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Summary 49 

In healthcare settings, contaminated surfaces play an important role in transmission of nosocomial 50 

pathogens potentially resulting in healthcare-associated infections (HAI). Pathogens can be transmitted 51 

directly from frequent hand-touch surfaces close to patients or indirectly by staff and visitors. HAI risk 52 

depends on exposition option, extent of contamination, infectious dose (ID), virulence, hygiene practices 53 

and patient vulnerability. This review attempts to close a gap in previous reviews on persistence/ tenacity 54 

by only including articles (n=179) providing quantitative data on re-cultivable pathogens from fomites 55 

for a better translation into clinical settings. We have therefore introduced the new term “replication 56 

capacity” (RC). The RC is affected by degree of contamination, surface material, temperature, relative 57 

humidity, protein load, organic soil, UV-light exposure (sun) and pH-value. In general, investigations 58 

into surface RC are mainly performed in vitro using reference strains with high inocula. In vitro data 59 

from studies on 13 Gram-positive, 25 Gram-negative bacteria, 18 fungi, 4 protozoa and 36 viruses spp. 60 

should be regarded as worst case scenario indicating upper bounds of risks when using such data for 61 

clinical decision making.  62 

Information on RC after surface contamination could be seen as an opportunity to choose the most 63 

appropriate infection prevention and control (IPC) strategies. To help with decision-making, pathogens 64 

characterized by an increased nosocomial risk for transmission from inanimate surfaces (fomite-borne) 65 

are presented and discussed in this systematic review. Thus, the review offers a theoretical basis to 66 

support local risk assessments and IPC recommendations.  67 

 68 

Keywords: replication capacity, persistence, tenacity, viability, resilience, transmission, 69 

bacteria, fungi, protozoa, viruses, inanimate surfaces, fomites, fomite-borne risk pathogens, 70 

HAI  71 
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Introduction 72 

Information about pathogen replication capacity (RC) after surface contamination is an important basis 73 

for infection prevention and control (IPC) including the risk assessment of healthcare-associated 74 

infections (HAI) and nosocomial outbreaks. In addition, this information is of high importance for 75 

outpatient settings and community outbreaks.  76 

Pathogens can be spread from contaminated surfaces by direct patient contact, airborne dispersal (small 77 

and large aerosols) or indirectly via hand and medical devices after contamination from hand-touch 78 

surfaces (Fig. 1). Exogenous transmission of HAIs in Europe corresponds to only about 5-20 % of the 79 

total number of HAI incidents (1), making the hand the main vector for pathogen transmission from 80 

contaminated inanimate surfaces (2-31). Consequently, international guidelines assign a key role of 81 

cleaning / disinfection of areas beside patients, especially surfaces receiving frequent hand / skin contact 82 

(32-35). An additional benefit is the relatively low cost of interventions aiming at controlling this source 83 

as opposed to many others, e.g. impregnated catheters (36). However, as recently witnessed during the 84 

SARS-CoV-2 pandemic, the role of decontamination of inanimate surfaces can also be overrated (37). 85 

Inappropriate use of disinfectants leads to costly interventions alongside risk of disinfectant tolerance 86 

and even antibiotic resistance, environmental pollution (38-40) and adverse effects for humans (41-44). 87 

Therefore, it would be useful to obtain greater insight on the RC of pathogens on inanimate surfaces in 88 

order to implement the most appropriate, risk assessed decontamination procedures.  89 

Since hands are the main vehicle for potential nosocomial pathogens, hand hygiene and surface cleaning 90 

should complement each other to prevent HAI (45).91 



3 
 

 92 

 93 

 94 

contaminated 
surface  

hands of healthcare 
worker,s patients, 

visitors 

susceptible or 
infectious 

patient  
 

indirect transmission direct transmission 

Scheithauer, Simone
Sagen wir dass das eine Figure ist? Dann würde ich sagen 1 a und 1b – gerne auch Anna für beschriftung involvierent



4 
 

 95 

FIGURE 1 Transmission routes from contaminated inanimate surfaces and environmental influences 96 

Defining terms of cultivable pathogens from inanimate surfaces  97 

Resilience is to  withstand or to recover quickly from difficulties and therefore being able to keep or 98 

come back to the standard or  previous condition. Resilience is a positive characteristic from the 99 

perspective of the microbes, which in the medical context can have negative implications from the 100 

patient's perspective. 101 

To determine the environmental resilience of pathogens, different methods of recovery are available to 102 

describe their burden on inanimate surfaces. For viruses only indirect cultivation is possible because 103 

cells are needed for replication. Unfortunately, (reverse transcriptase) polymerase chain reaction ((RT-104 

)PCR) does not allow a conclusion to be drawn about remaining infectivity of viruses (e.g. plaque 105 

forming units (PFU)). Pathogen dependent, different terms with different meanings are used for the 106 

ability of pathogens to be recovered from inanimate surfaces . In order to have the same understanding, 107 

some common terms will be preceded by a brief explanation. Von Sprockhoff (46) proposed 108 

‘survivability’ synonymously to ‘tenacity’ as the robustness of microorganisms to defined exogenous 109 

factors. The term ‘tenacity’ refers to the resistance of bacteria, fungi, protozoa and viruses to 110 

Lexow, Franziska
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environmental influences. In the Anglo-American language, the term ‘tenacity’ is uncommon; instead, 111 

terms such as ‘resistance’, ‘sensitivity’ or ‘survival’ are used more often (47). The Latin origin ‘tenacitas 112 

= to hold on’ is not helpful for understanding what the term means. In the broader sense, tenacity means, 113 

‘the determination to continue what you are doing’ (48). Another comprehensive definition is, ‘the 114 

quality or state of being tenacious’ (49). Professionals in clinical disciplines are unaware of the term 115 

‘tenacity’ for microorganisms. Therefore, we need something that linguistically expresses the viability 116 

of bacteria, fungi, protozoa and viruses when they contaminate surfaces, in order to be able to assess the 117 

risk of onward spread of nosocomial pathogens emanating from that surface. 118 

Since bacteria, fungi and protozoa function autonomously, the terms ‘persistence’, i.e. ‘viability’, or 119 

‘survival’ are used synonymously. Survival can be understood as persisting viability under 120 

disadvantageous circumstances (50). Some microorganisms persist through an adaptive reaction to 121 

survive in the environment by reducing metabolism and by morphological, biochemical and / or genetic 122 

adaptations, especially for bacteria in biofilms and/ or as bacterial spores (51-53). Another mode of 123 

adaptation is the transition to viable but non-cultivable (VBNC) cells, which can only be converted back 124 

to a replicative, virulent state through certain stimuli (54, 55). Protozoan cysts act as a survival niche 125 

and protective shelter (56). The criterion for determining the persistence of microorganisms is whether 126 

it can replicate after it has contaminated a surface.  127 

Unlike bacteria, viruses need the synthetic apparatus of intact host cells for their replication. Viruses 128 

have neither their own metabolism and energy production nor the possibility of protein synthesis. 129 

Therefore, strictly speaking, they are not living beings. The criterion for viral infectivity is the ability to 130 

replicate in host cells so that quantification in vitro is possible by resuspension from the surface, transfer 131 

to the cell culture and counting dead cells, the so-called cytopathic effect. Not every virus is capable of 132 

inducing CPE, while demonstrating other significant features. The viral ability to replicate is referred as 133 

‘replication capacity’ (57), which is used in different contexts, e.g. for change under antiviral therapy 134 

(58). In parallel, the ability of vectors to transfer antibiotic resistance genes can also be termed 135 

‘replication capacity’ (59). Viral persistence, on the other hand, is understood as the genetic information 136 

of viruses presenting in cells of the host organism and the possibility of a virus reactivation under certain 137 

circumstances, e.g. in the case of immunosuppression of the host (e.g. herpes viruses). 138 

https://www.merriam-webster.com/dictionary/tenacious
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In summary, only RC reflects the viral load on a surface, because viral RC correlates with the viral 139 

infectivity (60). Given that for microorganisms and protozoa, as well as viruses, the criterion of 140 

replication determines infectivity and because the term ‘replication capacity’ does not allow different 141 

interpretations, the term ‘replication capacity’ (instead of tenacity, persistence, survival or viability) is 142 

proposed to describe recovery from inanimate surfaces.  143 

Risk assessment from inanimate surfaces as origin of HAI 144 

Information on RC of pathogens on inanimate surfaces could assist with the following aims: 145 

- To determine the most effective decontamination strategy, firstly, for known nosocomial 146 

pathogens, and secondly, in the event of the emergence of a new pathogen with initially 147 

unknown properties and potential for epi- or pandemic spread;  148 

- Generally, to provide a risk assessment for IPC measures after pathogen release from patients 149 

to interrupt further transmission;  150 

- To provide a risk assessment of the need for final disinfection measures required after hospital 151 

discharge of pathogen carriers, especially for isolated patients;  152 

- To inform control methods for nosocomial outbreaks; 153 

- To help determine standard operating procedures (SOP) for surface cleaning and / or 154 

disinfection, especially hand-touch sites without any knowledge about the presence of potential 155 

pathogens; 156 

- To help determine SOP for surface cleaning and / or disinfection, following incidents such as 157 

sewage or floodwater spillage, building works, etc.; 158 

- To assess the risk of the possibility of further spread of pathogens after hand contact of 159 

contaminated surfaces and medical devices especially for research purposes; 160 

- To assess the risk-benefit between disinfection efficacy, expense and environmental impact and 161 

thus finally IPC; 162 

- To analyze the RC under influence of probiotic cleaning as new option for IPC. 163 

Walther and Ewald (61) distinguished a highly virulent long-lasting group containing variola (smallpox) 164 

virus, Mycobacterium tuberculosis, Corynebacterium diphtheriae, Bordetella (B.) pertussis, 165 

Axel Kramer
Leistner R, Kohlmorgen B, Brodzinski A, Schwab F, Lemke E, Zakonsky G, Gastmeier P. Environmental cleaning to prevent hospital-acquired infections on non-intensive care units: a pragmatic, single-centre, cluster randomized controlled, crossover trial comparing soap-based, disinfection and probiotic cleaning. EClinicalMedicine. 2023 ;59:101958. doi: 10.1016/j.eclinm.2023.101958.
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Streptococcus (Str.) pneumoniae, and (avian) Influenza A Virus (virulence determined from mortality 166 

rate or case mortality). These pathogens have a mean percent mortality ≥ 0.01 % and a mean survival 167 

time > 10 days (d). In contrast, a low-virulence and low-persistent group (mean percent mortality < 168 

0.01 % and time of survival < 5 d) includes viruses such as Rubeola, Mumps, Parainfluenza, Respiratory 169 

syncytial, Varicella-zoster, Rubella and Rhinovirus, alongside the bacteria Mycoplasma pneumoniae 170 

and Haemophilus (H.) influenzae. This is even more interesting, since these bacteria and viruses belong 171 

to totally different species, families and genera, respectively. While our review focuses on transmission 172 

modes via inanimate surfaces (fomite-borne), another category of pathogens is relevant for risk 173 

assessment (see Fig. 1). The longer a nosocomial pathogen persists on a surface, the longer the surface 174 

may be a source of transmission and endanger a susceptible patient or healthcare worker. Furthermore, 175 

a correlation between virulence and persistence is reported (62), the sit-and-wait hypothesis predicts that 176 

virulence should be positively correlated with persistence in the external environment because 177 

persistence reduces the dependence on host mobility for transfer to a patient. This has been confirmed 178 

for respiratory tract pathogens (62). The pathogenicity including factors as infectious dose (ID), RC and 179 

risk of transmission determines the outbreak potential of a pathogen and must be considered as basis for 180 

the IPC strategy. For surfaces as (temporary) origin of HAI, the RC of pathogens from fomites is 181 

essential. The main focus in this context was the transmission mode from inanimate surfaces. High 182 

virulent pathogens with outbreak potential due to low ID, long-lasting RC require additional to the non-183 

targeted near-patient (high-touch) surface disinfection, a targeted cleaning and disinfection as patient-184 

remote (low-touch) surface disinfection and final surface disinfection. Such pathogens with increased 185 

“fomite-borne risk”, characterized by an increased nosocomial risk for transmission from inanimate 186 

surfaces, are marked in blue in the tables 3-7. Of course, disinfection measures are only one part of the 187 

IPC strategy combined with the other standard precaution such as hand hygiene and additional pathogen-188 

related measures such as barrier nursing, isolation, antimicrobial chemotherapy and antiseptic 189 

decolonization. With growing knowledge, the classification of “pathogens with nosocomial risk for 190 

spread from inanimate surfaces” can be further developed. 191 

There is a practical way of looking at this. For example, admission to a room previously occupied by a 192 

patient infected and/ or colonised with a pathogen is a known risk factor for acquisition of that pathogen 193 

Scheithauer, Simone
Not a clear sentence

Scheithauer, Simone
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(63). This risk can be quantitated and it appears that the relative differences in acquisition risk between 194 

the pathogens mirror environmental longevities. As expected, organisms such as Acinetobacter 195 

baumannii complex and C. difficile present the highest risk for acquisition, and they also happen to be 196 

the most resilient in the healthcare environment (64). This begs the question even over the need for 197 

cleaning / disinfection priorities for a recently vacated room, depending on which pathogen infected the 198 

previous patient. So, in accordance with survival and replicative properties, decontamination strategies 199 

could range from a quick wipe over the hand-touch surfaces for MRSA, disinfection of the sink / shower 200 

for ESBLs and comprehensive air and surface disinfection for C. difficile, etc. If pathogens released 201 

from the respiratory tract, knowledge of the RC makes it possible to assess whether surfaces outside the 202 

patient's contact area should also be included in the final disinfection, e.g. wall surfaces and slatted 203 

curtains. A focus on targeted cleaning and disinfection allows pathogen-related risk to dictate the most 204 

appropriate decontamination practice for all patient spaces (45). This risk assessment is the logical 205 

consequence of a basic risk without knowledge of existing pathogens and enables a - in theory - most 206 

effective strategy. 207 

To assess the timeline of RC for risk of further spread, it is necessary to consider RC in more detail. 208 

This includes baseline inoculum, the surface material, temperature, relative humidity (RH), protein load, 209 

organic soil, light exposure, and pH-value. Thus, it is not just the type of pathogen or evidence for them 210 

(e.g. DNA, RNA), but whether they are capable of being transmitted to, and replicating in, the host 211 

(Fig.1). Transmission potential of pathogens on surfaces is not restricted to the direct and indirect contact 212 

transmission route, as illustrated in Fig. 1. Some, but not all potential pathogens on inanimate surfaces 213 

can be aerosolized and transmitted contact-free. This potential additional risk is not within the scope of 214 

this review. But, if the RC is known, the infection risk can be estimated for respiratory released and 215 

aerogenic transmissible pathogens. 216 

The aim of this review was to collect and assess published data related to RC of all types of nosocomial 217 

pathogens contaminating inanimate healthcare surfaces as basis for evaluating healthcare-associated 218 

infection risk by fomite-borne risk assessment. For determination of IPC strategies both RC and ID 219 

should be considered. This data might assist by evaluating the transmission and infection risk and 220 

therefore guide most appropriate IPC measures.  221 

Lexow, Franziska
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Method 222 

The basis of this review made use of three reviews (65-67) with at least partly similar aims, from which 223 

literature was screened and adopted. In order to update and expand the current reviews, afterwards a 224 

systematic literature search was conducted and reported in accordance with the PRISMA guideline and 225 

the German Manual for literature research in databases (68). 226 

Based on the modified PICO scheme (table 1) the search strings were compiled. The search was 227 

restricted to publications from 2020 onwards to obtain only hits that were not already included in the 228 

search of the latest included review (67). The language was limited to German and English. The 229 

databases PubMed and Web of Science were searched due their medical focus. The search was 230 

conducted on the 26th of January 2023.  231 

TABLE 1 Search strategy; segments and search terms 232 

Segment Search terms 

Pathogens Bacteria, virus, fungi, protozoa 

Conditions Surface, fomite, inanimate, temperature, humidity, light 

Setting Nosocomial, hospital-acquired 

Outcome Persistence, survival, transmission, tenacity 

Duplicates were removed using Citavi 6 (Swiss Academic Software GmbH). Four reviewers carried out 233 

the screenings blinded (two reviewers per article) using an online document to record the decisions. The 234 

articles were compared against predetermined inclusion and exclusion criteria (table 2).  235 

In case of different assessments, a third reviewer joined the discussion, and a consensus was reached. 236 

Firstly, the titles and abstracts were screened and then the full texts of the included records. Eligible 237 

reviews were not included but searched for primary studies, which were then also screened as described 238 

above. 239 

TABLE 2 Inclusion and exclusion criteria 240 

Inclusion Exclusion 
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Narrative review, rapid review, scoping review, 
systematic review, randomized controlled trial, 
quasi randomized controlled intervention study, 
not randomized controlled studies, pro- and 
retrospective cohort studies, case control 
studies, historically controlled studies, cross-
sectional studies 

Single-arm follow-up studies (case reports, case 
studies, ...), commentaries, study protocols, 
conference abstracts, books, editorials, model 
studies 

Human pathogenic species within the following 
groups: viruses, bacteria, protozoa, fungi that 
are relevant for hospital acquired infections 
from surfaces1 

Other pathogens  

Inanimate surfaces – specifically surfaces 
relevant in hospital settings. Cave: if the only 
information found was not on hospital relevant 
surfaces, the information is reported to give 
insight into possible tenacity of the pathogen. 

