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A Multi-UAV Cooperative Task Scheduling in
Dynamic Environments: Throughput

Maximization
Liang Zhao, Member, IEEE, Shuo Li, Zhiyuan Tan, Ammar Hawbani, Stelios Timotheou, Keping Yu

Abstract—Unmanned aerial vehicle (UAV) has been considered a promising technology for advancing terrestrial mobile computing in
the dynamic environment. In this research field, throughput, the number of completed tasks and latency are critical evaluation
indicators used to measure the efficiency of UAVs in existing studies. In this paper, we transform these metrics to a single optimization
objective, i.e., throughput maximization. To maximize the throughput, we consider realizing this goal in two respects. The first is to
adapt the formation of the UAVs to provide cooperative computing service in a dynamic environment, we integrate a policy-based
gradient algorithm and the task factorization network as a new reinforcement learning algorithm to improve the cooperation of UAVs.
The second is to optimize the association process between UAVs and users, where the heterogeneity of tasks is considered. This
algorithm is modified from the Gale-Shapley stability concept to optimize the appropriate association between tasks and UAVs in a
dynamic time-varying condition to get the near-optimal association with few iterations. The scheduling of dependent tasks and
independent tasks jointly also has to be considered. Finally, simulation results demonstrate the improvement of cooperation
performance and the practicability of the association process.

Index Terms—Throughput Maximization, Multi-UAV Cooperation, Task Scheduling, Reinforcement Learning.

✦

1 INTRODUCTION

THE hlyellowuse of Unmanned aerial vehicles(UAV) to
provide computation service arises significant concerns

[1]. Compared with traditional terrestrial edge comput-
ing(EC), UAVs-assisted computation can break the con-
straint of topographic limitation to fly to the uncovered
area by the edge servers to provide service, and the lack
of the computation capacity of edge servers can be compen-
sated by UAVs [2], [3]. Existing studies of UAVs-assisted
computation are mainly divided into two categories. One
prefers to study the trajectory or deployment optimization
to adjust the location of UAVs to provide better service, and
another prefers to optimize the association policy, such as
the scheduling policy or the combination policy to maximize
the computation efficiency of UAVs while satisfying the
demand of tasks.

In the first category, by optimizing the flight trajectories
or the deployment policy, UAVs can fly on more energy-
efficient trajectories or deploy in more suitable locations
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while providing computation service. Existing studies fo-
cus on optimizing the cooperative trajectory or cooperative
deployment policy [4]–[8]. However, there are still some
challenges to solve. For example, one UAV cannot observe
the whole environment due to the limited coverage area,
and the environments of existing studies are assumed to be
static. These solutions cannot be applied to practice directly.
For the training process of the cooperation model, existing
studies only combine the observation from each UAV, this
makes the algorithm unable to converge stable with the
increasing number of UAVs.

The second category ignores the cooperative flight of
UAVs but focuses on the association process optimization,
as well as optimizing the resource allocation policy, task
scheduling policy and other metrics to improve the com-
pleted ratio or the completed latency of tasks [9]–[14].
Reasonable combination policy and task scheduling policy
between tasks and UAVs all can reduce the process latency
of tasks and the energy consumption of UAV. However, ex-
isting studies only consider a static environment, the details
of tasks are ignored, and the set of tasks are unchanged. In
practice, tasks generated by mobile devices (MDs) generally
have a strong randomness. Although we believe that the
arrival of a task follows the Poisson distribution, the sudden
creation, withdrawal, and details of many tasks cannot be
predicted in a complex environment. Thus, we need to
design a converge-quickly and converge-stable algorithm,
and it is insensitive to the change of tasks.

To sum up, many previous studies contribute to the op-
timization of throughput, latency and other metrics. How-
ever, some problems still have not been solved. For example,
the dynamic of the environment has not been considered,
the global information of MDs and tasks is assumed to
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be known, the heterogeneity of tasks has been ignored,
the association process is too complex. These shortages all
make the solutions cannot be applied in practice. To solve
these problems, we propose a UAVs-assisted terrestrial com-
puting framework to cope with differentiated tasks in a
dynamic environment. To improve the cooperation of UAVs,
we especially optimize the global optimal action selection
process to guarantee cooperative performance. In addition,
we propose an association algorithm between UAVs and
MDs, called Many-to-One Gale-Shapley(MOGS), which is
improved by the Gale-Shapley algorithm. This algorithm
can realize direct association optimization without the help
of a third party such as the edge server. Thus, the com-
munication latency can be reduced significantly. Finally, the
throughput can be improved further. Our contributions are
summarized as follows.

• Throughput Maximization Problem Formulation: A
UAVs-aided offloading system in a continuous dy-
namic environment has been formulated, with the
constraint of tolerant latency of tasks generated by
terrestrial MDs and the limitation observation of
UAVs. The locations of MDs change all the time in
this environment and the stochastic generation of
tasks has no rules to follow, while the volume, gen-
eration time slot, tolerant latency are also. The UAVs
can serve terrestrial MDs with limited coverage and
computation capacity. The objective is to maximize
the throughput, maximize the completed number of
tasks and minimize the completed latency of tasks,
which is shown to be a non-convex problem. To
solve this problem, UAVs must find a cooperative
deployment location to maximize the transmission
efficiency for air-to-terrestrial and inner communi-
cation and cover maximized MDs. These metrics
are used to measure the cooperation performance of
UAVs.

• DRL-based Multi-UAV Cooperation Policy: To solve the
optimization problem mentioned above, the relation-
ship between latency, the number of completed tasks,
and another metric throughput has been analyzed.
Then, the optimization has been transformed into
maximizing the throughput. This optimization prob-
lem has been solved by two solutions, one is to
optimize the trajectory and cooperation of UAVs,
another solution is to optimize the association be-
tween UAVs and MDs to process more tasks as
soon as possible. To optimize the deployment and
cooperation of UAVs, a deep reinforcement learning
algorithm, i.e., proximal policy optimization (PPO)
has been adopted. To improve convergence speed
and optimal action selection policy between UAVs,
a novel action-value function factorization approach
has been combined with PPO.

• GS-based Tasks Scheduling Algorithm: An improved
association algorithm, Many-to-One Gale-Shapley
(MOGS), has been proposed to realize fast task
scheduling in a complex environment in continu-
ous time. It is inspired by the Gale-Shapley (GS)
algorithm to realize the association between UAVs
and tasks directly without the assistance of a third

party, i.e., some edge servers or central servers. It
consumes very little computation power, and the
constraint of the number of two sides in GS is broken.
Some rules of association are proposed to optimize
the computation load of each UAV to guarantee the
performance of cooperation. Some simulation com-
parisons demonstrate the advantage of MOGS.

