agent techniques in computer-based traffic simulation.
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2.4.1 Types of Simulation Models

Traffic simulations can focus on different aspects of the transportation system de-

pending on the research objective. Therefore, the level of detail considered in those

simulations may differ significantly. In the literature, simulation models are often

divided into four categories [76], [77]:

1. Macroscopic simulations focus on traffic flow modelling based on high-level

mathematical models. This type of simulation can be used for the analysis of

wide-area systems in which no detailed modelling is required, e.g. the simulation

of motorway traffic. Given the low level of detail, macroscopic simulations are

relatively fast and require less computing power.

2. Microscopic simulations focus on modelling individual entities based on a high

level of detail. Possible entities include travellers, vehicles, traffic lights, etc. This

type of simulation is often used for the analysis of urban traffic. It is possible to

analyse both macroscopic and microscopic aspects (e.g. traffic lights algorithm,

multimodal traffic) of the system. Consequently, microscopic simulations may

result in longer computing times.

3. Mesoscopic simulations are a mixture of macroscopic and microscopic simulation

models. Traffic entities are modelled at a higher level of detail than macroscopic

approaches, however, the interaction and behaviour of the individuals are less

detailed.

4. Nanoscopic simulations are even more detailed than microscopic approaches.

This type of simulation is applied in the field of autonomous driving, in which

internal functions of the vehicles such as gear shifting or vehicle vision have to be

examined.

The level of detail determines which aspects of the transport system are covered.

Such differences are also reflected in the data required for modelling. The use of

real-world data should increase the realism and accuracy of simulations. However,

30



CHAPTER 2. BACKGROUND

researchers need to be aware of the purpose of their simulation and choose a simulation

model that supports the required level of detail for dealing with their research objectives

(see [78] for a discussion). Going into more detail than necessary can make a simulation

model complex and also require more input data. For example, macroscopic, meso-

scopic, microscopic and nanoscopic simulations require at least two types of input data

which may vary in the considered level of detail:

• Travel Demand: This type of input data defines the requirement for travel and

thus the resulting traffic volume between locations. This can be modelled using

either activity- or trip-based approaches. Depending on the selected model-

ling approach different input data are required. For example, activity-based

approaches use information from census and behaviour surveys to generate daily

activity schedules of individuals and thus create the need to travel. In contrast,

trip-based approaches make use of origin–destination (OD) matrices which re-

quire no information on the daily schedules of individuals and thus allow for a

more abstract representation of traffic. However, trip-based approaches can also

consider different levels of detail. At the macroscopic level, this may be modelled

through distributions of vehicles moving between larger areas, e.g. the number of

vehicles per hour moving between a group of towns. This information may come

from traffic surveys or census data (e.g. giving the number of daily commuters

between two towns). However, for microscopic simulation it becomes neces-

sary to differentiate between individual vehicles. Rather than moving between

two towns, demand may be modelled in the form of specific journeys from one

address to another address for a specific reason (e.g. commuting or shopping).

Within mesoscopic simulation, journeys are typically simulated from a general

location to a specific address, for instance commuter journeys that begin from

a town but travel to a specific employer’s address. In order to simulate at the

microscopic levels, high-level OD matrices need to be modelled in more detail,

with entries for specific addresses. For specifying demand as specific journeys,

analysing travel diaries and census information gives insight into the travel habits
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of individuals. Nanoscopic simulations often focus on a smaller geographical

area in which demand may be represented by those journeys that are completely

within the simulation as well as those that either pass through the simulation

or only start/end within the area. Demand is likely to be specified as individual

journeys, once again best specified using census or travel diary data.

• Infrastructure: This type of input data comprises information on the road net-

work. At a fundamental level, the road network is a graph of nodes and edges

that represent junctions and roads respectively. The amount of detail required

at the macroscopic level is minimal, possibly denoting that a route between two

towns exists and its capacity/travelling time and only taking into account trunk

routes. When using simulations for which greater levels of detail are required (e.g.

microscopic and nanoscopic) it becomes necessary to include lower-capacity

roads and intermediate junctions in the road graph. At the microscopic level,

the graph will need to contain information such as lane capacities, and junction

types. At this level, the difference made by features such as traffic signals, turn

restrictions or lane closures may radically affect the outcome of the simulation.

OpenStreetMap (OSM) [79] can provide a detailed source of road network data

that can be applied at most levels of simulation.

2.4.2 Multi-Agent Modelling

State-of-the-art research on traffic simulation has shown a growing interest in examin-

ing traffic as an emergent phenomenon, rather than a problem that can be modelled

from a global perspective. Emergent traffic models assume that global system behaviour

results from the interactions between the personal behaviours and preferences of a

large set of individuals [24]. Therefore, the application of multi-agent models can be

particularly suitable for the simulation of traffic. They can be positioned as microscopic

simulations that can also be used for more coarse-grain research purposes (mesoscopic

and macroscopic). [80] provide a description of common structures found in agent

platforms that are designed for the simulation of traffic.
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Historically, research on multi-agent systems has focused on the collaborative as-

pect of distributed systems. Agents can be both hardware or software systems that

perform tasks in complex, dynamically changing environments [81]. In the 1990s there

has been an increasing interest in the concept of intelligent software agents. As a con-

sequence, aspects such as decision-making, interaction and autonomous behaviour

became relevant. With this, the term agent has evolved into what it is presently known

for (see [82]–[84]). One of the most referenced definitions was given by Wooldridge.

Wooldridge describes software agents to be closed computer systems that are situated in

some environment, and that are capable of autonomous action in this environment in or-

der to meet their designed objectives [83]. Based on this and the aspects described above,

the following characteristics are associated with the concept of intelligent software

agents.

• Autonomy. Intelligent software agents are able to act autonomously. This de-

scribes the ability to independently make and execute decisions without being

controlled by an external entity. The decisions are purely based on internal prop-

erties of the agent and agents do not have to be permanently controlled.

• Deliberation. Intelligent software agents are modelled to have goals that they

proactively try to achieve through the execution of actions.

• Reactivity. Intelligent software agents always exist within a defined environment.

They are able to perceive their surrounding and to react to situational changes.

• Interaction. They are able to interact and communicate with other agents as well

as other objects in the surrounding environment.

Multi-agent systems are used in various fields of application (see [85]). They are an

established means for the construction of synthetic worlds [86]. The creation of these

artificial universes can be used to analyse interactions. Based on this, agent-based

systems have been applied to the simulation of complex systems [86] such as formalised

games [87]. Synthetic worlds based on agent models can help overcome the limitations

of classic game theory approaches. For example, agents that perceive information about
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their environment through sensors allow the implementation of decentralised know-

ledge which makes decision-making more realistic. This as well as the autonomous and

goal-driven behaviour of intelligent software agents make agent models particularly

suitable for the representation of individuals in road traffic. For example, travellers

can be modelled as agents that interact and perceive information about their environ-

ment through sensors, allowing for the implementation of decentralised knowledge

and thus autonomous behaviour based on situational conditions. This approach to

modelling individuals is the key distinction of multi-agent approaches from other types

of simulation models e.g. cellular automata [88].

There are different approaches to the implementation of agent models in practical

applications. [89] provide a discussion of various implementation approaches. Agent

models differ primarily in how they structure agent knowledge and in their use of this

knowledge for modelling decision-making behaviour. Literature distinguishes between

quantitative and qualitative decision-making [51], [90]. Quantitative approaches match

concepts from game theory in which mathematically modelled utility functions are

used to determine the optimal course of action. In particular, Bayesian networks can be

used to model one-shot decision problems (see [91]) while Markov decision processes

can be used for more complex problems that require a series of decisions to be taken

subsequently (see [92]). The representation of decisions and their reasons becomes

significantly complex in quantitative models when decisions require a broad knowledge

of the world [46].

In comparison to this, qualitative approaches soften the assumptions of traditional

quantitative decision-making and a more abstract non-numerical representation of

decision preferences is chosen [93]. Decision-making or the transformation of non-

numerical preferences into specific actions requires alternative reasoning mechanisms

[94], [95]. For example, non-numerical preferences can be represented using rela-

tions. In this context, dominant relationships are an important type of relations. [96]

demonstrated formalisation of qualitative dominance based on the Surething-principle

formulated by [52].

Bringing together the benefits of both quantitative and qualitative modelling may
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lead to rich agent models with a broad knowledge of the world. In this context, mental-

level models from qualitative decision theory should be noted [97], [98]. Mental-level

models describe machines and software programs to possess an abstract level for

representing mental attributes such as beliefs, knowledge, and preferences. Brafman

and Tennenholtz were one of the first that formalised a method for representing the

state of an agent using mental attributes [99]. Knowledge abstraction into a separate

level comes with advantages. Mental-level models provide a uniform basis for the

comparison of agent behaviour which helps theoretical analysis [99]. Reference is

given to the computers as believers paradigm which allows for abstract analysis of

knowledge representation schemes [100]. Furthermore, mental-level models enable a

more intuitive modelling which is an important aspect in design validation.

Belief-Desire-Intention (BDI) architectures and their derivatives are implementa-

tions of mental-level models [101], [102]. The BDI model enables software agents to

perform action decisions (intentions) on the basis of defined goals (desires) and their

modelled knowledge of their external world (beliefs) [101]. More specifically, beliefs rep-

resent all information about the current state of the world in which the agent currently

resides. This information is stored in a knowledge base that contains data about the

current environment, the internal state of the agent as well as background knowledge

required for the decision-making process. Beliefs are constantly updated by the per-

ception of the agent. Apart from this, desires describe the main objectives of the agent

which fundamentally affect agent behaviour. Desires are a crucial part of intentional

behaviour, as agents are not prompted to take any further actions without targets. A

modelling approach using target-oriented behaviour enables the modelling of contin-

ued pursuit of the selected target by alternative actions in case of a failed action. The set

of alternative actions or plans is portrayed as intentions. Each agent possesses a variety

of plans from which the agent can select an action to achieve a set target. The BDI model

separates the selection process of a plan from its execution process. Consequently, the

BDI model is well suited to model actors in traffic scenarios: not only destinations of

journeys but also optimisation goals e.g. minimal travel time and minimal emissions

can be formulated as desires. Travel preferences and other parameters are potential
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beliefs that can be used to determine e.g. modal choices.

2.5 Summary and Conclusion of Chapter 2

In this chapter, an introduction was given to the basic notions and theoretical concepts

related to this thesis. Section 2.1 covers terminology on systems, models and simulation

and thus establishes important groundwork. The discussion of the modelling process in

section 2.2 illustrates the different phases of maturity when building simulations, from

the description of a real-world problem to the final implementation of a simulation

model. In this context, this section specifically looked at game theory as it contains

important contributions to the formalisation and analysis of real-world situations,

and is particularly relevant for understanding complex scenarios in road traffic. For

example, the effects of self-interested individuals and their decisions on social benefit

as demonstrated by the Braess Paradox. Furthermore, improving traffic systems with

their current constraints to achieve a more favourable state requires careful planning

of measures that can bring about the necessary change. For this purpose, mechanism

design covers important theory that discusses the effects of changes to the structure of

a system which is particularly relevant for policy-making.

Following this, section 2.3 discusses the different aims and approaches to validation

and verification of simulations, underlining the importance of ensuring the reliability of

simulation models for practical applications from different perspectives. In particular,

conceptual model validation looks at validating the theoretical ideas of the simulation

model while computerised verification focuses on whether the theoretical model has

been implemented correctly. Operational validation examines whether the results of the

simulation match with observations of the real world. This is the basis for addressing the

final research question of this thesis that deals with improving the ability to understand

the internal mechanisms of agent-based traffic simulations when the complexity of

simulation models increases.

Finally, section 2.4 provides a comprehensive overview of traffic simulations, reflect-

ing on their historical context as well as illustrating the different types of simulation
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models i.e. levels of detail and the application of multi-agent models. Hence, this sec-

tion provides the general context for further examining individuals and their behaviour

in such simulations.
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A Systematic Survey on Modelling

Individuals Using Agent-based Traffic

Simulators

This chapter provides a systematic survey of current approaches to modelling indi-

viduals in agent-based traffic simulations. In particular, the focus is on investigating

the current state of implementation of existing traffic simulators to model aspects of

individuals and their behaviour. For this purpose, the next sections describe the scope

and method used in this survey. Furthermore, perspectives of comparison as well as a

detailed review of the simulators are given. This chapter concludes with a discussion of

the challenges and limitations of simulators. An earlier version of parts of this chapter

has been published in [4].

3.1 Method

Based on methods found in similar surveys (e.g. [103], [104]) a keyword search has been

performed for peer-reviewed papers across the three common publication databases:

Google Scholar, ACM Digital Library, and IEEE Xplore; on the title, abstract, and the main

body of the papers. The selection of papers only includes publications written in English.

Duplicates and irrelevant papers have been excluded from the result set. Search results

are based on the three keywords: 1. Traffic Simulation, 2. Agent-based Traffic Simulation
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and 3. Multi-agent Traffic Simulation. The first 30 research papers from each database

and each keyword were included in a backward search to identify simulators that are

considered related work by the authors of the publications. Furthermore, the search

was completed with findings from forum discussions in the research community.1 It

should be noted that only simulators have been considered that primarily focus on

road traffic. Publications on maritime or air traffic have been excluded. In the case

that multiple papers relate to the same simulator reference has been given to the paper

cited the most. Based on this, the selected simulators have been analysed to obtain an

overview of implemented features relevant to the modelling of individuals and their

behaviour.

3.2 Perspectives of Comparison

As there are a lot of research activities that have focused on different aspects of the

transportation system and vary in the considered research objective, literature research

has produced a diverse set of simulators that differ in both their underlying model and

scope of application. In particular, the models implemented within these simulators

vary in the extent to which they employ agent technology. In this research, a distinction

is made between simulators that are non-agent-based, fully agent-based and hybrid

simulators. Hybrid simulators are extensions of non-agent-based simulators that have

added agent capabilities for specific aspects of the simulation software. Simulators

that use software agents to fully implement decision-making concepts in traffic (e.g.

travellers or vehicles) are referred to as fully agent-based. In addition to this, there

are also general-purpose agent platforms such as NetLogo [105] that can be useful for

implementing lightweight experiments. This research focuses on simulators that are

designed for the simulation of large-scale scenarios (e.g. simulations with a population

size greater than 100.000) as these are most relevant for conducting real-world case

studies. Note that general purpose platforms might not be suited by default for the

1see https://www.researchgate.net/post/What-is-the-best-agent-based-traffic-s
imulation-tool - (access on 13/11/2023)
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simulation of large-scale scenarios in high performance computing environments but

can be adjusted by modifying their configuration. The following list of simulators has

been found in the scope of this survey:

• Fully Agent-Based: MATSim [106], ITSUMO [107], MovSim [108], MASCAT [109],

MATISSE [110], POLARIS [111], AgentPolis [112], OPUS [113], MOSAIIC [114],

MARS [115], SimMobility [116], SITRAS [117], ArchiSim [118], SEMSim (City-

MOS) [119], JTSS [120], Megaffic + XAXIS [121], SD-Sim [122], SM4T [123], VCTS

[124], SIMTUR [125], MUST [126], CAMiCS [127], OpEMCSS [128], DEFACTO [129],

MAGE [130], CityScape [131], BAE Systems [132], AITSPS [133], SeSAm [134], IM-

AGES [135], Mobiliti [136], CUPSS [137], KLMTS1.0 [138], CARLA [139], AgentStu-

dio [140], ILUTE [141], SIMULACRA [142], TransWorld [143], SUMMIT [144]

• Hybrid: ATSim [145], FastTrans [146], SUMO+JADE [147]

• Non-Agent-Based: TRANSIMS [148], SUMO [149], OpenTraffic [150], [151], PAC-

SIM [152], PTV VISSIM/VISUM [153], GETRAM/AIMSUN [154], PARAMICS [155],

MITSIM [156], FreeSim [157], TSIS/CORSIM [158], VATSIM [159], DRACULA [160],

RENAISSANCE [161], SimTraffic [162], DynaMIT [163], DYNASMART [164], MIT-

SIMLab [165], CUBE Voyager [166], PELOPS [167], TransModeler [168], Dynameq

[169], CORFLO [170], SIMSCRIPT II.5. [171], CTSP [172], CityMob [173], Vanet-

MobiSim [174], FIVIS [175], THOREAU [176], GENIVI [177], SLX [178], SALT [179],

SIM-ENG [180], KAIST [181], UMTSM [182], SES/MB [183], SISTM [184], INTER-

GRATION [185], MATDYMO [186], TRANSYT [187], CONTRAM [188]

This survey focuses on fully agent-based and hybrid simulators as the objective of

this research is to address the issue of modelling individuals. Modelling individual

behaviour deals with different modelling aspects depending on the simulated level

of detail (see Chapter 2.4.1) that is relevant for the scope of application. In particu-

lar, the time perspective considered by a simulated problem scenario determines the

relevance of aspects to be included in the modelling. For example, when modelling

individual behaviour in the context of mobility, decisions about workplace and resid-
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ency are more relevant when research questions address long-term matters such as land

use. In contrast, short-term behaviour typically involves modelling individuals on a

micro-scale, thus dealing with spontaneous interactions, lane changing, or acceleration

and braking. Aspects on mid-term behaviour are in between and include for example

decisions on prejourney planning such as route choice or selection of travel modes.

Another important aspect related to mid-term behaviour is demand modelling. Traffic

simulations have modelled travel demand based on either trip- or activity-based meth-

ods. Trip-based demand modelling typically uses origin-destination (OD) matrices to

specify the amount of traffic between two locations. Input to OD matrices may include

static values or probability distributions. An alternative approach to OD matrices is

location-specific probabilities (LSP). Locations are assigned a pair of probabilities for

the amount of travellers starting and stopping at this location. In this case, it is assumed

that travellers are moving in space with no route specification. In comparison to this,

activity-based approaches model demand by generating individual sets of activities

that reflect the time schedule of a simulated traveller individual (e.g. bringing children

to school, going to work in the office, picking up the children from school and going

grocery shopping before returning home). In this case, OD matrices are a consequence

of generated activity schedules.

Considering the diversity of aspects in modelling individual behaviour, it is im-

portant to review the simulators in the context of their application area. [189] have

discussed relevant areas of interest in mobility to which a significant amount of research

and funding is currently devoted. Based on this, the three areas of application: 1. Social

Dilemmas in Resource Utilisation, 2. Digital Connectivity and 3. New Forms of Mobility;

will be considered in this review. Given the large number of available simulators, it is

not possible to review all of them in this research. Thus, for each application, three

examples of simulators are given that have been used to model issues related to this

application domain. It should be noted that areas of applications are closely connected

and therefore may be overlapping. Hence, simulators mentioned as an example do not

have to be used exclusively for the mentioned area of application but can be particularly
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suitable. In the scope of this survey, a brief overview is given of the background and

technical setting of the simulators. Simulators are then examined on their ability to

model aspects of individual behaviour by discussing implemented features.

3.3 How Traffic Simulators Model Individual Behaviour

for Current Areas of Application

3.3.1 Social Dilemmas in Resource Utilisation

This application domain considers the issues arising from transport infrastructure being

a shared resource used by many individuals, but not owned by any one of them. This

means that the use of transport infrastructure by one individual potentially creates

externalities that affect other individuals, e.g. congestion and pollution [57]. Better

public transport and shared mobility services are intended to relieve the traffic load

on roads, while electrification of vehicles is seen as a means to reduce exhaust fumes

and environmental pollution. This creates new questions as to what effects will be

achieved in the short term as well as in the long term. For example, e-mobility in-

evitably leads to a change in energy consumption that requires efficient planning of

available resources. This section specifically looks at the three traffic simulators MAT-

Sim, POLARIS and SimMobility as examples of agent-based simulators that have already

been used to simulate issues in this context. Other simulators that also fall into this

category include: SEMSim (CityMOS), Megaffic + XAXIS, MUST, CAMiCS, DEFACTO,

CityScape, BAE Systems, SeSAm, Mobiliti, MARS, MOSAIIC, OPUS, ILUTE, SIMULACRA.

MATSim

MATSim is an agent-based software framework implemented in Java and licensed under

GPLv2 or later [190]. The project started in 2004 at ETH Zurich and is currently being

developed in collaboration with TU Berlin and CNRS Lyon. The framework has a general

focus and is designed for the simulation of large-scale transportation scenarios. Hence,
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a particular effort was made for efficient computational processing and parallelisation

[191], [192]. MATSim has been used in particular to simulate energy demand planning

in transportation [193], [194]. The framework consists of five components for Initial

Demand, Execution, Scoring, Replanning and Analysis (see Figure 3.1) [106]. Based

on the modular approach, custom components can be implemented and integrated

into MATsim in order to replace or upgrade provided default operations. The first

component initial demand deals with the modelling and generation of an initial agent

population. Agents select and execute plans in the execution component. The scoring

component calculates a score for every plan based on a given utility function. This score

is an indicator for accomplished agent utility. The replanning component uses a co-

evolutionary algorithm for optimising this utility. In contrast to an ordinary evolutionary

algorithm that searches for a global optimum, the co-evolutionary algorithm is applied

to evolve the set of agent plans of the travellers. The simulation cycle (execution - scoring

- replanning) repeats until MATSim reaches an equilibrium and agent scores stabilise.

Finally, the output data of the simulation is aggregated in the analysis component.

Initial Demand Execution Scoring Analysis

Replanning

Figure 3.1: MATSim - architecture.

With regard to the modelling capabilities of the application, MATSim can be con-

sidered a mid-term simulator as scenarios are commonly modelled for single days

[106]. However, there are some experiments that have demonstrated the simulation

of multi-day scenarios [195]. MATSim provides two options for generating an initial

population of agents which can be random or based on user input. Census information

is used in order to model every traveller explicitly. The application provides a number

of predefined parameters that can be configured. MATSim follows an activity-based

approach for modelling travel demand. Survey data is used to generate various lists

43



CHAPTER 3. LITERATURE REVIEW

with activities that are assigned to the agents. It should be noted that travel demand

changes with every iteration of the simulation as the simulation includes a replanning

mechanism for rescheduling activities. Furthermore, agents possess a list of plans that

contain different combinations of actions and choices. This includes choices not only

about classical traffic properties such as routes and travel mode but also time schedul-

ing. MATSim uses a discrete-choice model for implementing agent decisions [106].

Quantitative methods are used to determine probabilistic distributions for alternative

actions. Agents select plans based on calculated scores from the scoring component. A

higher score increases the probability of a plan being chosen (see [196]). Given the level

of detail considered in the modelling of individuals, MATSim is suitable for simulating

scenarios that analyse social dilemmas in resource utilisation based on the amount and

types of traffic (activities and modal choices) that emerge in the system.

POLARIS

POLARIS is an open-source agent-based software framework written in C++. The project

was first published in 2013 (see [197] ) and is currently maintained at Argonne National

Laboratory. The motivation behind POLARIS was to combine different traffic-related

modelling aspects into a single framework that otherwise requires a number of separate

standalone software applications. In [111], the authors of POLARIS argue that trans-

portation research has focused on these aspects only in an isolated manner. However,

the simulation of complex systems requires a combined method. Early attempts to

integrate the isolated models into a unified system have shown that resulting solutions

are either inflexible, non-modular or inefficient. Based on this, the authors describe a

need for a unified solution that enables interoperability between the isolated models.