Animate surfaces 

Persistence, tenacity, survival, temerity, 
recultivable, replicable; a resuspension has to be 
made from the test surface and then transferred 
to the cell culture or nutrient medium 

Anything concerning the treatment, symptoms, 
or genetic surveillance; studies on the effect of 
disinfectants; studies on the effect of 
antibacterial / antiviral surfaces 

Since 2020 Before 2020 

English, German Other languages 

 
Relevant data / methodology (e. g. inocolum 
concentration) not given 

1Although ectoparasites can also be transmitted nosocomial (69), they were excluded because they 

are multicellular arthropods reproducing outside the human organism. 

The data was extracted into an online table by the reviewers. A cross check was conducted afterwards.  241 

Tables 3-7 were completely modified from the informative appendix (only in German) (70) of the 242 

recommendation of the Commission for Hospital Hygiene and Infection Prevention (KRINKO) on 243 

Hygiene requirements for cleaning and disinfection of surfaces (71). Table 8 was modified from Jawad 244 

et al. (72). 245 

Evaluable publications: Out of the three reviews this review is based on, 145 publications were 246 

included. Additionally, through the systematic search 495 records were identified via the databases (Fig. 247 

2). 152 duplicates were removed. The title and abstract of the remaining 343 records were screened 248 

leading to the inclusion of 40 reports. 32 of these were excluded during the full text screening. Four 249 
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primary studies and four reviews were included. The reference lists of the reviews were screened for 250 

other eligible studies which lead to the inclusion of another 22 primary studies. Within the scope of the 251 

systematic search, a total of 26 primary studies were included. Adding the studies from the three initial 252 

reviews, a total of 171 publications were included. 253 

 254 

 255 

FIGURE 2 Flow chart (modified from (73)) 256 
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Our review does not claim to completeness all pathogens with ability to induce outbreaks; such as 257 

Mycobacterium chimera. The priority for us was to observe the transmission possibility from hand-258 

touch inanimate surfaces; this is why we did not consider pathogens dominating in other hospital 259 

hygiene relevant settings (e.g. water , air and food).  260 

The tables 3-7 focus on the most important pathogens and relevant environmental (temperature, RH, 261 

light, surfaces) data for clinical settings. For better clarity, inocula were reported by waiving application 262 

conditions. Due to the inconsistencies in the kind of units used to report results, the initial inoculum 263 

(starting point) was converted into decadic logarithm. For additional data and details of recultivation 264 

and expanded environmental conditions, see supplementary material. Pathogens with an increased 265 

fomite-borne transmission potential were highlighted in blue. For this tentatively introduced 266 

classification we used a simple scoring system: Pathogens are characterized with firstly) a high 267 

virulence and / or secondly) a long RC and / or thirdly) a high potential for nosocomial spread. A 268 

pathogen belongs to the fomite-borne risk group if at least two of the three statements are fulfilled. This 269 

is to be understood explicitly as a basis for discussion and is summarized illustratively in the figure. 270 

 271 

FIGURE 3 Introduced classification of pathogens with fomite-borne transmission potential and derived 272 

IPC strategies 273 

 274 

  275 

Lexow, Franziska
Tables of the supplement have to be numbered

Lexow, Franziska
done



13 
 

Replication capacity of bacteria  276 

Especially in the near-patient environment of microbial colonized or infected patients, the responsible 277 

species underlying the colonization or infection can be detected, especially if no surface cleaning or 278 

disinfection has been carried out. In order to clarify transmission routes, such detection has been carried 279 

out primarily for resistant species such as Methicillin-resistant Staphylococcus (S.) aureus (MRSA) (74, 280 

75), vancomycin-resistant enterococci (VRE) (74, 76), carbapenem-resistant enterobacterales (CRE) 281 

(77, 78), Acinetobacter baumannii complex (79), Clostridioides (C.) difficile (79, 80) and recently for 282 

the high pathogenic yeast Candida (C.) auris. For species regularly detected in nosocomial outbreaks or 283 

which frequently colonize or subsequently infect subsequently admitted patients after patient discharge, 284 

the knowledge of RC is of special interest, because intensified surface cleaning with disinfection as part 285 

of an intervention bundle proved effective in controlling transmissions and even an outbreak. This has 286 

been proven for nosocomial outbreaks by VRE (18, 25), C. difficile (16), MRSA (81), Acinetobacter 287 

(A.) baumannii (4, 8, 22, 28), CRE (14, 25) and C. auris (Ahmad et al. 2023). The acquisition of 288 

pathogens from the discharged patients caused by deficiencies in final disinfection is repeatedly 289 

described (5-7, 9, 15, 23, 82) and evaluated in meta-analyses (21, 31). However, none of these studies 290 

have shown by genomic surveillance that the previous and the new patient were colonized with the same 291 

clone of the respective species. Recent work suggests, that clonality cannot be assumed, but there is a 292 

high likelihood of clonality depending on species (87).  293 

In most reports, RC was studied on dry surfaces using artificial contamination of a standardized type of 294 

surface in a laboratory. Bacteria were prepared in broth, water or saline and removed from the germ 295 

carrier by different rinsing solution e.g. dist. water, physiol. NaCl, phosphate buffered salt solution 296 

(PBS), or Triton X-100, sometimes in combination with ultrasound (table 3 and 4). 297 

After this preparation, members of the Gram-positive genera enterococcus (e.g. VRE) 298 

and staphylococcus (e.g. MRSA) survive for months on dry surfaces. Among streptococci, RC differs 299 

depending on the species, i.e. for Strepotococccus (Str.) pneumoniae < 24 h, Str. pyogenes 1-3 d and 300 

Str. salivarius > 88 h. In addition, Corynebacterium pseudotuberculosis survives 1-4 d on dry plastic 301 

surfaces. In contrast, C. diphtheriae, isolated from dust in patient rooms, survives 7-90 d, depending on 302 

Axel Kramer
Ahmad S, Asadzadeh M. Strategies to Prevent Transmission of Candida auris in Healthcare Settings. Curr Fungal Infect Rep. 2023;17(1):36-48. doi: 10.1007/s12281-023-00451-7.

Lexow, Franziska
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species. By daylight Mycobacterium tuberculosis survives for 2-5 d. In darkness the recultivation is 303 

possible up to 200 d (table 3).  304 

There are only a few studies in which wildtype and antibiotic resistant representatives of the same 305 

species were compared with each other. For enterococcus there are hints of higher RC for VRE 306 

compared with sensible enterococci present. Moreover, in dust a Methicillin-sensitive S. aureus (MSSA) 307 

demonstrated a shorter survival time on surfaces than MRSA (table 3).  308 

Spores of Bacillus und Clostridioides (C.) spp. survive depending on the material > 6 mon. In contrast, 309 

the vegetative form of C. difficile drops to the detectable threshold within 15 minutes (min) (table 3). 310 

 311 
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TABLE 3 Replication capacity of Gram-positive bacteria from inanimate surfaces modified from (70) (pathogens with “fomite-borne risk”, characterized by an 312 

increased nosocomial risk for transmission from inanimate surfaces, are marked in blue; for additional data and details of recultivation and environmental 313 

conditions, see supplementary material) 314 

Pathogen Initial inoculum Replication capacity Surface Reference 
Bacillus subtilis 
spores 

~ 8 lg CFU  After 15 d reduction by ~ 0.3 lg, after 56 d: reduction by ~ 0.7 
lg 

Glass (84) 

7.1-9.5 lg CFU  > 200 d: reduction by ~ 2 lg Polycarbonate  (85) 
6 lg CFU ≥ 1 d: 5 lg Stainless steel (86) 

Clostridioides 
(C.) difficile 
spores 

6 lg CFU  
 

After 2 d: reduction by ~ 2 lg, after 4 wk: 8 CFU, after 5 mon: 1 
CFU 

Floor (87) 

6-7 lg CFU  After 6 wk: reduction by ~ 0.5 - 0.8 lg; after 12 wk: reduction 
by < 3 lg 

Steel (88) 

C. difficile veg. ~ 6 lg CFU  15 min: reduction by ~ 4 lg Glass (89) 
Corynebacteria 
generic 

2.7-3.8 lg CFU ≥ 48 h: mean recovery 3.6 %  Cotton (90) 

Corynebacterium 
diphtheriae 

up to 155 CFU  7-90 d (strain-dependend) Dust  (91) 

Corynebacterium 
pseudo-
tuberculosis 

~ 6 lg CFU  3 d  Plastic (92) 

Corynebacterium 
striatum 

6 lg CFU  After 48 h: 7.7 lg / 6.8 lg / 2.6 lg Polyvinyl chloride (PVC)/ 
silicone / stainless steel 

(93) 

Enterococcus 
faecium 
 
 

6-7 lg CFU  After 12 wk: reduction by < 3 lg Steel (88) 
~ 6.5 lg CFU  49 d / 51 d / 49 d  Cotton / wool / silk (94) 
250 CFU 7 d up to 28 d: 250 - 70 CFU / 250 - ~ 32 CFU / 250 - 160 CFU 

/ 250 - ~ 50 CFU  
Glass / PVC / stainless steel / 
aluminum 

(95) 

8 lg CFU  1 to 16 wk PVC (96) 
8 lg CFU  < 4 mon: ~ 2 lg recultivable Ceramic / PVC / rubber / steel  

 
(97) 

~ 5 lg CFU  33 / > 90 / > 90 d Cotton / polyester / 
polypropylene  

(98) 
 



16 
 

5-6 lg CFU  ≥ 7 d (3 lg / 3 lg) Polyester / Terrycloth  (99) 
10 lg CFU  ≥ 21 d (4-5 lg) Cotton (100) 

Enterococcus 
faecalis 
 

6-7 lg CFU   After 6 wk: reduction by < 1.8 lg Steel (88) 
7.5 lg CFU  After 8 wk: 6.5 lg  Ceramic / cotton / synthetic 

fibers  
(101) 

5.2 lg CFU  After 1 d: survival of 3 %  Cotton (102) 
~ 5 lg CFU  > 90 / > 90 / > 90 d Cotton / polyester / 

polypropylene  
(98) 
 

6 lg CFU ≥ 1 d: 5 lg  Stainless steel (86) 
Enterococcus 
spp. 

7.2 lg CFU Mean survival rate 3 d (dried in water), 43 d (dried in egg white) Glass (72) 

Vancomycin 
resistant 
Enterococcus 
(VRE) 
 
 

~ 6 lg CFU  After 6 wk: reduction by ~ 3 lg Steel (88) 
5 lg CFU  ≥ 7 d Furnishings (103) 
E. faecalis 4.5 lg  Dried 60 min: 3 lg CFU; dried 90 min: 3.6lg CFU Stainless steel (104) 
8 lg CFU  1 to 16 wk PVC (105) 
E. faecalis: ~ 5 lg CFU  22 / > 80 / > 80 d Cotton / polyester / 

polypropylene  
(98) 
 E. faecium: ~ 5 lg CFU  > 90 / > 90 / > 90 d 

Micrococcus 
luteus 

7.1-9.5 lg CFU  After 120 d: reduction by ~ 6 lg Polycarbonate  (85) 
5.2 lg CFU  After 2 d: survival of 20 %  Cotton  (102) 

Mycobacterium 
tuberculosis 

0.1 mg / ml Recultivable in daylight after 1 d, recultivable in darkness for 9 
d, not recultivable after 40 d  

Coverslip (106) 

Staphylococcus 
aureus, 
methicillin-
susceptible 
(MSSA) 
 
 
 

7.3 lg CFU  ≥ 11 d Glass (72) 
5.2 lg CFU  After 25 d: survival of 0.8 %  Cotton  (102) 
7.5 lg CFU After 8 wk: ~ 6.5 lg CFU / ml  Ceramic / cotton / synthetic 

fibers  
(101) 

8 lg CFU  2 d / 18 d / > 45 d / 43 d Latex / cotton / 
vinyl flooring / granite 

(107) 

~ 6.5 lg CFU  37 d / 37 d / 41 d /37 d  Cotton / cotton polyester / wool 
/ silk 

(94) 

6 lg CFU  9 d / 10 d / 3 d Formica / stainless steel / 
enamel 

(108) 

250 CFU After 21 d: 5 CFU/ after 7 d:  ~ 5 CFU / after 21 d: 0 CFU / 
after 7 d:~ 10 CFU  

Glass / PVC / stainless steel / 
aluminium  

(95) 
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7.2 lg CFU  Mean survival 26 d (dried in water), 35 d (dried in egg white); 
after 12 d: ~ 3 lg CFU loss (water); after 18 d: ~ 5.7 lg loss (egg 
white) 

Glass 
 

(72) 

Desiccation: 7.3 lg CFU 
Wet : 3-4 lg CFU  

After 25 d desiccation: 4.4 lg  
Wet: after 7 d not recultivable  

Aluminium  
 

(109) 

6-7 lg CFU   Dry < 7 mon, at 32 % RH > 5 mon Dust (110) 
a) dry inoculum: 5-6 lg CFU 
b) liquid inoculum: ~ 6 lg CFU 

a) After 24 h: 6.7 lg CFU, after 7 d: 22 CFU /after 24 h: 6.3 lg 
CFU, after 7 d: 1 CFU 
b) After 7 d: 16.2 lg / 6.1 lg  

Polymer without silver / with 
silver  
 

(36) 

8 lg CFU  With dust: < 28 d, without dust: < 35 d Bottles with and without dust (111) 
7 lg CFU  
 

≥ 12 d / 12 d / ≥ 14 d Plastic / laminated plastic / 
polyester  

(112) 

5-6 CFU (matress cover) 
14-34 CFU (drapes) 
5-6 CFU (bed sheets) 
 

Recovery after 72 h at 22 °C: 98  CFU /  / 1 CFU / 17  CFU  /3 
lg / 1 CFU  / 1 CFU  