The organization of this paper later is as follows. Section
2 introduces some related studies in recent years. The sys-
tem model and problem formulation are described in Sec-
tion 3 and Section 4, respectively. In Section 5, the solution
of the problem is introduced. In Section 6, we introduce the
simulation environment and present the results. Finally, the
whole work in this paper is concluded.

2 RELATED WORK

In this section, we will review existing studies, which in-
clude UAV-centric studies and task-centric studies. Also, we
briefly summarize the shortages of them to demonstrate the
motivation of this work.

UAV-centric studies mainly research how to optimize
the trajectory, cooperation policy and other metrics to im-
prove the efficiency of UAV [4]–[8]. In these studies, the
experience of users usually has not been considered in
detail. The authors Zhang et.al use the DRL algorithm to
plan the cooperative trajectory of UAVs-BSs to guarantee
the throughput maximization of users in an emergency
environment [4]. Guan et.al [5] use the PPO algorithm and
K-means algorithm to plan the trajectory of UAV while
minimizing the interaction consumption and improving the
deployment efficiency. Furthermore, Table 1 summarizes the
comparison between our study and previous studies [15]–
[24]. For task-centric research, focus on improving the asso-
ciation process between UAVs and tasks, such as optimizing
the task collecting policy, task scheduling policy, etc [2], [9]–
[14]. These studies can improve the QoE of users in the
considered environment. Some studies consider using UAVs
to provide offloading service for devices [10] [11], where the
Wang et.al use Generative Adversarial Networks (GANs)
and the gradient-based policy to train a policy for online
scheduling with partial observation [10]. Some studies focus
on optimizing the energy-efficiency ratio and some other
metrics to optimize these two shortages. Wang et. al and
Hua et. al in [13] and [14] all maximize the throughput by
optimizing the trajectory of UAVs and offloading decisions.

The studies mentioned above all contribute to optimiz-
ing UAV-assisted MEC. However, they only consider opti-
mizing some metrics for a static time slot but ignore the
continuity of time in practice. In a complex environment, a
huge number of tasks will be generated and canceled in a
continuous time irregularly, and the location of some users
will also change. How to train a cooperation model to adapt
to the dynamic environment while guaranteeing offloading
efficiency needs to be solved. There still are some problems
to be solved in the task-centric research. For example, during
a training process, the task set generated at the beginning
of a one-time slot may change and the final result cannot
guarantee optimality. The training process of the result also
consumes a period, the latency-sensitive task may not be
served due to the low-latency constraint. Thus, a lightweight
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TABLE 1
A comparison with existing studies

Reference Scheme Environment Observation Objectives
Static Dynamic Local Complete Latency Throughput Task Number Joint

[15] A* ✓ ✓ ✓
[16] CO ✓ ✓ ✓
[17] DRL ✓ ✓ ✓
[18] DRL ✓ ✓ ✓
[19] DRL ✓ ✓ ✓
[20] DRL ✓ ✓ ✓
[21] DRL ✓ ✓ ✓
[22] DRL ✓ ✓ ✓
[23] CO ✓ ✓ ✓
[24] BCD ✓ ✓ ✓

Our work DRL,MOGS ✓ ✓ ✓

and fast convergence task scheduling algorithm needs to be
designed.

3 SYSTEM MODEL

Fig. 1. An illustration of a UAV-assisted computation environment, the
upper part represents the real world. The lower left and lower right
parts represent the training of the UAV cooperation model and the task
scheduling model for this environment, respectively.

In this work, we consider using multiple UAVs to serve
moving MDs, which is shown in Fig. 1, and the number
of MDs is much higher than the number of UAVs. MDs
are moving all the time and tasks are generated by them.
UAVs need to move cooperatively to cover MDs and com-
pute tasks. The system model includes three parts, i.e.,
the environment model, transmission model and energy
consumption model. Then we introduce these models in
detail.

3.1 Environment Model

This model is used to describe some fundamental characters
including the state of UAV and the details of tasks. We use
U = {u1, ..., uk, ..., U} to denote the set of UAVs. The UAVs
in U can communicate with each other to transmit tasks,
results, and the topology information of the whole swarm.

We consider a time horizon T in time interval [Ts, Te] and
discretize it into T equal-size time slots by the length of ti,
which are indexed by the set T = {t1, t2, ..., T}. There are
Mti =

{
τd1,ti , ..., τdj ,ti , ..., τdD,ti

}
tasks generated by MDs

D = {d1, d2, ..., D} in the ti time slot.
The main properties of the UAV uk are denoted as

uk ≜<< χlo
uk,ti

, χmax
uk

>,< φcoor
uk,x,ti

, φcoor
uk,y,ti

, φcoor
uk,z,ti

>>,
where φcoor

uk,ti
denote the 3D coordination in the ti time

slot of the UAV uk , χlo
uk,ti

and χmax
uk

denote the real-time
computation load condition in the time slot ti and the max-
imum computation capacity of the UAV uk, respectively.
We use dj ≜<< ψcoor

dj ,x,ti
, ψcoor

dj ,y,ti
>, τj,ti > to describe the

properties of one MD, where τj,ti is a task generated by
this MD, ψcoor

dj ,x,ti
and ψcoor

dj ,y,ti
are the 2D coordination of

this MD in the ti time slot. The main properties of the task
τj,ti are denoted as τdj ,ti ≜< υτdj,ti , γτdj,ti , ωτdj,ti

, στdj,ti , <
ψcoor
dj ,x,ti

, ψcoor
dj ,y,ti

>>, where υτdj,ti denotes the volume of
task τdj ,ti , γτdj,ti , ωτdj,ti

and στdj,ti denote the size of
result data, the number of CPU cycles to process and the
tolerant latency of task τdj ,ti , respectively. We suppose that
the coordination of MD and UAVs is static during a one-time
slot, the distance between dj and UAV uk can be represented
by (1). The expression of the notations in this paper are listed
in Table.2.