The POLARIS framework has been proposed to address this issue [111]. POLARIS fo-

cuses on large-scale transportation scenarios and has been used to analyse the energy

consumption of current and future vehicle technologies [198], [199]. The framework

provides a set of tools that can be used for the development, execution and review of

the simulation. The system architecture is structured using a layered approach (see
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With regard to modelling capabilities, POLARIS can be considered a mid-term simu-

lator as travel decisions focus on mid-term aspects such as departure time, destination

choice, route choices as well as planning and rescheduling of activities. Furthermore,

POLARIS uses an activity-based approach for modelling travel demand. This approach

is based on an adjusted version of the ADAPTS (Agent-based Dynamic Activity Planning

and Travel Scheduling) model [200]. Originally, the ADAPTS model was designed as a

standalone application for simulating the occurrence of travel demand patterns that

result from travel planning and scheduling processes. For integration into the PO-

LARIS framework, the ADAPTS model has been reorganised in order to match the agent

paradigm. This resulted in a separate activity planning agent which as an extension to

the traveller agent models the traveller’s cognition of the activity planning process. This

illustrates the applied structure for modelling other types of behaviour in POLARIS as a

central traveller agent is composed of a set of subagents which each extend the traveller

agent with cognitive capabilities for specific behavioural aspects. For example, these

include agents for perception, movement coordination or routing. In comparison to

MATsim, this approach considers a more detailed modelling of individuals allowing for

easier extension of short-term behaviour. This can be useful when energy consumption

needs to be determined more precisely e.g. when simulating the energy impact of ac-

celeration and braking of autonomous vehicles to identify frequent nodes for charging

stations.

SimMobility

SimMobility is a simulation platform written in C++ and published under an own

open-source license. The project has related publications since 2015 and is currently

developed at SMART (Singapore-MIT Alliance for Research and Technology) [201].

The simulator integrates a set of aspect-specific models relevant to the transportation

domain that allows simulation on different time scales (short-, mid- and long-term)

[116]. For example, aspect-specific models include land use, demographic movement

or interactions related to transportation and communication. The platform focuses on
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modelling effects on traffic infrastructure, transportation services and the environment.

This allows for the simulation of alternative planning options specifically with regard to

technology, policies and investment. SimMobility has been used to simulate the effects

of commercial vehicles and mobility services on the use of infrastructure [202], [203].

The system architecture of SimMobility is structured in three components and follows a

multi-level approach based on the time aspect. Each component simulates a different

perspective (see Figure 3.3). The first component is the Long-term (LT) simulator. This

component deals with generating and updating the agent population. The LT simulator

particularly simulates long-term aspects such as house location and car ownership, but

also other long-term effects such as changes to the environment can be simulated in

this module. The second component is described as the Mid-term (MT) simulator [201].

This component is primarily designed for the simulation of agent behaviour in time

scales of minutes and hours. This refers to high-level travel decisions such as route

choice or modes of travel. The Short-term (ST) simulator is the last component in the

multi-level architecture which is a microsimulator based on MITSIM that has been

extended with agent capabilities. A special characteristic of this architecture is that

each component can be used as a standalone application. All simulators share the same

database so that simulated individuals exist across all simulation levels simultaneously.

Long-Term Simulator
Land development and location choices

Mid-Term Simulator
Daily activity and mobility patterns

Short-Term Simulator
High resolution travel behaviour

DB

Figure 3.3: SimMobility - architecture.

With regard to the modelling capabilities, SimMobility covers all time perspectives

(long-, mid- and short-term) considered in this review and therefore is particularly flex-

ible and powerful. Modelling aspects are distributed across the three sub-components
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but are brought together into an individual using one database. SimMobility follows an

activity-based approach for modelling travel demand [116]. For each simulated day, the

MT simulator generates a list of activities that include information on destination, de-

parture time, route and mode choice. This approach has been integrated with methods

of trip-based demand modelling as generated activities are aggregated to create origin-

destination matrices that can be re-calibrated. Agent decisions such as route choices

are based on a probabilistic model which is similar to the MATSim approach [204].

The ST simulator also includes a mechanism that enables day-to-day agent learning to

update the agent knowledge [116]. Based on these modelling capabilities, SimMobility

is probably the most flexible and powerful approach in this area of application with

regard to the modelling of individuals as it allows researchers that are uncertain about

the required level of detail in modelling individual behaviour to easily adapt.

3.3.2 Digital Connectivity

The second area of application examines the effects of digital transformation on the mo-

bility sector, specifically the real-time capture and analysis of traffic information. This

has been used in digital traffic control systems e.g. intelligent transportation systems

(ITS) to achieve higher levels of transportation safety but also to improve navigation

by providing real-time information on parking and traffic jams. This section examines

the integration of SUMO and JADE, ITSUMO and MATISSE as examples of agent-based

simulators that have been used for research in this area of application. Other simulat-

ors related to this application include: SITRAS, ArchiSim, SM4T, SIMTUR, OpEMCSS,

IMAGES, MASCAT, TransWorld.

An Integration of SUMO and JADE

SUMO (Simulation of Urban MObility) is a software framework for microscopic traffic

simulation written in C++ that is licensed under EPL 2.0. A first version of the project

was published in 2001 and created by the German Aerospace Center (DLR) [149]. Since
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then, SUMO has been accepted by a wide community. The project was motivated by

the necessity for an appropriate open-source solution as other projects which are now

open-source, were difficult to obtain at that time [106]. Traffic applications were mainly

used as black boxes with no options to examine the underlying simulation model [149].

Thus, researchers were restricted by the given parameterisation and modelling with

no option to implement custom ideas. The SUMO approach is non-agent-based but

has been integrated with the Java Agent Development Framework (JADE) (see [147])

in order to make simulations compatible with recent agent technologies [205], [206].

JADE is an open-source software framework licensed under LGPLv2 that is used for the

implementation of agent-based applications. This combination of SUMO and JADE has

been used for simulating and assessing the effects of traffic control systems [206], [207].

[205] have implemented a software connector that enables communication between

the two software environments. This connector is referred to as TraSMAPI (Traffic

Simulation Manager Application Programming Interface). From the SUMO perspective,

the TraCI API is the central component for the integration of SUMO and JADE [205].

TraSMAPI communicates with the TraCI API and acts as an intermediary. Although the

project focuses on the integration of SUMO and JADE, TraSMAPI is abstracted to be

able to handle various simulators besides SUMO (see Figure 3.4). This makes it possible

to compare the results of different simulators. The combination of SUMO, JADE and

TraSMAPI can therefore be termed as an Artificial Transportation System (ATS) which

is an extension of traditional modelling and simulation approaches with the ability to

integrate different simulation models in a virtual environment [208].

With regard to the modelling capabilities, the combined approach is suitable for

mid- and short-term simulations as modelling aspects include selection of travel modes

but also micro-behaviour such as lane changing. JADE agents represent drivers that are

linked to vehicles in SUMO. A separation of strategic and tactic-reactive agent behaviour

has been implemented with two layers which is also referred to as the delegate-agent

concept [209]. It can be understood as a separation of cognitive and reactive actions

from the executing driving tasks [205]. The strategic layer deals with the collection and

processing of information from the surrounding environment. Based on this informa-
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ITSUMO

ITSUMO (Intelligent Transportation System for Urban Mobility) is an open-source

agent-based traffic simulator written in C++ and Java. The simulator was first presented

in 2006 by UFRGS (Federal University of Rio Grande do Sul) and since then has been

continuously refined and advanced [107], [210]. Apart from the similarity in name, there

is no direct link between ITSUMO and the previously described SUMO project. As the

creators describe, ITSUMO was developed out of the lack of customising options in

available simulation tools, as most of the existing solutions were developed for specific

purposes. Other drawbacks described are for related simulation tools to not being fully

agent-based, for them to rely on strong simplifying assumptions, or deficiencies with

regards to their demand planning options [107]. Thus, the ITSUMO approach is fully

agent-based and aims at addressing the deficiencies mentioned above. ITSUMO has

also been applied for the simulation of route choice scenarios. However, the primary

focus of the application is on traffic control. For example, ITSUMO has been used for

testing traffic light algorithms [107], [211].

The system architecture is structured in five components [211], [212] (see Figure 3.6).

The first component is a database. This database contains information about the geo-

graphic traffic network as well as other data used in the simulation (e.g. insertion rate of

vehicles or origin and destination of the drivers). The second component is described as

the simulation kernel. This component accesses data stored in the database, executes

the simulation and manages agent interaction. The system architecture also includes a

separate control component in which traffic-related control entities (e.g. traffic lights)

are implemented. The control component passes information to the simulation kernel

to provide instructions for simulated control entities. Finally, the results of the simula-

tion are output in a separate component. For this, sensors and detectors are used during

the simulation in order to collect relevant data such as travel times, average speed, etc.

The output module provides two visualisation options for both, a microscopic and

macroscopic view of the simulation. If the visualisation is not used, simulation data can

also be output as files.
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Database
Simulation

Kernel
Visualisation

Control

Figure 3.6: ITSUMO - architecture.

With regard to the modelling capabilities, ITSUMO can be considered a mid-term

simulator that focuses on control and assignment of travel demand. Therefore, travel

decisions refer to the level of route choice as well as its spontaneous replanning. Agents

can either replan at every intersection or in case of a delay during the journey. ITSUMO

follows a trip-based approach for modelling travel demand. Travel demand can be

modelled using an origin-destination (OD) matrix or by generating a synthetic demand

using uniform probabilities for a set of locations (LSP). For each combination of origin

and destination, vehicles are generated and a route is determined. The application is

particularly suitable for simulations that deal with ITS as it provides specific interfaces

for implementing control measures and the driver reactions that are related to them.

MATISSE (DIVAs 4)

MATISSE is a large-scale agent-based simulation platform written in Java [110], [213].

The simulator has been released by UTD MAVS (University of Texas at Dallas) for non-

commercial use under GPLv3 using the name DIVAs 4. Early work related to the project

has been published since 2004 during a time when only a few fully agent-based ap-

proaches existed [214]. Within this set of fully agent-based simulation models, the

creators of MATISSE criticised the lack of core agent mechanisms such as sensing, di-

verse communication types, etc. The project has been developed to overcome these

deficiencies. MATISSE specialises in the simulation of scenarios related to traffic safety.

The MATISSE architecture is structured in three layers (see Figure 3.7) [110]. The first

layer is described as MATISSE Control and Visualisation Module. It includes a control
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ning of route choices. Agent movement is based on car-following and lane-changing

models, and it is even possible to model a virtual level of distraction that causes unpre-

dicted traffic behaviour. The internal agent structure resembles a mental-level model

from qualitative decision theory (see [97]) which can be useful for modelling individu-

als. Furthermore, mental-level models provide a uniform basis for the comparison of

agent behaviour which helps theoretical analysis [99]. MATISSE follows a trip-based

approach for modelling travel demand using LSP. MATISSE uses a normal distribution

or a user-specified distribution in order to initialise agents for defined user entry and

exit points. The application is particularly suitable for dealing with simulations on

transportation safety and already provides a wide range of implementations for this

area of application. The implemented mental-level structure of agents in MATISSE can

be helpful for researchers that want to expand their work on modelling and analysis of

individual travel behaviour.

3.3.3 New Forms of Mobility

The third area of application deals with the new forms of mobility that arise from the

increasing interest in the sharing economy and the technological advances in digital

connectivity. This has led to a growing portfolio of mobility services, changing the dy-

namics in personal mobility. For example, new mobility services such as ridesharing or

-hailing as well as the achievements in the field of autonomous driving cause significant

changes in the interactions between travellers and providers of mobility services, but

also (autonomous) vehicles. This section specifically looks at the three simulators Agent-

Polis, ATSim and MovSim. They are examples of agent-based applications that focus

on simulating the interaction of individuals with new mobility services or coordination

dynamics of autonomous driving. Other simulators related to this area of application

include: SD-Sim, VCTS, AITSPS, CARLA, SUMMIT.
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AgentPolis

AgentPolis is a fully agent-based software framework written in Java and licensed under

GPLv3 [112], [215]. The project was published in 2013 and created by AI center FEE CTU

(Czech Technical University in Prague). The creators noted that existing simulation ap-

proaches fail to implement the ability to model ad hoc interactions among the entities

of the transport system as well as the spontaneous decision behaviour that is required

for this form of interaction. However, current mobility services (e.g. ridesharing) rely on

frequent, ad-hoc interactions between various entities of the transport system. Hence,

AgentPolis focuses particularly on the simulation of interaction-rich transport systems.

For example, the simulator has been used as a testbed for benchmarking on-demand

mobility services [216]. AgentPolis provides a set of abstractions, code libraries and

software tools for building simulation models. The framework is structured in four

main components (see Figure 3.8). The first component is described as the modelling

abstraction ontology. The theoretical concept of this component is to separate defined

modelling abstractions from implementations of specific modelling elements. It uses

an ontology in order to define more general concepts of multi-agent systems that result

in a tailored structure for object-oriented programming. This is particularly relevant

when extending the simulation models for research-specific scenarios. Furthermore,

this approach allows for the enforcement of implementations that consider the interop-

erability of existing and additional research-specific modelling elements in their design.

The second component is a library of implemented modelling elements based on the

given abstractions specified in the ontology. The library contains a set of modelling

Modelling Abstraction 
Ontology

Library of Implemented 
Modelling Elements

Simulation Engine

Tools for User Interaction

Figure 3.8: AgentPolis - architecture (simplified).
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an activity-based approach for modelling travel demand. The simulator includes a

tool that generates an initial population of agents based on census data [215]. Based

on the level of decision-making and implemented features, AgentPolis has been used

and is suitable for simulating demand and decisions on the adoption of new mobility

services [218].

MovSim

MovSim (Multi-model open-source vehicular-traffic Simulator) is an agent-based traffic

simulator written in Java and licensed under GPLv3. The project started in the late 1990s

at TU Dresden and was designed for educational purposes [108]. In contrast to most

available traffic simulation tools that model specific road networks (e.g. cities), MovSim

focuses on the simulation of fundamental flow dynamics. For example, MovSim has

been used to simulate the effects of driver movements on traffic jams, studying the ap-

pearance of stop-and-go waves [219]. Because of this particular focus on flow dynamics,

Movsim has also been applied for the simulation of rather unconventional scenarios

such as ski marathons [220]. The simulator includes a number of reference implement-

ations for established mathematical car-following models as described in [221]. This

can be relevant to simulate lane-changing and flow dynamics related to autonomous

driving. The MovSim architecture is structured in three layers (see Figure 3.10) [219].

In the input layer, simulation settings and parameters are defined. The user can in-

put information either using a graphical user interface (GUI), command line or XML

files. This information is forwarded to the main loop layer. In this layer, agent control

and movement are implemented. The simulation controller continuously calculates

the simulation in a loop as MovSim is based on a time-continuous model. The sim-

ulation controller primarily focuses on quantitative models. Different submodules

implement the logic for aspect-specific agent behaviour such as acceleration, braking,

lane-changing, etc. Two additional modules act as observers to the simulation loop in

order to extract information for the output layer. The SimViewer module deals with

information relevant to the visualisation of the simulated scenarios. MovSim includes
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in AIMSUN. These models have been extended by agent capabilities for modelling

the perception and interaction of individual travellers. A distinction is made between

static objects, objects with dynamic states and mobile objects. For example, the road

network is represented as a static object whereas traffic lights are modelled as objects

with dynamic states and vehicles are presented as mobile objects. Traffic objects can be

assigned to an agent in JADE. Each agent can only control a single object in AIMSUM.

The link between the agents and traffic objects is based on two assumptions. First,

the agent life cycle is synchronised with the life cycle of the associated traffic object.

Second, agents constantly receive updated information from the assigned traffic object

after each simulation step. AIMSUM follows a trip-based approach for modelling travel

demand using origin-destination matrices. The application has been used and thus

is suitable for simulating V2V communication and coordination which is of growing

relevance with the advancement of autonomous vehicles.

3.4 Discussion

Based on the simulators reviewed (see Table 3.1), it is apparent that the modelling

of individuals may vary significantly depending on the area of application as well as

the simulated level of detail. In particular, simulation scenarios that are built to study

specific research questions require the behaviour of individuals to be modelled for

considered time perspectives (short-, mid- and long-term behaviour). The considered

time perspective determines which aspects of individual behaviour are included in the

modelling (see Figure 3.12). The same also applies to policy-making which needs to

address different aspects of individual behaviour depending on the considered problem

area. While measures related to road safety primarily aim to achieve change in short-

term behaviour e.g. enforcing speed limits in areas that require additional caution, other

measures to improve environmental impact or general traffic flow such as electrification

of vehicles or promoting the use of shared mobility are intended to induce change in

mid- and long-term behaviour. However, finding appropriate measures can be difficult

for at least two reasons:
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Table 3.1: A summary of reviewed simulators.

Application

Name

Area of

Application
Licensing

Programming

Language
Demand Modelling

Time Perspective on

Individual Behaviour

MATSim
Resource

Utilisation
GPLv2 or later Java activity-based mid-term

POLARIS
Resource

Utilisation

Open-source

(license unclear)
C++ activity-based mid-term

SimMobility
Resource

Utilisation

SIMMOBILTITY Version

Control License

(see Github)

C++ activity-based long-, mid- and short-term

SUMO +

JADE
Connectivity

EPL 2.0 (SUMO)

LGPLv2 (JADE)

Apache 2.0 (TrasMAPI)

C++, Java

activity-based or

trip-based using

OD matrices

mid- and short-term

ITSUMO Connectivity
Open-source

(license unclear)
C++, Java

trip-based using

OD matrices of LSP
mid-term

MATISSE

(DIVAs 4)
Connectivity GPLv3 Java trip-based using LSP mid- and short-term

AgentPolis
New Forms of

Mobility
GPLv3 Java

trip-based using

OD matrices
mid-term

MovSim
New Forms of

Mobility
GPLv3 Java

neither activity- nor trip-based.

Only a numeric parameter to

specify number of travellers.

short-term

ATSim
New Forms of

Mobility
Commercial

C++, Python,

Java

trip-based using

OD matrices
mid- and short-term

short-term mid-term long-term

behavioural aspects

lane-chaning x

acceleration/braking x

spontaneous replanning x

divergent driving behaviour x

interaction x

route choice x

mode choice x

individual preferences x

day-to-day learning x

ownership of vehicles x

residency x

workplace x

Figure 3.12: Aspects of modelling individuals in traffic simulations.

1. Measures in complex public systems are threatened by rebound effects and there-

fore change in individual behaviour may not necessarily be in line with the desired

outcomes [223]. Car sharing as an example is supposed to encourage people to

abandon their private vehicles and thus free up space in urban areas. However,

when used by the wrong audiences, car sharing may actually end up worsening

the traffic situation. In particular, it has been observed that car sharing services

were accepted as an alternative to public transport, which in consequence has
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increased the number of people travelling in individual vehicles [224].

2. Measures differ in the required time and cost of implementation before showing

the desired effects. For example, the expansion or reconstruction of infrastructure

is a highly expensive measure that can only be implemented over a longer period

of time. The implementation of such a measure typically requires extensive modi-

fications of the spatial territory, which causes considerable damage to the local

environment and therefore is often perceived as a highly intrusive intervention.

This puts infrastructure projects at risk of running into lengthy debates before

even starting with their implementation and thus prevents them from dealing

with the original issue at hand. The A49 motorway expansion in Germany [225]

is an example of how this type of project is often slowed down due to public

opposition.

In order to develop policies that are able to deal with the pressing problems in

transportation, it is therefore important to understand the effects of interventions on

individuals. This requires simulations to measure the effectiveness and efficiency of

policies using performance indicators not only on social benefit but also on the indi-

vidual level. For example, measuring the happiness of individuals enables the analysis

of how policy interventions affect certain groups of individuals and therefore provides

information on how these interventions are accepted by the public. This requires simu-

lations to capture more details on the preferences and personal attitudes of individuals.

However, there is a lack of concepts to comprehensibly capture preferences and per-

sonal objectives as determining factors of individual decisions. Effects on individuals

must not be ignored as these are the basic cause of how the system changes under in-

terventions. There are only a few approaches in the field of traffic simulation that even

consider the modelling of individual preferences as part of agent behaviour [226]–[228].

[227] have demonstrated how neglecting individual preferences significantly changes

simulation results, and have argued that there is a limitation in available traffic simulat-

ors for this type of modelling individual behaviour. In order to address this issue, [227]

created a simulation model that uses individual preferences as part of utility functions
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for agent decisions. Preferences are based on survey data and vary depending on the

three agent attributes: gender, age and income. While this type of preference-based util-

ity function is a common practice in economics to model quantitative decision-making,

this model does not consider that the perception of preferences changes depending

on the context of the simulated activity. For example, time/punctuality has a different

value when commuting to work as compared to a social visit. Hence, travel behaviour

is specific to the context of travel (travel purpose). The ASIMUT approach [228] has

recognised this problem and therefore introduces a weighted sum model on preferences

that is used for calibration. As travel decisions in the real world are driven by travel

purposes, individuals need to be modelled to have knowledge not only about traffic

but also about the purpose of travel. Thus, there is a need for appropriate structures

to flexibly model knowledge as well as individual preferences as determining factors

of purpose-driven travel behaviour. The detailed modelling of individuals can be very

time-consuming and usually requires a deep understanding of the underlying system

architecture. It is therefore important to ensure the reusability of modelled individuals

and to develop appropriate customisation options to keep the modelling overhead to a

minimum.

To conclude this review, the main challenges in the modelling of individuals in

traffic simulations can be summarised as follows. To address these challenges, this

thesis further looks into improving the modelling of individuals in Chapter 4.

1. There is a lack of concepts to capture preferences and objectives as determining

factors of agent decisions which can be particularly relevant to measure the effects

of policy interventions not only on social benefit but also on individuals.

2. There is a need for appropriate methods to capture the decision-making of in-

dividuals that consider not only traffic-related aspects but also the simulated

activity.

3. There is a need for appropriate methods that are able to minimise the complexity

during the modelling/ customisation process and to ensure the reusability of

agents when modelling the details of individuals.
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3.5 Summary of Chapter 3

In this chapter, a systematic survey was performed to give an overview of the capabilities

of available traffic simulators to model individuals and their behaviour based on current

topics in mobility. Section 3.1 illustrates the methodology for the systematic survey.

Based on this, the survey yielded a large number of simulators that vary in their use

of multi-agent technology as well as their scope of application. In section 3.2, simulat-

ors have been categorised and aspects for comparison have been defined for a more

detailed review. As the focus of this survey was on modelling individuals, particular

interest was given to simulators that were either fully agent-based or used agent tech-

nology for certain aspects of the simulation (hybrid). Available literature showed that

current topics in mobility mostly revolve around the three application areas: 1. resource

utilisation, 2. digital connectivity and 3. new forms of mobility. Simulators in this survey

have been grouped according to their area of application and for each application, three

examples have been examined in detail based on their previous use cases. In section

3.3, these examples have been reviewed with regard to the implemented features for

modelling aspects of individual behaviour. The discussion in section 3.4 has found

that aspects of individual behaviour differ significantly depending on the simulated

time perspective. For example, long-term scenarios such as studies of land use look

at aspects such as decisions of individuals on home and work locations, while mid-

and short-term scenarios model aspects such as mode choice or lane changing and

braking behaviour. Related work showed that the options for modelling knowledge

and preferences of individuals as determining factors of agent decisions are limited.