Dry mattress cover / wet 
mattress cover / dry drapes / wet 
drapes / dry bed sheets / wet bed 
sheets 

(113) 

8 lg CFU  < 21 d / ≥ 21 d (6 lg) Polyester / cotton (114) 
5-6 lg CFU  ≥ 206 d / 25 d / 11 d / ≥ 206 d Mattress inner foam / PVC / 

cotton / polyester  
(115) 

9 lg CFU  ≥ 21 d: 4-5 lg CFU  Cotton (100) 
5.7 lg CFU  ≥ 11 d: 4 lg CFU PVC (86) 

 
 

5.7 lg CFU ≥ 11 d: 3 lg CFU / ≥ 11 d: 3 lg CFU / ≥ 11 d: 3 lg CFU Aluminum / plastic / stainless 
steel 

6 lg CFU  ≥ 1 d: 6 lg CFU Stainless steel 
0.05 OD600 ≥ 7 d: survival rate: 4 % Polypropylene (116) 

Staphylococcus 
aureus, 
methicillin-
resistant, 
Epidemic 
(EMRSA) 

 8.7 lg CFU  ≤ 60 min / 270 min / ≥ 360 min Copper / brass (80 % Cu, 20 % 
Zn) / stainless steel 

(117) 

Staphylococcus 
aureus, 

6-7 lg CFU  After 6 wk: reduction by 5-6 lg CFU Steel (88) 
8 lg CFU  1 d / 18 d / 41 d / 40 d Latex / cotton / vinyl flooring / 

tile 
(107) 
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methicillin-
resistant (MRSA) 
 
 
 

3.2-4.9 lg CFU  After 7 d: recovery 59-125 %; after 14 d: 26-42 %; after 28 d: 
0.2-16 %; after 56 d: 0-1 %  

Dry mop (118) 

9 lg CFU  < 318 d Plastic  (119) 
8 lg CFU  With dust: < 126 d; without dust: < 175 d Bottles with and without dust (111) 
5.6 lg CFU) < 21 / 14 / 3 / 40 / > 51 d Cotton / cotton terry / cotton 

and polyester / polyester / 
polypropylene  

(98) 

~ 7.3 lg CFU  < 96 d Glass (120) 
6 lg CFU ≤ 63 d / ≤ 56 d / ≤ 21 d / ≤ 14 d / ≤ 14 d / ≤ 3 d / ≤ 5 min Vinyl / plastic / ceramic / bed 

sheets / towels / wood / razors 
(121) 

7 lg CFU  ≥ 12 d / 11 d / 9 d Plastic / laminated plastic / 
polyester  

(112) 

6.3-6.7 lg CFU or 4.3-4.7 lg CFU ≤ 8 d or < 2 d Polypropylene (122) 

5-6 lg CFU  ≥ 7 d: < 1 lg / 1 lg  Polyester / terrycloth (towel) (99) 
Staphylococcus 
aureus, 
Vancomycin 
intermediate 
(VISA) 

8 lg CFU  1 d/ 3 d / > 45 d / > 45 d Latex / cotton /  
vinyl flooring / granite 

(107) 

Streptococcus 
faecalis 

Desiccation: 6.9 lg CFU  
Wet: 3-4 lg CFU  

After 25 d desiccation: 4.6 lg  
Wet: after 10 d not recultivable 

Aluminium (109) 

Streptococcus 
pyogenes 
 
 

~ 7.7 lg CFU  < 2 h  Plastic and ceramic / plastic / 
stainless steel   

(123) 

8 lg CFU  planktonic: 3 d; as biofilm: > 120 d   Plastic  / textiles  (124) 
5-6 lg CFU  ≥ 206 d / 25 d / 11 d / ≥ 206 d Mattress inner foam / PVC / 

cotton / polyester  
(115) 

Streptococcus 
pneumoniae 

2.8-3.6 lg CFU  ≥ 48 h: mean recovery 0.2 % Cotton (90) 

Streptococci, 
Staphylococci  
from saliva; 
combined 
analysis 

5.3 lg CFU for Staphylococcus 
aureus; 5.9 lg CFU for 
Streptococcus pyogenes; 5.8 lg 
CFU for Streptococcus salivarius 

> 88 h Glass / latex / wood  (125) 
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Legend: CFU = colony forming units, lg = decadic logarithm, min = minute, h = hour, d = day, wk = week, mon = month, PVC = polyvinyl chloride 
 315 

 316 
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Initial comment is that neither Gram-positive nor Gram-negative organisms represent a uniform group 317 

regarding recultivation potential from inanimate surface (Tables 3 and 4). Some species can survive for 318 

month, such as Escherichia (E.) coli, Klebsiella spp., Pseudomonas aeruginosa, Serratia marcescens, 319 

Enterococci, Acinetobacter ssp. and Clostridioides ssp.. This is also reflected in infection epidemiology 320 

since these pathogens can cause ongoing transmission incidents and outbreaks. The Salmonella genus 321 

behaves very differently: Salmonella (S.) typhimurium is still present in garden soil 280 d after 322 

contamination (126), S. paratyphi B survives in soil up to 259 d (127) and S. enteritidis for more than 323 

11 month, whereas S. typhi survives only 4 d. 324 

Conversely, Mitscherlich and Marth (128) demonstrate the persistence of Proteus spp. in the 325 

environment with 1-2 d. P. morganii, P. rettgeri, P. vulgaris and P. mirabilis survive in sterile clay loam 326 

at 18-20°C species-dependant 35-40 d. The decimal reduction time was about 6 d (129). Shigella flexneri 327 

persists for 6 d (130). B. pertussis, H. influenzae, and Vibrio cholerae persist only few days ((131); 328 

Table 3). Aerosolized H. influenzae is characterized by short survival on glass (0.29 d), wood (0.08 d), 329 

and fabric (< 1 d) (128, 132). 330 
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TABLE 4 Replication capacity of Gram-negative bacteria from inanimate surfaces modified from (70) (pathogens with “fomite-borne risk”, characterized by an 331 

increased nosocomial risk for transmission from inanimate surfaces, are marked in blue; for additional data and details of recultivation and environmental conditions, 332 

see supplementary material)  333 

Pathogen Initial inoculum Replication capacity Surface Reference 
Acinetobacter 
baumannii 
 
 

~ 6.5 lg CFU  19 d / 19 d / 7 d / 19 d  Cotton / cotton polyester / wool / silk (94) 
6-7 lg CFU  After 6 wk: reduction by 4-5 lg Steel (88) 
6 lg CFU  11 d / 12 d / 6 d Formica / stainless steel / enamel (108) 
250 CFU After 28 d: ~ 112 CFU / ~ 112 CFU / ~ 18 CFU / ~ 20 CFU Glass / PVC / stainless steel / aluminum (95) 
7.1-9.5 lg CFU After 20 d reduction by about 5.5 lg Polycarbonate  (85) 
1200 resp. 1100 
CFU  

Biofilm-forming < 36 d / non-biofilm-forming <15 d Glass (133) 

7.3 lg CFU 3 d Glass (134) 
7.3 lg CFU  up to 33 d Glass (135) 
7.3 lg CFU 7 - 70 d (strain-dependent) Glass (136) 
~ 8 lg CFU ) 3 - 90 d (strain-dependent) Polystyrene (137) 
~ 7.3 lg CFU < 96 d Glass (120) 
8 lg CFU 50 % of strains mean survival at least 2 wk (< 2 lg recultivable), strain-

dependent < 4 mon (7 lg recultivable) 
Ceramic / PVC / rubber / steel  
 

(97) 

4.1 lg CFU Dried 60 min: 4 lg; dried 90 min: 3.9 lg  Stainless steel (104) 
6 lg CFU ≥ 1 d: 4 lg Stainless steel (86) 
7 lg CFU  ≥ 60 d: survival rate: 10 %, 40 %, 40 % Cotton / plastic / glass (138) 
5-6 lg CFU  ≥ 7 d: 2 lg / 3 lg Polyester / Terrycloth  (99) 
7.2 lg CFU 
 

Mean survival rate strain-dependent 2-29 d (dried in water); < 59 d (dried 
in egg white); after 18 d ~ 5.5 lg loss 

Glass (72) 

Acinetobacter 
johnsonii 

Mean survival rate 3 d (dried in water); 12 d (when dried in egg white) 

Acinetobacter 
junii 

Mean survival rate 2 d (dried in water); 13 d (dried in egg white) 

Acinetobacter 
lwolffi 
 

Mean survival rate 6 d (dried in water); 8 d (dried in egg white) 
7.3 lg CFU  3 d  Glass (134) 



22 
 

Acinobacter 
calcoaceticus 
anitratus 
 

4 lg CFU after 1 h: 3 lg  Hardboard  (139) 
5.2 lg CFU  After 25 d survival of 0.6 % of the CFU / after 7 h survival of 40 % of the 

CFU 
Cotton / glass (102) 

Acinetobacter 
calcoaceticus 
lwoffii 
 

4 lg CFU / sample After 1 h: 3 lg CFU  Hardboard  (139) 
5.2 lg CFU  After 7 d not recultivable Cotton  (102) 

Acinetobacter 
radioresistens 

7.3 lg CFU 157 d  Glass (134) 

Bordetella 
pertussis 

8 lg CFU (0.01 ml) < 0.04 h - 5 d / 3-5 d / < 0.04 h - 5 d / < 0.04-4 d /0.2-1 d  Glass / plastic / rubber / / fabric / / 
paper  

(140) 

Campylobacter 
jejuni 
 

0.1 ml 
contaminated water 
from screw coolers 

 4 h / 4h / 7 h/ 7 h  Aluminum / stainless steel / formica / 
ceramic 

(141) 

8-9 lg CFU  After 28 d: ~ 5 lg (without wood 0 lg after 2 d) / polyurethane and glass: ~ 
survival for 2 d (pore-size-dependent) 
 

Wood / polyurethane / glass  (142) 

7 lg CFU  ≤ 250 min (4 lg) / ≥ 250 min (3 lg) / < 250 min (1 lg) / < 180 min  Stainless steel / formica  / ceramic / 
cotton 

(143) 

Enterobacter 
cloacae 

250 lg CFU After 3 d: ~ 14 CFU / after 2 d: ~ 12 CFU / after 3 d: ~ 13 CFU / after 2 d: 
~ 5 CFU  

Glass / PVC / stainless steel / aluminum (95) 

Escherichia coli 
 
 

6 lg CFU  After 48 h: ~ 1.5 lg / after 24 h: ~ 1.5 lg  Plastic / carton (144) 
9 lg CFU  After 100 d: 1 lg Plastic  (145) 
7.3 lg CFU  After 7 d (dry): not recultivable; after > 28 d humidity Wood / steel (146) 
7-8 lg CFU  < 120 min Plastic / wood (147) 
5.2 lg CFU  After 7 h: not recultivable/ after 7 h: survival of 0.8 % of CFU Cotton / glass (102) 
7.5 lg CFU After 8 wk: ~ 6.5 lg CFU / ml  Ceramic / cotton / synthetic fibers  (101) 
7-9 lg CFU  After 2 h decrease by: 1.7 lg / 0.37 lg / 1.09 lg / 0.44 lg / after 24 h: 0.06 lg  New dry Wood / new wet wood / used 

dry wood / used wet wood / plastic  
(148) 

8 lg CFU   < 4 mon (~ 2 lg recultivable) Ceramic / PVC / rubber / steel  (97) 
~ 6.5 lg CFU  45 d / 37 d / 45 d / 45 d  Cotton / cotton-polyester / wool / silk (94) 
250 CFU  After 1 d: ~ 5 CFU / after 1 d: 2 CFU / after 2 day: 1 CFU / after 2 d: 1 

CFU  
Glass / PVC / steel / aluminum (95) 
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7.1-9.5 lg CFU  After 6 h: decrease by about 6.5 lg Polycarbonate  (85) 
7.2 lg CFU Mean survival rate 1 d (dried in water), 3 d (dried in egg white) Glass (72) 
6-7 lg CFU  At 58 % RH > 8 mon  Dust (110) 
Desiccation: 
6.9 lg CFU  
Wet: 3-4 lg CFU  

After 25 d desiccation: 0.7 lg CFU / cm2  
 
Wet: > 12 d 

Aluminum  
 
  

(109) 

5-6 lg CFU After 24 h: 0.2 CFU, after 7 d: not recultivable / after 7 d: 8 CFU Polymer without silver / with silver  (36) 
1-2 CFU (mattress 
cover) 
2 CFU (drapes) 
1-2 CFU (bed 
sheets) 

Recovery after 72 h at 22 °C: 4 lg / 4 lg  / 3.7 lg  / 5.7 lg  / 3.2 lg  / 4.2 lg  Dry mattress cover / wet mattress cover / 
dry drapes / wet drapes / dry bed sheets / 
wet bed sheets 

(113) 

8 lg  CFU < 10 d / ≥ 21 d (6 lg) Polyester / Cotton (114) 
5-6 lg CFU  ≥ 206 d / 11 d / 7 d / ≥ 206 d Mattress inner foam / PVC / cotton / 

polyester  
(115) 

2.7 - 3.2 lg CFU  ≥ 48 h: mean recovery too numerous to count Cotton (90) 
5.7 lg CFU ≥ 1 d: 2 lg Vinyl chloride (86) 

 5.7 lg CFU ≥ 4 d: 1 lg / ≥ 7 d: 1 lg / ≥ 4 d: 1 lg Aluminum / plastic / stainless steel 
6 lg CFU ≥ 1 d: 3 lg  Stainless steel 
5.7 lg CFU  ≥ 7 d: 3 lg Plastic 

Francisella 
tularensis 

~ 8 lg CFU  After 240 h: 4 lg / after 96 h not recultivable  Glass / paper (149) 

Haemophilus 
influenzae 

6 lg CFU after 1 h: 99.99 % reduction  Aerosol (150) 
2.8-3.5 lg CFU  ≥ 48 h: mean recovery 1.8 % Cotton (90) 

Helicobacter (H.) 
pylori 

9 lg CFU  After 30 min: 7.8 lg, after 60 min: ~ 1.1 lg / after 30 min: 8 lg, after 60 
min:  ~ 1.3 lg  

plastic / ceramic (151) 

Klebsiella 
pneumoniae 
 

5.2 lg CFU  After 1 h not recultivable Cotton  (102) 
7.5 lg CFU  After 8 wk: ~ 6.5 lg CFU / ml  Ceramic / cotton / synthetic fibers  (101) 
~ 6 lg CFU  After 6 wk: ~1 lg Steel (88) 
250 lg CFU After 3 d: ~ 25 CFU / after 3 d: 17 CFU / after 2 d: 21 CFU / after 2d: 13 

CFU  
Glass / PVC / stainless steel / aluminium (95) 

7 lg CFU  After 25 d desiccation: 1.8 lg  Aluminium  (109) 
6-7 lg CFU /  At 58 % RH > 15 mon  Dust (110) 
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3.9 lg CFU  Dried 60 min: 3.4 lg; dried 90 min: 1.8 lg Stainless steel/plastic  (104) 
5-6 lg CFU < 3 d / < 7 d Polyester / terrycloth  (99) 

Listeria 
monocytogenes 
 
 

6 lg CFU  After 48 h: ~ 3.4 lg  / ~ 1.2 lg Plastic / carton (144) 
7-8 lg CFU  After 180 min: 4 lg  Wood / plastics (147) 
6 lg CFU  After 10 d: 5 lg / after 5 d: 1.5 lg  Stainless steel / acrylonitrile butadiene 

rubber (ABK) 
(152) 