δdisdj ,uk,ti
= [(φcoor

uk,x,ti
− ψcoor

dj ,x,ti)
2+ (φcoor

uk,y,ti
− ψcoor

dj ,y,ti)
2+

(φcoor
uk,z,ti

)2]
1
2

(1)

3.2 Transmission Model

The transmission model is used to describe some details
of the communication process, such as the calculation of
transmission rate, etc. We use P trans

uk
to denote the transmit-

ting power of the UAV uk. Thus, the radius of the coverage
area Rrad

uk
of each UAV uk is limited, which means the MD

cannot connect to the UAV if the distance between MD and
UAV surpasses Rrad

uk
. The uplink model is similar to the

ground-to-air link, we need to consider the LoS and NLoS
transmissions. Then we use a two-piece function ζ(δ) to
model the path loss [25], it is shown in (2), where theAL and
ANL are the path losses with the reference distance δ = 1,
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TABLE 2
MAIN NOTATIONS USED IN SYSTEM MODEL

Notations Expression

U The set of UAVs

S The set of ESs

Mti The set of tasks generated
in ti time slot

D The set of MDs

χmax
uk

The computation capacity
of the UAV uk

φcoor
uk,ti The 3D coordination in

the ti time slot of UAV uk

χlo
uk,ti The real-time computation

load condition in time slot ti
of the UAV uk

< ψcoor
dj ,x,ti

, ψcoor
dj ,y,ti

> The 2D coordinate of the
MD dj in the time slot ti

τdj ,ti The task generated by MD dj
in the time slot ti

υτdj,ti , γτdj,ti The volume, size of result data
of task τdj ,ti

ωτdj,ti
, στdj,ti

The number of CPU cycles to
process and the tolerant latency

Rrad
uk

The coverage area radius
UAV uk

rupdj ,uk
, rdown

uk,dj
, ξ, B The achievable upload and

download rate of MD dj to UAV uk,
the Signal-to-Noise Ratio and
the bandwidth of the current channel

Ωuk The throughput of the UAV uk

Γuk,dj , E
trans
uk

The latency and energy consumption
to transmit task τdj ,ti by the UAV uk

Eτdj,ti
, Ecomp

uk
The latency and energy consumption
to process task τdj ,ti by the UAV uk

Cτdj,ti
The finish time of the task τdj ,ti

Fuk , E
move
uk

The latency of the UAV uk to fly
a distance ldisαang and the energy
consumption of this process

vuk The velocity of UAV uk

P trans
uk

, P comp
uk

, Pmove
uk

The transmission, computation
and flying power of the UAV uk

αL and αNL are the path loss exponents with respect to LoS
and NLoS.

ζ(δ) =

{
ζL(δ) = ALδ−αL

, for LoS

ζNL(δ) = ANLδ−αNL

, for NLoS
(2)

We use PLoS(θ(uk, dj)) to represent the LoS probability
from a transmitter to a receiver, i.e., the uk to dj or dj to uk.
This probability can be expressed as in (3), where λ and σ
are coefficients determined by the specific environment, and

θ is a function to describe the elevation angle between UAV
uk and MD dj . The NLoS probability can be calculated by
PNLoS(θ(uk, dj)) = 1− PLoS(uk, dj).

PLoS(θ(uk, dj)) =
1

1 + σe−λ[θ(l,k)−σ]
(3)

In this environment, the MD only communicates with
at most one UAV to transmit its task to avoid repeated
calculation. Some constraints have been defined as in (4)
and (5).

U∑
k=1

adj ,uk
⩽ 1, ∀j ∈ D, k ∈ U (4)

adj ,uk
∈ {0, 1} , ∀j ∈ D, k ∈ U (5)

Then the achievable upload rate of MD dj to UAV uk is
shown in (6) [9], where ξ is the Signal-to-Noise Ratio(SNR),
the difference between the receiving and sending process
has been ignored.B is the bandwidth of the current channel.

rupdj ,uk
= B log2(1 +

ξptransuk

(δdisdj ,uk
)2
) (6)

The downlink rate between UAV uk to MD dj is also
given in (7), where h(uk, dj) is the power gain between the
UAV uk and MD dj , N is the power spectral density.

rdown
uk,dj

= B log2(1 +
ptransuk

h(uk, dj)

BN
) (7)

Then we can calculate the throughput of the UAV uk in a
fixed length of time, as in (8), where the former term denotes
an idea condition that all the tasks can be transmitted
successfully and the UAV can receive tasks all the time.
The latter term denotes the realistic condition, including
discontinuous and uncompleted transmission during the
fixed time.

Ωuk = min


T∑

i=0

D∑
j=0

adj ,uk
υτdj,ti +

T∑
i=0

D∑
j=0

adj ,uk
γτdj,ti ;

T∑
i=1

D∑
j=0

adj ,uk
rupdj ,uk

+
T∑

i=1

D∑
j=0

adj ,uk
rdown
uk,dj


(8)

Based on the transmission rate, the transmission latency
Γuk,dj

between UAV uk and MD dj by (9).

Γuk,dj
=
υτdj,ti
rupdj ,uk

+
γτdj,ti
rdown
uk,dj

(9)

For simplicity, we set the size of γτdj,ti to be a proportional
reduction of υτdj,ti .

3.3 Energy Consumption Model
The energy consumption model mainly includes three parts,
transmission consumption, computation consumption, and
movement consumption. The transmission energy con-
sumption of UAV uk and MD dj can be denoted as in (10).

Etrans
uk,τdj,ti

= Γuk.dj
∗ P trans

uk
(10)
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Besides, the computation latency and computation en-
ergy consumption of task τdj ,ti are also considered, they
can be denoted as in (11) and (12), where P comp

uk
denotes the

computation power of UAV uk.

Eτdj,ti =
χmax
uk

ωτdj,ti

(11)

and

Ecomp
uk

= Eτdj,ti ∗ P
comp
uk

(12)

We set the flying height of the UAV to under 400 feet,
this obeys the rule of the Federal Aviation Administration
of the US [26]. In the movement model, each UAV in this
environment can choose a direction αang ∈ [0, 2π]in a 2D
plane and fly for a distance ldisαang . Thus, the flying latency
can be calculated by (13), where vuk

denotes the velocity of
UAV uk. Then, the movement energy consumption of UAV
uk can be denoted as in (14).

Fuk
=
ldisαang

vuk

(13)

Emove
uk

= Fuk
∗ Pmove

uk
(14)

4 PROBLEM FORMULATION

Based on the models mentioned above, our aim is to maxi-
mize throughput, as well as the number of completed tasks,
and minimize the latency consumption of tasks in a fixed
time Twith the constraint of latency tolerance of tasks and
the limited computation capacity of UAVs. We formulate
this problem as a non-convex mixed integer programming
problem which can be denoted as in (15).