However, this can be particularly relevant to measure the effects of policy interventions

on individuals. Furthermore, travel decisions of individuals need to be linked to the

simulated activity. As modelling these details increases the complexity of simulations,

there is a need for innovative modelling methods.
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Modelling Individual Preferences to Study

and Predict Effects of Traffic Policies

With the application of agent-based models, traffic can be simulated as a complex adapt-

ive system in which systemic patterns arise as emergent phenomena. System behaviour

is the result of interactions between personal behaviours and preferences of a large

set of individuals. Assuming rational behaviour such systems typically move towards

some form of homeostasis (equilibrium). Policy-making can help guide individuals

towards a socially beneficial homeostatic solution but requires a deep understanding of

the individual. Hence, modelling of individuals is a crucial part of building simulation

models to study the effects of policies. Available traffic simulation models lack con-

cepts to comprehensibly capture preferences and personal objectives as determining

factors of individual decisions (see Chapter 3.4). Modelling these details accounts for

extra effort and therefore requires appropriate modelling structures. The application

of semantic technology that typically focuses on enhancing the meaning and context

of information can help address these issues. In particular, if knowledge is formulated

in a form ensuring that information can be easily managed, additional knowledge can

be inferred through the application of reasoning mechanisms. Meanwhile, the use of

semantic technology may potentially increase the complexity of the overall architecture

of the system as well as the simulation model but allows agent knowledge and behaviour

to strictly be separated from the implementation of the simulation. As a result, agents
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can be flexibly reused across different domains and in varying scenarios, requiring

only marginal changes in the concrete implementation. The application of semantic

technology thus facilitates modifications or extension of agent knowledge about their

purpose of travel when changing agent activities for simulating different scenarios. For

example, agents from a commuting scenario that have been modelled with knowledge

about basic concepts in traffic (e.g. mode options) can be transferred to other scenarios

that simulate the mobility of individuals during their grocery shopping (knowledge

about basic traffic concepts can be reused while agents can be extended with knowledge

on the grocery shopping domain).

This chapter focuses on creating a simulation model that is able to capture know-

ledge and preferences as determining factors of individual decisions. This is a pre-

requisite for examining how policy-making in mobility affects both individual as well as

global system behaviour. Note that the focus of this work is not to present a validated

simulation model but to demonstrate how the proposed methods can be used to model

and simulate what-if scenarios to measure the effects of policy interventions in the

simulations. For this purpose, the modelled scenarios demonstrate how effects of traffic

policies on individuals can be investigated. The experiments will focus on showing

how the simulations can respond appropriately by producing plausible changes in

behaviour for different input settings. Based on these objectives, the following section

provides a brief recap on applying semantic technology to agent-based simulations.

Following this, a detailed description is given of the proposed method for modelling

preferences and knowledge of individual traveller agents. As an example, simulation is

performed for a scenario that deals with mobility caused by individuals during their

grocery shopping. Furthermore, a simulation of a leisure trip scenario is presented

to demonstrate how agents that are modelled based on the proposed method can be

reused across different domains. The chapter closes with a discussion of experimental

results as well as the strengths and limitations of the proposed method. Earlier versions

of parts of this chapter have been published in [1], [3], [6], [7].
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4.1 Semantic Modelling

Agent decisions in traffic are influenced by numerous aspects and therefore require

a broad knowledge of the world. For this purpose, ontologies can be used. The term

ontology refers to the science of describing entities in the world and originates in

philosophy where it is used with a more general meaning. Ontologies are an expressive

tool to model domain knowledge in a machine-readable form and provide an explicit,

shared specification of a conceptualisation of that domain[229]. Ontologies typically

consist of a taxonomy of concepts each with properties and relations which allows for

representation of semantics. They have become a common instrument for consistently

documenting knowledge that can be shared among machines. As [230] formulates,

formally, an ontology O is a triple O = (C ,R, I ) with C a set of concepts, R a set of

relations, and I a set of individual objects. Concepts represent classes that define sets

of objects. An object that belongs to a concept is called an instance of that concept.

Objects can be linked through relations r ∈ R which are also called object properties.

These relations are defined with concepts as their domain and range, and subsequently,

instances instantiate these relations. Therefore, r is a set of pairs (c, d) with c, d ∈ I .

Instances i ∈ I can have data properties that have primitive data (e.g. numbers or

strings) as the range. Hence, data properties are sets of pairs (i , p) with p a primitive

value. The Web Ontology Language (OWL) is a formal notation standard to define and

create ontologies [231]. It is part of the Semantic Web Activity which describes the idea

of computers with structured collections of information and sets of inference rules

that are able to perform computational reasoning [232]. OWL is based on description

logic and decidable subsets can be defined that facilitate the application of reason-

ing algorithms. The combination of OWL together with Semantic Web Rule Language

(SWRL) [233] is a frequently used set of tools. OWL can be used to create a structured

collection of information while SWRL, as an extension, is a W3C proposed language

to express If-Then implications based on Horn Logic (see [234]). The application of

semantic technology to extend agents with semantically modelled knowledge bases has
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been demonstrated for market simulations [235].

4.2 Method

This work proposes an abstract model for representing the knowledge and preferences

of individuals. At the center of this method is a semantic framework that extends

traditional agent programming with qualitative modelling of decision aspects. Based

on this, it can be particularly useful to separate general agent activity logic from aspects

of modelling agent knowledge. While basic operations of the agents remain part of

traditional agent programming, agent knowledge can be shifted into separate ontologies

(see [229]) which can be used for creating knowledge bases. [235] have demonstrated

the effectiveness and efficiency of this approach. In addition to this, the separation

of agent knowledge from its operating behaviour makes it possible to look into the

field of knowledge engineering to structure agent knowledge. In particular, models on

generalisation and abstraction of information can help to reduce complexity in the

modelling and improve the reusability of modelled agent knowledge.

An example of this is the CommonKADS model which proposes a three-layered

architecture for structuring different types of knowledge [236]. The lowest layer domain

knowledge defines relevant concepts as well as simple relations for a modelled subject

area. Concepts from domain knowledge are put into a logical context which enables

derivation of inference knowledge in the second layer. Based on this, information from

the lower layers is used for determining action strategies which in the top layer is

referred to as task knowledge. The following example shows how the different layers of

knowledge can be reflected in a real-world scenario (see Figure 4.1): Given a scenario in

which a mechanic repairs bicycles, domain knowledge typically contains information

about the components of a bicycle, potential technical problems that may occur, as well

as possible causes and corrective measures. Inference knowledge puts this information

into a logical context and hence contains knowledge about the assembly or mechanics

of bicycles. Task knowledge combines information from the lower layers allowing

decision-making on appropriate actions, e.g. diagnosis of technical malfunctions of a
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common traffic domain concepts. This will allow instances of this ontology to be re-

used across different traffic scenarios. For example, the same travel ontology is likely

suitable for modelling both commuting within a city as well as modelling leisure trips.

Both scenarios differ in the activity performed which is why agents require their own

activity-specific domain knowledge. Domain knowledge therefore needs to be exten-

ded with a second type of ontology (activity ontologies) to capture relevant knowledge

about the purpose of travel. For example, an activity ontology on commuting typically

provides agents with information about places of work, while an activity ontology on

leisure trips would provide agents with information about landmarks, shops, or sports

centers. Agents can be equipped with different ontologies that each can be “plugged

in” and extended or replaced as needed to address different research questions. For

more complex scenarios (e.g. when simulating agents that perform a series of different

activities throughout the day), agents can also be equipped with multiple activity on-

tologies. In order to combine information from the travel and activity ontologies, the

agent architecture includes an additional central person ontology which is a representa-

tion of the collective knowledge that is available to the agent. In addition to domain

knowledge, this ontology also comprises information about person-specific concepts

such as census properties (age, gender, occupation, etc.) which are prerequisites for

inferring further agent attributes such as individual preferences.

Inference knowledge is represented in SWRL rules [233] which extend OWL to

express If-Then implications. The rules are used to define how observed real-world

information is transferred into the attributes of the agents. In particular, individual

preferences defined in the travel and activity domains are inferred from survey data.

Census properties are given to the agent by assigning persona profiles according to the

local population (see [7]). These properties are reflected in the ontology and serve as

input to rules to infer preferences. Persona profiles in this example are derived from

the results of a classification of data from a consumer study [237] which represents

the most relevant groups of individuals in the German demographic (see Figure 4.3).

They are categorised by current life stage, family status as well as social strata/income

(as illustrated in [238]). Inferred information in the ontology can be accessed by the
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the system changes under interventions which is why they cannot be ignored. In

order to evaluate effects on individuals, simulation results need to include information

on individual utility which requires a more detailed modelling of individuals that is

able to capture preferences as determining factors of agent decisions. Furthermore,

decisions and preferences vary depending on the context of travel, which is why agents

require knowledge about the simulated activity. The next sections demonstrate how the

proposed method addresses these issues by applying them to two mobility scenarios

that differ in the simulated purpose of travel (activity).

4.3.1 Mobility of Individuals during the Activity of Grocery Shopping

The following scenario simulates the mobility of individuals that is associated with

their grocery shopping. Agents are assigned a randomly generated list of food items

selected from a set of products available in the supermarkets of the simulation. This set

is categorised (e.g. fruit, vegetable, grains) and probability distributions over the cat-

egories can be defined and assigned to different agent types. Agents aim at purchasing

items in their lists in the course of which they have to make decisions, e.g. choosing a

supermarket together with a mode of travel.

To illustrate how the framework can be applied, the following grocery shopping

scenario has been defined. The scenario contains a set of supermarkets that differ not

only in location and product availability but also in the attributes of products such

as their price and whether they are organic. This type of information is modelled

in an activity ontology for the food/grocery shopping domain. Agents are randomly

assigned a list of food items from this ontology to purchase. In particular, items on

this list are categorised (e.g. fruit, vegetable, grains) and probability distributions over

the categories can be defined and assigned to different agent types (persona profiles).

In order to acquire all items on their shopping list, agents may have to visit multiple

supermarkets. For the purpose of this example, it is assumed that agents are generally

willing to visit more than one supermarket rather than not acquiring the items on the

shopping list. In addition to this, the travel domain ontology in this scenario comprises

72



CHAPTER 4. MODELLING INDIVIDUAL PREFERENCES

information about possible traffic mode options (walking, bicycle, car, public transport)

that agents can pick to get to the supermarkets. During their grocery shopping activity,

agents have to determine a combination of supermarkets and appropriate modes of

travel. This type of decision behaviour is implemented in the layer of task knowledge

which uses information from domain and inference knowledge. In particular, inference

knowledge contains information about individual preferences that are derived from

rules based on survey data. Implementing the process to derive the preferences using

rules in the ontology allows scenario-specific preference concepts to be modelled as part

of domain knowledge for the simulated activity. Furthermore, in the layer of inferences

knowledge, preferences become instantiated by applying rules that use survey data to

compute the actual values of preferences for an agent. The grocery shopping scenario

demonstrates how travel decisions such as mode selection as well as determining the

travel destination depend not only on information from the traffic domain but also

on information from the simulated activity which in this case is the supermarket/food

domain. For example, in addition to knowledge about basic traffic concepts such as

available mode options, agent decisions also require scenario-specific knowledge about

the type of food on the shopping list as well as at which type of supermarket these items

can be purchased. Preferences and domain knowledge are then used as input for agent

decisions that are based on utility functions and algorithms. Based on this, the agent

life cycle can be defined by the following three phases (see Figure 4.4).

1. 

initialisation

2. 

prejourney planning

3. 

shopping

initialise agent with:

• census properties

• preferences

• home location

• available mode options

• shopping list

determine journey with:

• target supermarkets

• travel modes

spontaneous replan:

• travel route

Figure 4.4: Agent life cycle.

An agent a has a set of attributes A. A is the disjoint union of descriptive attributes∆,

and preference attributesΦ= T ∪F with traffic related preferences T and food related
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preferences F . While ranges of attributes in ∆ are all nominally scaled, attributes inΦ

take values from a Likert scale of 1 to 5 (1=“not important“ and 5=“very important“).

The selection of attributes relevant for modelling is based on behavioural surveys on

mobility [241], [242] and grocery shopping [243] (see Table 4.1).

The agent population conforms to the principal structure of the group of persons

from which survey data was collected. Survey data are used to create agents so that

the empirical frequency distribution Dper sona is preserved in the agent population. For

each agent, values for the attributes in ∆ are determined by their persona. Now, values

for preferences φ ∈Φ are derived depending on the values of the attributes in ∆, again

according to the survey data. For this purpose, rules have been modelled in the ontology

with which a specific categorical probability distribution over the Likert scale values can

be derived for each preference φ ∈Φ. Therefore, for each preference φ ∈Φ, and for each

nominal attribute δ ∈∆, there is a conditional probability distribution Dφ(L | δ) over the

values of the Likert scale L = {1,2,3,4,5} depending on the value of δ. The probabilities

pφ(L | δ) are determined by the empirical frequencies in the surveys. It is assumed that

the preferences of an agent are influenced by the entire set of its descriptive attributes

δ ∈ ∆ the corresponding probabilities are aggregated over ∆ into the weighted sum

pφ(l ) = ∑
δ∈∆λδ ·pφ(l | δ) with

∑
δ∈∆λδ = 1 giving a probability distribution for each

φ ∈Φ. In this work, all attributes are weighted as of equal importance, i.e. λδ = 1
|∆| .

An example will illustrate this: Let ∆ = {age,occupation} be the set of descriptive

attributes andΦ consist of a single preference Environmental Impact lying in T meaning

Table 4.1: Attributes and preferences assigned at initialisation of an agent.

Descriptive attributes ∆ Traffic preferences T Food preferences F

age flexibility price tendency

education time product quality

gender reliability eco-friendliness

occupation privacy fair trade

marital status safety

monetary costs

environmental impact

convenience
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that there are no food preferences in F . Furthermore, let a1 with ∆a1 = {18-25, student}

and a2 with ∆a2 = {46-55, factory worker} be agents. Given the specific values of their

descriptive attributes, a1 and a2 are expected to have different preferences manifested

in the values for τ ∈ T , i.e. their awareness for Environmental Impact. Indeed, the

survey data gives evidence that persons of ag e =18-25 show a higher awareness of

environmental issues. This is modelled in pEnvi r onment al Impact (see Table 4.2). For the

second descriptive attribute occupation again probabilities for l ∈ L are drawn from the

empirical distribution of data in the survey (see Table 4.2). The weighted sum of the

values for age and occupation yields pEnvironmental Impact(l ) for each l ∈ L. Roulette wheel

selection is then used, based on the aggregated probabilities pτ(l ), to determine the

value l which is then assigned to preference τ. This concludes the initialisation phase

of agent a. Computation of the probabilities pτ(l | δ) uses rules of the ontology of the

following scheme which allows information from empirical data to be linked to domain

knowledge:

Ag ent (?a)∧Pr e f er ence(?τ)∧hasCensusPr op(?a, ?cpr op)∧ swr lb : equal (?cpr op,δ) ⇒
Ag ent (?a)∧hasPr e f er ence(?a, ?τ)∧Pr e f er ence(?τ)∧hasLi ker t1(?τ, pτ(1 | δ))∧hasLi ker t2(?τ, pτ(2 | δ))∧
hasLi ker t3(?τ, pτ(3 | δ))∧hasLi ker t4(?τ, pτ(4 | δ))∧hasLi ker t5(?τ, pτ(5 | δ))

Based on this, the following SWRL rule can be defined to determine probabilities

pEnvironmental Impact(l | age = "18−24") for the example agent a1:

Ag ent (a1)∧Pr e f er ence(Envi r onment al Impact )∧has Ag e(a1,?ag e)∧ swr lb : equal (?ag e,"18−24") ⇒
Ag ent (a1)∧hasPr e f er ence(a1,?Envi r onment al Impact )∧Pr e f er ence(Envi r onment al Impact )∧
hasLi ker t1(Envi r onment al Impact , pτ(1 | 0.05))∧hasLi ker t2(Envi r onment al Impact , pτ(2 | 0.1))∧
hasLi ker t3(Envi r onment al Impact , pτ(3 | 0.15))∧hasLi ker t4(Envi r onment al Impact , pτ(4 | 0.3))∧
hasLi ker t5(Envi r onment al Impact , pτ(5 | 0.4))

Table 4.2: Example for preference probabilities for agent a1.

Probabilites/Likert Values l 1 2 3 4 5

pEnvironmental Impact(l | age = "18−24") 0.05 0.1 0.15 0.3 0.4

pEnvironmental Impact(l | occupation = "student") 0.1 0.1 0.2 0.3 0.3

pEnvironmental Impact(l ) 0.075 0.1 0.175 0.3 0.35

In the second phase of the agent life cycle (prejourney planning) the agent makes

decisions about supermarkets to be visited as well as appropriate modes of travel
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according to its personal preferences. For this purpose, preferences of the agent are used

as input arguments for compound utility functions defined below (see Equation 4.1 and

4.2). Based on this, the agent successively constructs a shopping journey consisting of

legs from supermarket to supermarket (and from home to the first supermarket and back

home from the last) with appropriate travel modes. Supermarkets and modes of travel

are chosen to maximise the utility of the agent. Note that these decisions are mutually

interdependent and have to happen simultaneously e.g. distant supermarkets can only

be reached by car while choosing to walk will likely determine the agent to choose a

nearby supermarket. Thus, decision-making is multi-criterial as agent behaviour is not

only determined by traffic-related aspects but also by individual preferences relevant

for the selection and purchasing of food items.

In particular, the utility has been defined that reflects traffic-related preferences

of an agent a. For a given attribute τ ∈ T (T the set of traffic-related attributes) and

a traffic mode m ∈ M (M the set of available traffic modes), let u(τ,m) be the given

utility of mode m with regard to a specific mode attribute τ and aτ the preference

value of τ for agent a. Spontaneous modal change during the journey accounts for

extra effort and therefore involves costs which are modelled with a symmetric function

c : M ×M →R with c(m,m′) the associated cost for changing from mode m to mode m′

with c(m,m′) = 0 for m = m′. Note that an artificial mode mnull has been added to

represent the start of the food shopping journey and that c(mnull ,m) = 0 for all m ∈ M .

Based on this, the total traffic utility UT T of traffic mode m for agent a is defined. Note

that the value of this function also depends on the traffic mode mc of the last leg.

(4.1) UT T (a,m,mc ) = ∑
τ∈T

u(τ,m) ·aτ− c(mc ,m)

Supermarkets s ∈ S (S the set of supermarkets) are assigned utilities u( f , s) that rate

their products with regard to f ∈ F (F the set of food-related attributes) (see Table 4.1).

Furthermore, a f is the value for preference f of agent a. Based on this a shopping utility

UF (a, s) is determined:

(4.2) UF (a, s) = ∑
f ∈F

u( f , s) ·a f
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Furthermore, supermarkets are assessed by the degree to which the products they

stock cover the items on the shopping list of an agent as well as their distance to the

current location. If agent a has ra open items on its list, qs of which are available in

supermarket s, then the quotient ra
qs

quantifies the product coverage of s for a. Further-

more, for each agent a a randomly generated value ea models aversion of a towards

additional trips to other supermarkets based on probabilities provided by [244]. The

euclidean distance d(a, s) from the current position of a to the supermarket s is used as

an estimate for the travel distance to s as the agent at this stage does not know the real

travel distance which is determined later by the actual route. For each agent values for

UT T , UF and d(a, s) are normalised with min-max normalisation so that they lie in [0,1].

As decisions on the mode of travel and selection of supermarkets are interdependent,

traffic and food related utilities are aggregated into a single utility function with which

an agent determines the next supermarket to go to and how to get there. Therefore, the

leg r = (m, s) to the next supermarket s is an element in M ×S (with M travel modes

and supermarkets S) that has a utility:

(4.3) U (a,r,mc ) = (1−d(a, s))+UT T (a,m,mc )+UF (a, s)+ ra

qs
∗ea .

Algorithm 1 shows how an agent successively selects supermarkets and determines

rides that are concatenated into a journey. It is assumed that the overall supply of all

supermarkets covers all items on shopping lists and that items are abundantly available.

Note, that no additional optimisation is performed with respect to the order in which

the supermarkets are visited, as the intention is to simulate the natural behaviour of

individuals. This concludes the prejourney planning phase for agent a.

Algorithm 1 Algorithm to determine agent journey.

Require: agent a, list of shopping items Ia , supermarkets S, traffic modes M
1: journey= empty list;
2: while Ia is not empty do
3: r = (m, s) = argmax

r∈M×S
U (a,r )

4: journey=journey+r
5: Ia=Ia\supply(s)
6: end while
7: return journey
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Finally, the agent enters into the shopping phase of the simulation. Travel decisions

from prejourney planning are primarily based on preferences derived from survey data,

which do not change. Hence, target supermarkets as well as selected modes of travel

remain unchanged during the shopping tour. However, agents may spontaneously

change routes depending on the current traffic load. Routing uses the A* algorithm

based on shortest time [245]. Let W be a route with w ∈W being a continuous section

of route W with the same speed limit v(w). The travel speed of an agent is defined

v(w,m) = mi n{v(w), v(m)} for v(m) the maximum speed of travel mode m. Further-

more, d(w) defines the distance to be covered on w and n(w) an indicator for the

present traffic load. Thus, overall travel time T is computed:

(4.4) T (W,m) = ∑
w∈W

d(w)

v(w,m)
+n(w)

The shopping phase terminates once all scheduled supermarkets in the journey

have been visited and the agent has returned to its home location.

As an example, a simulation has been created for the German city of Wetzlar. Wetzlar

counts a total of 29 supermarkets based on data provided by Google Maps. According to

the German census of 2011 [246], the population in Wetzlar consists of approximately

50,000 citizens that are spread over 20 residential areas. It is assumed that one person

shops for their entire household and that 20% of these households shop during the

simulated time interval. Thus, a population of 2130 agents has been generated that rep-

licates the empirical distribution of residents. Agents in the population are assigned a

persona profile (as illustrated in Figure 4.3) which defines values for their descriptive at-

tributes∆. Based on this, agent preferences are computed according to the descriptions

provided above. Note that in this work the implementation uses stochastic elements

only while computing preference values, thus keeping the subsequent decision pro-

cesses deterministic, and in consequence not requiring multiple runs of the simulations.

This simplifies analysis and proof of concept making comparison of simulations easier.

For experimentation, three simulation runs (A, B and C ) have been performed

with identical agent populations in order to examine how different interventions have

an effect on traffic. Simulation A reflects traffic without interventions and therefore
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serves as the benchmark scenario. In comparison to this, simulation B assumes as

an intervention an educational campaign that achieves a change of attitude for 35%

of the inhabitants (756 agents) to traffic and its environmental consequences. This is

modelled by increasing traffic preferences on Environmental Impact and reducing traffic

preferences for Convenience. In particular, 42 of these agents changed their preference

value on Environmental Impact from 1 to 5, 200 from 2 to 5, and 514 from 3 to 5 while at

the same time 150 of these agents changed their preferences on Convenience from 5 to 1,

295 from 4 to 1, 198 from 3 to 1 and 101 from 2 to 1. For simulations A and B, agents

are modelled to have access to all modes of travel. However for simulation C, as an

intervention ownership of private vehicles has been limited for 38.5% of the population

(821 agents), forcing these agents to switch to alternative mode options. It is assumed

that utilities u(τ,m) for mode options remain the same across all simulations A, B and

C (see table 4.3).

Table 4.3: Mode utilities on a scale of 0 to 8 for simulations A, B and C

Car Bike Walking

Flexibility 8 2 1

Time 8 3 0

Reliability 7 7 8

Privacy 8 1 0

Safety 7 2 5

Environmental Impact 0 8 8

Monetary Costs 2 6 8

Convenience 8 0 0∑
48 29 30

Given that agents in simulation A have access to all modes of travel and that mode

utilities from Table 4.3 generally favour car usage, simulation results in A show that

most of the agents have chosen to travel by car (see Table 4.4). It can be assumed that

policymakers prefer agents to choose green transportation modes such as walking

or cycling to avoid the emission of exhaust gases. In the simulation, this is mirrored

through key performance indicators on aggregated travelled distances. Environmental

impact is measured by the indicators global travel distance which is the sum of the

overall distances travelled by the set of all agents, and combustion distance that only
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Table 4.4: Comparison of modal choices for simulations A, B and C

A B C

Car 99.95% 99.72% (⇓ 0.23%) 61.41% (⇓ 38.5%)

Bike 0.05% 0.14% (⇑ 0.09%) 37.98% (⇑ 37.93%)

Walking 0.00% 0.14% (⇑ 0.14%) 0.61% (⇑ 0.61%)

Table 4.5: Indicators on environmental impact for simulations A, B and C

A B C

Global Travel Distance [km] 11453 11393 (⇓ 0.53%) 10213 (⇓ 10.82%)

Combustion Distance [km] 11452 11376 (⇓ 0.66%) 7115 (⇓ 37.87%)

considers modes of travel that produce exhaust gases (see Table 4.5). Thus, in this work,

the focus is on examining to what extent interventions from simulations B and C are

suitable to achieve the desired change.