9 lg CFU  After 50 d: ~7.5 lg CFU; after 50 d (biofilm): ~7.3 lg CFU  Stainless steel (153) 
8 lg CFU  After 20 d: 2 lg  Stainless steel  (154) 
7.3 lg CFU 
(biofilm) 

After 21 d: 5.3 lg  Stainless steel  (155) 

Neisseria 
gonorrhoeae  
 

2 x ~ 20 µl Patient 
exudate (with 
proven infection)  

At least until 24 h recultivable Plastic / cotton-polyester  (156) 

1 drop of positive 
urethral secretion 

Until 17 h: recultivable, after 24 h: not recultivable / until 24 h: 
recultivable, after 48 h: not recultivable 

Glass / textile (157) 

Pseudomonas 
aeruginosa 

a) dry inoculum: 5-
6 lg CFU 
b) liquid inoculum: 
~ 6 lg CFU  

a) After 7 d: 6.2 lg / 6.2 lg 
b) After 7 d: 7.8 lg / 7.8 lg  

Polymer without silver / with silver  (36) 

8 lg CFU  After 48 h: average < 2 lg  Door handles / chairs / spirometer tubing (158) 
7.5 lg CFU  After 8 wk: 6.5 lg  Ceramic / cotton / synthetic fibers  

 
(101) 

5.2 lg CFU  After 2 h: not recultivable  Cotton  (102) 
~ 6.5 lg CFU  13 d / 23 d / 33 d  Cotton / cotton polyester / wool / silk (94) 
250 CFU after 2 d on all surfaces < 2 lg Glass / PVC / stainless steel / aluminium (95) 
6 lg CFU  4 d / 5 d / 1 d Formica / stainless steel / enamel (108) 
Desiccation:  
6.4 lg CFU  
Wet: 3-4 lg CFU  

After 2 d desiccation: not recultivable; wet: > 12 d Aluminum  (109) 

6-7 lg CFU   At 58 % RH > 8 mon  Dust (110) 
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1-4 CFU (mattress 
cover) 
2 CFU (drapes) 
1 CFU (bed sheets) 

Recovery after 72 h at 22 °C: 3.9 lg / 4 lg  / 3.5 lg / 5.5 lg / 4 lg / 4.1 lg  Dry mattress cover / wet mattress cover / 
dry drapes / wet drapes / dry bed sheets / 
wet bed sheets 

(113) 

8.7 lg CFU  20 d, 5 d, 4 d Cotton (100) 
6 lg CFU  ≥ 1 d: 4 lg Stainless steel (86) 
5 lg CFU  ≥ 7 d / 24 h / 24 h / 24 h / 24 h / ≥ 7 d / 24 h / 24 h / 24 h / ≥ 7 d / ≥ 7 d / 5 

min / 24 h / ≥ 7 d 
Paper-backed wallcovering / vinyl 
composition tile / micro vented 
perforated vinyl wallcovering / latex 
paint / vinyl wallcovering, nonwoven 
backing / linoleum / vinyl sheet goods 
flooring / rubber tile flooring / synthetic-
backed carpet / vinyl-backed carpet / 
fabric upholstery / polyester and acrylic 
blend upholstery / vinyl upholstery / 100 
% polyester upholstery 

(103) 

Salmonella 
enteritidis / 
enterica  
 

~ 5 lg CFU  After 8 h: 2 lg / not recultivable  Plastic / carton (144) 
7 lg CFU  < 1680 min / ≥ 1920 min: 1 lg / < 480 min / < 240 min  

 
Stainless steel / formica  / ceramic / 
cotton 

(143) 

9 lg CFU  Salmonella chester after 100 d: 3 lg; Salmonella oranienburg > 200 d Plastic  (145) 
∼ 9.3 lg CFU  > 48 h Petri dish (159) 

Salmonella 
typhimurium 
 

5.2 lg CFU  After 7 h: not recultivable  Cotton cloth / glass (102) 

3.6 lg CFU  < 6 wk Stainless steel (160) 
1 μl of overnight 
cultures inoculated 
on agar and 
incubated at 25 °C  

ST19: after 1 mon 59.7 ± 12.3 % recultivable; 
ST313: after 1 mon 13.1 ± 9.6 % recultivable 

Plastic  (161) 

2 drops bacterial 
suspension  

Up to 50 mon Dust  (162) 

5.2 lg CFU  After 1 d: not recultivable  Cotton  (102) 
6 lg CFU  After 3 d: 2 lg  / after 1 d: 1.75 lg  Stainless steel / acrylonitrile butadiene 

rubber  
(152) 

6-7 lg CFU  > 30 d: reduction between 3-6 lg Stainless steel  (163) 
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7-8 lg CFU ≥ 28 d: 2-3 lg / ≥ 24 h: 3 lg / ≥ 24 h: 4.5 lg Tile / wood / carpet (164) 
Serratia 
liquefaciens 

7.2 lg CFU Mean survival rate 3 d (dried in water), 43 d (dried in egg white) Glass 
 

(72) 

Serratia 
marcescens 
 

250 lg CFU 
 

After 3 d: ~ 40 CFU / after 3 d: ~ 15 CFU / after 2 d: ~ 1 CFU / after 3 d: 
~ 2 CFU 

Glass / PVC / stainless steel / aluminum (95) 

7.2 lg CFU Mean survival 12 d (dried in water), 9 d (dried in egg white) Glass (72) 
Desiccation:  
7.3 lg CFU 
Wet : 3-4 lg  

After 25 d desiccation: 2.6 lg; wet: > 12 d Aluminum  
 
 

(109) 
 

5.2 lg CFU  After 1 h: not recultivable Cotton cloth / glass (102) 
6 lg CFU ≥ 1 d: 4 lg Stainless steel (86) 

Shigella 
dysenteriae 

~ 5 lg CFU  After 4 h: not recultivable 
 

Plastic / glass / aluminum / wood / 
textile 

(165) 

Shigella sonnei  
 

9 lg CFU ≤ 10 d / ≤ 27 d / ≤ 23 d / ≤ 9 d / ≤ 28 d Glass / cotton / wood / metal / paper (166) 

~ 5.7 lg CFU   Survival after 24 h: 100 % / 100 % / 100 %; after 48 h: 75 % / 63 % / 50 
%; after 72 h: 13 % / 0 % / 0 % 

PVC / polystyrene / sprelacart  (167) 

Shigella flexneri  Survival after 24 h: 100 % / 100 % / 83 %; after 48 h: 67 % / 58 % / 33 %; 
after 72 h: 0 %  

Stenotrophomon-
as maltophilia 

~ 6.5 lg CFU  7 d / 7 d / 7 d  Cotton / cotton-polyester / wool / silk (94) 

Vibrio cholerae  
 

8.2 lg CFU Normal cultivable status 1 h / 1 h / 1.5 h / 1.5 h / 3.5 h / 4 h / 4 h; VBNC 
status < 7 d 

Aluminum / glass / plastic / steel / iron / 
paper / textile / wool 

(168) 

8.2 lg CFU 4 h: 2 lg / 4 h: 2 lg / 3.5 h: 3.5 lg / 1 h:3 lg / 1.5 h:2.5 lg / 1.5 h: 0.5 lg / 1.5 
h: 3 lg / 1 h: 3 lg  

Cotton / wood / paper / glass / plastic / 
stainless steel / iron / aluminum 

(169) 

Legend: CFU = colony forming units, lg = decadic logarithm, min = minute, h = hour, d = day, wk = week, mon = month, PVC = polyvinyl chloride VBNC = viable but non-
culturable 
 334 

 335 

Lexow, Franziska
Special synthetic resin made in GDR



27 
 

Replication capacity of fungi 336 

For RC determination, fungi were removed from the germ carrier mostly by dipping or vortex in bouillon 337 

or tryptic-soy-broth (TSB), sometimes in combination with ultrasound, and by contact with agar plate, 338 

overlaying with agar or smear (Table 5). 339 

 340 

Moulds occur ubiquitously in nature, are thermotolerant and can survive on surfaces for 2 d to > 30 d 341 

depending on the material (Table 5). Indoor airborne mould measurements underline the survival for 342 

several months (170, 171). Moulds can multiply at a RH ≥ 75 % at room temperature (RT), which can 343 

lead to mould infestation (172). The species Cladosporium, Aspergillus and Penicillium are the most 344 

frequently detected moulds on hospital surfaces (173-175). Mucor and Aspergillus (A.) spp. were 345 

isolated from room air and dust from an air-conditioning system with a defective filter and were linked 346 

with mycotic endocarditis in patients undergoing open heart surgery (176). Moreover, Mucorales 347 

(Rhizopus spp.), recovered from linen were associated with a Mucormycosis outbreak (177, 178), and 348 

even survived a certified health care laundry process (178). Other Mucorales (Mucor spp.) persisted on 349 

various materials for weeks (179). 350 

The dermatophytes Epidermophyton (E.) floccosum, Trichophyton (T.) mentagrophytes and 351 

Tricholosporum violaceum survived in skin scales for 10 years at -20 °C, while T. rubrum and T. 352 

verrucosum could no longer be cultivated under the same conditions (180). Microsporum canis has been 353 

detected on hospital surfaces (175). In Germany in the 1920s E. floccosum and Microsporum (M.) 354 

audouinii dominated as pathogens of human dermatophytoses and T. rubrum was almost insignificant; 355 

dermatophyte isolates increased from 41.7 % in 1950 to 82.7 % in 1993, so that T. mentagrophytes var. 356 

interdigitale was gradually replaced by T. rubrum as the main pathogen of tinea pedis and 357 

onychomycosis. With the introduction of griseofulvin in 1958, both, M. audouinii and T. schoenleinii 358 

were virtually eradicated (181). In the case of tinea pedis, T. rubrum was detectable in 86 % of patients, 359 

T. mentagrophytes in 81 % of patients in house dust (182). Both dermatophyte species could also be 360 

detected and cultivated on the bare soles of the feet after leaving public baths. Washing and drying only 361 

did not result in complete elimination (183). Since the beginning of the 20th century, the incidence of 362 

Microsporum canis infections in Europe, especially in Mediterranean countries and Slovenia, has been 363 
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increasing sharply, with dogs and cats being the natural reservoir (184). However, further spread is also 364 

possible via combs, brushes, hats, furniture, bedding, etc. 365 

 366 

Candida (C.) albicans, the most common nosocomial yeast, can survive up to 4 mon on surfaces. RC 367 

for C. glabrata (Nakaseomyces glabratus) was described to be similar but shorter for C. parapsilosis 368 

(Table 5). In the patient environment, C. glabrata (Nakaseomyces glabratus), C. parapsilosis, C. 369 

tropicalis, C. albicans, C. metapsilosis and C. lusitaniae were detected on dry surfaces in ~ 3 %, on 370 

moist surfaces in ~ 14 % (185).  371 

 372 

Several recent outbreaks have been caused by the new emerging multidrug-resistant C. auris (186) 373 

which differs from other yeasts and dermatophytes in nosocomial spread (187, 188). C. auris is capable 374 

of colonizing patients and it can persist on a patient for over a year (189, 190). It can be transmitted 375 

through direct contact, e.g. hands, but also through indirect contact via fomites, such as medical devices, 376 

other devices and surfaces that directly contact the patient (188, 191, 192). From 2015 to 2017 an 377 

outbreak with 70 patients occurred in a neuroscience intensive care unit of the Oxford University 378 

Hospitals, United Kingdom. The outbreak was linked with the use of reusable skin-surface axillary 379 

temperature probes, suggesting that C. auris persisted in the environment and initiated a large outbreak 380 

(193). By now, several outbreaks have been reported from different countries and hospitals reflecting 381 

the high relevant transmission capacity of this new pathogen. This is particularly important since this 382 

species is highly virulent, reflected by a substantial high proportion of invasive isolates leading to a high 383 

blood culture positivity rate in outbreaks. The risk of nosocomial spread through surfaces is represented 384 

by a higher RC in in vitro settings. Moreover, C. auris is often resistant to many antifungals which 385 

complements higher risk of colonization and probable outbreak potential, with special regard to pan-386 

resistant strains of C. auris (194). C. auris is now established in 43 countries across five continents 387 

(195).388 
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TABLE 5 Replication capacity of moulds and yeasts from inanimate surfaces modified from (70) (pathogens with “fomite-borne risk”, characterized by an increased 389 

nosocomial risk for transmission from inanimate surfaces, are marked in blue; for additional data and details of recultivation and environmental conditions, see 390 

supplementary material) 391 

Pathogen Initial inoculum Replication capacity Surface Reference 
A. brasiliensis 4 CFU  Recovery after 72 h at 22 °C: 0 CFU / 0 CFU / 0 CFU / 3 CFU / 0 

CFU / 2 CFU  
Dry mattress cover / wet mattress cover / dry 
drapes / wet drapes / dry bed sheets / wet bed 
sheets 

(113) 

A. flavus 
 
 

4-5 lg CFU  2 to > 30 d / 2 - 20 d / > 30 d / 8 to > 30 d  
 

Cotton / polyester / polyethylene / 
polyurethane 

(179) 

~ 5.5 lg CFU  After 24 h: ~ 5.4 lg, after 48 h: ~ 5.2 lg, after 5 d: ~ 5.6 lg / after 24 
h: ~ 5.3 lg, after 48: h ~ 3.8 lg, after 5 d: 0 lg  

Aluminum / copper (196) 

A. fumigatus 4-5 lg CFU  1 to > 30 d / 5 to > 30 d / > 30 d / 5 to > 30 d  Cotton / polyester / polyethylene / 
polyurethane 

(179) 

~ 6.8 lg CFU  After 24 h: ~ 6.3 lg, after 5 d: ~ 6.4 lg, / after 48 h: ~ 6 lg, after 5 d: ~ 
1.7 lg  

Aluminum / copper (196) 

~ 6.5 lg CFU  > 30 d / > 30 d / > 30 d / 27 d  Cotton / polyester / wool / silk (94) 
A. niger 
 

4-5 lg CFU  3 to > 30 d / > 30 d / > 30 d / 2 to > 30 d  Cotton / polyester / polyethylene / 
polyurethane 

(179) 

~ 5.3 lg CFU  After 4 d: ~ 5.2 lg, after 24 d: ~ 5.5 lg / after 4 d: ~ 5 lg; after 5 d: ~ 
5.1 lg, after 24 d: ~ 5.4 lg  

Aluminum / copper (196) 

A. terreus 4-5 lg CFU  2 to > 30 d / 2 to > 30 d / > 30 d / 12 to > 30 d  Cotton / Polyester / Polyethylene / 
Polyurethane 

(179) 

C. albicans 
 

4-5 lg CFU  1-3 d / 1 d / 5-6 d / 4-5 d  Cotton / polyester / polyethylene / 
polyurethane 

(179) 
 

6 lg CFU  < 7 d  Stainless steel (dry) / moist agar without 
nutrients 

(185) 

6 lg CFU  Survival after 2 d: ~ 1 %, after 3 d: ~ 0.2 % / 0.3 %, after 7 d: 0 % Stainless steel / glass  (197) 
~ 7.5 lg CFU  After 5 d:  ~ 6.5 lg / after 6 h: 5 lg, after 24 h: 0 lg  Aluminium / copper (196) 
6.5 lg CFU  6 d / 6d / 12 d / 12 d  Cotton / polyester / wool / silk (94) 
~ 6.1 lg CFU  6 d  Glass  (198) 
~ 4.8 lg CFU  48 d  Textile  
5-6 lg CFU  after 7 d: 6.3 lg / after 7 d: 5.1 lg  Polymer without silver / with silver  (36) 
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C. auris 6 lg CFU  Survival after 7 d: ~ 38 % / ~ 93 % Stainless steel (dry) / moist agar without 
nutrients 