(P ) : max

{
U∑

k=1

Ωuk ,
U∑

k=1

T∑
i=1

(Ĉinti + Ĉdeti ),

U∑
k=1

D∑
j=1

1

Γuk,dj


(15)

These three metrics are coupled with each other, and the
throughput dominates the other two metrics. For example,
suppose that the optimization objective is to maximize the
number of completed tasks in a fixed time. In that case,
throughput can be maximized with the increase of the
completed number if the fairness of tasks with different
volumes can be guaranteed. To simplify the problem 15,
we transform it into a subproblem 16, which only needs to
optimize the throughput in a fixed time while guaranteeing
the fairness of different tasks. The problem P1 is shown as
in (16).

(P1) : max
Ĉin
ti

,Ĉde
ti

, 1
Γuk,dj

U∑
k=1

D∑
j=1

Ωuk (16)

s.t. 0 ≤ φcoor
uk,x,ti

≤ xmax,∀k ∈ U, i ∈ T (16a)

0 ≤ φcoor
uk,y,ti

≤ ymax,∀k ∈ U, i ∈ T (16b)

χlo
uk,ti

≤ χmax
uk

,∀i ∈ T (16c)

U∑
k=1

χlo
uk,ti

≤
U∑

k=1

χmax
uk

,∀i ∈ T, k ∈ U (16d)

Cτdj,ti
≤ στdj,ti ,∀j ∈ U, i ∈ T (16e)

U∑
k=1

adj ,uk
⩽ 1, ∀k ∈ U (16f)

rupdj ,uk
≥ 0,∀j ∈ D, k ∈ U (16g)

rupuk,uk+1
≥ 0,∀k ∈ U (16h)

In the optimization problem P1, Constraint (16a) and
Constraint (16b) constrain the flight area of UAVs. Con-
straint (16c) and Constraint (16d) guarantee each UAV has
a normal computation load, the high-loaded state may
cause transmission failure, computation failure and even
cooperation failure. Constraint (16e) is used to guarantee
the task can be finished in time, where Cτdj,ti

can be
calculated by (17). Constraint (16f) constrains each MD only
can communicate with one UAV. Constraint (16g) is used to
help the UAV judge whether to communicate with one MD.
Constraint (16h) guarantees the UAV can communicate with
other UAVs, no matter whether it communicates directly or
relay by the second UAV.

Cτdj,ti
= min

{
ti + Γuk,dj + Eτdj,ti , ti + στdj,ti

}
(17)

5 PROPOSED SOLUTION

In this section, we give our solutions to the cooperation
of UAVs and task scheduling problems, respectively. In the
first problem, UAVs need to coordinate their formation ac-
cording to the moving MDs which move with no regularity,
and the observation of each UAV is limited, the cooperation
metrics include transmission performance between UAVs
and UAVs-to-MDs, etc. The second problem focuses mainly
on optimizing the association between UAVs and MDs with
latency and computation capacity constraints. To solve these
two subproblems, we introduce a multi-agent reinforcement
learning algorithm TF-PPO, which combines proximal pol-
icy gradient(PPO) [27] and task factorization network [28]
with a deep neural network. After transmission from MDs
to UAVs, UAVs need to schedule tasks to improve the
completed ratio while balancing the computation load. This
process influences the performance of UAVs and the QoE of
MDs in the next. Then, we explain some specifics of these
two algorithms.

5.1 The Cooperation Policy of UAVs

In this subsection, we first explain the components of the
TF-PPO algorithm, the architecture is shown in Fig. 2. Then
we introduce how to combine the task factorization network
with the PPO algorithm in this environment.
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5.1.1 The components of TF-PPO

To solve the multi-UAV cooperation problem under lim-
ited observation, we formulate it as a Partially Observable
Markov Decision Process (POMDP) [10], which is defined
as an eight-tuple < S,A, T,O,R,Z, πθ, γdis >.

• States: S ≜ {si} is the state of UAVs which
is shown in the lower left corner of Fig. 2,
which includes the state of UAVs, and the
number of MDs within the coverage of each
UAV. We use si = [su1,i, ..., suk,i, ..., suU ,i] to
denote the states of UAVs at step i in the
training process. For example, in the i− th
step, the state of UAV uk can be denoted by
suk,i =<< φcoor

uk,x,ti
, φcoor

uk,y,ti
, φcoor

uk,z,ti
>, auk,i, ruk,i,

suk,i+1 >. After storing this state, the UAV can be
transited to the next state suk,i+1. This transition
process can be used to measure whether the selected
action is useful, then the action value Q̃uk

of this
action can be updated.

• Action: A ≜ {ai} is the set of actions of all the UAVs.
The matrix of all the joint-action of UAVs in the step i
can be denoted as ai = [au1,i, ..., auk,i..., auU ,i] where
auk,i = [αang, ldisαang ] includes the direction adir and
angle aang . These two sub-actions determine the 3D
coordinate of the UAV in the next step together. The
change in altitude can help UAVs to avoid collisions.
The UAV needs to select the direction and angle ac-
curately to cover more MDs when the coordinates
of MDs change. The core of this model is to get an
optimal cooperation trajectory, where the trajectory
is determined by the action selection in each state.
The selection of action is related to the action value
directly. If one action can achieve a higher reward
during one step, the action value of this action will
be updated to higher.

• Transition Probability Function: T (S × A → S) is
the probability of state s′ ∈ S after execute the
joint action [au1

, ..., auk
, ..., auU

] at the previous state
s ∈ S.

• Observation Probability Function: O is the probability
to observe o ∈ O after executing a under the state s.

• Partial Observation: Z contains all the observations
and S×A×O → Z means the probability of getting
the observation z ∈ Z according to the previous state
s and action a.

• Policy function: πθ is the policy function, which is a
deep neural network with parameter θuk,a to train
the policy of selecting action a for the UAV uk.

• Discount Factor: The notation γdis ∈ [0, 1) is the
discount factor, which is used to adjust the influence
of the future reward to the calculation.