The educational campaign from simulation B produces only a minimal shift in

modal choices. In particular, car usage has been reduced (⇓ 0.23%) while the number of

cyclists (⇑ 0.09%) and pedestrians (⇑ 0.14%) has increased. In principle, the observed

course of change is favourable, but given that only a very small percentage of agents

exhibit a change in behaviour, desired effects on global indicators are hardly noticeable

with global travel distance decreasing by ⇓ 0.53% and combustion distance decreasing

by ⇓ 0.66%. In comparison to this, the intervention from simulation C achieved a

more significant effect. Agents that were denied ownership of a private car were forced

to switch to alternative mode options and in consequence the number of cyclists (⇑
37.93%) and pedestrians (⇑ 0.61%) increased. Performance indicators on environmental

impact also show a decrease on global travel distance (⇓ 10.82%) and combustion

distance (⇓ 37.87%). Hence, from a global perspective, a ban on vehicles is more effective

than trying to achieve a change of attitude. However, real-world implementation of

such a measure has strong effects on individuals which causes public opposition. As

the proposed model includes more details in the modelling of individuals, it is possible

to measure exactly these types of effects on individuals in the simulations. For assessing

interventions in a system by (individual) utility, it is necessary to take a utilitarian

perspective on utility [247]. Utility as experienced by individuals has been associated

80



CHAPTER 4. MODELLING INDIVIDUAL PREFERENCES

with happiness measures [248]. Following this idea, utility functions can be used to

quantify experienced utility as an indicator for the satisfaction of individuals. It can

be noted that this relation between utility and happiness is debatable, but so far there

is no consensus on this matter (see [247] for a discussion). This analysis specifically

looks at the utility of agents affected by the intervention (see Table 4.6). With regard

to simulation B , a total of 756 agents are affected by the educational campaign. The

individual utility of these agents in simulation A averages 0.60642 in comparison to

a utility value of 0.58036 in simulation B . This indicates a decrease (⇓ 4.29%) in the

experienced utility of affected agents in simulation B . In contrast, utility values of agents

affected by the vehicle ban in simulation A averages 0.59892 which in simulation C

decreases by⇓ 12.26% to a value of 0.5255. This shows that the effects of interventions on

individuals for the vehicle ban (C ) are more intrusive in comparison to the educational

campaign (B), which increases the risk of public resistance.

Table 4.6: Normalised average traveller utility of changed agents for simulations A, B and C

A B C

Educational campaign 0.60642 0.58036 (⇓ 4.29%) -

Vehicle ban 0.59892 - 0.5255 (⇓ 12.26%)

As mode utility in all three simulations A, B and C significantly favours car usage,

utility values of cycling and walking have been recalibrated to reduce the utility gap

between mode options (see Table 4.7). In the real world, this models an improvement

in the quality of alternative travel modes, e.g. through measures that generally facilitate

travel conditions for pedestrians and cyclists, and thus reduce the advantage of cars.

Simulations have then been rerun with the same populations and configurations from

A, B and C , to look at how the effects of interventions change under new circumstances.

Simulations from this iteration of experiments are referred to as A2, B2 and C 2.

Although car users still account for the majority of travellers in this iteration of

experiments, modal choices in the new benchmark simulation A2 (see Table 4.8) show

a greater representation of cyclists and pedestrians in comparison to the observed

modal split in the original simulation A. This time, the effects of the educational

campaign in simulation B2 are more pronounced showing a shift from car users to

81



CHAPTER 4. MODELLING INDIVIDUAL PREFERENCES

Table 4.7: Mode utilities on a scale of 0 to 8 for simulations A2, B2 and C2

Car Bike Walking

Flexibility 8 6 (⇑ 4) 4 (⇑ 3)

Time 8 4 (⇑ 1) 1 (⇑ 1)

Reliability 7 7 8

Privacy 8 6 (⇑ 5) 4 (⇑ 4)

Safety 7 2 6 (⇑ 1)

Environmental Impact 0 8 8

Monetary Costs 2 6 8

Convenience 8 1 (⇑ 1) 1 (⇑ 1)∑
48 40 (⇑ 11) 40 (⇑ 10)

cyclists by 34.65%. This development is also reflected in the performance indicators

on environmental impact (see Table 4.9). While global travel distance only decreases

by ⇓ 3.03%, combustion distance is reduced by a total of ⇓ 29.77%. In contrast, limiting

the ownership of vehicles in simulation C 2 achieves a similar outcome as in B2. Results

of C 2 also show a shift from car users to cyclists by 32.72% which in consequence

reduces global travel distance (⇓ 6.57%) as well as combustion distance (⇓ 34.96%). The

comparison of results from B2 and C 2 with output data from the original simulations

B and C suggests that measures can yet become more effective when the quality of

alternative mode options increases, and thus the advantage in utilities of the car is

reduced. Furthermore, utility values in Table 4.10 show that the supposedly harsh

intervention of the vehicle ban in C 2 is perceived as less intrusive with individual utility

decreasing by only ⇓ 2.88% in comparison to the original simulation C (⇓ 12.26%) when

there are genuine mode alternatives to the car option. Overall, simulation C 2 achieves

the best outcome with regard to indicators on environmental impact but B2 is almost

equally effective while using a less intrusive intervention (educational campaign) which

reduces the risk of public opposition. This concludes simulation of the first example

scenario.
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Table 4.8: Comparison of modal choices for simulations A2, B2 and C2

A2 B2 C2

Car 85.77% 51.13% (⇓ 34.65%) 53.05% (⇓ 32.72%)

Bike 14.13% 48.78% (⇑ 34.65%) 46.85% (⇑ 32.72%)

Walking 0.09% 0.09% 0.09%

4.3.2 Mobility of Individuals during the Activity of Leisure Trips

To demonstrate how agents can be reused across different domains, a second scenario

has been created in which agents perform the activity of travelling to a music concert.

New mobility concepts such as shared mobility services have led to more flexibility

and new options in personal mobility and are intended to improve the use of available

resources. However, the actual effects of these services are yet to be observed. In this

research, simulation is given for an example scenario that looks at the impact of shared

mobility on leisure trips. A specific type of shared mobility is ridesharing. Ridesharing

is a term for organised carpooling, traditionally arranged among friends and family,

but now commercialised as a service to connect individuals that have never met. Such

services can help to reduce the number of private vehicles in use by encouraging

individuals to share journeys occupying a single vehicle in place of two or more. The use

of commercialised ridesharing depends on the mechanisms through which individuals

are brought together. In this research, such mechanisms are referred to as the pooling

process. There are different methods to implement the pooling process. One option

is the use of auction mechanisms. Auctions are mostly known as a buying or selling

process in which individuals place bids to purchase a particular item or service [249].

They can be used as an instrument to organise the access of individuals to the same

limited resources. The use of such auction mechanisms in the context of mobility has

been established [250]–[252]. Depending on how auctions are implemented (auction

Table 4.9: Indicators on environmental impact for simulations A2, B2 and C2

A2 B2 C2

Global Travel Distance [km] 10828 10499 (⇓ 3.03%) 10117 (⇓ 6.57%)

Combustion Distance [km] 9790 6875 (⇓ 29.77%) 6368 (⇓ 34.96%)
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Table 4.10: Normalised average traveller utility of changed agents for simulations A2, B2 and C2

A2 B2 C2

Educational campaign 0.60634 0.5968 (⇓ 1,57% ) -

Vehicle ban 0.60044 - 0.58316 (⇓ 2.88%)

design), strategies of participating individuals may vary and therefore lead to different

outcomes [253]. This suggests that a carefully implemented auction design can lead

to an outcome favoured by the auction designer which in economics makes this a

powerful instrument for guiding self-interested individuals towards social benefit and

thus promote the use of shared mobility services. Finding an effective auction technique

that optimises the sharing of journeys within a ridesharing scheme can be difficult. The

use of a simulation tool allows the evaluation of auction mechanisms in silico before

deployment into actual rideshare schemes.

Simulating this type of scenario requires the current simulation model from the

grocery shopping example to be adjusted. Agents in the music concert scenario do not

require knowledge about the food and supermarket domain which allows the activity

ontology from the previous grocery shopping scenario to be removed. As agents in this

scenario primarily deal with knowledge from the traffic domain, changes and extensions

to domain knowledge only affect the travel ontology. Thus, the music concert scenario

does not require a new activity ontology. The travel behaviour of individual agents

has been extended to allow ridesharing to be included in their decisions. Relevant

modifications for the music concert scenario primarily affected prejourney planning

in which the agent makes a decision about its mode of transport. As an extension,

ridesharing has been added as a new mode of transport M ∪{mr i deshar i ng }. With regard

to utilities u(τ,mr i deshar i ng ), ridesharing may be treated as a private vehicle (e.g. car)

given that the driver travels alone. The situation changes when an additional passenger

joins the vehicle, to share the journey. Thus, values for u(τ,mr i deshar i ng ) are based on

utilities of u(τ,mcar ) with deviations depending on the number of additional passengers.

For each additional passenger, mode attributes for mr i deshar i ng need to consider the

following deviations as compared to the attributes of mcar :
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• the utility on f lexi bi l i t y decreases as changes to the journey have an immediate

effect on the other passengers and therefore need to be taken into consideration.

• the utility on t i me decreases as entry and exit of additional passengers as well as

potential detours account for extra effort.

• the utility on r el i abi l i t y decreases as there are more dependencies to be con-

sidered e.g. passengers being late or running into traffic jams due to additional

detours.

• the utility on pr i vac y decreases as there are more passengers within the vehicle.

• the utility on sa f et y decreases due to unpredicted behaviour of passengers e.g.

distractions.

• the utility on envi r onment al_i mpact increases as emissions can be split among

the driver and the passengers. However, if it wasn’t for ridesharing, passengers

might have chosen an even more environmentally friendly mode of transport,

which is why the effect might be mitigated.

• the utility on conveni ence decreases as there is less room for movement within

the vehicle as well as storage space.

• the utility on monet ar y_cost s needs to be handled specific to the scenario

depending on who is travelling e.g. costs can be evenly split among friends, but is

probably paid by the driver when they are driving members of their own family.

In addition to this, a new type of agent has been added to the simulation. Within

the previous model that was created for the grocery shopping scenario, traveller agents

select a mode of transport and then conduct their journey without the option to take

additional passengers. The addition of ridesharing to the simulation model requires

vehicles and travellers to be modelled as separate agents. Traveller behaviour needs

to be extended to model passive passengers while vehicles must be able to contain

information about passengers as well as the designated driver. In particular, traffic
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participants (travellers) hold relevant information about their journey (e.g. origin

and destination) as the purpose of travel emerges from the individual. Furthermore,

individuals can only use vehicles that are actually at their disposal, for example, vehicles

that they privately own. Thus, traffic participants need to register vehicle agents to

which they have access. Vehicle agents may vary in their passenger capacity depending

on their type (e.g. car, truck, van, motorcycle). Based on this, vehicle agents need to

record detailed information about which agents are inside the vehicle at any given time

during the simulation. Figure 4.5 gives an overview of the information contained in the

different types of agents.

Figure 4.5: Separation of traffic participants and vehicle agents.

Ridesharing is typically organised either in private settings (among friends or family

members) or through the use of commercialised ridesharing services. The former re-

quires the implementation of social relations within the agent population. The Barabási-

Albert algorithm can be used to model social structures and communities (see [254],

[255]). The algorithm starts with a user-defined number of agents (σ0) and iteratively

adds new agents, thus creating a social network with eventually n agents. A new agent is

connected to σ existing agents, where σ is a user-specified parameter, with a probability

proportional to the number of connections within the existing agent population. As

a result, agents with more connections have a higher probability of gaining new rela-

tions which leads to a social network in which there is a small number of agents with a

high number of connections (hub nodes) and the majority of agents with only a small

number of connections (satellite nodes). This process is also referred to as preferential

attachment. However, in the real world new relations among individuals are often estab-

lished in their immediate surroundings which is typically correlated to the geographic

distance of their home location [256]. Consequently, agents in the simulation that are
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located in the same region should have a higher probability of knowing each other than

agents that live farther away. Applying the standard algorithm to the agent population

generates a social network that does not reflect this appropriately (see Figure 4.6). Thus,

the Barabási-Albert algorithm has been modified into a two-step procedure. In the first

step, the algorithm is applied to subsets of the agent population based on their home

location and clustered by geographic regions. This produces a social network for each

of these regions. In the second step, the algorithm is applied to establish transregional

relations on the full set of agents. This time the user-specified parameter σ will be

chosen to produce fewer connections as the probability for transregional relations

should be smaller in comparison to the process of generating connections within the

immediate surroundings (see Figure 4.7).

Figure 4.6: Example of a social network generated with the standard Barabási-Albert algorithm

Figure 4.7: Example of a social network generated with the modified Barabási-Albert algorithm
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Information on social relations is stored within the agents. Agents can use this

information to arrange ridesharing in a private setting. Let A be the set of agents

in the social network with ∆,P ⊆ A. ∆ is the set of drivers that contains agents that

have chosen to travel with an individual vehicle (car) and P is the set of potential

passengers containing agents that are looking for ridesharing options. Based on this,

it can be defined ∆∩P = ;. Furthermore, each a ∈ A has a list of social contacts Λa .

When dealing with ridesharing in a private setting, in this research it is assumed that

agents connected through a social relation are in frequent contact and therefore are

informed about the timetables and mobility needs of their friends and family members.

Based on this, agents a1 ∈ P look in their list of social contactsΛa1 for potential drivers

∆a1 =Λa1 ∩∆, and successively request a2 ∈∆a1 sorted by shortest Euclidean distance

d(a1, a2) for whether a2 would be willing to make a detour and give a1 a lift. In the event

that a2 still has empty seats in its vehicle, the number of seats already assigned is used

to determine the utility UT T of both a2 and a1 to take a1 as an additional passenger.

Ridesharing is agreed when UT T determines this to be the best option for both of them.

Otherwise, the process continues for a1 and alternative options are explored (finding

another driver or changing to a different mode).

In contrast to this, commercialised ridesharing eventually causes interactions between

unrelated individuals i.e. strangers. Agents have therefore been extended with an addi-

tional attribute that models their attitude towards travelling with strangers based on sur-

vey data provided by [242]. Interaction between these individuals is typically conducted

through a digital service platform and thus is managed by the given processes of the plat-

form. Connecting drivers and interested individuals is an essential task of these service

platforms which can be implemented using auctions. To simulate the effects of different

auction designs, the simulation has been extended with a central interface to flexibly

plug in implemented auction algorithms. This interface requires a list of agents particip-

ating in the auction and returns the result of the auction i.e. a list of drivers with their

assigned passengers. During the auction, agents submit bids according to the imple-

mented mechanism of the auction to request a ride. Before submitting a bid, the agent

verifies whether the utility UT T for ridesharing still exceeds all of the alternative mode
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options based on the monet ar y_cost s of the bid. In particular, let β be the amount of

the bid to be submitted. β determines monet ar y_cost s for the mode mr i deshar i ng and

thus has an effect on the mode attribute u(monet ar y_cost s,mr i deshar i ng ). However,

the computation of u(monet ar y_cost s,mr i deshar i ng ) from β differs for every agent as

β must be set in relation to the location where the agent wants to be picked up as well as

the distance the agent wishes to be transported. For this purpose, β is compared to the

costs of local taxi services c(mt axi ). Local taxi services typically charge a fixum based

on the area of the pick-up location and the destination, as well as an additional fee

depending on the actual travel time and driven distance. Estimated c(mt axi ) is used as

a reference value for which the utility Ubi d approximates 0 as it would be possible from

this point on to simply call a taxi and forget about ridesharing. In addition to this, Ubi d

takes the maximised value on the utility-scale umax = 10 if a ride turns out to be free of

charge. Based on this, the following function was used to model the rapidly decreasing

cost-benefit perception of individuals for Ubi d as comparable to the approach used for

modelling diminishing marginal utility (see Figure 4.8) (see [257]).

(4.5) Ubi d (β,mt axi ,umax) = umax ∗e
(β∗ ln(0.003)

c(mt axi ) )

Furthermore, it is defined:

(4.6) u(monet ar y_cost ,mr i deshar i ng ) =Ubi d

Computed utility u(monet ar y_cost ,mr i deshar i ng ) is then used to determine UT T

for ridesharing. In the event that UT T for ridesharing is expected to fall below the utility

of an alternative mode option, the agent exits the auction and thus opts for a different

mode of transport. Otherwise, the agent continues in the auction and submits its bid.

The final costs of the ride are determined when the auction is completed.

As an example, simulation is given for a scenario situated in the German city of

Gießen. Gießen is located within the Rhine-Main region which is part of one of the

largest projects for on-demand mobility in Europe [258]. The project involves the launch
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Figure 4.9: Agents scattered over the simulated area around Gießen

1 to 8, with 1 being the lowest and 8 being the highest utility. Utilities are based on values

from the grocery shopping scenario (see Table 4.7) with some deviations that are due to

the differing infrastructure of Wetzlar and Gießen. Gießen has followed a strategy in

traffic planning to improve the traffic infrastructure for pedestrians and cyclists, which

has led to the discontinuation of some road lanes and parking spaces for cars [260]–[262].

This changes the utilities of these modes in terms of reliability, safety and convenience

(see Table 4.11). In Germany, public transport is typically included in the ticket for

the event which in this scenario leads to u(monet ar y_cost s,mpubl i ctr anspor t ) being

maximised. Note that the focus of this experimentation is not to present a validated

simulation model but to demonstrate how the proposed method allows agents to be

reused across varying scenarios.

Individuals that travel by car may offer their friends a lift (private ridesharing). For

this purpose, social relations among individuals have been implemented using the

modified Barabási-Albert algorithm that uses a two-step procedure to generate (1.)

social connections within the region and (2.) transregional relations. k-means clustering

has been applied based on the euclidean distance of their home locations to obtain

subsets of the agent population Γ⊆ A according to the 22 residential areas. For each of

these subsets Γ a social network has been generated using the Barabási-Albert algorithm

with σ0 = 5, σ = 5 and n = |Γ|. In the second step, transregional relations have been
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Table 4.11: Mode utilities u(τ,m) for the music concert scenario with n ≤ 4 representing the
number of non-driver seats in a car.

Bike Walking
Public

Transport
Car

Ridesharing

for n add’l.

passengers

Flexibility 6 4 5 8 8 - n

Time 4 1 6 8 8 - n

Reliability 7 8 6 6 (⇓ 1) 6

Privacy 5 4 1 8 8 - n

Safety 6 (⇑ 4) 7 (⇑ 1) 8 7 7 - n

Environmental

Impact
8 8 6 0 0 + n

Monetary

Cost
6 8 8 2 tbd from auction

Convenience 2 (⇑ 1) 3 (⇑ 2) 5 7 (⇓ 1) 7 - n

generated within the whole agent population A withσ0 = 2, σ= 2 and n = |A|. To reduce

the number of individual vehicles, the event organiser encourages visitors that travel

by car to not only limit ridesharing to their private surroundings but to also consider

giving other visitors a ride in exchange for compensation (commercialised ridesharing).

For this purpose, the organiser of the event provides a digital platform that connects

drivers and individuals looking for ridesharing options via an auction system. Drivers

can indicate their willingness to take additional passengers as well as the number of

remaining seats. Interested individuals can submit a monetary bid to request a ride

from one of these drivers.

As an artificial use case, this research looks at whether different implementations

of the pooling process can increase the use of ridesharing and thus improve the load

of passengers in vehicles. This would help to relieve the limited parking space at the

venue as well as reduce the environmental impact caused by the event. For this purpose,

three simulation runs (S0,S1,S2) have been performed with identical agent population.

Note that the current implementation uses stochastic elements only while computing

preferences aτ, thus keeping the subsequent decision processes deterministic. This

simplifies analysis of the use case, making comparison of simulations easier. S0 serves

as a reference simulation and therefore features only privately organised rideharing
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and no commercialised ridesharing. In simulations S1 and S2, drivers first organise

ridesharing in their private surroundings and in the case that a driver is willing to take

additional passengers, the agent will participate in the auction process. S1 uses an

English auction for the pooling process while S2 implements a first-price sealed-bid

auction. In the English auction agents successively submit bids which raises the price

until only one agent remains. Agents are allowed to bid multiple times until the highest

bid wins. In comparison to this, the first-price sealed-bid auction allows agents to

only bid once. Bids are submitted independently without any knowledge about their

competitors. Same as in the English auction, the highest bid wins.

To measure the effects of the different implementations of ridesharing in this scen-

ario, the following performance indicators have been altered or defined. The first

indicator looks at the avg. passenger load in vehicles which is computed using arith-

metic means over the number of agents travelling together in one vehicle. This indicator

only considers the two transportation modes mcar and mr i deshar i ng . Furthermore,

there are new indicators that measure the number of privately organised ridesharing

as well as the number of commercially organised ridesharing. Analogous to the grocery

shopping example, environmental impact is measured using performance indicators on

aggregated travelled distances. In particular, global travel distance is computed as the

sum of the overall distances travelled by the set of all agents. This indicator adds up the

travel distance of each agent regardless of whether they were travelling within the same

vehicle. In contrast to this, combustion distance only considers the two transportation

modes mcar and mr i deshar i ng as they produce additional exhaust gases. In this case,

agents that travel in the same vehicle do not cause additional combustion distance.

Public transport has been excluded from the calculation of this indicator, as rail and

bus services generally operate regardless of the amount of passengers associated with

the event.

As this is an artificial use case it can only be speculated about the results of the

simulation. It should be noted that conclusions on behavioural changes require a well-

designed research effort with field experiments which is not within the scope of this

research. However, to demonstrate how the proposed model can be used to experiment
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on this type of scenario, a discussion is given of the simulation output for the artificial

use case:

The comparison of modal choices in simulations S1 and S2 shows that the total

amount of ridesharing increases in S2 (see Table 4.12). Drivers and passengers that

participate in ridesharing can be examined separately. While the amount of rideshar-

ing drivers show a slight increase, a more significant increase can be observed in the

number of ridesharing passengers. Performance indicators in Table 4.13 reveal that this

increase exclusively applies to the number of commercially organised rideshares as the

number of privately organised rideshares remains the same. Thus, it can be concluded

that the increasing use of ridesharing is the result of changes in the auction design.

As the English auction in S1 allows agents to look into the bids of the others, agents

only need to submit bids that are slightly higher than the others. This may lead to the

final bid turning out to be lower than the winner would have been willing to pay. In

contrast, as agents in S2 are limited through the first-price sealed-bid auction to only

bid once without any knowledge of their competitors, agents are more likely to bid

what they are actually willing to pay. As a result, bids in S2 tend to be higher than in S1

which increases the utility for drivers to accept additional passengers and thus leads to

more rideshares. It can be noted that the indicator average passenger load in vehicles

reflects this appropriately (see Table 4.13). Furthermore, it can be observed that the

two indicators on global travel distance and combustion distance in S1 and S2 have

increased in comparison to S0. This shows that promoting the use of ridesharing in

this artificial use case does not necessarily improve environmental impact. One reason

for this is that picking up passengers requires a detour which causes additional travel

Table 4.12: Comparison of modal choices for simulations S0, S1 and S2

Modal Choice S0 S1 S2

Shared Ride (Driver) 14.53% 15.73% 18.40%

Shared Ride (Passenger) 14.53% 16.47% 24.07%

Walking 01.27% 01.27% 01.13%

Bike 05.67% 05.40% 04.53%

Public Transport 22.67% 21.93% 19.60%

Car 41.33% 39.20% 32.27%
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Table 4.13: Comparison of KPIs for simulations S0, S1 and S2

KPI S0 S1 S2

Average passenger load in vehicles 1.26 1.30 1.48

Number of privately organised rideshares 218 218 218

Number of commercially organised rideshares 0 29 143

Global travel distance [km] 8783.38 9170.63 9003.04

Combustion distance [km] 7229.51 7592.02 7570.00

Normalised average traveller utility 0.6201 0.6192 0.6091

distances. Another reason can be seen in the shift in modal choices when looking at

which agents have actually switched to ridesharing (see Table 4.12). In particular, the

number of pedestrians, cyclists and individuals that use public transport has decreased.