(185) 

~ 4.8 lg CFU  After 4 d: ~ 3.5 lg, after 14 d: ~ 0.4 lg  Plastic (199) 
8 lg CFU  After 14 d: ~ 4.3 lg (biofilm formation) Plastic (200) 

C. candidum ~ 6.5 lg CFU  21 d / 6 d / 12 d / 6 d  Cotton / polyester / wool / silk (94) 
C. glabrata 
(Nakaseomyces 
glabratus) 
 

6 lg CFU  Survival after 7 d: ~ 60 % / ~ 90 % Stainless steel (dry) / moist agar without 
nutrients 

(185) 

~ 4.8 lg CFU 12 d /97 d  Glass / Textile (198) 
~ 6.5 lg CFU  > 30 d  Cotton / polyester / wool / silk (94) 

C. krusei 
(Pichia 
kudriavzevii) 

4-5 lg CFU  1 d / 8 d / 3-7 d / 4 d  Cotton / polyester / polyethylene / 
polyurethane 

(179) 

~ 6.5 lg CFU  3 d / 6 d / > 30 d / 21 d  Cotton / polyester / wool / silk (94) 
C. parapsilosis 4-5 lg CFU  9-27 d / 27 to > 30 d / > 30 d / > 30 d  Cotton / polyester / polyethylene / 

polyurethane 
(179) 

6 lg CFU  Survival after 14 d: ~ 1.3 % / ~ 4.1% Stainless steel / glass  (197) 
6 lg CFU  Survival after 7 d: 60 % / 100 % Stainless steel (dry) / moist agar without 

nutrients 
(185) 

~ 4.7 lg CFU  After 21 d: ~ 2.5 lg, after 28 d: 0.4 lg Plastic (199) 

~ 6.5 lg CFU  > 30 d  Cotton / polyester / wool / silk (94) 
~ 6.1 lg CFU 55 d Glass  (198) 

C. tropicalis 4-5 lg CFU  1-2 d / 1-8 d / 7-18 d / 6-12 d  Cotton / polyester / polyethylene / 
polyurethane 

(179) 

~ 6.6 lg CFU  3 d / 9 d / > 30 d / 21 d  Cotton / polyester / wool / silk (94) 
~ 6.1 lg  8 d Glass  (198) 

Cryptococcus 
neoformans 

~ 6.5 lg CFU  > 30 d  Cotton/ polyester / wool / silk (94) 
~ 6.1 lg CFU  27 d  Glass  (198) 

Fusarium solani ~ 5.8 lg CFU After 5 d: ~ 4.4 lg / after 6 h: ~ 3.6 lg, after 24 h: 0 lg Aluminium / copper (196) 
Mucor spp.  4-5 lg CFU  20-24 d  Cotton / polyester / polyethylene / poly 

urethane 
(179) 

Paecilomyces 
spp. 

4-5 lg CFU  < 1 d / 5 d / 4 d / 11 d  Cotton / polyester / polyethylene / 
polyurethane 

(179) 

~ 6.1 lg CFU  40 d Glass  (198) 
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Rhodotorula 
rubra 

~ 4.8 lg CFU  205 d  Textile 

Saccharomyces 
cerevisiae 

6 lg CFU  After 48 h: 3.9 lg / 1.5 lg Plastic / carton (144) 
1 CFU  Recovery after 72 h at 22 °C: 5 CFU / 2.1 lg / 3.3 lg /  4 lg / 5 CFU  

2.9 lg  
Dry mattress cover / wet mattress cover / dry 
trilaminate drapes / wet trilaminate drapes / dry 
bed sheets / wet bed sheets 

(113) 

Legend: CFU = colony forming units, lg = decadic logarithm, min = minute, h = hour, d = day, wk = week, mon = month 
 392 

 393 



32 
 

Replication capacity of protozoa 394 

Protozoa are unicellular heterotrophic eukaryotic organisms. They are considered to be a subkingdom 395 

of the kingdom Protista, although in the classical system they were placed in the kingdom Animalia 396 

(201). The cultivation techniques for protozoa differ from that used for bacteria and fungi, involve highly 397 

complex   and require different culture parametersdepending on the life cycle stage (). The RC 398 

distinguishes between the vegetative form of protozoa, the trophozoite, and the inactive infectious form, 399 

the oocyst or cyst (Table 6). 400 

 401 

Prevention and The interruption of infection chains are the main strategies in the field of combating 402 

protozoonoses. Depending on habitat, hygienic measures for water and sewage and personal hygiene 403 

are of particular importance. Against this background, understanding the RC of protozoa relevant to 404 

human medicine is of particular interest. 405 

 406 

Giardia (G.) intestinalis is the commonest cause of parasitic diarrhea in high-income countries, the most 407 

common enteric protozoan infection in the US, and is also prevalent in middle and low-income 408 

countries. Amoebiasis is the third leading cause of death from parasitic diseases worldwide, with 409 

greatest impact in low-income countries. Cryptosporidiosis is becoming more prevalent in both 410 

developed and developing countries among patients with AIDS and among children aged less than five 411 

years (202, 203). However, there are several other protozoa of relevance for the hospital setting. Several 412 

outbreaks of diarrheal diseases caused by Cyclospora (Cy.) cayetanensis have been reported recently 413 

(204, 205). Trichomonas vaginalis is the most common non-viral sexually transmitted disease 414 

worldwide (206), but  transmission via fomites is rare (). 415 

G. intestinalis and Cryptosporidium (Cr.) spp. survive in both aquatic and terrestrial environments. 416 

Giardia cysts may remain infectious for months in water or in cool damp areas (207). At temperatures 417 

below 15 °C Cryptosporidium oocysts can maintain high levels of infectivity in water for at least 24 wk 418 

(208-211) and up to 120 d in soil (212). The survival of oocysts of Cr. parvum and G. muris was 419 

inversely correlated with the storage temperature and porosity of the surface (Table 6). Under various 420 
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test conditions, the overall trends of the Cryptosporidium oocysts die-off were similar to the one of 421 

Giardia cysts (213). Outbreaks of Cryptosporidium spp. and G. intestinalis generally occur via drinking 422 

water and food which were if inadequately treated to kill or to remove these parasites (214). Other less 423 

frequent water-associated outbreaks include Entamoeba (E.) histolytica / E. dispar, Balantidium (Bal.) 424 

coli, Cy. cayetanensis, Microsporidium spp., Toxoplasma (T.) gondii and the free 425 

living Acanthamoeba species. Cryptosporidium spp. can also be transmitted nosocomial via hands and 426 

indirect via surfaces (215). In China, an outbreak of cryptosporidiosis was associated with HAI by G. 427 

intestinalis, Enterocytozoon bieneusi and C. difficile infection. Poor diaper changing and hand hygiene 428 

were probably responsible for this multi-pathogen outbreak (216). 429 

Survival of anaerobic Entamoeba spp. in environments is highly dependent on temperature. Survival 430 

was determined in faeces and soil at 28-34 °C for 8-10 d, in water and sewage sludge at 0-4 °C for 60-431 

365 d, in surface water resp. wastewater at 20-30 °C for 15 d resp. 10 d (217).  432 

Multiple experiments in soils showed that T. gondii oocysts may remain viable for at least 1 year when 433 

covered and in cool temperatures (4 °C). Under warm climate conditions in dry soils from Kansas, USA, 434 

oocysts remained viable for 18 mon. In fresh or marine waters, oocysts were shown to be viable for at 435 

least 4.5 and 2 years, respectively, reviewed by (218). To determine the survival dynamics 2.5 g of soil 436 

are inoculated with 1 ml of suspension containing 2 × 105 oocysts. The proportion of oocysts surviving 437 

after 100 d was estimated to be 7.4 % under dry conditions and 43.7 % under damp conditions (219).  438 

Babesia (B.) spp. are intraerythrocytic protozoan parasites transmitted primarily by tick vectors, rare 439 

also congenital and by blood transfusion (220). Normally, it has its origin in endogenously infected 440 

blood donors. A nosocomial transmission in blood products is only indirectly imaginable during the 441 

preparation process of blood products in blood bank via hands contaminated from surfaces. 442 

Refrigeration decreases the parasite numbers, but parasites survive 31 d at 2-4 °C and yield high end-443 

point parasitemia, proofed by inoculation of hamsters (221). B. microti survives in red cells at 4 °C in 444 

EDTA-coated blood collection tubes for at least 21 d. Blood held at room temperature did not infect any 445 

hamsters (222). Under normal blood bank conditions, a 35-day-old red cell unit was cause of a 446 
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transfusion transmitted babesiosis (TTB) (223). Similarly, TTB case reports implicating cryopreserved 447 

red cell units indicate that B. microti can survive indefinitely in the presence of glycerol cryopreservation 448 

(224, 225), but in the absence of cryopreservation, the parasite is rapidly killed by pathogen reduction 449 

technology, which uses riboflavin (RB) and ultraviolet (UV) light (226). Theoretically, a single parasite 450 

is capable of transmitting infection. Experimental studies, however, have shown that 30 organisms 451 

infected about 2 / 5 inoculated hamsters, and 300 organisms infected all animals (227). 452 

Protozoa play a minor role in HAI, but in our increasingly complex healthcare environment with a 453 

growing proportion of immunocompromised patients they should be respected, because certain protozoa 454 

may cause morbidity and even mortality in both normal and immunocompromised patients (204). 455 

Furthermore, climate change with increasing temperatures and heavy rainfall could promote their 456 

nosocomial potential in future.  There is also the possibility that HAI could be missed because the 457 

incubation period may be days to weeks (wk) and the parasite is endemic. It is likely that nosocomial 458 

transmission of protozoa may be an even greater problem in tropical hospitals, where comprehensive 459 

hygienic measures are costly or otherwise more difficult to maintain and growth conditions more 460 

beneficial for the protozoa. Up to 1 % of HAI were caused by parasites depending on geographic region 461 

(228), but in this estimation no distinction was made between protozoa and other endo- or ectoparasites. 462 

Jarrin et al. (229) assumed that intestinal parasites can cause diarrhoea in 12-17 % of nosocomial 463 

epidemics and 1 % of endemic outbreaks, especially on surgical wards. Immunosuppressed patients and 464 

those with prolonged antibiotic courses are at higher risk. Enteric protozoa, especially Cr. parvum, G. 465 

intestinalis, E. histolytica / E. dispar, Bal. coli, Cy. cayetanensis, and Cystoisospora belli (syn. Isospora 466 

(I.) belli) are the most common species involved in nosocomial outbreaks (229).  467 

Spread of enteric protozoa in developing countries usually occurs through fecal contamination due to 468 

sewage exposure, poor quality of water and zoonotic exposure, but also via transplantation (230-232). 469 

The 50 % infectious dose (ID50) of C. parvum has been estimated at 132 oocysts; with some infections 470 

followed by ingestion of 30 oocysts (233). Ingestion of at least 10 to 25 G. intestinalis oocysts can cause 471 

infection in humans (234, 235). Infection after ingestion of a single oocyst has been reported (233). The 472 

small ID, the faecal-oral route of transmission, and prolonged environmental survival in water allows 473 
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Cryptosporidium to spread in healthcare facilities as well as child-care centers. Cryptosporidium can 474 

transmit by hands after contact with contaminated environmental surfaces (236). The cysts are highly 475 

resistant to environmental conditions and most of the disinfectants commonly used have low or none 476 

antiparasitic activity (236). For Giardia and Cryptosporidium spp. person-to-person transmission is 477 

possible (237, 238). For Cryptosporidium spp. transmission is primarily found among children and staff 478 

members in nurseries, day-care centers, and schools (239). HAI by direct and indirect person-to-person 479 

transmission is documented, causing secondary cases among roommates (237). In an outbreak of 480 

giardiasis at two day-care nurseries G. intestinalis appeared to be transmitted person to person 481 

(240). Conversely, ingestion of approximately 200–49,000 oocysts at healthy volunteers did not 482 

experience gastroenteritis, and no oocysts were detected in any stool samples over the following 16 wks 483 

(241). Therefore, there is minimal risk of nosocomial transmission. Sporulated oocysts of I. belli can 484 

survive for years in the environment (242). Although the transmission of protozoa via surfaces in 485 

hospitals is negligible for most species, awareness of surface persistence is important for assessing the 486 

risk of surfaces as a reservoir for food, water, and hands (table 6). Cr. parvum oocysts survived in stool 487 

on wood up to 72 h, and differed between stool samples (210). Survival was shorter than in water, 488 

because other fecal microorganisms such as bacteria may be associated with the shortened survivability 489 

(243). Also, the presence of ammonia, which may be present in faeces in high concentrations. This is a 490 

significant inactivation agent for oocysts (244, 245). Oocysts have been shown to survive for hours on 491 

wet surfaces, including stainless steel, but they resist desiccation and die rapidly on dry surfaces (246).  492 

For virgin girls with high prevalence of trichomoniasis resulting in multivariate analysis, the only 493 

statistically significant risk factor for trichomoniasis was inconsistent use of soap. The authors postulate 494 

that the high prevalence of trichomoniasis in virgins in Ndola is due to non-sexual transmission of 495 

trichomoniasis via shared bathing water and inconsistent use of soap (247).  496 

Acanthamoeba are one of the most common protozoa in soil, and frequently found in fresh water and 497 

other environmental habitats such as pools, lakes, brackish water, seawater, heating, ventilating, air-498 

conditioning filters and medical equipment, such as gastric wash tubing and dental irrigation units (248). 499 

An important habitat and vector for infection are hydrogel contact lenses, resulting in contact lens 500 
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associated keratitis caused by Acanthamoeba and Fusarium (249), particularly since the contact lenses’ 501 

moist condition supports survival protozoa. Acanthamoeba, Vahlkampfia and Vermamoeba spp. have 502 

been detected in dust on internal, surgical and open heart surgery intensive care units (ICUs), on 503 

equipment, doors and in the air conditioning system (250). Acanthamoeba cysts are double-walled, 504 

highly resistant dormant stages that remain viable (and infective) for several years (251, 252) and in a 505 

state of desiccation up to 21 years (Table 6).506 



37 
 

TABLE 6 Replication capacity of protozoa from inanimate surfaces (pathogens with “fomite-borne risk”, characterized by an increased nosocomial risk for 507 

transmission from inanimate surfaces, are marked in blue; for additional data and details of recultivation and environmental conditions, see supplementary 508 

material) 509 

Pathogen Initial inoculum Replication capacity Surface Reference 
Acanthamoeba 
trophozoites 
morphological 
group II 

Large numbers of 
trophozoites 

2-21 years After amoebae differentiated into cysts, agar 
plates were tightly wrapped with parafilm 

(248) 

Cryptospori-
dium parvum 
oocysts  

(Oo)cysts Survival at 25 °C: > 60 d / > 24 d / > 60 d / > 60 d Stainless steel / skin / formica / fabric (213)  
Oocysts  Recovery at 21 °C up to 75 d Water (253) 
6 lg / ml oocysts Recultivation rate after 0 h: 76.3 %; after 2 h: 3 %; after 4 h: 0 %  Glass slide (210) 
7 lg oocysts After 30 min: 4.1 lg; after 60 min: 3.2 lg; after 90 min: < 3 lg Stainless steel (254) 
≥ 100 oocysts  After 24 h desiccation: no infectivity after 1 – 4 d Cryptosporidia-laden calf faeces (255) 

Giardia muris 
cysts  

(Oo)cysts Recovery at 25 °C: 45 d / > 24 d / 21 d / 21 d Stainless steel / skin / formica / fabric (213) 

Trichomonas 
vaginalis 
trophozoites 

2-3 lg for human 
samples; 3-4 lg 
from culture 

Recultivation rates after 120 min: 5.1 % / 30.5 %; survival 24 h  Textil / plastic  (256) 