• Reward: S × A → R denotes the immediate reward
according to a ∈ A to measure the selection of a.
And the next state s′ ∈ S also influences the value
of r ∈ R. To maximize the reward, i.e., to maximize
the coverage and keep the cooperation of UAVs, the
global reward of the state si has been defined in (18).

r =
U∑

k=1

Ωuk (18)

In this formula, Ωuk denotes the covered MDs by
each UAV. Therefore, the total reward with dis-
counted factor γdis ∈ [0, 1] in the future can be
shown as in (19).

max
πθ

E[
T−1∑
t=0

∑
∀uk∈U

γdisr(si, ai)] (19)

s.t. si ∈ S, πθ(si) ∈ A (19a)
T∑

i=0

U∑
k=1

ukδ
is
uk

= UT (19b)

Constraint (19a) denotes the state si and the action
ai belong to S and A. Constraint (19b) means UAVs
cannot lose contact with each other in every time slot
ti, δisuK

= 1 indicates that uk can connect to either
UAV, and δisuK

= 0 otherwise. If one UAV is isolated,
its observation will be deduced, and the cooperation
computation is unsustainable. To optimize this pro-
cess, we use the task factorization network to train
the global optimal action selection, and it will be in-
troduced next.

5.1.2 Task Factorization Network in TF-PPO

Proximal Policy Optimization(PPO) reinforcement learning
algorithm is developed from the actor-critic architecture [21]
and the policy gradient technique [10]. The objective of this
algorithm is to search for an optimal policy that can generate
the optimal actions of the agents, which can be denoted as
in (20), where ϵ is a clip fraction, and Ai = is generalized
advantage estimator(GAE) [27], which is used to optimize
the advantage function. The clip() function returns the up-
per and lower limits if the importance sampling [29] result
is out of range. This equation directly limits the range of
changes that the policy can make, then the stability during
the training process has been improved.

JCLIP (πθ) = E[min(
πθ(auk,i|si)

πθold(auk,i|si)
Ai, clip(

πθ(auk,i|si)

πθold(auk,i|si)
,

1− ϵ, 1 + ϵ)Ai]

(20)

The network architecture of PPO is developed from
Actor-Critic (AC) architecture, it also has two network mod-
els to train, i.e., the actor network and the critic network. The
actor network is used to select an appropriate action auk,i

for UAV uk in the i − th step by policy gradient function,
and the critic network is used to evaluate the result after
executing action auk,i by value-based function. These two
networks can act as an athlete and a judge to improve
performance, respectively. The loss functions of these two
networks in this paper are listed in (21) and (22).

La(θ) = JCLIP (πθ) (21)

This article has been accepted for publication in IEEE Transactions on Computers. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TC.2024.3483636

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Edinburgh Napier University. Downloaded on November 25,2024 at 07:51:05 UTC from IEEE Xplore.  Restrictions apply. 



IEEE TRANSACTIONS ON COMPUTERS, MAY 2024 7

and
Lc(ϕ) = E[(V (st)− (rt + γV (st+1))

2] (22)

In MARL, each agent selects the optimal action by in-
dividual model according to the limited observation. As a
result, the global optimal action set cannot be guaranteed.
To compensate for this disadvantage, centralized training
with decentralized execution(CTDE) has been proposed to
expand the observation range of agents. However, the opti-
mal joint action of all the agents still needs to be solved. In
this background, the value decomposition network(VDN)
[6] has been proposed to optimize the optimal joint-action
selection process. VDN decomposes the actions of all the
agents by assigning appropriate action value from the global
value which is feedbacked from the joint-action execution.
The idea of decomposition can be summarized as in (23),
where Qtotal(ai) is the sum of all the individual function
Q̃(auk,i). Then a value decomposition neural network is
trained to update the Qtotal(ai) and Q̃(auk,i).

Qtotal(ai) =
U∑

k=1

Q̃(auk,i) (23)

The loss function during the updating process can
be shown as in (24), where the notation yi and
Qpre

total(ai−1) are calculated by ri + γargmax
a

Qpre
total(ai−1)

and
∑U

k=1Q
pre(auk,i−1), respectively. This decomposition

network can optimize the Q function of each agent signifi-
cantly. However, VDN cannot process complex tasks due to
the accumulation, i.e., the sum of Q̃ function cannot adapt
to all the relationships between individual Q̃ function and
global Qtotal function. Then the task factorization network
has been proposed, which can cope with more complex
relationships.

L(θ) =
1

U
(yi −Qpre

total(ai))
2 (24)

The core of the task factorization network is to construct
the relationship between the individual Q̃ function and the
global Qtotal function. In this paper, in order to factor-
ize Qtotal to Q̃, the individual-global-max(IGM) principle
should be guaranteed. IGM is used to describe the equiva-
lency of the individual optimality and the global optimality,
which can be denoted as in (25).

argmax
a

Qtotal(ai) = [argmax
auk

Q̃(auk
)]Uk=1 (25)

It is the goal of the task factorization network, that
can assign an appropriate reward value to each individual
network from the global network. Then we need to find a
set of individual Q̃ to approximate the optimalQtotal, which
can be shown as in (26), which means the sum of every
optimal Q̃(auk

) must higher than the sum of Q̃(auk
) with

other actions. If a set of Q̃ functions satisfy this constraint,
the IGM is also satisfied. To search for a Q̃ set that meets this
constraint, we combine the task factorization network with
PPO as a multi-agent algorithm to estimate, the structure of
this idea is shown in Fig. 2.

[argmax
auk

Q̃(auk
)]Uk=1 ≥ [Q̃(auk

)]Uk=1 (26)

Fig. 2. The architecture of TF-PPO. The top part represents the global
network to train the cooperation model of multiple UAVs, The bottom
part represents the individual model training process of each UAV.

From Fig. 2, we can see the TF-PPO consists of two
main networks, i.e., the individual network model in each
UAV and a global network model for UAVs. The individual
network model is mainly used to interact with the envi-
ronment, monitor changes in the environment and choose
appropriate action auk,i for UAV uk in the i − th step.
This individual network model consists of two sub-network
models, i.e., the actor network and the critic network. The
actor-network is used to select action auk,i and the critic
network evaluates the performance of action auk,i to im-
prove the actor network. The global network includes two
sub-network models, the first model is the joint action-
value network model, which is used to approximate joint
action-value Qtotal, it receives the selected action by each
UAV and outputs the Q̃value of them. Another model is
the state-value network model, which is used to compute
a state-value V (s)to reduce the gap between Q̃ and Qtotal.
Pseudocode is shown in Algorithm 1 and Algorithm 2.

5.2 The Association Policy Between UAVs and Tasks

In the dynamic environment, the generation of tasks is
random and difficult to predict. Therefore, MOGS focuses
on achieving a near-optimal association between UAVs and
tasks under constraints such as delay and computing capac-
ity in dynamic environments through a few iterations.