Furthermore, the number of car drivers also decreases as they are counted as ride-

sharing drivers when taking additional passengers or switching to being ridesharing

passengers. All in all, results show that rather than getting visitors to abandon their

private vehicles, ridesharing in this scenario has served as an alternative to more en-

vironmentally friendly options which has led to counterproductive effects. Another

observation is that as the amount of ridesharing increases, the average traveller utility

decreases. In this scenario, this is caused by agents submitting a bid for ridesharing

based on the number of passengers known at the time of the auction. Thus, agents

assume a utility value for ridesharing that may decrease if at a later point in time more

agents want to join in the same vehicle. However, once a ridesharing agreement has

been made, the ride is considered confirmed and typically will be completed as it would

be in the real world. This can lead to agent utilities being lower than initially expected.

This concludes demonstration of reusing agents for the music concert scenario. The

purpose of these experiments is to demonstrate how the proposed framework is able to

capture plausible changes in performance indicators when using different input settings.

Validation for exact values of simulation results typically involves empirical validation

against real-world data which currently is not the focus of this work. For example, results

of this experimentation may have differed based on the implementation of the social

network (see [263]). For real-world applications, relevant data for input and validation of

the simulation includes geographic information of the simulated area as well as census
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data and behavioural surveys. With regards to geographic map information, this data

can be obtained from OpenStreetMap [79]. In addition to this, census data is typically

accessible through governmental institutions whereas obtaining survey information

on activity-specific behaviour can be more difficult. In particular, this information

is usually surveyed as part of consumer studies by either public or private research

institutions. Primary data and results from these studies are occasionally published

in online databases such as GESIS1, Statista2, or can usually be made available upon

request or individual agreements.

4.4 Summary of Chapter 4

This chapter looked at the issue of finding appropriate methods to model individuals

and their decision behaviour for current scenarios in mobility. For this purpose, section

4.1 provides a brief introduction to semantic technology. In section 4.2, a framework

is presented that uses semantic technology to capture knowledge and preferences of

individuals as determining factors of agent decisions. The application of semantic tech-

nology allows the implementation of general agent activity logic to be separated from

aspects of modelling agent knowledge. Based on the three layers of the CommonKADS

approach, the traditional BDI agent has been extended with a qualitative model of

world knowledge. The lowest layer contains information on domain knowledge and

abstracts common concepts from the travel domain from activity knowledge. Based

on this, activity knowledge can be flexibly extended or replaced which allows agents

to be reused across different scenarios. In the second layer, this domain knowledge is

extended by person-related concepts that describe the agent attributes. In particular,

census properties from this ontology serve as input to SWRL rules that compute agent

preferences based on survey data. Information from the first and second layers is used

for agent decision-making which is implemented using BDI agents in the third layer.

For demonstration purposes, section 4.3 demonstrates simulation for two mobility

1https://www.gesis.org/en/home (access on 26/04/2023)
2https://www.statista.com/ (access on 26/04/2023)

96



CHAPTER 4. MODELLING INDIVIDUAL PREFERENCES

scenarios that differ in the considered travel activity. The first scenario deals with

traffic caused by individuals during their grocery shopping while the second scenario

simulates individuals travelling to a music concert. As stated previously, the focus of

this research lies not in the input values given in Tables 4.3 and 4.7, but in the manner in

which the simulation responds to their modification. In the experiments for the grocery

shopping scenario, modifications model an improvement in the quality of alternative

travel modes to car travel, allowing walking and cycling to be viewed more favourably

as genuine alternatives to the car. It can be noted that the simulation output reflects

this appropriately. Table 4.8 demonstrates a shift away from car travel when the utility

of the other modes is increased and policies that favour them are introduced (B2 and

C2). It is this ability to respond appropriately to differing input scenarios that makes

the proposed methods in this research valuable. Effects on individuals are the basic

cause of how the system changes under interventions which is why they cannot be

ignored. Conducted experiments have shown how modelling more details of individual

behaviour establishes the basis for measuring individual utility and thus creates an

indicator for measuring the effects of policies not only on global system behaviour but

also on individuals. To demonstrate how agents can be used across varying scenarios

simulation has been given for a second scenario that looks at different implementations

of ridesharing in traffic on leisure trips.
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Current State in Validation and

Verification of Agent-based Simulations

Given that multi-agent simulations model systemic behaviour based on a large set of

individuals, validation and verification of these simulations can become particularly

complex. Thus, validation and verification may cover a wide spectrum of methods

that focus on different aspects of the simulation. This chapter gives an overview of

the current state of validation and verification specifically of agent-based simulations.

The focus of this chapter is to reflect on important related work and to outline current

challenges and limitations. Based on this, specific issues can be addressed in the scope

of this research to generate more insights into the internal mechanisms of the simulation

and thus make a contribution towards improving the validation and verification of

agent simulations. For this purpose, it is important to clarify the different approaches

to the validation of multi-agent simulations. [29] have described different levels of

validity/validation for multi-agent simulations which are consistent with discussions

given by [264] and [265]:

1. Replicate or empirical validation is the most basic concept which looks at

whether inputs and outputs of the simulation match observations of the real-

world system. In this case, simulation output is compared against historical data

typically over multiple runs.

2. Predictive validation goes one step further and looks at whether the simulation
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is able to forecast future behaviour. In this case, simulation output is compared

to field experiments on the real-world system.

3. Structural validation examines how results are computed during the simulation.

Simulation output may correctly reflect patterns and findings from empirical data

but might have been obtained through a completely different process.

While replicate and predictive validation primarily examine the correctness of in-

puts and outputs of the simulation which resembles black-box testing from software

engineering, structural validation looks into the internal mechanisms of whether results

are computed through a plausible process similar to white-box testing. Furthermore,

replicate and predictive validation can be considered as part of operational validation

whereas structural validation is covered by computerised model verification. Validation

techniques from operational validation, such as sensitivity analysis or using visualisa-

tions and statistical methods for crosschecking simulation output against observational

data, are also used for replicate and predictive validation of agent-based simulations.

Assuming that appropriate validation data can be obtained, the course of action for

replicate and predictive validation is well understood. However, the situation changes

when dealing with the structural validation of agent-based simulations. This type of

validation is known to be particularly difficult and remains an ongoing challenge. This

research therefore looks into the challenges of structural validation as part of computer-

ised model verification to be further researched.

Formal verification and testing are both activities from computerised model verifica-

tion that share the objective of finding errors (bugs) in the implementation of a software

program [266]. The difference between these two activities is that testing can only find

errors, but not prove their absence, while the idea of formal verification is to provide

mathematical proof of correctness and thus prove the absence of errors [266]. However,

providing proof of correctness is complex and in some cases not even possible. For

example, the Turing halting problem (see [267]) is undecidable producing an infinite

set of states and therefore it is not possible to provide formal verification [268]. For this

reason, practical application in computerised model verification tends to follow the

99



CHAPTER 5. CURRENT STATE IN V&V OF AGENT-BASED SIMULATIONS

principle of falsification (see [269]) rather than providing formal proof of correctness.

Thus, practical computerised model verification is to be understood as a form of testing

rather than formal verification in the mathematical meaning.

5.1 Model Checking

Model checking is a branch of formal methods that uses mathematical techniques to

verify the correctness of a software program. This involves using mathematical models

to describe the behaviour of the system which can then be used to apply logic-based

reasoning algorithms in order to prove that the system satisfies a set of specified proper-

ties. In essence, model checking can be broken down into the following activities [268]:

1. Modelling a finite state-transition graph (also known as the Kripke structure) to

obtain a formal representation of the software program. This assumes that the

program can be represented as a graph with finite states and transitions in the

first place.

2. Formal specification of properties that define what is considered correct program

behaviour. Using modal logic these properties are typically expressed as theorems

that should not be violated at any time during the execution of the program.

3. Applying algorithms to explore the state space of the graph to identify whether

there exists a state in which the software program violates a property defined

in the formal specification. The program is assumed to be correct when the

algorithm has processed all states and no violation is found.

Model checking is often referred to in the literature as a means for formal verification.

However, in practical application verification guarantees provided by model checking

are limited as it is performed only for a specific set of properties while typically requiring

assumptions about the environmental conditions [266]. For example, the Turing halting

problem is undecidable and therefore cannot be modelled as a finite state-transition

graph. To do so, assumptions are required about the environmental conditions of
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the program. In particular, integer values need to be bounded in order to constrain

potential states to a finite space [268]. These assumptions about the environment are

often necessary to make a program verifiable with model checking. However, this leads

to verification guarantees to apply only to a subset of the potential state space. Thus,

rather than being a means for formal verification in the strict mathematical meaning,

model checking should be viewed as a systematic and more exhaustive variation of

testing as it is able to find bugs within a finite state space but cannot prove the absence

of bugs when potential states are infinite [266].

The approximation and abstraction of infinite state systems is one of the main

challenges in research on model checking [268]. In this context, a closely related issue is

the state-explosion problem [270]. In simple programs that for example involve multiple

interacting parties, it can be demonstrated that the potential state space increases

exponentially with the number of parties and actions (strategies) involved. Processing

these large state spaces, particularly with model checking and reasoning algorithms

requires a lot of computing capacity which is expensive and in some cases makes it

infeasible to be applied in practice. Research in model checking has since been trying

to cope with the state-explosion problem from different perspectives. For example,

improving algorithms to search/traverse the state graph (directed model checking) [271],

[272], reducing complexity of the state graph by removing redundancies (partial-order

reduction) [273]–[275] or dividing the problem into smaller subentities to deal with

(compositional model checking) [276], [277].

Further research on model checking deals with the formal specification of properties

in multi-agent systems based on modal logic [278], [279]. [280] have given a detailed

discussion on the use of modal logic for the formal specification of multi-agent systems.

The application of model checking techniques to find errors and bugs in software

systems comes with several benefits. Model checking algorithms are applied to the finite

state-transition graph of the implementation (Kripke structure) which is an abstract

representation of the source code. As a consequence, it is not required to have the

actual implementation of the model, given that such a graph structure could already be

obtained based on the conceptual model. Thus, model checking can be employed at a
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very early stage in the model development process during conceptual model validation

which allows errors and bugs to be avoided before they are implemented. Another be-

nefit is that the approach to model checking is formalised and mathematically founded.

It is therefore possible to fully automate the verification process e.g. [281]. Furthermore,

model checking is able to prove the absence of errors by systematically exploring the

finite state space. This makes it possible to locate errors and bugs even for edge cases

which otherwise would have been difficult to find using conventional testing methods.

However, this thorough approach of model checking also leads to significant drawbacks

in performance. The main challenge continues to be the scaling of model checking

from toy examples to real-world problems. In particular, for problems that involve a

large number of agents with a wide range of actions, the combinatorial complexity

leads to state space explosion. In such cases, model checking becomes time-consuming

and requires a lot of computing capacity. This is particularly noticeable when dealing

with agent-based traffic simulations. The application of model checking for real-world

problems can therefore be impractical which is why model checking is mostly employed

for safety-critical systems. Furthermore, simulated traffic scenarios typically feature a

level of complexity that makes obtaining the Kripke structure as well as a formal specific-

ation of properties difficult and in most cases incomplete. This lack of formalism when

dealing with agent-based traffic simulations makes model checking ineffective while

requiring substantial resources. As a consequence, model checking in practice is not

particularly suited for computerised verification of agent-based traffic simulations on

real-world scenarios. In such cases where model checking cannot be applied effectively,

verification of software systems is achieved through appropriate testing procedures.

5.2 Static and Dynamic Testing

Testing is an important activity mostly known from software engineering. It has been

described as the process of executing a program with the intent of finding errors which

should be conducted throughout all stages of software development [282]. Testing is

a less formal approach to computerised model verification than model checking as it
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does not systematically explore the state space and thus cannot prove the absence of

errors [266]. In return, testing can be considered a more lightweight method which can

be faster and less resource intensive. The quality of testing ultimately depends on how

test cases are determined. As mentioned in chapter 2.3.3, there are two types of testing

related to computerised model verification: static and dynamic testing. [70] has given

an overview of commonly used techniques for both static as well as dynamic testing of

simulations. The difference between these techniques is that static testing examines

the system design without needing to execute the simulation whereas dynamic testing

checks the computerised model from a behavioural perspective when it is being ex-

ecuted [69]. For example, common approaches in dynamic testing include animation,

tracing or sensitivity analysis to investigate the behaviour of the simulation. Anim-

ating the movements of simulated entities can help to identify behavioural patterns

and facilitate the interpretation of simulation output. Tracing is a technique in which

the behaviour of specific entities is followed throughout the simulation to determine

whether the logic of the model is correct [69]. Sensitivity analysis investigates the output

behaviour of the model by executing simulations under different input conditions and

looking at how outputs change.

In contrast to this, static testing looks at the system design for example by manually

reviewing the source code or dealing with graphical representations of the system (e.g.

UML diagrams [13] or cause-effect graphs) [9]. Software engineers can perform testing

activities only to a certain extent on their own. To improve the testing of simulations,

experts from the simulated domain are typically consulted. Getting domain experts in to

verify the plausibility and correctness of logical coherences in the system is also known

as face validation. However, these domain experts do not necessarily have a background

in computing which is why face validation requires software engineers to walk the

expert through the source code (structured walkthrough). This approach is based on

manual processing and thus can be time-consuming. Furthermore, miscommunication

between domain experts and software developers is a regular occurrence which may

lead to errors, and important details getting lost in the process [283]. Face validation that

is complemented with additional graphical models of the system can help to overcome
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these issues. Graphical models are a formalised and compact representation of the

system. There is a broad spectrum of graphical approaches to model software systems

that differ in the scope of their modelled subject e.g. UML class vs activity diagrams.

[284]–[288] have extended UML diagrams with agent-related concepts some of which

have been implemented as tools to guide the software developing process of multi-

agent systems [289], [290] and even dealt with system design from a more behavioural

perspective [291], [292]. In this context, another type of graphical model that also

addresses the behavioural perspective on system design is event graphs [293], [294].

While these approaches describe the software system from different perspectives, cause-

effect graphs are particularly relevant when it comes to modelling relations between

input and output variables [295]. Relations between input and output variables are of

special interest for policy-making to determine effective interventions. Furthermore,

graphically representing these relations can help provide more insight into how output

variables are computed. Thus, the use of cause-effect graphs can provide additional

information for structural validation of simulations.

Cause-effect graphs have been applied in non-agent-based simulations, where they

model relations between variables on a common level of abstraction [10], [293]. For

example, figure 5.1 demonstrates a causal loop diagram, which is a specific variation

of cause-effect graphs, that models the mutual influence between the two variables:

the amount of predators and prey in an ecological system [10]. Increasing the numbers

of predators (foxes) leads to a decreasing population of prey (snow hares), while at

the same time, decreasing numbers of prey leads to food scarcity for predators, which

reduces their population. This allows the population of prey to recover, resulting in a

snow haresfoxes

-

+

Figure 5.1: Example of a causal loop diagram on the mutual influence of predators and prey
[10].
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causal loop given that the system stabilises itself within certain limits.

However, due to the missing link between the micro- and macro-system level of

agent-based simulations (also known as the multi-level property of agent-based models

[296]), conventional cause-effect graphs need to be extended to deal with the hier-

archical structure of cause-effect relations in agent-based simulations. Developing a

tool that is able to extract cause-effect relations from a given computerised simulation

model, can help achieve a graphical representation of the simulation and therefore can

be a significant contribution towards improving structural validation of agent-based

simulations based on face validation.

5.3 Summary of Chapter 5

This chapter has given an overview of the current state of validation and verification of

agent-based simulations. In particular, literature distinguishes between empirical, pre-

dictive and structural validation. Activities for the validation of agent-based simulations

typically rely on approaches from empirical and predictive validation that primarily

look at the correctness of inputs and outputs. However, an ongoing challenge remains

in the structural validation of agent-based simulations where the focus is to determine

whether results are obtained through a plausible process. Thus, structural validation

focuses on computerised model verification rather than operational validation of sim-

ulations. Common techniques from computerised model verification involve formal

verification and testing. While testing aims at finding specific cases in which a software

program behaves incorrectly, formal verification seeks to prove the absence of errors.

However, formal verification can be difficult as even simple programs can lead to an

infinite number of states and therefore formal verification cannot always be achieved.

Hence, practical applications focus on model checking rather than trying to achieve

true formal verification.

In section 5.1, model checking is presented as a structured approach to testing

trying to prove the absence of errors within a finite state space. For this purpose, model

checking relies on assumptions to make the state space finite. Within this finite state
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space, the program can then be checked against a set of defined theorems (formal

specification). However, state spaces of software programs easily become very complex

and thus model checking typically requires a lot of computing capacity. For this reason,

model checking can be limited when it comes to the computerised verification of

agent-based simulations, especially when looking a large simulations for real-world

scenarios.

In cases where model checking is not feasible, computerised verification is achieved

through testing. In section 5.2, a differentiation is made between static and dynamic

testing. Static testing examines the system design without needing to execute the

simulation whereas dynamic testing checks the computerised model from a behavioural

perspective when it is being executed. There are methods from both dynamic and

static testing that can be used for the computerised verification of simulation models,

e.g. tracing or face validation. However, these methods typically require a significant

degree of manual processing e.g. software developers manually reading the source code

together with domain experts. Structural validation using these methods is prone to

errors and therefore requires further research.
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A Graph-based Framework for Extracting

Cause-Effect Relations from Agent-based

Traffic Simulations

As described in this thesis, agent-based simulations have been applied to study and

predict social-behavioural patterns in traffic. They are particularly suitable as they

allow system behaviour to be modelled and simulated as the emergent result of be-

havioural patterns of a large set of individual travellers. While this type of modelling

can be more intuitive, the approach also leads to new challenges in the reproduction

of results ex-post as well as comprehension of cause-effect relations, as outcomes are

achieved through the collective of autonomous decisions. Therefore, users applying

agent methods may be left in doubt about the quality and validity of the results and

thus cannot argue convincingly using the predictions (see [297] for a discussion on

trust in simulations). At the same time, transportation researchers that come up with a

conceptual model for simulating specific traffic problems, work together with software

engineers to build computerised simulations but may end up with deviations in the im-

plementation due to peculiarities or subtleties of programming. It is currently difficult

for these transportation researchers, who may have little or no background in software

development, to understand and validate the internal structure of the implemented

model (structural validation). This makes it difficult to trust the findings obtained
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from these simulations. [298] have discussed the role of explanations for building trust

in intelligent systems with emerging behaviour. Trust in intelligent systems can be

promoted by increasing the transparency about how results are derived. This can help

to make the results of simulations more convincing and thus motivates the effort to

extend agent-based simulations with more explanatory capabilities.

Based on this, this chapter focuses on creating more transparency about the internal

mechanisms of agent-based traffic simulations. In particular, by providing additional

information about how results are derived. Explanations can be given through different

presentations, such as textual descriptions or graphical representations. Informational

focus, level of detail as well as presentation may vary depending on the target audience

for which explanations are being provided. For example, software developers may be

interested in the interaction and information exchanged between system components

(e.g. for debugging purposes) whereas policymakers need to understand cause-effect

relations from a social-behavioural point of view to identify effective and efficient inter-

ventions in the traffic system. Effects of interventions (system behaviour) are typically

captured through performance indicators (output variables) that measure relevant

information to answer specific research questions while causes are determined by mod-

elled user input (input variables) or resulting interim variables computed during the

simulation. Therefore, this research focuses on retrieving more explanatory information

about the cause-effect relations between input and output variables in agent-based

simulations. For this purpose, this research proposes a graph-based framework that

automatically extracts relevant information from the simulation and generates a graph-

based representation of cause-effect relations from input variables on the individual

level (e.g. preferences and attributes of traveller agents) to performance indicators

of the system on the global level (e.g. overall transit times or environmental impact).

Note that the intention of this thesis is to automatically extract and formally represent

cause-effect relations in a graph structure for improving the explanatory capabilities

of agent-based traffic simulations and not to present a comprehensive method for

structural validation. However, the graphical representation of cause-effect relations

can serve as additional information for domain experts to get an overview of the system
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and thus can be considered a contribution towards improving structural validation

based on face validation. An earlier version of parts of this chapter has been published

in [2].

6.1 Method

Cause-effect graphs have been applied in non-agent-based simulations, where they

are used to model chained causal relations between input parameters and system

behaviour measured by appropriate indicators (e.g. [10], [293]). However, multi-agent

simulations shift the paradigm of chained causal relations to multiple levels of detail

and abstraction. Consequently, there is a need for conventional cause-effect graphs to

be extended. To capture the hierarchical structure of cause-effect relations between

input and output variables in agent-based traffic simulations, this chapter proposes a

new graphical modelling method that is called Multi-Agent Modelling Notation (MAMN).

Based on this, relevant information about cause-effect relations can be automatically

retrieved from the simulation by implementing appropriate logging mechanisms using

techniques from aspect-oriented programming (AOP) [299] and represented in graph

structures. This allows more insights to be given about the internal mechanisms of the

simulation.

6.1.1 Applying Cause-Effect Graphs to Agent-based Models

System behaviour, which is often mirrored in output variables (key performance indic-

ators), depends on both the modelled input as well as the internal mechanisms and

dynamics of agent behaviour. Crucially, direct and indirect consequential effects are the

outcome of calculations according to mathematical functions and formulas expressed

in the model. Chaining these calculations and corresponding intermediate variables

reveals causal relations between input and output variables. These relations can be

complicated in multi-agent systems, but representation in a graph structure can make

the internal mechanism of the model more accessible.
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Cause-effect graphs have previously been used for a number of purposes, including

software testing [300], system dynamics models [301], and management tools [302].

They are an explicit and precise formalisation of logical systems and serve as a compact

representation. For example, cause-effect graphs have been used in software testing to

specify test cases for combinations of input and output variables [300]. Input variables

define causes, while effects are represented as output variables. Cause-effect graphs

have also been applied for visualising aspects of simulation models [10], [293]. These

approaches typically differ in the type of cause-effect relations modelled in the graphical

representation, e.g. [293] focuses on modelling cause-effect relations between abstract

events, rather than the computational aspects of key performance indicators. However,

cause-effect relations between input parameters and performance indicators are of

particular interest for policy-making. As presented in Chapter 5.2, a specific variation of

cause-effect graphs are causal loop diagrams which are used in system theory to model

mutual effects between variable entities, e.g. mutual influence between predators

and prey in an ecological system [10]. The system theoretical view of reducing the

complexity of information from reality to formal systems is an essential prerequisite for

building computable simulation models. Building richer simulation models typically

involves the modelling of more system variables. Thus, observed effects are not a

direct consequence of a single variable but of multiple causative variables (or chains of

variables). Bayesian networks are an example of cause-effect graphs that allow output

variables to be linked back to possible (chains of) input causes based on probabilities

[303], [304]. However, applying cause-effect graphs to agent models has been difficult

due to causal relations being the emergent result of behavioural patterns of a large set of

individuals which changes the paradigm from chained causal relations to several levels

of detail and abstraction. This implies that the use of graphs working on a single level of

abstraction is not appropriate and that a hierarchical approach separating individual

and global perspectives would be more suitable. The semantics of a graphical notation

need to capture the internal aspects of individual agents, i.e. preferences and their

decision-making behaviour, as well as their context in the computation of performance

indicators at the global system level.
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Other approaches to the visualisation of multi-agent systems have focused primarily

on system design by extending traditional methods from software engineering (e.g.