Trophozoites Recultivation rates after 15 min at 26 °C: < 10 % Water (257)  
Legend: lg = decadic logarithm, min = minute, h = hour, d = day 
 510 

 511 
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Replication capacity of viruses 512 

To determine the RC of viruses, applied material was removed from the germ carrier by scraping or 513 

rinsing in cell culture medium; sometimes combined with vortexing and transfer of the sample usually 514 

into cell culture. Recultivability is determined, based on the number of infectious virus particles, by 515 

growing the remaining virus particles with subsequent determination of the virus titre. In contrast, 516 

molecular biological detection alone does not allow any conclusions regarding infectivity. For hepatitis 517 

B virus (HBV), infectivity was proven by application of the rehydrated inoculum in chimpanzees due 518 

to lack of cultivation in cell culture in the past. Nowadays, it can be analyzed in a HBV susceptible cell 519 

culture system using hepatoma cells expressing the Na+- taurocholate co-transporting polypeptide 520 

(NTCP)-HBV cell entry factor (258) (Table 7). However, this method is only available in specialized 521 

laboratories and cannot be used routinely. 522 

Gastrointestinal transmissible viruses remain infectious on inanimate surfaces. The longest has an 523 

average of 1 - 6 w, followed by blood-borne (average 1 to 6 w), respiratory (average 1 to 3 d) and 524 

sexually transmitted viruses (2 h to < 7 d) (table 7).  525 

Non-enveloped viruses are more resistant to extreme pH, heat, dryness, disinfectants in general and 526 

some can intrinsically resist certain disinfectants such as the parvovirus or hepatitis A virus (HAV). In 527 

contrast, most enveloped viruses such as herpes viruses (cytomegalovirus), human immunodeficiency 528 

virus (HIV) and respiratory syncytial virus (RSV) are less environmentally stable since they possess an 529 

outer lipid bilayer membrane. Small viruses, e.g. hepatitis B virus (HBV) or the members of the 530 

picornavirus or parvovirus family, are much more resistant than larger complex viruses, e.g. members 531 

of the herpes or retrovirus families (259). Some non-enveloped viruses, such as enteroviruses belonging 532 

to the picorna viridae, are sensitive to drying, e.g. dried inoculum of the Coxsackie B4 (CVB4) virus 533 

was easier to recover when CVB4 was spiked in media containing any concentration of NaCl instead of 534 

protein load (260). 535 

The relevance of surfaces in healthcare facilities as a contamination source for viruses is even more 536 

difficult to prove than for bacteria and fungi, because surface isolation is more complex. Virus infection 537 

can so far only be indirectly deduced by tracking the spread of the virus from the patient and its presence 538 

in the patient environment, as the ID is not known with a few exceptions. However, in both situations 539 
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the risk of infection increases with higher RC. A few examples illustrate the importance of surfaces for 540 

the spread of viral infections. After discharge of patients with norovirus infection, the number of new 541 

cases has continued to rise, most likely due to the low ID of norovirus (1 to 10 to 100 virus particles) 542 

(261). A large outbreak due to noroviruses infections could therefore be controlled by closing the 543 

affected departments, implementing extensive disinfection measures, and reducing the exposition risk, 544 

i.e. from infected healthcare workers (262). However, if recognized at an early stage, most norovirus 545 

outbreaks can be controlled easily without these intensified intervention strategies. A retrospective 546 

cohort study showed a very low risk of general infection by only 2 of 1106 exposed patients had acquired 547 

the identical norovirus strain from the discharged patient (263). Although the direct hand transmission 548 

dominates nosocomial transmission of rotaviruses, surfaces are also relevant for spread (264). A 549 

simulation experiment on virus inoculated over surfaces using Cauliflower mosaic virus showed that 550 

the virus was detectable on 41 % of the sampled surfaces within 10 h outside of the isolation unit (265). 551 

Whether this amount was sufficient to transmit infection was not investigated. After the emergence of 552 

MERS-CoV, although the origin is zoonotic, the risk of further spread via surfaces was investigated. 553 

The contamination with viral RNA was detected in the environment of hospitalized ventilated patients 554 

despite a strict disinfection regimen and negative pressure ventilation. Due to the RC of up to 9 d and 555 

the detection in the patient environment, the authors concluded that careful surface disinfection, 556 

especially near the patient, can help with prevention (266). Thus, detecting RNA does not necessarily 557 

coincide with infectivity.  558 

 559 

Other viruses from the gastrointestinal tract such as Astrovirus, HAV, Polio- and Rotavirus can retain 560 

their infectivity at RT for quite a long time, with the spectrum varying from several hours to 3 mon. 561 

HBV belonging to the group of blood-borne or sexually transmitted viruses play a very high stability 562 

with a RC of 50 % of more than 22 d at 37 °C and a persisting infectivity for up to 9 mon at 4 °C (258). 563 

In contrast, most respiratory viruses retain their infectivity on inanimate surfaces for a few days only 564 

(Table 7). 565 

 566 
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Herpes viruses such as cytomegalovirus, mainly transmitted through contact with infectious body fluids, 567 

e.g. through breastfeeding, kissing, sexual contact, herpes simplex virus (HSV) type 1, mainly 568 

transmitted via contact, and HSV 2, mainly transmitted during sex, have been shown to persist from 569 

only a few hours up to days (Table 7). 570 

 571 

Mpox virus (MPXV) 572 

Since summer 2022, non-travel associated outbreaks of monkeypox have occurred in several non-573 

endemic countries. Person-to-person transmission can occur through exposure to close contact with 574 

respiratory secretions, infectious skin lesions (e.g. via ruptured blisters) of an infected person, or recently 575 

contaminated objects (sex toys) and surfaces (267); nosocomial infections are described as well (268-576 

271). Recently, the WHO recommended using a new preferred term ‘Mpox’ as a synonym for 577 

monkeypox (272). Investigations with the vaccinia virus – a virus related to the MPXV – showed that 578 

this virus can remain ‘infectious’ on surfaces for up to 56 d (67). Stability on textile fibers was also 579 

investigated for the vaccinia virus. Accordingly, this virus could still be recovered from wool fabric 580 

after up to 4 wk and from cotton after four to 8 d; textiles contaminated with virus-containing dust even 581 

remained infectious for up to 12 wk (273, 274). Adler et al. indicates that in some patients the virus 582 

could be detected in the throat swab by PCR test for up to 3 wk (in one case from 2018 even up to 41 d) 583 

after diagnosis (275). Whether this was only ‘residual nucleic acid’ or infectious virus was not 584 

investigated. However, viable virus was identified in two (50 %) of four samples selected for viral 585 

isolation, including air samples collected during bedding change via air and surface sampling for MPXV 586 

in a UK hospital (276). In another study, there was no statistical difference (p = 0.94) between MPXV-587 

WA PCR positivity of porous (9 / 10, 90 %) vs. nonporous (19 / 21, 90.5 %) surfaces, but there was a 588 

significant difference (p < 0.01) between viable virus detected in cultures of porous (6 / 10, 60 %) vs. 589 

nonporous (1 / 21, 5 %) surfaces. These findings indicate that porous surfaces (e.g., bedding, clothing) 590 

may pose more of a MPXV exposure risk than nonporous surfaces (e.g., metal, plastic). Viable MPXV 591 

was detected on household surfaces after at least 15 d (277). Therefore, the CDC recommends 592 

minimizing the spread in household by cleaning and disinfection laundry, hard and soft surfaces, carpet 593 

and flooring when exposed to an infected person (278). 594 
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SARS-CoV-2 595 

Severe acute respiratory syndrome coronavirus type 2 (SARS-CoV-2) demonstrates how infection 596 

control of a new infectious disease can be established, and continuously adapted, at breathtaking speed 597 

based on hospital hygiene strategies using RC, biocide resistance and transmission. Similar to other 598 

coronaviruses, SARS-CoV-2 has been detected on surfaces (279) with a correlation between patient 599 

proximity and surface contamination (280), so that the risk of further spread due to RC of up to 7 d on 600 

surfaces (Table 7) could be prevented by disinfecting surfaces (281, 282). Even simple wiping with hard 601 

water or detergent-based cleaning are effective decontamination strategies against SARS-CoV-2 (283). 602 

This applies to all materials (Table 7), even if their influence on RC varies (284). Depending on the 603 

exposure time, the recoverable virus quantity decreases almost linearly and is not critical on plastic after 604 

72 h, stainless steel after 48 h, cardboard after 24 h and copper after 4 h (285). Since the ID is unknown, 605 

the risk assessment remains open. In a case report, the detection of SARS-CoV-2 on surfaces in the 606 

household is interpreted in such a way that transmission from surfaces is possible if they have recently 607 

been contaminated by coughing or sneezing, touched and subsequently transferred to mouth, nose or 608 

eyes (286). In this investigation, transmission via the respiratory tract cannot be ruled out in the few 609 

other cases where transmission via surfaces is suspected (287). Presumably, however, the risk of 610 

infection is not very high, because in swab samples from surfaces in an emergency ward and an 611 

infectious disease sub-intensive care ward, small amounts of SARS-CoV-2 RNA were detectable in 612 

only two of 26 samples and did not cause cytopathic effect in cell culture (288). It is possible that 613 

residues of surface disinfectants used were able to reduce RC. In contrast, it is also possible that residues 614 

of disinfectants may induce tolerance. Similarly, quantitative microbial risk assessment (QMRA) studies 615 

indicate that the risk of SARS-CoV-2 infection via the surface transmission route is low and generally 616 

less than 1:10.000, meaning that the probability of infection for each contact with a contaminated surface 617 

is less than 1:10.000 (289-291). These results suggest that transmission of SARS-CoV-2 via surfaces in 618 

public areas is irrelevant (292). In isolation units / rooms for patients with SARS-CoV-2 infection and 619 

in units or rooms for suspected patient cases of SARS-CoV-2 infection, surface disinfection and cleaning 620 

is indicated based on the observation that SARS-CoV-2 can be detected in the entire patient 621 

environment. Moreover, the RC is up to 7 d, although the infectivity of the surfaces is apparently only 622 
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low. In a retrospective questionnaire-based study, it was shown that even at home the use of protective 623 

masks and daily use of chlorine- and ethanol-based disinfectants for surface decontamination and hand 624 

antisepsis significantly reduced the risk of infection (293). Santarpia et al. (294) deduced from the data 625 

that in cases of suspected or confirmed SARS-CoV-2 infection within the last 24 h in the household, 626 

surfaces should also be decontaminated. 627 
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TABLE 7 Replication capacity of viruses after isolation from inanimate surfaces modified from (70) (pathogens with “fomite-borne risk”, characterized by an 628 

increased nosocomial risk for transmission from inanimate surfaces, are marked in blue; for additional data and details of recultivation and environmental conditions, 629 

see supplementary material) 630 

Pathogen Initial inoculum 
 

Replication capacity/ residual virus titer Surface  Reference 

Predominant transmission through contact 
Adenovirus 
 

~ 7 lg CCID50  > 12 wk; after 8 wk: 3.4-5.7 lg  Glass / plastic / porcelain / stainless steel  (295) 
2000 PFU  < 49 d;  after 14 d: ~ 8 % / ~ 3 % Plastic / aluminum foil  (296) 
~ 6 lg PFU 15 d / 15 d / 30 d / > 30 d  Aluminum / porcelain / latex / paper (297) 

Adenovirus 
type 3 

~ 7 lg TCID50  > 9 d: 4.2 lg Polystyrene  (298) 
 

Cytomegalo-
virus  

4-6.9 lg PFU  1-2 h / 4-8 h Cotton / plexiglass (299) 

Ebola virus 4-6 lg TCID50 At 4 °C > 50 d: 2 lg Plastic / glass / stainless steel (300) 
7 lg PFU;  6.2 d Paper (301) 
7.3 lg PFU > 5.9 d: 4 lg Glass / silicone /  

aluminum  
(302) 

6-7 lg TCID50 14 d / 8 d / 11 d Tyvek / stainless steel / plastic (303) 
7 lg TCID50  > 192 h / > 192 h / < 24 h / > 192 h; 3-4 lg Stainless steel / surgical mask / cotton / plastic  (304) 

Hendra virus 
(HeV) 

~ 6.25 lg TCID50  60 min; after 30 min: ~ 2.7 lg  Polystyrene  
 

(305) 
 

Lassa virus 7.1 lg PFU > 9.7 d: 4 lg Glass / silicone / aluminum  (302) 
Mpox Household setting 

after disease  
At least 15 days: ≤ 2 lg / 0-≤ 2 lg Porous surfaces / non-porous (277) 

Marburgvirus 4-7 lg TCID50 > 50 d: 2 lg Plastic / glass  (300) 
Nipah virus 
(NiV)  

~ 6.25 lg TCID50  After 60 min: ~ 2.7 lg Polystyrene  
 

(305) 

Sindbis virus 7.2 lg PFU > 14.6 d: 4 lg Glass / silicone / aluminum  (302) 
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Vaccinia virus 
  
 

7 lg CCID50   > 4 wk: 2 lg 
 

Glass  (295) 

8 lg CCID50  14 wk: 3 lg / up to 10 wk: 3.5. lg  Wool / cotton  (273) 

8 lg CCID50 / ml 1 wk: 4 lg Cotton (274) 
2.8 lg TCID50 14 d: < 1 lg Gauze bandage (306) 

8 lg PFU   < 56 d: ~ 4.5 lg Stainless Steel  (307) 
6-6.5 lg KID50  < 20 wk: 4.3 lg Glass  (308) 

Transmission by contact, starting from the gastrointestinal tract (+ surrogate viruses)  
Adenovirus 
type 40 
  

5-5.7 lg IU   > 7 d: 3.8 lg Paper / porcelain  (309) 

Astrovirus, 
serotype 4 

5-5.7 lg IU  60 d / after 7 d: 1.7 lg Paper / porcelain  (309) 

Coxsackie virus 
  

6.8 lg CCID50  2 wk: 2 lg Glass  (295) 
6.5 lg TCID50  < 6 wk Petri dish  (310) 

Echovirus max. 300 PFU  42 h  Cellulose  (311) 
Feline 
calicivirus 
 

9 lg PFU   > 7 d: 2 lg Laminate / ceramic / stainless steel 
 

(312) 

7 lg TCID50  90 % reduction in viral titers: up to 24 h  Computer / brass / telephone  (313) 
6 lg PFU < 15 d / <3 d / < 7 d Wool / nylon / glass  (314) 

Hepatitis A 
virus 
(HAV) 

6 lg PFU   > 1 mo Wood / stainless steel (315) 
3-4 lg PFU  4 h to > 7 d Stainless steel (316) 
5-5.7 lg IU  After 7 d: ~ 3.3 lg / ~ 5 lg Paper / porcelain (309) 
6.4 lg  After 90 d on PVC: 10 % of initial loading 

 
Stainless steel / PVC 
 

(317) 
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 ~ 6 lg PFU  > 60 d / > 60 d / > 60 d / > 30 d Aluminum / porcelain /  
latex / Paper 

(297) 

Hepatitis E 
virus (HEV) 

~ 4 lg FFU  After 28 d: ~ 1 lg / 1 lg / 0.4 lg / 0 lg Plastics / ceramics / stainless steel / wood  (318) 
3.9 lg FFU  D value: 5.95 d  Stainless steel (319) 

Escherichia 
virus (MS2 
phage) 

6 lg PFU   D value: 19.8 d / 13.2 d Wood / stainless steel (315) 
 
  

Murine 
hepatitis virus 
and (MHV) 
Transmissible 
gastroenteritis 
virus (TGEV) 