In order to solve this problem, we propose an improved
many-to-one association algorithm based on Gale-Shapley
[30], which is called Many-to-One Gale-Shapley(MOGS).
This idea is inspired by [31] and the association process
has been improved. The GS algorithm is also called the
deferred-acceptance algorithm. It is usually used to solve
the stable association problem. In an association problem,
the two sides’ agents to associate have an equal number
and each agent has a rank list to select the preferred agent
on the other side. During this process, if one agent has
been selected by two agents on another side simultaneously,
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it will select the preferred agent and release the original
agent that has matched with it. The GS algorithm can
realize a stable association with few iterations although it
cannot guarantee the result is optimal. In this work, the
MOGS inherits the advantages of the GS to realize a stable
association and break its disadvantages, i.e., constrain the
number of members on both sides. Next, the components
and the association of MOGS are introduced.

Algorithm 1 Individual Model

1: Input: MD locations, UAV locations
2: Output: The cooperation model
3: Initialize actor network Aθ and critic Cϕ network ran-

domly with parameters θ and ϕ
4: Initialize old actor network Aθ,old ← θ with parameter
θold

5: Initialize buffer D ← ⊘, mini-batch kmini

6: Set the position of uk randomly
7: for Episode in 1, 2, ..., N do
8: t← 0
9: for t in 1, 2, ..., T do

10: Observe current state st
11: Select an action at by the old actor networkAθ,old

12: Obtain the next state st+1, reward rt
13: Collect previous trajectory D ← D ∪
{st, at, rt, st+1}

14: Update the position of uk
15: if |D| = D then
16: Sample mini-batch kmini data from D
17: Send data to Global model and wait for the

result
18: Update Aθ ← θ by Loss function
19: Update Cϕ ← ϕ bu Loss function
20: Update old actor Aθ,old by θold ← θ
21: Clear the buffer D ← ⊘
22: end if
23: end for
24: end for

Algorithm 2 Global Model

1: Input: Total observations from UAVs
2: Output: Factorized Qjt to each UAV
3: Initialize replay memory D
4: Initialize [Qi], Qjt, Vjt with random parameters θ
5: Initialize target parameters θ− = θ
6: for episode = 1, ..., N do
7: Collect initial state s0 and observation o0 =

[O(s0, i)]Ni=1 from each agent i
8: for t = 1 to T do
9: With probability ϵ select a random action ati

10: Update θ− = θ with fixed period
11: end for
12: end for

5.2.1 The components of MOGS algorithm
• Active Party: The active party in MOGS is the set of

tasks Mti generated by MDs in ti, every task has a
rank list to sort the UAVs which can process it, and
it requests to associate with the first UAV in its list.

• Passive Party: The passive party in MOGS is the set of
UAVs U , it only receives the tasks from MDs but does
not select the tasks actively. Every UAV also has an
equality to rank different types of tasks; this equality
is the criterion to judge whether a task is suitable to
process and will be introduced below.

• Procedure: The process of association mainly consists
of three steps, and we use UAV uk to denote the first
UAV in the rank list of MD dj here. First, in the ti
time slot, UAVs send the topology information and
the state information to MDs in their coverage area.
Then, after receiving the information from UAVs,
every MD computes the rank list and sends its task
to the UAV which is the first in the rank list. Finally,
the UAV uk receives the task τdj ,ti generated by
MD dj due to the highest level in the rank list of
MD dj . The UAV ui judges whether to process or
relay τdj ,ti to other UAVs according to the latency
constraint of τdj ,ti and the optimization formula
which will be introduced below. To avoid some tasks
being transmitted to another high-loaded UAV, we
divide UAVs into two categories, i.e., Ulow and Uhigh.
Uhigh includes high-loaded UAVs, another category
Ulow includes low-loaded UAVs. High-loaded UAVs
in Uhigh transmit tasks in their task queue to low-
loaded UAVs Ulow under the latency constraint. This
process can avoid task collision while guaranteeing
the tasks transmitted can be computed.

• Rule: To solve the problem P while realizing the
MOGS association under the constraints, some rules
have been proposed to solve the subproblems during
the association process. The first subproblem is to
assign a suitable UAV to process the sudden tasks.
The UAV can provide a higher transmission rate at
closer distances, however, the UAV that is the closest
to the task may not provide process capacity due to
the overlong task queue and limited computation
capacity. Thus, how to find a suitable UAV from
the whole swarm within the constraint of tolerant
latency of tasks under a dynamic environment needs
to be solved. We propose an equation as a rule to
help construct the association between UAVs and
tasks, which can be formulated as in (27), where
αr, βr are coefficients to trade the weight of uplink
rate, downlink between UAV and task, γl is used to
adjust the weight of the computation load of UAV.
This equation mainly focuses on selecting the most
suitable UAV for the task τdj ,ti , the other UAVs
will also be sorted based on this equation. However,
its shortcomings are also obvious, the cooperation
performance of UAVs may be degraded due to the
overload of some UAVs. Then we consider propos-
ing a rule to help UAVs get better cooperative task
scheduling, it is also the second subproblem.

uord =


(max

{
αrrupdj ,uk

+ βrrdown
uk,dj

+ γlχlo
uk,ti

}
∀j, k, i), 1
other, 0

(27)
The second subproblem is to coordinate the cooper-
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ation between UAVs to avoid overloading a single
UAV. The concurrency of tasks happens frequently
in practice, and an overloaded UAV may cause
optimization performance degradation while receiv-
ing overmuch tasks. To help the UAV uk to judge
whether a task τdj ,ti can be processed by itself or
transmit to UAV uk+1, we design a rule as in (28).

usu =


Γuk+1,dj

+
γτdj,ti

+χlo
uk+1,ti

Euk+1
+∆l

χmax
uk+1

χlo
uk+1,ti

≤ στdj,ti , 1

other , 0
(28)

From the equation (28), the UAV uk can judge
whether uk+1 is suitable for computing task τdj ,ti .

We additionally add a term ∆l
χmax
uk+1

χlo
uk+1,ti

≤ στdj,ti to

denote the queue latency before computing τdj ,ti if
it is transmitted to uk+1, where the ∆l ∈ 0, 1 can be
set based on the environment, the more complex the
environment, it closer to 1 if the environment is more
complex.