[284], [286]). Some of these methods have been implemented as tools to guide the

software developing process of multi-agent systems [289], [290] and even dealt with

system design from a more behavioural perspective [291], [292]. However, these mod-

elling methods have a primary focus on the technical design of software components,

rather than the cause-effect relations of performance indicators in a simulation model.

Hence, there is a need for a graphical method that is able to capture exactly this type of

causal relations between input parameters and performance indicators on the social-

behavioural level as these are particularly relevant for policy-making.

For this purpose, this research proposes a new graphical notation to model the

hierarchical structure of cause-effect relations between input and output variables

in multi-agent simulations. The focus is on modelling the main logical constructs

commonly used to simulate agents in route choice scenarios. As input variables in

multi-agent simulations mainly revolve around individuals and their behaviour, this

should be reflected in the modelling. Balke and Gilbert have given an overview of

established architectures used in literature for modelling agent behaviour [89]. For this

research, focus is given to modelling agent behaviour according to the commonly used

Belief-Desire-Intention (BDI) model [101].

Unified Modeling Language (UML) is a standardised general-purpose modelling

language to visualise the design of a system [13]. It includes various types of diagrams

that describe a system from different perspectives (see Figure 6.1). For example, com-

posite structure diagrams and class diagrams can be used to visualise the structural

relations between system components while state and activity diagrams are used to

model the dynamic behaviour of objects within the system. However, research and

practical application typically lead to new and distinct use cases that cannot always be

completely covered by UML. For this reason, UML allows the extension of its diagrams

by creating dedicated profiles. A profile allows metaclasses of a UML metamodel to

be adapted for different purposes [13]. This implies that new syntax constructs as

well as new semantics can be added to a graphical model by creating instances of the
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Figure 6.2: Metamodel of Activity Diagrams (see [12], [13]).

and N the set of variable nodes. Vertices f ∈ F are equivalent to notation elements

known from UML activity diagrams and are used to model aggregations of functional

sequences as well as the start and end of simulation (sub)processes. As the focus of

MAMN is on modelling cause-effect relations of input and output variables, functional

nodes f ∈ F serve as an abstraction of the implemented logic in the simulation program.

This includes for example mathematical formulas or algorithms used to compute agent

decision-making of which the result is reflected in the output variables. The abstraction

of these logical sequences into functional nodes allows cause-effect relations between

variables on the same level to be modelled as input/output chains while at the same

time details of functions can be shifted to a sub-level as a separate graph. For this

purpose, UML activity diagrams capture details of functions as subactivities. Functional

sequences that are moved to a sub-level are indicated on the upper level by adding

the subgraph symbol to the activity node. Vertices n ∈ N are new instances of the

parameter metaclass defined in the metamodel of UML activity diagrams. These

vertices are an extension to the standard profile that adds a structural view of simulation

variables. In particular, this type of vertex is used to model input parameters and

performance indicators of the simulation, as well as relevant intermediary variables
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that are produced during the computation of performance indicators. The shape of

variable nodes n ∈ N depends on the contained type of information e.g. primitive

(rectangles) or complex information (circles). The outline of these variable nodes

indicates whether n is a single variable (solid) or a collection of variables (dotted).

Furthermore, MAMN includes dedicated nodes for modelling the internal aspects

of agents based on the BDI model. BDI agents typically perform action decisions

(intentions) on the basis of defined goals (desires) and their modelled knowledge of

their external world (beliefs) [101]. Based on this, MAMN introduces mental-level

nodes NM and FM . Beliefs are variables NM that contain information about the

current internal state of an agent as well as perceived information about its surrounding

environment. This is modelled using a circle element with a bold dashed border. In

addition to this, intentions and desires are functional nodes FM that model agent

behaviour. They are instances of the action metaclass defined in the metamodel of

UML activity diagrams. Desires define the goals of an agent to maintain or achieve a

certain state. In the context of mobility, this can also be referred to as travel purpose.

Mobility of individuals typically is a necessary means for pursuing personal objectives,

such as travelling to work or going to shop for groceries. In the MAMN notation, desires

are modelled using a trapezium shape. To achieve a desired goal agents have to perform

actions or a series of subsequent actions. This is referred to as intentions in the BDI

model and modelled in MAMN as a hexagon. These new notation elements (trapezium

and hexagon) have been chosen based on perceptual discriminability (see [305] ) as

well as with regard to the symbol being a basic geometric shape so that they can be

implemented for the visualisation by common graph frameworks.

In addition to this, vertices of a graph are linked through edges e ∈ E which are

instances of the transition metaclass defined in the metamodel of UML activity dia-

grams. Edges are pairs (v1, v2) with v1, v2 ∈V . The standard flow transition of UML

activity diagrams is interpreted in MAMN as a causal relation. However, as vertices

have been extended with a structural view, edges will also be extended with the appro-

priate semantics to model relevant structural relations between variables. Let there

be E = EC ausal ∪EC ausalFor E ach ∪EConstr uctor ∪ESel ector ∪ECont ai n ∪ECont ai nFor E ach .
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can be utilised in a bi-directional process to either transfer a theoretical simulation

model into a concrete implementation as an executable piece of code (forward engin-

eering) or to represent information from a given implementation (backward/ reverse

engineering) which can be used to increase transparency and explainability of a system.

In this section, the interest of this research lies in the second manner. In particular,

MAMN graphs that are generated automatically from the simulation can provide more

insight about how the results of agent-based traffic simulations are derived and thus

can give explanatory information about the internal mechanisms of the simulation. For

this purpose, the following three-step approach has been developed in the scope of this

research (see Figure 6.4).

1. 

Extracting information 

from the simulation

2. 

Processing the 

information into a linked 

list structure

3. 

Deriving nodes and edges 

for the MAMN graph

Relevant information on 

cause-effect relations of 

input and output variables 

is collected during the 

simulation. This produces a 

list of log entries about 

executed method calls.

Information of the method 

log is processed and 

aggregated into a sorted 

linked list structure that 

reflects the flow of 

activities in the simulation.

By iterating through the 

linked list structure a set of 

of nodes and edges are 

derived according to the 

MAMN specification and 

thus can be visualised as a 

graph.

Figure 6.4: Three-step approach for generating MAMN graphs.

In the first step, relevant information for the MAMN graphs needs to be collected

during the simulation. As MAMN graphs are extensions of UML activity diagrams, the

progression of how variables are processed is reflected in the method calls executed

during the simulation. Hence, information about method calls needs to be recorded

during the simulation as this is the basis for the graph structure. To minimise the effort of

software developers having to manually log the required information with every method

declaration, techniques from aspect-oriented programming can be used. The intention

of aspect-oriented programming is to improve the modularity and maintainability of

implemented software by separating crosscutting concerns that are typically spread

across different places in the source code from the main functions of the program [299].

In particular, crosscutting concerns are implemented in a central place as an aspect
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Table 6.1: Relevant information on method calls to be extracted.

Relevant Information Description

Method name
The name of the current method that is being executed which is relevant

for creating activity nodes.

Class name

The name of the class in which the current method that is being executed

has been declared to uniquely identify the activity to avoid confusion

about methods with the same names in the source code.

Input variables

(type and name)
The type and the name of input variables of the current method.

Method type
Information on whether the current method is a constructor to create

appropriate edges in the graph.

Caller method name
The name of the previous method from which the current method has

been initiated.

Caller class name The name of class in which the caller method has been declared.

Current thread id
As multi-agent simulations are typically multi-threaded, information

is required on the current thread id.

cussed in the second step. Formally, a log entry l that is produced during the simu-

lation for a method call m is collected in a list L. Therefore, l ∈ L for which applies

l = {i d(l ), t I d(m),n(m),c(m),n(mpr edecessor ),c(mpr edecessor )}∪ Im . To further specify,

i d(l ) is the assigned id for log l based on the globally incremented counter of the logger

aspect and t I d(m) is the id of the thread in which m was executed. n(m) and c(m) are

the name of the method as well as the name of the associated class in which m was

declared. In the same manner, n(mpr edecessor ) and c(mpr edecessor ) are the method and

class name of mpr edecessor , where mpr edecessor is the preceding method from which m

was initiated. Finally, Im defines the set of input variables i ∈ I with i = {t y pe,name}.

t y pe contains information on the associated data type for input variable i while name

is the assigned variable name. To conclude the activities of the first step, L is serialised

and output to a file for further processing.

In the second step, log entries L are aggregated and processed into a linked list

structure that reflects the flow of the main activities of the simulation. This step takes

place after the computation of the simulation has been completed. For this purpose,

log entries are loaded and deserialised from the output file. Log entries l ∈ L are sorted

first by their thread id ti d and then by their log id li d . This gives insight into the

order of log entries within the same thread t . As described above log entries contain
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information about a method call m as well as their predecessor mpr edecessor from which

they have been initiated. It can be noted that for the method mst ar t that was used to

start the simulation, the resulting log entry contains no predecessor. In this case, the

log entry was already marked as the entrypoint when it was created. Assuming that

threads are typically terminated after completing their task and that new threads are

created whenever new tasks need to be processed in parallel, sorting the log entries

by their thread id already ensures that methods in the log entries list always refer to a

predecessor that is located somewhere earlier in the list. However, it is not guaranteed

that the neighbouring item in the list is also the relevant predecessor. As the log entry

l of a current method mcur r ent contains information about the class c(mpr edecessor )

and method n(mpr edecessor ) from which it was initiated, the relevant preceding log

entry l (mpr edecessor ) can be identified by iterating backwards in the list and finding

the last entry that matches the referenced predecessor class and method name (i.e.

c(mpr edecessor ) == c(mcur r ent I ter ati on) && n(mpr edecessor ) == n(mcur r ent I ter ati on)).

Based on this, the list of sorted log entries L can be processed into a linked list

structure that reflects the flow of activities in the simulation F . For this purpose, let

there be an activity a = (l , t y pe,Sa) for each l ∈ L. Thus, a is a triple consisting of a log

entry l , its t y pe, and an ordered list Sa of its successors. The type indicates whether a is

executed once or as a loop. Sa is empty at the beginning when a is created from l . With

subsequent iterations over L, the activity of the current iteration acur r ent are added to

the list Sa of the preceding activity. To reduce the complexity of the flow of activities for

later representation as MAMN graphs, activities acur r ent are only added to the list of

successors when the class and method name of the latest successor al atest ∈ Sa does not

match the same properties of acur r ent . In the case that the properties of al atest ∈ Sa and

acur r ent match, this indicates that the activity al atest ∈ Sa is being repeated. Therefore,

the type of the latest successor al atest ∈ Sa is changed to being a loop activity and

acur r ent will not be added to Sa one more time. Successors s ∈ Sa of activity a thus only

contain activities that are directly initiated by a. This concludes the creation of F being

a linked list structure to reflect the flow of activities in the simulation (see Algorithm 2).

Finally, in the third step, activities in the linked list structure F are used to generate
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Algorithm 2 Algorithm to process log entries into the linked list structure.

Require: List of log entries L
1: Initialise an empty linked list F
2: for each log entry l ∈ L do
3: Initialise an empty list Sa

4: Create an activity a = (l , type,Sa)
5: for each log entry lcur r ent ∈ L do
6: if lcur r ent refers to la as the predecessor then
7: acur r ent ← activity from lcur r ent

8: al atest ← last activity element in Sa

9: if class and method name of al atest ∈ Sa differ from acur r ent then
10: Add acur r ent to Sa

11: else
12: Change type of latest successor al atest ∈ Sa to loop
13: end if
14: end if
15: end for
16: Add a to the end of F
17: end for
18: return linked list F

MAMN graphs. In particular, separate graphs are created for different hierarchical levels.

Hierarchical levels are derived from the activities and their immediate successors in

the linked list structure. The proposed framework allows the end-users to select the

level of detail at which they would like to generate and look at MAMN graphs. For this

purpose, a breadth-first search is used to iterate through the linked list (see [306]). By

default, an MAMN graph is generated for each hierarchical level if the list of successors

contains more than one element. Let a be the current activity with the list of immediate

successors Sa . Depending on the user-configured minimum number of items in Sa

a separate MAMN graph will be generated for a. The overall description of the graph

is given by the name of activity a. Each graph contains a start and end node. Further

nodes and edges of the graph are derived from elements s ∈ Sa . For each activity s ∈ Sa ,

an activity node is created. In the case that s contains a list of successors Ss with a

number of elements that is greater than the user-configured minimum m, instead a

node is created for s being an activity with subgraph. Furthermore, an MAMN variable

node element (e.g. primitive, complex or collection variables) is created according to

the name and type of each input variable of the activity.

120



CHAPTER 6. EXTRACTING CAUSE-EFFECT RELATIONS

Apart from this, edges of the graph can be derived from activities s ∈ Sa . The start

node is connected to the first element of Sa while the last element in Sa points to the

end node. Typically the order of activities s ∈ Sa determines the flow of activities for

the graph. Thus, s ∈ Sa points to the next activity in the successors list. However, there

is an exception if s is an activity of the type constructor. In this case, it is first verified

whether there is already a variable node for the result of the constructor activity. In

the case that there is not already one, a new variable node is created. The constructor

activity node is then linked to the resulting variable node. This variable node then

refers to the next activity in the successor list. Furthermore, input variables point to the

associated activity. By default, a causal relation is created. Specialised edges are based

on the information of the node elements involved e.g. loop activities typically result in

outgoing for each relations while a constructor activity results in a constructor edge.

Using the proposed method, nodes and edges for the graph can be derived in a

fully automated process based on the information extracted from the aspect-oriented

logging mechanism. By default, this creates a graph which demonstrates the flow of

activities in the simulation as well as the associated input variables for each activity.

As an extension, the MAMN notation generally allows mental-level attributes of the

agents to be highlighted in the graph structure through dedicated notation elements

(mental-level nodes). These mental-level nodes are specialisations of the variable and

activity nodes. For the automated process to differentiate mental-level nodes from

conventional variable and activity nodes, relevant BDI properties need to be clearly

identifiable in the source code. When using a specialised framework such as JADEX for

implementing BDI agents in the simulation, the framework uses annotations to flag

BDI properties (beliefs, desires, intentions) at the relevant attributes and methods in

the classes of the source code [240]. In this case, the automated process for deriving the

nodes and edges of the graph structure is able to parse these annotations during the

logging process and thus change the type of the affected variable or activity node to the

corresponding mental-level node. However, if the simulation was implemented without

a specialised framework that uses this type of annotation, highlighting mental-level

attributes of agents in the graph requires annotations to be added manually. Based on
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the experience with the JADEX framework required time and complexity for adding this

type of annotation is minimal even when not using the JADEX framework. Note that

annotations on BDI properties are not necessarily required if the intention is only to

look at the flow of activities and the associated input variables in the simulation. This

concludes the process for deriving node and edge elements for the MAMN graph (see

Algorithm 3).

Algorithm 3 Algorithm to process the linked list structure into MAMN graphs.

1: Initialise empty set of MAMN graphs G and breadth-first queue Q
2: Enqueue F to Q
3: while Q is not empty do
4: Dequeue a from Q
5: Sa ← immediate successors of a
6: if |Ss | > m (user-configured minimum) then
7: Create a new MAMN graph Ga

8: Create nodes Sstart and Send in Ga

9: for each activity s ∈ Sa do
10: if |Ss | > m then
11: Create a node for s as an activity with subgraph in Ga

12: else
13: Create an activity node Ss in Ga

14: end if
15: for each input variable of s do
16: if variable node does not exist then
17: Create an MAMN variable node in Ga based on name and type
18: end if
19: Link variable node to s
20: end for
21: if s is a constructor activity then
22: if resulting variable node does not exist then
23: Create a new variable node for the result of s
24: end if
25: Link constructor activity node to the resulting variable node
26: Link the resulting variable node to the next activity in Sa

27: else
28: Link s to the next activity in Sa

29: end if
30: end for
31: Link Sstart to first element in Sa

32: Link last element in Sa to Send

33: Add Ga to G
34: Enqueue immediate successors of a to Q
35: end if
36: end while
37: return Set of MAMN graphs G
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Although the original intention of MAMN is to demonstrate cause-effect relations

of input and output variables, the implementation of the framework has revealed that

information on the output variables is particularly difficult to extract. This is due to not

every method having a return value. The presented method for extracting the relevant

information on cause-effect relations therefore does not fully manage to leverage the

expressive possibilites of the MAMN notation. However, retrieved information can still

be useful to understand how variables are processed within the simulation. Nodes and

edges may then serve as input for graph visualisation. In this research, visualisation has

been implemented using the open source library Graphviz.1

6.2 Demonstration

As proof of concept, the proposed graph-based framework has been applied to extract

relevant information and to generate the associated MAMN graphs for two different

simulations. In the first case, MAMN graphs are generated for a reduced example of the

grocery shopping simulation from Chapter 4.3.1. In the second example, the framework

is applied to a published simulation that deals with a commuter scenario in Edinburgh

[307].

6.2.1 Generating Cause-effect Graphs for a Reduced Example of the

Grocery Shopping Simulation

To demonstrate the proper functioning of the graph-based framework, a reduced ex-

ample of the grocery shopping simulation has been prepared. In this reduced example,

the main phases of the agent life cycle remain the same (see Figure 4.4). However, com-

putation in the simulation has been simplified with static values. For example, when

agents are supposed to move in the simulation there are no routes being computed

based on routing algorithms applied to geographical map data. Instead, distances are

statically assigned to the agents imitating agent movement. The focus of this experi-

1See https://www.graphviz.org/ - (accessed on 11/10/2023)
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mentation is on showing the causal relations when processing and passing on variables

during the simulation rather than looking at the actual values of these variables (provid-

ing additional information towards structural validation as part of computerised model

verification rather than operational validation). Thus it is possible to look at smal-

ler example simulations when trying to understand the internal mechanisms of the

model. In this section, the proposed framework has been applied to extract relevant

information for a simulation with a population of ten agents performing the activity of

grocery shopping. This resulted in a log with 99 entries (see Appendix A) that has been

processed to first obtain the linked list structure and then produce the visualisation as

MAMN graphs.

At the top level, the MAMN graph is rather straightforward (see Figure 6.6). The

simulation starts by creating a SimulationController. This SimulationController

initiates an activity to performSimulation(). The performSimulation() activity is

given as input variables the numberOfAgents and a collection of personaswhile details

of the performSimulation() activity are shifted into a subgraph (see Figure 6.7). This

is where the actual simulation takes place. The subgraph in Figure 6.7 starts with the

creation of the AgentFactory. This is a constructor activity, which is why the activity

AgentFactory.init() points to the resulting variable node AgentFactory. Based on

this, an agent population is generated in createAgents() using the input variables

numberOfAgents and the collection of personas. The agent population can be ac-

SimulationController.
init()

Simulation
Controller

SimulationController.
performSimulation()

⋔

number
Of

Agents

personas

Figure 6.6: Minimal Example - Activities on the top level: Starting the simulation with the two
user inputs number of agents and the list of personas.
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cessed via the getAgents() activity which results in the variable node for the collection

of agents. As agents and their beliefs have been annotated in the source code to indic-

ate their mental-level properties, the associated belief nodes are linked to the collection

of agents node using the contain relation. The outgoing foreach relation indicates that

for each agent within the collection a planJourney() activity is initiated. When the

planjourney() activity is completed, the agent proceeds with the purchaseItems()

activity. purchaseItems() is indicated as a mental-level desire node that initiates

the groceryShopping() intention. Once the grocery shopping activity completes,

a StatisticController is created which then executes the calculatePerfomance-

Indicators() activity. Again, details of calculatePerfomanceIndicators() are shif-

ted to a subgraph (see Figure 6.8). During this process, two performance indicators are

computed for global travelling distance as well as global combustion distance. At this

point, the example simulation comes to an end.

The systematic approach of the proposed method enables reverse engineering of

the internal mechanisms of the simulation at runtime in an automated process and thus

may help to ensure completeness and correctness of the obtained graph structure. Ob-

tained graphs in this example provide information on the ordered sequence of activities

during the simulation in an easily accessible manner. Inputs and outputs of activities

are associated with cause and effect relations, as inputs to activities are used to compute

the output variables. The representation of these relations as MAMN graphs gives an

overview of the simulation workflow as well as the chaining of preceding activities

and variables that have an influence on the computation of output/ result variables.

This type of information is an integral part of comprehending the implementation of a

simulation model especially when working with source code that was implemented by

a different contributor.

StatisticController.
determineGlobalTravelDistance()

StatisticController.
determineGlobalCombustionDistance()

Figure 6.8: Minimal Example - Subgraph for calculatePerformanceIndicators(): Computing the
two performance indicators global travelling distance and global combustion distance at the end
of the simulation.
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6.2.2 Generating Cause-effect Graphs for a Published Simulation Model

on Commuter Traffic

In the second example, MAMN graphs have been generated for a published simulation

model (see [307]). This simulation was executed as given and has not been simplified

as done with the grocery shopping simulation. The focus of the simulation was to

examine the modal choices of individuals when part of the staff has to permanently

change workplace e.g. when whole departments are relocated to another office within

the city. Given the new circumstances, individuals may have shorter or even longer

commutes depending on where they have their residency in the surrounding area. This

changes public transport connections as well as the overall costs for individuals to be

reconsidered. As a consequence, individuals are likely to change modes of transport

which can have different types of effects. For example, permanently relocating a de-

partment to another office may cause overall travel distances to increase. This will lead

to more employees travelling in private vehicles as they will not be able to continue

walking or cycling and thus has a negative impact on the environment. Individuals in

this simulation have also been implemented following the BDI model.

This time the proposed framework has been applied to a given scenario with 22

agents that are simulated over 30 days. Extracted information from the simulation at

runtime resulted in a total of 80922 log entries. Based on the aggregation mechanisms

that take place during the processing of the list of logs into the linked list structure as

well as the computation of nodes and edges for the MAMN graphs, it was possible to

achieve a compact representation of the simulation. At the top level, the simulation

starts with creating an instance of the SimParams object that holds input configurations

for the simulation (see Figure 6.9).

This is modelled in the graph as an SimParams.getInstance() activity that results

in a complex variable SimParams using a constructor relation. This SimParams variable

is subsequently complemented with information on the user configurations (e.g. output

file, map data (osmFile) or how many days are to be simulated) using setter functions

in the source code. Each set operation is modelled in the MAMN graph using an
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SimParams.
getInstance()

SimParams

SimParams.
setOutFile()

SimParams.
setOsmFile()

SimParams.
setTLSdirectory()

SimParams.
setCarDirectory()

SimParams.
setPostCodesDirectory()

SimParams.
setDays()

SimParams.
setDefaultCarParkSize()

SimParams.
setDefaultBikeParkSize()

Simulator.
init()

Simulator

ProblemReader.
init()

Problem
Reader

Simulator.
run()
⋔

outFile

osmFile

t
LSdirectory

car
Directory

post
Codes

Directory

days

default
Car
Park
Size

default
Bike
Park
Size

filename

Figure 6.9: Commuters Simulation - Activities on the top level: Processing user inputs.
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activity node together with the associated variable node for the input information.

When set operations for defining user configurations are completed, a Simulator

object is created using the same notation elements as already seen. Following this,

a ProblemReader is created that receives a filename in which data on the problem

scenario is defined. The top level concludes with an activity to run the simulation.

Analogous to the previous example details of running the simulation are shifted to a

subgraph (see Figure 6.10).