4-5 lg PFU MHV: after 5 d 3 lg; TGEV: after 3 d 2 lg  Stainless steel  (320) 

Murine 
norovirus  

4-4.5 lg PFU > 120 min except copper; after 120 min: 3.1 lg for stainless 
steel  

Copper 100 % / 95 % / 70 % / stainless steel (321) 

Poliovirus type 
1 

4.4 lg PFU  > 90 min; after 20 min: 2.6 lg Worktop  (322) 
~ 6 lg PFU  3 d / 1 d / 30 d / > 30 d Aluminum / porcelain /  

latex / Paper 
(297) 

max. 300 PFU  42 h Cellulose  (311) 
~ 12 lg PFU  > 3 wk on all surfaces; 99 % reduction after 5.2 d / 7.4 d / 

5.9 d 
Steel / cotton / plastic   
 

(323) 

3-4 lg PFU 12 h Stainless steel  (316) 
Poliovirus type 
2 

8.1 lg PFU  After 14 d: > 3 lg  Glass  (295) 
5-5.7 lg IU  > 7 d Paper / porcelain  (309) 

Rotavirus 
 

~ 6 lg PFU  > 60 d Aluminum / porcelain / latex / paper (297) 
3-4 lg PFU  < 90 min Worktop  (322) 
7 lg PFU  > 10 d Glass / smooth plastic / rough plastic (324) 
5-5.7 lg IU  > 7 d Paper / porcelain (309) 

Tulane virus 
(Rhesus enteric 
calicivirus) 

4.7 lg PFU  D value: 18.8 d / 13.3 d Acrylic / stainless steel  (325) 

Respiratory and/or aerogenic transmission (+ surrogate viruses) 
Endemic human 
coronaviruses 

5.7 lg TCID50  HCoV-229E: > 12 h, >12 h, >6 h; HCoV-OC43: > 3 h, > 1 
h, >1 h 

Aluminum / cotton / latex  (326) 
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 3 lg PFU  3 d / 5 d / ≤ 40 min / 120 min / 30 min Silicone / PVC, ceramic, glass, steel / brass / 70 % 
copper / 90 % copper  

(327) 

~ 7 lg TCID50   48 h: 2 lg Polystyrene  (298) 
Influenza A 
virus 

3.1 lg TCID50 
(A/NC-H1N1); 
4.8 lg TCID50 
(A/Br-H1N1) 

7 d  Stainless steel (328) 

5.5 lg TCID50  > 24 h / > 48 h / > 24 h / 8 h Stainless steel / wood / plastic / cotton (329) 
5.3 lg TCID50  ≥ 60 min / 30 min / 15 min / < 15 min / < 15 min Cotton  / formica / vinyl / stainless steel / facial tissue (330) 
5 lg TCID50  < 5 d Petri dish  (310) 
4-6 lg PFU  After 7.3 d / 17.7 h / 34.3 h 99 % reduction  Stainless steel / cotton /  

microfiber 
(331) 

3-4 lg TCID50  48 h / 72 h / 24 h / 24 h / 12 h  Plastic / stainless steel /  
magazine / cotton /  
paper  

(332) 

6 lg PFU  2-9 h  Telephone receiver / wood / keyboard / stainless steel / 
dishcloth 

(333) 

6 lg TCID50  < 4 h Stainless steel / plastic (334) 
Influenza B 
virus 

4 lg TCID50  48 h / 48 h / 8 h / 12 h / 8 h  Plastic / stainless steel /  
magazine / cotton /  
paper handkerchief  

(332) 

Middle East 
respiratory 
syndrome 
coronavirus 
(MERS-CoV) 

6 lg TCID50  
 

< 72 h 
 

Stainless steel / plastic (334) 

Parainfluenza 
virus 

3.2 lg TCID50  4 h Stainless steel / laminate (335) 

Respiratory 
syncytial virus 

5 lg TCID50  8 h; ~ 2.5 h; ~ 5.3 h; 1 h; 1 h Laminate / cotton-polyester / rubber / paper / hands (336) 

Rhinovirus type 
14 

7 lg PFU  < 25 h; TCID50: 0.55 h Stainless steel (337) 

Rhinovirus type 
2 

2 lg PFU  After 3 d: ~ 0.6 lg  Stainless steel (338) 

SARS-CoV-1 6 lg TCID50  4 d / 4 d / 4 d / 5 d / 5 d  Wood / glass / paper / metal / textile /  (339) 

Scheithauer, Simone
Sollen wir PB19 aufnehmen?

Lexow, Franziska
no
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7 lg TCID50  28 d: ~ 2 lg Plastic (340) 
3.4 lg TCID50   72 h / 48 h / 8 h / 8 h Plastic / stainless steel / 

paper / copper 
(341) 

6 lg TCID50 / ml  1 h / 24 h / 2d Paper / cotton / disposable gown (342) 
7 lg TCID50  After 13 d: 2.3 lg Plastic  (340) 
~ 7 lg TCID50  After 9 d: 2 lg Polystyrene  (298) 
6 lg TCID50  4 d / 4 d / 4 d / ≥ 5 d / ≥ 5 d / 4 d  Plastic / wood / glass / metal / cloth / paper  (339) 

SARS-CoV-2  
 

5.5 lg TCID50  D values: ~ 6 d / ~ 6.9 d / ~ 9.1 d / ~ 6.3 d / ~ 5.6 d / ~ 6.3 d Stainless steel / paper / polymer / glass / cotton / vinyl  (343) 
7.9 lg TCID50  After 7 d: ~ 2.7 lg / 2 lg / 2.8 lg / not detectable / 2.3 lg / 

2.3 lg / 1.1 lg / not detectable 
Stainless steel / face shield / nitrile glove / chemical 
glove / N95 mask / N100 mask / Tyvek suit / cotton  

(344) 

3.6 lg TCID50  72 h / 48 h / 24 h / < 4 h Plastic / stainless steel /  
cardboard / copper 

(341) 

7.8 lg TCID50  < 3 h / < 3 h / < 2 d / < 2 d / 4 d / 4 d / < 7d / < 7 d / 7 d Paper / handkerchief / wood / clothes / glass / paper / 
stainless steel / plastic / surgical mask  

(345) 

6.2 ± 5.9 lg 
TCID50  

13 min at 0.3 W / cm2: 90 % reduction  Stainless steel (346) 

6.5 lg TCID50  < 20 min exposed to sunlight Stainless steel (347) 
~ 2.8 lg TCID50  ≤18.6 h Stainless steel / plastic / 

nitrile  
(348) 

5.23 lg TCID50  2 d: ~ 1.2 lg Glass (349) 
Predominant sexual transmission 
Herpes simplex 
virus type 1 
 

7.9 TCID50  After 2 h: 6.7 lg Plastic / 
chrome  

(350) 
After 2 h: 5.2 lg (351) 

5.6 lg PFU  After 1 d: 4 lg Glass  (295) 
~ 7 lg TCID50  After 9 d: 1.9 lg Polystyrene  (298) 

Herpes simplex 
virus type 2 

4.2 lg TCID50  4.5 h: 2.9 lg TCID50  Polystyrene (352) 

Human 
immunodeficien
cy virus (HIV) 

Liquid / dry 
inoculum: 128000 
/ 25000 
 cpm / ml reverse 
transcriptase 

> 20 d / ~ 10 d  Petri dish (353) 

Papillomavirus ~ 100-434 FFU  < 7 d  Pipe / cotton / microcentrifuge tube (354) 

Lexow, Franziska
We should find a new subtile for those viruses: Simone Scheithauer schreibt dazu: HSV 1 wird typischerweise von Mutter auf Kind via Speichel übertragen, HSV 2 eher urovagogenital

Scheithauer, Simone
Maybe: subset of contact transmission mainly via body fluids
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Transmission through blood 
Hepatitis B 
virus (HBV) 
 

0.1 ml HBsAg 
positive plasma  

1 wk Silanized tube (355) 

0.1 ml HBV-
positive blood 

> 2 wk Stainless steel / cotton swab (356) 

> 6 lg TCID50  After 28 d: ~ 10 % reduction PCR tubes (258) 
Hepatitis C 
virus (HCV) 

4-6 lg IE  >40 d  24-well plates (357) 

 ~ 4.75 lg TCID50  After 7 d: ~ 1.5 lg  Stainless steel (358) 
Legend: cmp = counts per minute, D value = time in which the virus titer is reduced by 1 lg, Z value (thermal death time) = number of degrees the temperature has to be 
increased to achieve a 10-fold decrease in decimal reduction time (D-value), ATCC =American Type Culture Collection, BSA = bovine serum albumin, CCID = cell culture 
infectious dose, CPE = cytopathic effect, d = day, FFU = focus forming units, h = hours, HBsAg = Hepatitis B surface Antigen, HBVcc = HBV derived from cell cultures, IU 
= infectious units, lg = decadic logarithm, min = minute, mon = month, N/A = not available, PBS = phosphate-buffered saline, PCR = polymerase chain reaction, PFU = 
plaque forming unit, PPE = personal protection equipment, PVC = polyvinyl chloride, RH = relative humidity, RIA = Radioimmunoassay, RT = room temperature, TCID50 = 
50 % tissue culture infectious dose, US = ultrasound, W = watt, wk = week 
 631 



49 
 

Factors influencing the replication and infection capacity of microorganisms, protozoa 632 

and viruses in the environment     633 

Microbiological test conditions: For bacteria, surface desiccation on the surface after contamination 634 

(rapid or slow), relative humidity (RH) and temperature during storage, recultivation conditions, and 635 

stage of cultivability (VBNC) are of influence on RC (Tables 3 and 4). The origin of the pathogen is 636 

also influential. A. baumannii strains isolated from clinical settings were more often resistant to 637 

desiccation than ATCC strains (Table 3). As expected, the RC is influenced by the initial bio-inoculum 638 

of faeces, demonstrated for E. faecalis, MRSA, A. baumannii, C. jejuni (table 3), E. coli, P. aeruginosa 639 

of recovery (Table 4), C. albicans, C. auris, C. krusei (Pichia kudriavzevii), C. parapsilosis and C. 640 

tropicalis (Table 5). Similarly for viruses smaller inocula were associated with shorter RC, e.g. for 641 

transmissible gastroenteritis virus, mouse hepatitis (320) and SARS-CoV-2. The latter lost infectivity 642 

after 2-4 d (341, 345) compared with longer times of 21 d (344) or 7-28 d (343) for larger inocula (Table 643 

7). Finally, the RC depends on recovery method (Tables 3-7). 644 

 645 

Surface material: The RC of bacteria, fungi and viruses was significantly shorter on copper surfaces 646 

than on textile materials, plastics and steel, due to the oligodynamic effect of copper ((359, 360); Table 647 

7).  648 

On porous surfaces, e.g. coronavirus, influenza virus, avian metapneumovirus, poliovirus type 1 and 649 

human enteric adenovirus type 40 (297, 361), survival is longer than on non-porous surfaces (Table 7). 650 

One reason may be the lower virus elution during recovery from porous materials (362). A recently 651 

published scoping review comes to the same conclusion ().The capillary effect within the cavities and 652 

the faster evaporation of the aerosols could also be influential (363).  653 

 654 

RH: Gram-positive bacteria tolerate dry conditions better than Gram-negative bacteria due to cell wall 655 

properties (364). S. aureus persisted longer at low RH (365), while survival kinetics for E. faecalis were 656 

lower at 25 % RH than at 0 % RH (366). Acinetobacter spp. suspended in distilled water survived 657 

significantly longer at room temperature (RT) at RH of 28-34 % and 93 %, respectively, compared to 658 

10 % RLF, while survival did not differ between 28-34 % and 93 %, respectively (72). Survival of 659 

Axel Kramer
Porter L, Sultan O, Mitchell BG, Jenney A, Kiernan M, Brewster DJ, Russo PL,bHow long do nosocomial pathogens persist on inanimate surfaces? A scoping review. J Hosp Infect. 2024;147: 25-31. doi: https://doi.org/10.1016/j.jhin.2024.01.023
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Gram-positive bacteria was reduced most at RLF of 50-70 %, while death rates of Gram-negative 660 

bacteria were highest at RLF of 50-70 % and 70-90 %, respectively (364). 661 

 662 

Enveloped viruses, especially respiratory viruses such as influenza, parainfluenza, corona-, respiratory 663 

syncytial, measles and rubella viruses, but also herpes simplex and varicella-zoster viruses, retain their 664 

RC longer with a low RH of 20-30 % (364). Only cytomegalovirus is isolated more frequently from 665 

moist surfaces (367). Non-enveloped viruses such as adenoviruses, enteroviruses and rhinoviruses are 666 

replicable for longer at 70-90 % RH (table 7, (368)). 667 

 668 

Temperature: Constant temperatures > 24 °C seem to reduce the replication and infection capacity of 669 

airborne bacteria, shown for representatives of Gram-positive, Gram-negative and intracellular bacteria 670 

(364). 671 

 672 

For 15 yeast species, the survival time increased when the ambient temperature was reduced. Overall, 673 

the survivability of the species studied was longest at 4 °C and 1 % RH and shortest at 37 °C and 96 % 674 

RH (198). The situation is different for the release of bioaerosols indoors. At 25 °C, more fungi (mainly 675 

Fusarium and Penicillium spp.) were released than at 37 and 15 °C, whereby the composition of the 676 

mould species differed significantly across these three temperature ranges (369).  677 

 678 

The viral genome (viral DNA or RNA) is sensitive to the surrounding temperature. Indeed, temperature 679 

is an important factor influencing the RC of several viruses. Higher temperatures affect / impact viral 680 

proteins and enzymes, as well as the viral genome. In general, DNA viruses are more stable than RNA 681 

viruses; yet high temperature will also affect DNA integrity. For most viruses, such as astro-, adeno-, 682 

polioviruses, herpes simplex and HAV, low temperatures (4 °C) are associated with longer duration of 683 

replicability (65). For enteric viruses, RC in water increased with increasing temperature > 20 °C (370, 684 

371). For rota-, poliovirus and HAV, RC was higher at > 80 % RH (297). This was confirmed for 685 

poliovirus in that stability was significantly greater at 95 % RH than at 25 % RH (316). For 686 

coronaviruses, the influence of RH was different with higher RC at 20 % and 80 % and comparatively 687 
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lower RC at 50 % (320). For SARS-CoV-2, interfering substances, temperature (20 or 35 °C) and RH 688 

were only of moderate influence (Table 7). Morris et al. (372) developed an original prediction model 689 

of how temperature and humidity alter RC by using a mechanistic quantitative approach that was based 690 

on testing the stability of SARS-CoV-2 on an inert surface for a range of temperature and humidity 691 

conditions. SARS-CoV-2 remained infectious longest at low temperatures and extreme humidity (up to 692 

85 %). The estimated mean half-time of RC was > 24 h at 10 ˚C and 40 % RH, but ~ 1.5 h at 27 ˚C and 693 

65 % RH. The model uses basic chemistry to explain why the sensitivity of enveloped viruses increases 694 

with higher temperatures and has a U-shaped dependence on humidity. The model accurately predicts 695 

existing results on the influence of temperature and RLF for five different human coronaviruses. This 696 

suggests that common mechanisms may influence the stability of many viruses. 697 

 698 

Light conditions: Light, especially sunlight, or lack of it influences the RC. The survival time of C. 699 

albicans and Rhodotorula rubra on smooth glass surfaces doubled when they were kept in darkness 700 

compared with daylight and extended from 44 to 98 d for C. albicans(198). 701 

 702 

Under the influence of simulated sunlight, 90 % of SARS-CoV-2 applied to the surface in artificial 703 

saliva were inactivated every 6.8 min during simulated summer exposure, but every 14.3 min during 704 

winter exposure (346). In contrast, no significant decrease was detectable within 1 h in the dark (Table 705 