Algorithm 3 MOGS Algorithm

1: Input: The set of tasks and UAVs
2: Output: The association result of tasks and UAVs
3: Initialization Data: The set of UAVs U , the set of

tasksMti

4: Compute the preference order PUAV
τdj,ti

of UAVs U by each
task τdj ,ti , j ∈ M according to αrrupdj ,uk

+ βrrdown
uk,dj

+

γlχlo
uk,ti

5: for uk ∈ U do
6: Compute the computation load of each UAV
7: end for
8: for steps=[1, ..., N ] do
9: for uk ∈ U do

10: Divide U into Ulow and Uhigh according to the
computation load

11: end for
12: for τdj ,ti ∈ uk, uk ∈ Uhigh do
13: if Priority is satisfied then
14: if Latency is satisfied then
15: Transmit τdj ,ti to uk
16: end if
17: end if
18: end for
19: end for

Algorithm 3 describes the whole process of constructing
association between UAVs and tasks, and how to schedule
tasks between UAVs in detail. To construct an association
relationship, tasks need to sort UAVs according to the trans-
mission rate and the state of UAVs (Line 3). After sorting,
some UAVs may be in the overload state and some tasks
need to be scheduled (Line 5). To balance the computation
load of UAVs, they are divided into Ulow and Uhigh to
transmit tasks (Lines 7-18). To select appropriate next UAV
for one task τdj ,ti in the queue of UAV uk, the Equation (27)
and Equation (28) are used to judge whether one UAV is
suitable for τdj ,ti (Line 11-15). More details on the stability

analysis and the complexity analysis are provided in the
Supplemental material.

6 SIMULATION RESULTS AND DISCUSSION

In this section, we demonstrate the effectiveness of TF-
PPO and MOGS through extensive simulations. These sim-
ulations are conducted on a DELL workstation with one
RTX3090 graphic card and Intel(R) Xeon(R) Gold 6226R
@2.90GHz, and the operation system is Win10 21H2. We set
the size of the environment as a 2km × 2km, the MDs are
distributed in this area and follow a PPP distribution. The
number of UAVs ranges from 2 to 12 to demonstrate the
performance of the TF-PPO. The coverage radius of UAV
ranges from 30m to 130m, the bigger coverage radius means
more UAVs can communicate with MDs directly without
moving. The initial position of UAVs is not the same, and
we guarantee each UAV can communicate with at least one
UAV. The number of MDs is set as 800, dependent tasks and
independent tasks are generated by other MDs and follow
a normal distribution. Some more specific information on
parameters are listed in Table 3.

TABLE 3
SIMULATION PARAMETERS

Parameters Value

Computation capacity of UAV 100MHz
Transmission bandwidth 50Mbps
The volume of task 0.1M ∼ 1M
The length of task set 1000
The number of UAVs 2 ∼ 12
The propel power of UAV 7W
The coverage radius of UAV 20m ∼ 140m
The flight speed of UAV 25km/h
The computation power of UAV 5W
The transmission power of UAV 1W
The value of ∆l 0.8

6.1 Performance Verification and Discussion of TF-
PPO
To verify the performance of TF-PPO, we use some metrics
to measure, including the throughput and the energy con-
sumption of UAVs, the computation latency of tasks and the
number of completed tasks. Some reinforcement learning
algorithms including VDN [6], QMIX [32], QTRAN [33],
MADDPG [17] and MAPPO [18] are additionally selected
to compare with TF-PPO. More details on these algorithms
are provided in the Supplemental Material.

While training these algorithms, the maximum iteration
steps are all set as 5000, and 100 steps in each episode.
First, we compare the influence of energy efficiency and
the throughput with different coverage radii of UAVs. The
result is shown in Fig. 3.

In Fig. 3(a) and Fig. 3(b), The VDN algorithm has the
worst performance. It cannot achieve a good performance
due to its value decomposition function, which only relies
on the accumulation from every individual Q value, it can-
not reflect the complex environment accurately. The QMIX
algorithm also has a disadvantage during the value decom-
position process, it leverages the monotonicity between in-
dividual Qi value and global Qtotal value. They still cannot
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Fig. 3. The energy efficiency and throughput comparison with different
coverage radii of UAVs.

approximate the complex environment. The performance of
the QTRAN algorithm is close to the MADDPG but better
than VDN and QMIX. It alternatively constructs a deep
neural network for task factorizing, which is adapted to
the TF-PPO. This network can train a model to study the
Qtotal value which is very close to the real Qtotal value,
this can make sure the global Qtotal is right. The final
two algorithms, i.e., the MADDPG and the MAPPO, their
performance are very close to the TF-PPO. However, the
TF-PPO still has an advantage while the coverage radius
is 30m, which means the TF-PPO can cope with a more
complex environment. With the help of the task factorization
network, the TF-PPO can construct the right relationship
between individual Qi value and global Qtotal value. The
architecture of the TF-PPO is very similar to the MAPPO.
They all adopt the centralized training and decentralized
execution mode, and we especially optimize the global
network by integrating the task factorization network. Thus,
the TF-PPO can trade the decomposition between each in-
dividual action selection, and then the joint action selection
process of all the UAVs can be optimized.

By observing Fig. 3, We can observe that the TF-PPO
algorithm can achieve the upper bound efficiency while
the radius is 30m, 90m and 130m, and the upper bound
throughput while the radius is 30m, 90m, 110m and 130m
in Fig. 3(a) and Fig. 3(b), respectively. We also discuss some
disadvantages of the TF-PPO alternatively. For example, it
cannot play to its strengths to achieve the upper bound
energy efficiency when the coverage radius is 50m and 70m.
We speculate the alternative task factorization network may
influence the efficiency during the training process or the
factorization of Qtotal value still needs to be improved. We
will continue executing more simulations to verify our idea.

We additionally verify the impact of the number of UAVs
on the TF-PPO. The metrics are still energy efficiency and
throughput. We additionally add a comparison respect, i.e.,
the convergence curve to observe the difference during the
training process. The result can be summarized as follows.

Fig. 4(a) depicts the change of the energy efficiency
under different numbers of UAVs, we can observe that
the VDN algorithm has the worst performance, as well as
the QMIX algorithm. The reason can be concluded that
the value decomposition function cannot adapt to the com-
plex environment. When the number of UAVs is increased,
the state space and joint action space grow exponentially.
Therefore, the training result cannot be improved quickly.
Finally, their result is the worst under limited episodes.

The efficiency of the MAPPO is higher than the MADDPG,
the reason can be summarized as the optimization of the
convergence process, especially the clip() function, which
limits the update range to get a more stable result. We adapt
this advantage and combine the task factorization network
in the global network so that the performance of the TF-PPO
can be better than the other algorithms.