In the subgraph, the simulation starts by initiating the newDay() activity within

the TransportationManager. Agents in the simulation are modelled in the collection

node SimpleBDICommuter and have mental-level belief properties on their patience,

home and work location as start and end time of the work day. As the graph illustrates

each agent selects a travel option for the current day which is modelled as a mental-

level desire property and initiates the intention activity to get the cheapest option in

time. Following this, the simulation proceeds with processing simulated information on

commuter feedback before writing results and starting the next iteration (the next day)

of the simulation. At this level, details on the activities to selectTravelOptions()

(see Figure 6.11) as well as writeResults() (see Figure 6.12) have been shifted to sub-

graphs. Figure 6.11 on the activity to selectTravelOptions() essentially illustrates

the creation of the agent journey given two locations as input. In the simulated scen-

ario, these locations refer to the home and work location of the agent. The journey

is further specified with information about the start time as well as the direction of

travel (home to work or returning home from work) and also holds information about

the commuter as well as mode of transport. Apart from this, figure 6.12 on the activity

writeResults() shows the process of how results in the simulation are output. In this

context, it becomes apparent that performance indicators examined in the simulation

relate to modal choice as well as other indicators regarding required costs, emissions

and travel time of the determined agent journey.
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Location B

CJourney.
init()

CJourney

CJourney.
setTime()

TransportManager.
addJourney()

SimParams.
getInstance()

SimParams.
getWalkValue()

SimParams.
getWalkRadius()

CJourney.
setCommuter()

Commuter.
getTransportOptions()

⋔

CJourney.
setTransportMode()

Location A

time

request

Commuter

transport
Mode

direction

Figure 6.11: Commuters Simulation - Subgraph for Commuter.selectTravelOption(): Variables
and activites involved for selecting the travel option of an agent.
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SimParams.
getInstance()

SimParams.
getOutFile()

Commuter.
getModeIn()

Commuter.
getResultCSV()

⋔

Figure 6.12: Commuters Simulation - Subgraph for Simulator.writeResults().

CJourney.
getCost()

CJourney.
getEmissions()

CJourney.
getTravelTimeMin()

Figure 6.13: Commuters Simulation - Subgraph for Commuter.getResultCSV(): Documenting
the performance indicators costs, emissions and travel time at the end of the simulation.

All in all, the generated graphs and visualisations provide a means to gain insights

into the internal mechanisms of the simulation without having to manually read the

source code. This can be helpful to get a quick overview of the simulation model when

working with source code that was implemented by a different contributor. The system-

atic and automated process for extracting and representing cause-effect relations of the

simulation may help to ensure completeness and correctness of the graph structures.

The representation of cause-effect relations as MAMN graphs gives an overview of

the simulation workflow as well as the chaining of preceding activities and variables

that have an influence on the computation of output/ result variables. This provides

additional explanatory information about the simulation and thus can be considered as

a contribution towards achieving more trust in the results of simulations by illustrating

the process of how results are computed. The compact representation of the simulation

model as graphs is the result of aggregations during the processing of raw log entries

retrieved from the running software. As a consequence, insights provided by the com-

pact representation are bound to the considered level of abstraction. Results presented

in this research have demonstrated that reverse engineering the internal mechanisms

of agent-based simulations can generally be achieved. In particular, by automatically

extracting cause-effect relations using appropriate logging mechanisms that are based

on techniques from aspect-oriented programming and representing these relations in

graph structures. This concludes the demonstration of the proposed graph framework.
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6.3 Summary of Chapter 6

In this chapter, a method has been proposed to extract and formally represent cause-

effect relations of agent-based traffic simulations to provide more explanatory informa-

tion on the internal mechanisms. The basic idea is to capture the cause-effect relations

of input and output variables in a graphical model. Cause-effect graphs have already

been used to model aspects of simulations, but typically look at relations on a single

level of abstraction. However, the multi-level property of agent-based simulations shifts

cause-effect relations of the simulation into several levels of details and abstraction.

This is why conventional cause-effect graphs need to be extended. For this purpose,

section 6.1.1 presents a dedicated profile of UML activity diagrams that is called Multi-

Agent Modelling Notation (MAMN). The MAMN graph structure shifts the details of the

hierarchical levels into separate subgraphs. Furthermore, UML activity diagrams as an

implementation of behavioural diagrams have been extended by structural elements

for modelling the information on input and output variables as well as BDI properties

of the agents. MAMN graphs are a compact representation of the simulation that helps

to obtain an overview of the internal mechanisms.

In section 6.1.2, a method is proposed to automatically extract relevant information

on the cause-effect relations of input and output variables and to represent these

relations as MAMN graphs. For this purpose, relevant information is logged during

the simulation each time a method or constructor is executed. To reduce the manual

workload for logging, the proposed method uses techniques from aspect-oriented

programming. Extracted information in the list of log entries has been further processed

first into a linked list structure and then into the corresponding nodes and edges for

the MAMN graphs. It should be noted that the proposed method may be limited when

dealing with recursion. However, this can be compensated for by using iterative altern-

atives instead of recursions. Using the open-source library Graphviz, nodes and edges

have been visualised as MAMN graphs. For demonstration purposes, section 6.2 applies

the proposed method for extracting relevant information on cause-effect relations and

133



CHAPTER 6. EXTRACTING CAUSE-EFFECT RELATIONS

generates graphs to a reduced example of the grocery simulation from chapter 4.3.1 as

well as an external simulation on commuter traffic.
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Critical Evaluation

As the number of digital and personalised services increases in the mobility sector,

individuals are given more flexibility when it comes to arranging their personal mobility.

This leads to changes in the behaviour of individuals and ultimately has an effect on

the overall traffic situation. Traffic simulations that are used to study the effectiveness

and efficiency of new mobility schemes need to be prepared to deal with the changing

requirements. For this purpose, this research has been concerned with assessing the

requirements placed on traffic simulators in response to the ongoing developments

in mobility. Based on this, the aim of this research has been to develop appropriate

methods to cope with these requirements when building simulations for contemporary

scenarios of interest. This chapter provides a detailed summary and discussion of the

main contributions of this research. The intention is to reflect on the applicability and

relevance of the research findings in a broader context. For this purpose, contribu-

tions and results are discussed with regard to their innovation, scope and limitations.

Research methodology as well as chosen technologies are critically evaluated by high-

lighting the advantages and drawbacks of the chosen approach and comparing it to

possible alternative research paths based on available literature. Furthermore, a discus-

sion is given of the experimentation performed in the scope of this research, reflecting

on the design of experiments, obtained results as well as lessons learnt.
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7.1 Discussion of Contributions to Knowledge

Placing the individual in the center of attention for simulating current scenarios of in-

terest leads to new requirements when it comes to their implementation. Consequently,

there is a need for appropriate methods and tools to facilitate the development of

individual-based traffic simulations. Contributions of this work focus on obtaining

an overview of the current challenges in mobility as well as the current state of im-

plementation of available traffic simulators to illustrate their scope and limitations.

These limitations have been addressed as the subject of this work. Based on this, this

research proposes a set of methods to facilitate the development of individual-based

traffic simulations. The proposed methods have been implemented as prototypical

tools to demonstrate their applicability in a selection of example use cases.

7.1.1 Contribution 1: A Systematic Survey of Available Agent-based

Traffic Simulators

To get an overview of the current challenges in mobility as well as the wide spectrum of

available traffic simulators, in this research, a systematic survey has been performed

based on available publications. Admittedly, there is related work that has also given

an overview of available simulators e.g. [76], [80]. However, these publications were

published several years ago since when new applications have emerged. Yet the main

reason for conducting and publishing another systematic survey was to look at simulat-

ors from another perspective with regard to their ability to model individuals and their

behaviour. This is where this research argues that due to the current developments

in mobility (e.g. the increasing number of digital and personalised services), the role

of individuals and their behaviour in traffic simulations needs to be reconsidered. In

2019, which was shortly before the start of this PhD project, [227] concludes in their

work that the implementation of individual behaviour in traffic simulation is limited

and therefore explicitly calls for more research in this area. According to Google Scholar,

the systematic survey that has resulted from this PhD project [4] has been cited over 40
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times since its publication in December 2021. This can be an indicator of the relevance

of this subject matter.

The survey was conducted based on a keyword search across the three common

publication databases: Google Scholar, ACM Digital Library, and IEEE Xplore; on the

title, abstract, and the main body of the papers. The first 30 research papers from

each database and each keyword were then included in a backward search to identify

simulators that are considered related work by the authors of the publications. In

addition to this, it would have been possible to include other databases such as Scopus,

Web of Science or JSTOR in the search as well as to consider more papers in general

for each database and keyword to make the survey more comprehensive. The selected

databases were mainly chosen because easiest access was available. The decision to

limit the number of papers was mainly driven by the observation that the exploration of

additional research papers beyond this threshold did not yield significant new examples

of simulators. Continuing the search may have led to marginal increase in survey

comprehensiveness. Overall, the approach of this research was based on methodology

described in similar surveys (e.g. [103], [104]). It was also very helpful to have feedback

from peer reviewers during the publication process. This has allowed to raise the quality

of this survey. Nevertheless, it is always possible that specific publications may have

been missed. Since the date of publishing this survey, a small number of simulators have

been added to this survey over the course of writing this thesis. For example, relevant or

new publications from the research community that have appeared on ResearchGate.

The review of simulators was structured based on current areas of interest in mo-

bility [189]. Furthermore, simulators and implemented features to model individual

behaviour were structured by time aspect (short-, mid- and long-term behaviour). Apart

from the time aspect, other criteria about the simulators could have also been used to

structure the survey (e.g. underlying programming language or licensing model), but

these might have shifted the focus of the survey. As the focus of this thesis was to look

at the implemented features to model individual behaviour, this review structure was

found to be particularly suitable.

The systematic survey in this research has shown that there is a broad range of
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simulators that each focus on different areas of application. As a result, simulators vary

in the implemented features for modelling individuals and their behaviour. A common

notion that has been found across reviewed simulators was that there are only a few

approaches that even consider the modelling of individual preferences as part of agent

behaviour [226]–[228]. Thus, there is a need for new methods and tools that enable the

implementation of individual preferences as determining factors of individual decisions.

All in all, this systematic survey has helped to obtain an overview of the current state of

available traffic simulators and to identify gaps and limitations to be further researched

based on a systematic and reproducible method.

7.1.2 Contribution 2: A Modelling Framework to Capture Preferences

and Knowledge of Individuals

Based on the findings of the systematic survey, this research proposes as the second con-

tribution of this thesis, a framework to capture preferences and knowledge of individuals

as determining factors of agent decisions. As mentioned in chapter 2.4.2, modelling

agent decisions and their reasons becomes significantly complex in quantitative models

when decisions require a broad knowledge of the world [46]. A qualitative approach

can help reduce complexity in the modelling while creating rich agent models. For this

purpose, the use of semantic technology has been proposed. Leveraging the ideas from

the CommonKADS model, agent knowledge has been structured in a hierarchical archi-

tecture with different levels of abstraction. In particular, information for domain (layer

1) and inference knowledge (layer 2) is modelled using rules and ontologies. This allows

the application of computer-based reasoners to reduce the complexity during the mod-

elling process. In addition to this, task knowledge (layer 3), in which information from

the lower levels is brought together to perform decision-making and determine actions,

is implemented in the BDI agent. As a result, this approach leads to a clear separation of

the implementation of agent knowledge from its operating behaviour. Agent knowledge

can thus be easily extended or replaced which allows them to be flexibly reused across

different scenarios. However, the application of semantic technology may potentially
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increase the complexity of the overall system architecture as well as the simulation

model. This may lead to longer simulation times as the computation requires more

resources to process the detailed modelling of the individual. Furthermore, modelling

more details of the individual requires more input data from the real world, but can also

lead to new opportunities to evaluate the effects of traffic policies. In particular, in the

proposed method, the preferences of agents are used as input arguments to compound

utility functions that model their decision-making. As mentioned in chapter 4.3.1, this

research thus takes the utilitarian perspective on utility [247]. [248] has demonstrated

the use of utility as experienced by individuals with happiness measures. Based on

this, utility functions can be used to quantify experienced utility as an indicator for

the satisfaction of individuals. Effects of traffic policies can thus be evaluated not only

on global system behaviour but also on individuals. This helps to design and identify

effective measures by avoiding public opposition which in the past has led to long

implementation times.

To demonstrate the applicability of the proposed method, simulation has been given

for two example scenarios. The focus of the experiments was not to present a validated

simulation model but to show how the proposed methods can be implemented as well

as the benefits and limitations. In particular, during the implementation of the example

use cases, possible information sources were explored in order to collect relevant input

data for the detailed modelling of individuals. With regard to the experimental design,

the simulations were investigated based on exemplary research questions. The inten-

tion of these experiments was to create examples of implementation and to provide

proof of concept. For the experiments the size of the population was derived from the

objects under examination. For these example use cases, calculations were completed

in approximately three hours per simulation. This was acceptable for the purpose of

the experiments. Larger simulation settings may require code optimisation or high per-

formance computing machinery. Furthermore, it should be noted that the simulations

in this research were deterministic when keeping the same agent population. This

simplified analysis and proof of concept, making comparison of simulations easier.

Depending on the research objective in real-world scenarios, simulations may require a
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more probabilistic approach.

In the first scenario, the mobility of individuals was simulated during their grocery

shopping. This scenario was particularly suitable for demonstrating how complex agent

decisions can be modelled that require a broad knowledge of the world when using

the proposed method. Travel decisions in this scenario required not only knowledge

about the transportation domain but also about food and supermarkets. The variety of

available food items as well as the information about which items are offered in which

type of supermarkets can be easily modelled using the ontologies. Trying to implement

this type of world knowledge in traditional source code would be significantly more

complex e.g. by manually implementing classes with attributes and then hard coding

the information for instances rather than defining concepts and rules in the ontology to

make use of inference mechanisms.

In the second example, simulation was given for a scenario in which individuals

travel to a music concert. The main purpose of this example was to demonstrate how

implementations of the same agents can be adapted and flexibly reused across different

scenarios. Therefore, the knowledge of agents was altered as domain knowledge about

food and supermarkets was irrelevant for the scenario. Instead, agent decisions in

this scenario focused on the selection of mode of transport, with ridesharing being

introduced as a new mode option.

Reflecting on the conducted experiments and the proposed framework, modelling

and simulating more details of the individuals is important to appropriately reflect

current developments in mobility as well as to address the limitations of evaluating the

effects of policies not only on global system behaviour but also on individuals. However,

this approach accounts for extra effort in collecting the necessary input data as well

as the modelling process itself. While the use of semantic technologies can reduce the

modelling complexity to a certain extent, there will always be an additional overhead

when increasing the level of detail in the modelling of individuals and their behaviour.

Furthermore, the proposed method currently displays a combination of qualitative

and quantitative modelling techniques. While the world knowledge of the agents is

modelled qualitatively in the ontologies, preferences at some point are quantified using
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a Likert scale when they are used as input arguments for utility-based decision-making.

This approach was chosen in view that it is easier to evaluate the effects of traffic policies

with a utilitarian perspective on utility. In an alternative research path, it might have

been interesting to work out how to better exploit the qualitative BDI mechanisms when

incorporating the information of preferences and domain knowledge in the decision-

making. The current approach uses the mental levels based on the BDI model mainly

for structuring information within the agent.

7.1.3 Contribution 3: A Modelling Notation to Capture Cause-Effect

Relations in Multi-agent Simulations

As traffic simulations are becoming more complex when modelling more details on

individuals and their behaviour, there is a need for appropriate tools to generate more

insights into the internal mechanisms of the simulation. As discussed in chapter 5,

the required view on agent-based simulations that is relevant for their structural val-

idation is an ongoing challenge due to inputs of the simulation being modelled on

the individual level whereas results on system behaviour are typically examined using

performance indicators from the global perspective. Current methods for structural

validation are mainly based on face validation during which domain experts manually

read source code in structured walkthroughs together with the involved software de-

velopers. A graphical representation of cause-effect relations can provide additional

explanatory information about the internal mechanisms of the simulation but requires

a graph structure that is able to capture the multi-level property of agent-based traffic

simulations. Therefore, as a third contribution, this research proposes a graphical nota-

tion (MAMN) that is able to capture the cause-effect relations in agent-based traffic

simulations.

MAMN has been created as an extension of the metamodel of UML activity diagrams.

The proposed graph structure thus is a dedicated profile for agent-based simulations.

As an alternative to the metamodel of UML activity diagrams, it would have also been

possible to base the new graph structure on BPMN [308]. However, as the intention
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was to extend information on the program flow with structural information about the

input and output variables, UML already contains modelling elements for structural

aspects which can be reused. Basing the graph structure on a reference metamodel

ensures compatibility with existing standards which makes it easier for end users to

adopt the new notation. Furthermore, this approach helps to maintain consistency and

coherence in the notation and facilitates its ability to be adapted or extended for future

use cases.

The presented MAMN graph currently focuses on showing the input and output

relations (cause and effect) of processed variables in a simulation over the different

levels of hierarchy. However, there is still potential to extend the graph with specialisa-

tions for other types of agent architectures beyond the scope of mental-level models.

Furthermore, it is currently possible to model the activities of groups of agents having

to get input information for their decision-making based on interactions with other

groups of agents. However, there may be scenarios in which the interactions of agents

can be difficult to abstract and aggregate which can lead to graphs becoming complex.

All in all, it was possible in the scope of this research to identify a limitation in

existing approaches to model cause-effect relationships between input and output

variables due to the multi-level property of agent-based simulations. For this purpose,

the MAMN graph structure has been proposed. MAMN provides a means to model the

hierarchical structure of cause-effect relationships in agent-based simulations from

input parameters at the individual level to performance indicators at the global system

level. This is achieved by moving details of the functional relationships to a sub-level as

a separate graph.

7.1.4 Contribution 4: A Framework to Extract Relevant Information

and Visualise Cause-effect Graphs

This research therefore proposes, as the final contribution of this thesis, a framework

to automatically extract relevant information on the cause-effect relations of input

and output variables from the simulation. Furthermore, the framework also includes
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transformation procedures to process and represent extracted information as MAMN

graphs. In particular, relevant information is extracted to produce a detailed log of

computed activities from the simulation at runtime. This mechanism is based on

techniques from aspect-oriented programming which minimises the effort of software

developers having to manually log the required information. The automated process

may help to ensure completeness and consistency of the extracted information on

simulation activities. Collecting this information is an overhead but it is usually possible

to demonstrate the internal mechanisms of the model based on example simulations

with smaller agent populations.

Extracted information in the list of log entries is then sorted first by their thread

id and then by their log id. As a result, the order of log entries within the same thread

can be derived as a first step. Furthermore, leveraging information from the method

call stack allows log entries to be processed into a linked list structure from which

nodes and edges can be derived for the MAMN graph. Although the original intention

of MAMN is to demonstrate cause-effect relations of input and output variables, the

implementation of the framework has revealed that information on the output variables

is particularly difficult to extract. This is due to not every method having a return value.

In contrast, input variables can be retrieved from the method declaration. All in all,

obtained visualisations are still useful for understanding how variables are processed

within the simulation. For visualisation purposes, derived nodes and edges may serve

as input to common graph visualisation frameworks. In this research, visualisation is

based on the open-source library GraphViz. However, there is a variety of alternatives

that could have been used for this purpose e.g. [309], [310]. As proof of concept, relevant

information about cause-effect relations has been extracted and visualised as MAMN

graphs for two example simulations. The first simulation provided a reduced example

of the grocery shopping scenario from chapter 4.3.1. In the second example, application

of the proposed method has been demonstrated for published simulation.

For reasons of completeness, it would probably be useful to further look into the

matter of extracting information of output variables as well as testing the proposed

method in a real-world setting with software engineers and domain experts. It should
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be noted that in this part of the thesis, the focus is to automatically extract and formally

represent cause-effect relations in a graph structure. The primary intention is to im-

prove the explanatory capabilities of agent-based traffic simulations and not to present

a comprehensive method for structural validation. Nonetheless, the obtained graphical

representation of cause-effect relations can serve as additional information for domain

experts to get an overview of the system and thus can be considered a contribution

towards improving structural validation based on face validation. A more comprehens-

ive contribution to the verification and validation of agent-based simulations yields

the potential for another full thesis project. Based on this, experiments for the proof of

concept have been limited to the given examples as more extensive work on this matter

would have shifted the focus of this thesis and thus was considered out of scope.

7.2 Current State of Implementation

In the scope of this thesis, proposed theories and methods have been implemented as

prototypical tools. The intention was to give examples of implementation that can be

used for further academic research purposes. Researchers from the community can

use these tools to get first impressions of how the integration of components from the

different areas can be achieved. The technology stack used in the experiments of this

research is only one way of implementing the proposed methods. Depending on the

given situation, there are various other options for implementing the presented ideas in

other research projects e.g. researchers that are already working with a simulator that is

based on a different programming language may choose a different technology stack

for the implementation of proposed concepts.

The latest version of the AGADE Traffic simulator is the example implementation of

the proposed concepts from chapter 4 for modelling individuals and preferences and

was used for the simulation of the example use cases. For this purpose, BDI agents that

are implemented using the JADEX framework have been extended to access world know-

ledge that is modelled based on semantic technology. Semantic components have been

implemented using OWL ontologies and SWRL rules for which relevant APIs (the OWL
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API and the SWRL API) have been used to establish the communication between agents

and the semantic technology. Implementations of the proposed methods have proven

that they can work based on the given example use cases. Examples of implementation

can be extended and modified for research on future use cases as well as to further

improve and refine methods for working with individual-based simulations. It should

be noted, that the focus of the examples of implementation has been directed towards

their functionality. Although best practices in software development were followed

to the best of the authors’ abilities, issues that were not the focus of this thesis were

only considered in a secondary manner. For example, there is certainly potential for

optimisation in terms of performance when prototypical tools are used for working on

real-world use cases that deal with more complex simulation models. This applies not

only to the implementation of the AGADE Traffic simulator but also to the framework

for extracting and visualising the information of cause-effect relations in agent-based

simulations.

7.3 Summary of Chapter 7

This chapter reflects on the overall methodology, contributions as well as the current

state of implementation of this research. For this purpose, section 7.1 gives a critical

discussion of the benefits and limitations of contributions to knowledge as well as

possible alternative research paths. The focus of these contributions is on finding

appropriate techniques to improve the model development process when placing

individuals at the center of attention in traffic simulations. Modelling knowledge and

preferences of individuals as determining factors of agent decisions has been limited

in previous work but the use of semantic technologies makes it possible to efficiently

supply agents with a broad knowledge of the world. Processing the detailed information

of individuals with semantic technology naturally is an additional overhead. However,

this approach also allows for the application of intelligent reasoning mechanisms that

help to reduce the additional overhead during the modelling process. Apart from

this, this research also presented a method to extract relevant information on cause-
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effect relations from a simulation at runtime and to represent it as MAMN graphs to

provide more insight into the internal mechanism of the simulation. Experimentation

in this research showed that it is generally possible to automatically obtain the relevant

information from the simulation and to process it into a graph structure. Finally, in

section 7.2 the current state of implementation has been illustrated. The focus of

implementations was on giving examples for the proposed methods. There is certainly

potential for optimisation when it comes to aspects such as performance.
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Conclusion and Future Research

This chapter summarises the problem statement and main findings of this thesis and

gives a discussion of the degree to which contributions to this research have answered

the research questions formulated in Chapter 1.4. Furthermore, general conclusions are

drawn on the main propositions of this thesis. The chapter closes by giving suggestions

for further research.

8.1 Conclusions on Modelling Individuals for Simulating

Contemporary Mobility Scenarios

This thesis looked at the new requirements placed on traffic simulations that are caused

by the increasing flexibility in the personal mobility of individuals. In particular, digital

connectivity has improved the access of individuals to real-time information as well as

led to a growing portfolio of mobility services. This increases the complexity of decision

factors but allows individuals to be more spontaneous about their travel decisions.

Based on this, the problem statement of this thesis argued that the modelling of indi-

viduals needs to be emphasised to align traffic simulations with the new requirements

for studying contemporary scenarios in mobility. For this purpose, findings of this

thesis to answer the research questions formulated in Chapter 1.4 can be summarised

as follows.
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8.1.1 Research Question 1

What are the main deficiencies in the modelling of individuals and their behaviour in

existing agent-based traffic simulators?

To answer this research question, a systematic survey has been performed to get

an overview of available traffic simulators. Literature shows that there is a wide range

of traffic simulators that each focus on different aspects of the transportation system.

For example, simulated scenarios differ in the timescale in which they are examined

(short-, mid- and long-term scenarios). When simulating long-term scenarios such

as land use, aspects of individual behaviour refer to decisions about workplace and

residency while individual behaviour in mid-term scenarios rather focuses on mode or

route choice. Short-term scenarios look at individual behaviour on a micro-scale and

thus look at aspects such as lane changing, acceleration or braking behaviour. Review-

ing implemented features of simulators for modelling individual behaviour therefore

needs to be linked to the scope of application. In this research, simulators have been

reviewed with regard to the three areas of application: 1. Resource Utilisation, 2. Digital

Connectivity and 3. New Forms of Mobility. Current developments in mobility such as

the increasing number of digital and personalized services have led to individuals being

more flexible in their decisions on personal mobility. These changes are particularly

relevant to modelling the short- and mid-term behaviour of individuals.

With regard to this, available simulators have focused on simulating traffic as the

primary subject and thus leave scenario-specific aspects to the responsibility of end-

users. Initially, a focus on traffic-related modelling aspects appears obvious as platform

developers cannot anticipate the full range of scenarios for which their simulators will

eventually be used. Following the same line of reasoning, developers need to assume

that the simulators will eventually be customised to fit specific research purposes. It is

therefore desirable that common and foreseeable modifications are supported by suit-

able structures and programming interfaces. With regard to the modelling of individual

behaviour, a common requirement is to align traveller decisions with the context of the
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simulation. In particular, traveller decisions that are based on individual preferences

and personal objectives typically differ depending on the simulated scenario. Further-

more, the simulated scenario also changes the perception of individual preferences and

thus leads to changes in individual behaviour. For example, time/punctuality which

can be a criterion for mode selection has a different value when commuting to work

as compared to a social visit. However, the review has shown that there are only a few

approaches that even consider the modelling of individual preferences as part of agent

behaviour. Thus, in the current state of implementation, there is a lack of concepts to

capture these preferences and objectives as determining factors of individual decisions.

This hampers the customisation of available simulators to simulate current topics in

mobility. Research that elaborates on the modelling of these aspects can help to address

this problem.

8.1.2 Research Question 2

How can the knowledge of individuals be modelled to capture their preferences and

personal objectives as determining factors of decisions in mobility scenarios?

The decisions of individuals in traffic are influenced by numerous aspects and

therefore agents require a broad knowledge of the world. However, the representation

of decisions and their reasons becomes significantly complex in quantitative models

when decisions require a broad knowledge of the world. Qualitative modelling can

help reduce complexity while creating rich agent models. For this purpose, semantic

technology can be used. In particular, ontologies are a common and generally accepted

instrument from semantic technology to model structured knowledge bases. They

can be extended with a set of inference rules that allow the use of computer-based

reasoners. The use of computer-based reasoners enables the inference of implicit

information in the knowledge base and thus reduces complexity during the modelling

process. This combination has proved to be highly useful in practical applications.

Based on this, agent knowledge can be shifted into separate ontologies while basic
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operations of the agents remain part of traditional agent programming. This achieves a

clear separation of concerns which makes it possible to look into the field of knowledge

engineering to structure agent knowledge. In this research, the traditional BDI agent has

been extended with a qualitative model of world knowledge based on the three layers

of CommonKADS. The lowest layer contains information on domain knowledge and

abstracts common concepts from the travel domain from activity knowledge. As a result,

activity knowledge can be flexibly extended or replaced depending on the modelled

scenario. In the second layer, this domain knowledge is extended by person-related

concepts that describe the attributes of the agent. In particular, census properties from

this ontology serve as input to rules that compute agent preferences based on survey

data. Information from the first and second layers is used for agent decision-making

which is implemented using BDI agents in the third layer. The proposed method thus

allows for detailed modelling of the knowledge and preferences of agents to be used

as determining factors of individual decisions. In doing so, the additional overhead

caused by the detailed modelling of individuals has been minimised through the use

of established reasoning mechanisms while the reusability of agents across different

scenarios has been improved by providing appropriate customisation options.

8.1.3 Research Question 3

How can relevant cause-effect relations in agent-based traffic simulations be automatic-

ally extracted and formally represented?

Placing the individual in the center of attention in agent-based traffic simulations

increases the complexity of simulation models due to the modelled level of detail. It

is therefore important to develop methods and tools for extending the explanatory

capability of agent-based simulations, ensuring that the ability to understand the in-

ternal mechanisms of the simulation is not further compromised. Explanations can be

given through different presentations. Providing explanations using graphical models

achieves a compact representation of the simulation model. For this purpose, computa-
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tional processes from input to output parameters have been captured as cause-effect

graphs. In this context, there has been a particular challenge in modelling the relations

between input and variables when using conventional cause-effect graphs as these

typically focus on modelling relations at the same level of abstraction. However, system

behaviour in multi-agent models is the emergent result of the behavioural patterns of

a large set of individuals which changes the paradigm from chained causal relations

to several levels of detail and abstraction. Thus, in this research, conventional cause-

effect graphs have been extended to capture the hierarchical structure of cause-effect

relations.

Graph structures can be utilised in a bi-directional process to either transfer a the-

oretical simulation model into a concrete implementation as an executable piece of

code (forward engineering) or to represent information from a given implementation

(backward/ reverse engineering) which can be used to increase transparency and ex-

plainability of a system. As the focus of this thesis lies on backward/ reverse engineering,

the intention was to automatically generate cause-effect graphs from the source code

of the simulation. For this purpose, a logging mechanism has been implemented in the

scope of this research, based on techniques from aspect-oriented programming. Code

snippets for logging are implemented as separate aspects and automatically injected

into the relevant places in the source code during the compilation process. Based on

this, relevant information can be logged on every method and constructor invocation.

This approach minimises the manual overhead for logging and helps to ensure con-

sistency as well as completeness in the extracted information. Using the information

extracted in the log, activities of the simulation can be transformed into a linked list

structure based on the flow of the simulation. This linked list structure can then be used

to determine the nodes and edges for the cause-effect graphs. Finally, the obtained

nodes and edges may then serve as input to visualisation frameworks.
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8.1.4 Synopsis of Main Propositions

Traffic simulations that are used for studying contemporary scenarios in mobility re-

quire a more detailed modelling of individuals and their behaviour due to the increasing

flexibility in personal mobility that has resulted from individuals having better access to

real-time information as well as the growing portfolio of mobility services. This requires

knowledge and preferences of individuals to be modelled as determining factors of

agent decisions. The use of semantic technology ensures knowledge of individuals can

be structured in a form that can be easily managed, allowing agents to be reused across

different scenarios. Furthermore, this approach enables the application of computer-

based reasoners to reduce the complexity during the modelling process. However,

detailed modelling of individuals also increases the overall complexity of the simulation.

To ensure that the increasing complexity of the model does not further compromise

the ability to understand the internal mechanisms of the simulation, agent-based simu-

lations need to be improved with regard to their explanatory capabilities. This can be

achieved by automatically extracting and formally representing cause-effect relations of

the simulation as graphs. To capture the hierarchical structure of cause-effect relations

in agent-based simulations, the proposed MAMN graph structure can be used. Fur-

thermore, the process for extracting and formally representing cause-effect relations as

MAMN graphs can be fully automated using appropriate logging mechanisms that are

based on techniques from aspect-oriented programming.

8.2 Suggestions for Future Research

Building on the contributions of this thesis, future research may address the current

limitations of the presented methods or leverage the findings of this thesis to build

new tools that further advance the development of individual-based traffic simulations.

For example, examples of implementations for the proposed methods that have been

provided in this thesis can be used for academic research purposes but probably require

optimisation when using them for real-world use cases that deal with larger agent
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populations. Future work may consider creating tools that facilitate the integration

of these techniques into existing traffic simulation frameworks to encourage broader

utilisation by researchers.

Apart from this, one aspect worth considering is to leverage the analytical capabil-

ities of simulations that have become possible only when elaborating on the detailed

modelling of individuals. As discussed in this thesis, current research on traffic simula-

tion has primarily studied the effects of policies by measuring social benefit and thus

does not sufficiently consider effects on individuals. The detailed modelling of indi-

viduals, in particular, their personal attitude that is represented using utility functions

and personal preferences makes it possible to measure the effects of traffic policies

not only on global system behaviour but also on individuals. Experimental results in

this thesis have only given a flavour of measuring the sentiment of individuals using

experienced utility. However, for rigorously evaluating the effects of traffic policies on

individuals, a more comprehensive approach is likely needed. A systematic approach

to the evaluation of sentiment for groups of individuals can be significantly relevant,

defining appropriate performance indicators and meaningful visualisations that can

help policymakers with their decision-making. Relevant performance indicators and

visualisations should be determined through a survey that looks at the requirements of

policymakers and traffic planners for different types of scenarios.

Another aspect for further research may refer to the MAMN graph structure which

currently focuses on multi-agent simulations that model decision-making based on the

BDI model. The notation could be extended to cover other types of decision-making

models, improving the informative value of the graphs across a broader range of simu-

lations. As discussed in this thesis, the proposed method for automatically extracting

cause-effect relations and representing them as MAMN graphs allows implementa-

tions of simulation models to be reverse engineered. This provides information about

the internal mechanisms of the simulation which can be useful for the validation and

verification of agent-based simulations. While the course of action for replicate and

predictive validation is well understood, assuming that appropriate validation data

can be obtained, there are still considerable challenges in the structural validation

153



CHAPTER 8. CONCLUSION AND FUTURE RESEARCH

of agent-based simulations which examines whether results are computed through

a plausible process. In this context, the aim is not to validate the simulation results

against real-world data but to make sure that the implementation of the model (compu-

terised model) works as it was originally intended (conceptual model). The proposed

method therefore holds significant potential to improve the structural validation of

agent-based simulations but the usefulness remains to be demonstrated. Based on

this, future research should involve generating MAMN graphs for different simulations

and performing structural validation by conducting field experiments together with

domain experts. An empirical study of this nature helps to evaluate the usefulness of

the proposed methods in real-world use cases and to further improve them to meet

the requirements for a comprehensive structural validation of agent-based simulations.

Improving the automated process for the extraction and graphical representation of

the cause-effect relations may provide more information on the output variables which

in the current implementation remains a limitation. Furthermore, future work may

look into adding information on the weighted influence of variables to the graph, for

example by combining the proposed method with sensitivity analysis over multiple

runs.
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; Appendix A <

List of Log Entries for the Reduced Example

of the Grocery Shopping Simulation

threadID: 1; callNo: 0; .Entrypoint -> aspects.example.Main.main(args)

threadID: 1; callNo: 1; aspects.example.Main.main -> aspects.example.

SimulationController1854731462.init()

threadID: 1; callNo: 2; aspects.example.Main.main -> aspects.example.

SimulationController1854731462.performSimulation(numberOfAgents ,personas)

threadID: 1; callNo: 3; aspects.example.SimulationController.performSimulation ->

aspects.example.AgentFactory1389133897.init()

threadID: 1; callNo: 4; aspects.example.SimulationController.performSimulation ->

aspects.example.AgentFactory1389133897.createAgents(numberOfAgents ,personas)

threadID: 1; callNo: 5; aspects.example.AgentFactory.createAgents -> aspects.example

.Agent1534030866.init(id,personaProfile)

threadID: 1; callNo: 6; aspects.example.AgentFactory.createAgents -> aspects.example

.Agent664223387.init(id ,personaProfile)

threadID: 1; callNo: 7; aspects.example.AgentFactory.createAgents -> aspects.example

.Agent824909230.init(id ,personaProfile)

threadID: 1; callNo: 8; aspects.example.AgentFactory.createAgents -> aspects.example

.Agent122883338.init(id ,personaProfile)

threadID: 1; callNo: 9; aspects.example.AgentFactory.createAgents -> aspects.example

.Agent666641942.init(id ,personaProfile)

threadID: 1; callNo: 10; aspects.example.AgentFactory.createAgents -> aspects.

example.Agent960604060.init(id ,personaProfile)

threadID: 1; callNo: 11; aspects.example.AgentFactory.createAgents -> aspects.

example.Agent1349393271.init(id,personaProfile)

threadID: 1; callNo: 12; aspects.example.AgentFactory.createAgents -> aspects.

example.Agent1338668845.init(id,personaProfile)

threadID: 1; callNo: 13; aspects.example.AgentFactory.createAgents -> aspects.

example.Agent159413332.init(id ,personaProfile)

threadID: 1; callNo: 14; aspects.example.AgentFactory.createAgents -> aspects.
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example.Agent1028214719.init(id,personaProfile)

threadID: 1; callNo: 15; aspects.example.SimulationController.performSimulation ->

aspects.example.AgentFactory1389133897.getAgents ()

threadID: 1; callNo: 76; aspects.example.SimulationController.performSimulation ->

aspects.example.StatisticController1146743572.init()

threadID: 1; callNo: 77; aspects.example.SimulationController.performSimulation ->

aspects.example.StatisticController1146743572.calculatePerformanceIndicators(

Agent)

threadID: 1; callNo: 78; aspects.example.StatisticController.

calculatePerformanceIndicators -> aspects.example.StatisticController1146743572.

determineGlobalTravelDistance ()

threadID: 1; callNo: 79; aspects.example.StatisticController.

determineGlobalTravelDistance -> aspects.example.Agent1534030866.getDrivenKm ()

threadID: 1; callNo: 80; aspects.example.StatisticController.

determineGlobalTravelDistance -> aspects.example.Agent664223387.getDrivenKm ()

threadID: 1; callNo: 81; aspects.example.StatisticController.

determineGlobalTravelDistance -> aspects.example.Agent824909230.getDrivenKm ()

threadID: 1; callNo: 82; aspects.example.StatisticController.

determineGlobalTravelDistance -> aspects.example.Agent122883338.getDrivenKm ()

threadID: 1; callNo: 83; aspects.example.StatisticController.

determineGlobalTravelDistance -> aspects.example.Agent666641942.getDrivenKm ()

threadID: 1; callNo: 84; aspects.example.StatisticController.

determineGlobalTravelDistance -> aspects.example.Agent960604060.getDrivenKm ()

threadID: 1; callNo: 85; aspects.example.StatisticController.

determineGlobalTravelDistance -> aspects.example.Agent1349393271.getDrivenKm ()

threadID: 1; callNo: 86; aspects.example.StatisticController.

determineGlobalTravelDistance -> aspects.example.Agent1338668845.getDrivenKm ()

threadID: 1; callNo: 87; aspects.example.StatisticController.

determineGlobalTravelDistance -> aspects.example.Agent159413332.getDrivenKm ()

threadID: 1; callNo: 88; aspects.example.StatisticController.

determineGlobalTravelDistance -> aspects.example.Agent1028214719.getDrivenKm ()

threadID: 1; callNo: 89; aspects.example.StatisticController.

calculatePerformanceIndicators -> aspects.example.StatisticController1146743572.

determineGlobalCombustionDistance ()

threadID: 1; callNo: 90; aspects.example.StatisticController.

determineGlobalCombustionDistance -> aspects.example.Agent1534030866.getDrivenKm

()

threadID: 1; callNo: 91; aspects.example.StatisticController.

determineGlobalCombustionDistance -> aspects.example.Agent664223387.getDrivenKm

()

threadID: 1; callNo: 92; aspects.example.StatisticController.

determineGlobalCombustionDistance -> aspects.example.Agent824909230.getDrivenKm

()

threadID: 1; callNo: 93; aspects.example.StatisticController.

determineGlobalCombustionDistance -> aspects.example.Agent122883338.getDrivenKm
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()

threadID: 1; callNo: 94; aspects.example.StatisticController.

determineGlobalCombustionDistance -> aspects.example.Agent666641942.getDrivenKm

()

threadID: 1; callNo: 95; aspects.example.StatisticController.

determineGlobalCombustionDistance -> aspects.example.Agent960604060.getDrivenKm

()

threadID: 1; callNo: 96; aspects.example.StatisticController.

determineGlobalCombustionDistance -> aspects.example.Agent1349393271.getDrivenKm

()

threadID: 1; callNo: 97; aspects.example.StatisticController.

determineGlobalCombustionDistance -> aspects.example.Agent1338668845.getDrivenKm

()

threadID: 1; callNo: 98; aspects.example.StatisticController.

determineGlobalCombustionDistance -> aspects.example.Agent159413332.getDrivenKm

()

threadID: 1; callNo: 99; aspects.example.StatisticController.

determineGlobalCombustionDistance -> aspects.example.Agent1028214719.getDrivenKm

()

threadID: 23; callNo: 18; aspects.example.SimulationController.performSimulation ->

aspects.example.Agent1534030866.planJourney ()

threadID: 23; callNo: 23; aspects.example.Agent.planJourney -> aspects.example.

Journey1309739527.init(modes ,locations)

threadID: 23; callNo: 27; aspects.example.SimulationController.performSimulation ->

aspects.example.Agent1534030866.purchaseItems ()

threadID: 23; callNo: 30; aspects.example.Agent.purchaseItems -> aspects.example.

Agent1534030866.groceryShopping ()

threadID: 23; callNo: 44; aspects.example.Agent.groceryShopping -> aspects.example.

Agent1534030866.setDrivenKm(drivenKm)

threadID: 24; callNo: 19; aspects.example.SimulationController.performSimulation ->

aspects.example.Agent664223387.planJourney ()

threadID: 24; callNo: 22; aspects.example.Agent.planJourney -> aspects.example.

Journey763792618.init(modes ,locations)

threadID: 24; callNo: 26; aspects.example.SimulationController.performSimulation ->

aspects.example.Agent664223387.purchaseItems ()

threadID: 24; callNo: 28; aspects.example.Agent.purchaseItems -> aspects.example.

Agent664223387.groceryShopping ()

threadID: 24; callNo: 43; aspects.example.Agent.groceryShopping -> aspects.example.

Agent664223387.setDrivenKm(drivenKm)

threadID: 25; callNo: 21; aspects.example.SimulationController.performSimulation ->

aspects.example.Agent824909230.planJourney ()

threadID: 25; callNo: 24; aspects.example.Agent.planJourney -> aspects.example.

Journey1810876065.init(modes ,locations)

threadID: 25; callNo: 31; aspects.example.SimulationController.performSimulation ->

aspects.example.Agent824909230.purchaseItems ()

193



APPENDIX A. LOG ENTRIES

threadID: 25; callNo: 32; aspects.example.Agent.purchaseItems -> aspects.example.

Agent824909230.groceryShopping ()

threadID: 25; callNo: 46; aspects.example.Agent.groceryShopping -> aspects.example.

Agent824909230.setDrivenKm(drivenKm)

threadID: 26; callNo: 29; aspects.example.SimulationController.performSimulation ->

aspects.example.Agent122883338.planJourney ()

threadID: 26; callNo: 33; aspects.example.Agent.planJourney -> aspects.example.

Journey1813050657.init(modes ,locations)

threadID: 26; callNo: 35; aspects.example.SimulationController.performSimulation ->

aspects.example.Agent122883338.purchaseItems ()

threadID: 26; callNo: 36; aspects.example.Agent.purchaseItems -> aspects.example.

Agent122883338.groceryShopping ()

threadID: 26; callNo: 49; aspects.example.Agent.groceryShopping -> aspects.example.

Agent122883338.setDrivenKm(drivenKm)

threadID: 27; callNo: 45; aspects.example.SimulationController.performSimulation ->

aspects.example.Agent666641942.planJourney ()

threadID: 27; callNo: 51; aspects.example.Agent.planJourney -> aspects.example.

Journey243497748.init(modes ,locations)

threadID: 27; callNo: 58; aspects.example.SimulationController.performSimulation ->

aspects.example.Agent666641942.purchaseItems ()

threadID: 27; callNo: 60; aspects.example.Agent.purchaseItems -> aspects.example.

Agent666641942.groceryShopping ()

threadID: 27; callNo: 63; aspects.example.Agent.groceryShopping -> aspects.example.

Agent666641942.setDrivenKm(drivenKm)

threadID: 28; callNo: 52; aspects.example.SimulationController.performSimulation ->

aspects.example.Agent960604060.planJourney ()

threadID: 28; callNo: 54; aspects.example.Agent.planJourney -> aspects.example.

Journey1736463535.init(modes ,locations)

threadID: 28; callNo: 59; aspects.example.SimulationController.performSimulation ->

aspects.example.Agent960604060.purchaseItems ()

threadID: 28; callNo: 62; aspects.example.Agent.purchaseItems -> aspects.example.

Agent960604060.groceryShopping ()

threadID: 28; callNo: 64; aspects.example.Agent.groceryShopping -> aspects.example.

Agent960604060.setDrivenKm(drivenKm)

threadID: 29; callNo: 38; aspects.example.SimulationController.performSimulation ->

aspects.example.Agent1349393271.planJourney ()

threadID: 29; callNo: 39; aspects.example.Agent.planJourney -> aspects.example.

Journey1261706839.init(modes ,locations)

threadID: 29; callNo: 47; aspects.example.SimulationController.performSimulation ->

aspects.example.Agent1349393271.purchaseItems ()

threadID: 29; callNo: 50; aspects.example.Agent.purchaseItems -> aspects.example.

Agent1349393271.groceryShopping ()

threadID: 29; callNo: 56; aspects.example.Agent.groceryShopping -> aspects.example.

Agent1349393271.setDrivenKm(drivenKm)

threadID: 30; callNo: 40; aspects.example.SimulationController.performSimulation ->
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aspects.example.Agent1338668845.planJourney ()

threadID: 30; callNo: 41; aspects.example.Agent.planJourney -> aspects.example.

Journey204629965.init(modes ,locations)

threadID: 30; callNo: 53; aspects.example.SimulationController.performSimulation ->

aspects.example.Agent1338668845.purchaseItems ()

threadID: 30; callNo: 55; aspects.example.Agent.purchaseItems -> aspects.example.

Agent1338668845.groceryShopping ()

threadID: 30; callNo: 57; aspects.example.Agent.groceryShopping -> aspects.example.

Agent1338668845.setDrivenKm(drivenKm)

threadID: 31; callNo: 65; aspects.example.SimulationController.performSimulation ->

aspects.example.Agent159413332.planJourney ()

threadID: 31; callNo: 66; aspects.example.Agent.planJourney -> aspects.example.

Journey935545904.init(modes ,locations)

threadID: 31; callNo: 69; aspects.example.SimulationController.performSimulation ->

aspects.example.Agent159413332.purchaseItems ()

threadID: 31; callNo: 71; aspects.example.Agent.purchaseItems -> aspects.example.

Agent159413332.groceryShopping ()

threadID: 31; callNo: 72; aspects.example.Agent.groceryShopping -> aspects.example.

Agent159413332.setDrivenKm(drivenKm)

threadID: 32; callNo: 68; aspects.example.SimulationController.performSimulation ->

aspects.example.Agent1028214719.planJourney ()

threadID: 32; callNo: 70; aspects.example.Agent.planJourney -> aspects.example.

Journey596698459.init(modes ,locations)

threadID: 32; callNo: 73; aspects.example.SimulationController.performSimulation ->

aspects.example.Agent1028214719.purchaseItems ()

threadID: 32; callNo: 74; aspects.example.Agent.purchaseItems -> aspects.example.

Agent1028214719.groceryShopping ()

threadID: 32; callNo: 75; aspects.example.Agent.groceryShopping -> aspects.example.

Agent1028214719.setDrivenKm(drivenKm)
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