Fig. 4(b) describes the throughput result achieved by
these six algorithms. When the number of UAVs is 2, the
throughput achieved by these algorithms is very similar.
This result is because the movement of UAVs is not directly
related to the throughput. After increasing the number of
UAVs, more MDs can be covered, the performance of the co-
operation policy decides the throughput significantly. From
Fig. 4(b), we can find the throughput increases observably.
However, the TF-PPO cannot achieve the best performance
when the number of UAVs is 4, 6 and 8. We speculate that
the MADDPG and the MAPPO still have some advantages
when the environment is not very complex. When the
number of UAVs increases to 10 and 12, the advantage
of the task factorization network can be highlighted, i.e.,
the complex relationship between global Qtotalvalue and
individual Qican be constructed and the cooperation policy
can be optimized. We can conclude that the TF-PPO is more
suitable for the complex multi-agent environment.

Fig. 4(c) and Fig. 4(d) are the convergence curves of
these six algorithms. Fig.4(c) describes the curve when the
number of UAVs is 2. We can observe that the TF-PPO and
the MAPPO can achieve the highest reward. However, the
converge speed of the TF-PPO is slower than the MAPPO.
We speculate the training of the task factorization network
consumes some resources and the MAPPO is easier to train
than the TF-PPO. From Fig. 4(d), we can observe the conver-
gence of the TF-PPO is much quicker than other algorithms.
The task factorization network makes the cooperative joint
action selection improved, then the cooperative training is
also improved.

In summary, we demonstrate the advantages of TF-
PPO from five aspects, i.e., the energy efficiency and the
throughput with different coverage radii, the energy effi-
ciency and the throughput with different numbers of UAVs,
the convergence curve with different numbers of UAVs. In
these simulations, TF-PPO can construct the relationship
between global Qtotal and individual Qi more accurately
than the VDN, the QMIX and the QTRAN. And the TF-
PPO can adapt to a more complex environment than the
MADDPG and the MAPPO, especially in a multi-agent
environment. Next, we will verify the performance of the
MOGS by extensive simulations.

6.2 Performance Verification and Discussion of MOGS

In the second simulation, we verify the effectiveness of
MOGS by comparing it with other algorithms, which
include the Genetic algorithm, Ant Colony Optimiza-
tion(ACO), Particle Swarm Optimization(PSO) and Greedy
algorithm. We verify the performance of the MOGS com-
pared with other algorithms from two aspects, the first
metric is the completed ratio. It is calculated by dividing
the number of tasks completed by the total number of tasks.
The completed ratio reflects whether a task queue of one
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Fig. 4. Some comparisons with different numbers of UAVs.
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Fig. 5. The completed ratio and computation load comparison.

UAV is suitable for this UAV to compute. The second metric
is the computation load of each UAV. The results of these
two metrics are shown in Fig. 5.
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(a) The initial state of the MOGS.

� �� �� �� �� ��

������������

�

��

��

��

��

��

��
��
��
��
��
��
�

���������������������	���������

��

���

���

���

���

���

���

���

���

��
��
��
��
��
��
��
��
���
��
��
��

(b) The final state of the MOGS.

Fig. 6. Visualizations of the MOGS.

Fig. 5(a) describes the completed ratio and the average
completed ratio of each UAV in these algorithms. Where the
10 points on the left side denote the completed ratio of each
UAV in these five algorithms, and the point on the far right
denotes the average completed ratio of 10 UAVs in these 5
algorithms. We can observe that the Greedy algorithm has
the worst performance. The performance of the PSO and
the genetic algorithm are close to the MOGS. While the PSO
is a bit higher than the genetic algorithm, we speculate the
reason is that the PSO is better than the genetic algorithm in
the global search respect. The genetic algorithm may fall into
the local optimization although it has the mutation ability.
The ACO has the best performance in the completed ratio,
it can search for the optimal solution globally. However, we
find it converges more slowly than others. Thus, the PSO
may not be applied for practice although it has the best
performance.

Fig. 5(b) describes the computation load of each UAV in

these five algorithms. The smoother curve denotes the more
balanced load of UAVs. The balanced status of UAVs can
avoid the overloading of some UAVs to a certain extent. We
can find the ACO is the most stable, and the MOGS has a
relatively poor performance but is better than PSO and GA.

In this simulation, although the MOGS has not achieved
the best performance in the above simulations, we still hold
the point that the MOGS is the most suitable for the dynamic
environment. Compared with the other four heuristic algo-
rithms, the MOGS is extremely simple to achieve the result.
The convergence process of the MOGS has been shown in
Fig. 5(c). We can observe the MOGS only needs 12 itera-
tions to be converged. The task set can be transmitted to
UAVs and canceled all the time due to the insensitivity of
the MOGS.

We also visualize the environment at the initial and final
states in Fig. 6. In Fig. 6(a), we can observe that the compu-
tation load range of the UAV is 0 to 350, with different loads
of the UAV with different colors. We can find that there
is a high-load UAV, and three normal-load UAVs, the rest
of the low-load. This situation reflects what happens if the
task is only transmitted to the selected optimal UAV, that is,
some UAVs are overloaded and some are under-loaded. The
computation efficiency will be reduced in this situation. In
Fig. 6(b), we can observe that the computation load of UAVs
has been balanced. The computation load ranges from 95 to
135. There are merely two UAVs with high and low loads
respectively. From this figure, it can be verified that MOGS
is highly effective in balancing the loads of UAVs.

There are still some limitations of MOGS. It is impossible
to transmit tasks multiple times due to the constraint of
latency. The final matching result can not guarantee that
all tasks can be completed, which is also related to the
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latency constraint, but in the case of high concurrency, it
is difficult to ensure that all tasks are completed due to the
computation power limitation of the UAV. This is consistent
with previous studies.

7 CONCLUSION

In this paper, we focus on optimizing multiple objectives
within a dynamic and complex environment. The multiple
objectives encompass the latency of the computation process
of tasks, the energy consumption of UAVs, and the number
of completed tasks. We convert these objectives into a single
objective, i.e., maximizing throughput. This single-optimiza-
tion problem is addressed through two processes: one is to
optimize the cooperation among UAVs, and the other is to
optimize the association process between tasks and UAVs.
To optimize the cooperation of UAVs, we integrate the task
factorization network with a deep reinforcement learning
algorithm to train a multi-agent algorithm. To optimize the
scheduling process of tasks, we propose an improved Gale-
Shapley algorithm to enhance the performance of the asso-
ciation process. Finally, some simulations illustrate the per-
formance of our solutions. In the future, we will continue
to research a superior solution to optimize the multi-agent
cooperation and task scheduling process.
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