7; (346)). The effect of sunlight was also reproducible in aerosol, while RH alone (20-70 %) had no 706 

influence (373). Irradiation (distance 3 cm) with UVC (dose 1.048 mJ / cm2) completely inactivated 707 

SARS-CoV-2 (infectious titre of 5 × 106 TCID50 / ml) after 9 min, while UVA (dose 292 mJ / cm2) 708 

reduced the titre by only 1 lg after 9 min (374). 709 

 710 

Protein, fecal and urine load: Desiccation in protein-containing media prolongs persistence,  e.g. for 711 

A. baumannii (table 8), Escherichia (E.) coli (102), Neisseria (N.) meningitidis (375) and yeasts (198). 712 

Fecal load had little effect on the RC of HAV and rotaviruses. For adenoviruses, the RC only tended to 713 

increase (Table 7). 714 
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TABLE 8 Persistence of different A. baumannii strains suspended in water or bovine serum albumin 715 

(BSA) and dried on glass at different RH (modified from (72)) 716 

Average 
persistence 

Strain(s) Conditions (RH 28-34%, RT) 

≤ 5 d American type culture collection (ATCC) 
9955 

suspended in water 

6-10 d ATCC 17978, ATCC 19606, R 0211019 
> 10-30 d ATCC 17904, 18, 49, 16 / 48, 16 / 49, R 447 
<10 d ATCC 9955 suspended in 7 % BSA 
> 10-30 d ATCC 17978, 18, 16 / 48 
> 29-60 d ATCC 19606, ATCC 17904, 49, 16 / 49, R 

447, R 0211019 
 717 

Biofilm: Biofilm is the predominate form of life for microorganisms in a nutrient-sufficient ecosystem. 718 

Adhesion triggers the expression of a sigma factor that depresses a large number of genes so that bacteria 719 

within the biofilm are at least 500 times more tolerable against antimicrobial agents (376) as well as 720 

cold atmospheric plasma (377, 378). For example, K. pneumoniae remained viable up to 4 weeks in a 721 

dry biofilm, proving the need for robust cleaning regimens (). The reason for the unspecific increased  722 

tolerance is the production of extracellular substances such as polysaccharides, proteins and DNA after 723 

attachment to surfaces. Besides wet surface biofilm in plumbing systems or other wet surfaces, biofilm 724 

on dry inanimate surfaces at room humidity must also be considered (379).The biofilm matrix restrains 725 

water and nutrients and protects the microorganisms against environmental influences (380, 381). Once 726 

formed, biofilms are important for persistence of microorganisms on surfaces in nature as well as in 727 

industrial or medical areas (380-382). The RC on inanimate surfaces is prolonged and depends on 728 

environmental conditions, especially humidity. In addition, biofilms have been demonstrated on several 729 

objects and surfaces in hospitals, such as sterile supply buckets, opaque plastic doors, venetian blind 730 

cords, and sink rubbers, and it is possible to cultivate viable bacteria. Currently, there is insufficient 731 

research to elucidate whether presence or absence of biofilm affects the risk of transmission or 732 

possibility of cross-transmission. However, multi-drug resistant bacteria may not only be protected 733 

within biofilms, but could be the mechanism as to why they persist within the hospital environment 734 

(383). They may also exchange virulence factors among their own species or to other species present in 735 

biofilms (381, 383-385).  736 

Axel Kramer
Centeleghe I, Norville P, Hughes L, Maillard JY. Klebsiella pneumoniae survives on surfaces as a dry biofilm. Am J Infect Control. 2023 ;51(10):1157-1162. doi: 10.1016/j.ajic.2023.02.009.
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At present there is limited knowledge about the relationship between viruses and biofilms. Since viruses 737 

are strict intracellular pathogens, they will be unable to proliferate in biofilms, but they can persist in a 738 

reservoir host due to the advantages conferred by the biofilm structure (386). Biofilms may encompass 739 

a set of non-enveloped enteric viruses, including caliciviruses, rotavirus spp., astrovirus spp., and 740 

hepatitis A virus, alongside other microorganisms such as Gram-negative bacteria and filamentous fungi 741 

(387). Biofilms can enhance virion RC in extracellular environments, such as on fomites and in aquatic 742 

sediments, allowing viral persistence and dissemination. Importantly, both virions and virus-infected 743 

eukaryotic cells embedded in biofilms have been reported to retain infectivity. A study investigated the 744 

enveloped virus herpes simplex virus 1 (HSV-1) and the non-enveloped virus coxsackie virus type B5 745 

(CVB5) within fungal Candida albicans biofilms (388). Viruses stored in biofilms may be regarded as 746 

temporary or long-term reservoirs in the environment (52). The potential of viral spreading via 747 

contaminated surfaces depends on the ability of the virus to maintain infectivity while it is in the 748 

environment, and biofilms aid protection against desiccation and antimicrobial agents (389). 749 

 750 

Discussion 751 

The decisive difference to the first systematic review in 2006  (65) on the resilience of pathogens against 752 

environmental influences is that the course of the RC over time was calculated based on the quantity of 753 

the inoculum on the surface, expressed as lg reduction. This results in more accurate values and explain 754 

different values in some cases of the first review. Additional, the methodological development of 755 

laboratory experiments to determine the RC over the last almost two decades also influence the results. 756 

 757 

In general, clinical epidemiological evidence for transmission scenarios beyond outbreaks is lacking. 758 

However, studies on RC and evidence for persistence on inanimate surfaces in combination with a 759 

conspicuous transmission event are available. It is clear that the inanimate environment plays a relevant 760 

role in these bacterial transmission pathways  in the everyday situation (Fig. 1). As studies using whole 761 

genome sequencing indicate, there is a serious underestimation of transmission events when using 762 

standard techniques only (390). These analyses tend to focus on resistant, thus easily recognizable 763 
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pathogens. However, the quantification of transmission events and thus, an appropriate risk assessment 764 

is not yet possible. 765 

Beyond the epidemiological evidence, the studies were usually generated under laboratory conditions. 766 

This means that not all possible environmental influences in hospital settings can be detected, especially  767 

any from antimicrobial residues. In addition, the influence of the simultaneous contamination of hospital 768 

surfaces with various nosocomial pathogens, with secretions, excretions and dirt will also be 769 

disregarded. A growing number of studies report that enveloped and non-enveloped viruses can spread 770 

in groups in so-called ‘collective infectious units’ (391-393). The vehicles mediating collective spread 771 

vary widely and include lipid vesicles, protein matrices, diverse forms of aggregation, and binding to 772 

the surface of host or non-host cells (391). It seems reasonable, that units like this or interference may 773 

also exist for bacteria and / or fungi and / or protozoa. Laboratory studies do not reflect the clinical 774 

situation and represent probably a one-sided worst-case scenario assessing the upper bound of infection 775 

risk. Furthermore, they cannot represent the complexity of real-life scenarios. When assessing factors 776 

that influence the RC, it must be considered that the results only apply to the species investigated and 777 

cannot be generalized. Even more so, resistant isolates are often analyzed compared with wild type 778 

variants. Sometimes tested microorganisms are poorly characterized so cannot determine the extent of 779 

generalizability. Furthermore, it should be noted that data on the RC are often not median values; the 780 

maximum was detected and described and these results can, and should, be used as an upper bound 781 

approach. Data suggests that no general prediction about RC independent of genus is possible.  782 

Additionally, further influences must be considered. Firstly, the dependence of environmental 783 

conditions on the RC has not yet been sufficiently studied under real life conditions. Secondly, there is 784 

insufficient data on the behaviour of wildtype and/or sensitive strains and variants within a species. 785 

Thirdly, no data exist, on whether certain virulence or RC determinants are genetically present in isolates 786 

that are particularly well adapted to the hospital setting.  787 

In this review, only the risks due to direct or indirect contact transmission from inanimate surfaces were 788 

addressed, not the additional risks by potential aerosolization of pathogens from fomites (394-396). 789 

Therefore, it should be considered that the RC in aerosols can be significantly lower than on surfaces, 790 

as has been proven for different variants of Ebola virus and Marburg virus (397). It is also the case that 791 
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high inocula results in longer survival times due to the logarithmic death curve (398), which has been 792 

proven for various bacterial species (98, 399) and or fungal spores (198) on surfaces. Considering all 793 

background factors, data generated under laboratory conditions can only provide a rough orientation. In 794 

case of doubt, the unfavorable situation should be assumed when evaluating the data in Tables 3-7. 795 

Despite knowledge on dependency of replication and infection capacity from factors like pH, 796 

temperature, humidity, and others, we cannot easily change these surrounding conditions using their 797 

preventive potential. For others, e.g. inocula and biofilms, we can use knowledge covering these aspects 798 

from common IPC recommendations. 799 

Another viewpoint for the risk assessment of surface contamination is the minimal infectious dose 800 

(MID) to trigger infection. The lower the ID, the greater the risk of acquiring an infection and further 801 

transmission as nosocomial outbreaks. It should be noted that the ID can be reduced by a viral infection, 802 

which often leads to bacterial co- or superinfection, especially in cases of respiratory viral infections 803 

(400-402). In Table 9, examples of different IDs are summarized, mainly taken from reviews. From the 804 

clinical perspective it must be considered that this dose depends on the site of infection or at least 805 

contamination allowing short-term contamination. For respiratory transmissible viruses with a MID > 806 

102 50 % tissue culture infectious dose (TCID50), infection by aerosolization from surfaces is unlikely. 807 

In contrast, infection is possible  via the surface-finger-eye route for keratoconjunctivits epidemica due 808 

to the low ID (Table 9) and the surface-finger-nose route, particularly in the case of nasal exposure to 809 

respiratory viruses with a MID < 101. The same applies to orally transmissible pathogens with a MID 810 

<101 TCID50, CFU resp. oocysts. This is supported by the outbreak potential of pathogens with low 811 

MID. For fecal-orally transmissible bacteria and mucorales, transmission from surfaces is unlikely with 812 

a MID < 102 CFU. However, it should be noted that MID studies do not usually consider the fact that 813 

the pathogens multiply from an initially acquired small number and the infection only manifests after 814 

the critical quantity has been reached. 815 

The lower the ID and the greater the RC, the greater the risk to acquire an infection by contact with the 816 

surface or indirect by aerogenic turbulence from the surface and following inhalative exposition. 817 

Likewise the risk of an outbreak emanating from surfaces increases.  In both, the ID is likely to have the 818 

greater influence. At the same time, the risk of a fomite-borne HAI is influenced by the patients' immune 819 
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status. The ID, RC and immune status must be considered when deciding upon targeted surface 820 

disinfection and additional IPC.  821 

TABLE 9 Minimal infectious dose of selected pathogens  822 

 823 

Infectious dose  Application Pathogen  Reference 

1-100 virus particles, 

CFU resp. oocysts  

Oral Noro-, Rotavirus, EHEC, ETEC, C. difficile, MRSA, Cr. 

parvum, G. intestinalis  

(66, 233, 261, 

366, 403-407) 

6.6 virus particles Inhalative Adenovirus type 4 (408) 

10-100 virus particles  Oral HAV (409) 

30-40 TCID50  Intranasal RS virus (408) 

6 / 71 TCID50  Intranasal / 

oral 

Coxsackievirus A21 (408) 

0.03 / >101 - 104 

TCID50  

Intranasal / 

inhalative 

Rhinovirus, different serotypes (408) 

< 103 CFU  Oral Acinetobacter spp., , C. jejuni Klebsiella spp., , VRE, (66, 410)  

≥ 103 spores  Chorio-

allantois-

membran 

henn egg 

(equivalent 

to eye 

contact) 

Lichtheimia corymbifera (411) 

≥ 103 CFU  Oral Salmonella enteritidis (412) 

≥ 103 TCID50  Oral Echovirus  (408) 

> 103 TCID50  Inhalative Influenzavirus A (H3N2) (408) 

> 103 LD50 Intranasal Congo Basin MPXV (413) 

>103 TCID50  Inhalative Influenza A (H3N2) (408) 

≥ 104 CFU Dermal P. aeruginosa  (414) 

≥ 104 - ≥ 107 Inhalative Influenzavirus B, different serotypes  (408) 

≥ 104 spores  Rhizopus spp., A. fumigatus (415, 416) 

105 TCID50  Conjunctival Respiratory syncytial virus (RSV) (408) 

≥ 105 CFU  Intravenious C. albicans, C. auris (417) 

> 105 spores  Parenteral Rhizomucor pusillus  (415) 

> 105 CFU  Oral E. coli, S. aureus (418) 

Scheithauer, Simone
Intact skin?

Scheithauer, Simone
Heißt lineage nicht serotype bei B 
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> 105 LD50 Intranasal West African MPXV (413) 

>106 TCID50
  Oral Adenovirus (408) 

>106- >107 TCID50  Inhalative Influenza A (H1N1), different serotypes 

>108 CFU / ml  Intra-

peritoneal 

P. aeruginosa  (419) 

 >1010 CFU / ml  S. aureus  

Legend: CFU = colony forming units, TCID50 50 % tissue culture infective dose, LD50 50% letal dose 

 824 

Disinfecting surfaces in hospitals is generally accepted as a key component of infection prevention (32-825 

35, 71, 420-423). But disinfection can also have an influence on the development of tolerance; it is 826 

costly and leads to an ecological footprint. Clearly, every disinfection event requires a clear indication. 827 

Disinfection must be implemented in a precise and quality-assured manner, since it offers a valuable 828 

contribution towards HAI prevention. Regarding environmental protection, probiotic cleaning agents 829 

are a promising alternative to chemical disinfection. Surface contamination with pathogens could be 830 

reduced by up to 90 % more with probiotic products compared with conventional disinfection wipes  831 

(424, 425). SARS-CoV-2 was reduced significantly more by probiotic cleaning than by chemical 832 

disinfection (426). In non-intensive care units, routine surface disinfection did not prove superior to 833 

soap-based or probiotic cleaning in terms of preventing HAI (427). Of course, no evidence-based 834 

practical approach for systematic surface or probiotic cleaning in hospitals can be derived from the RC 835 

of nosocomial pathogens.  836 

RC and ID influence the implementation of surface decontamination regarding the extent and the 837 

selection of the application concentration and exposure time of the disinfectant. In cases of high RC and 838 

low ID, it makes sense to use concentrations that are rapidly effective. For final disinfection after patient 839 

discharge, all potential pathogen reservoirs must be eradicated with choice of effective disinfectants. In 840 

general, a simple four-step guide for daily decontamination of the occupied bed space can be 841 

recommended: Step 1 (LOOK) describes a visual assessment of the area to be cleaned; Step 2 (PLAN) 842 

argues why the bed space needs preparation before cleaning; Step 3 (CLEAN) covers surface cleaning  843 

/disinfection; and Step 4 (DRY) is the final stage whereby surfaces are allowed to dry. Visible soil 844 

should always be removed with detergent and water before using disinfectant (428). Analogous to the 5 845 

moments of hand antisepsis (429), 5 moments of disinfecting surface cleaning can be distinguished: I. 846 
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Disinfecting surface cleaning as part of standard precautions (non-targeted disinfection) on near-patient 847 

(high-touch) sites during patient care, and targeted disinfection as II. Disinfecting surface cleaning on 848 

the work surface before performing aseptic activities, III. Final disinfecting surface cleaning after 849 

discharge of patients, IV. Two step disinfection surface cleaning after visible surface contamination 850 

(first cleaning, thereafter disinfection) and V: Disinfection surface cleaning as part of the multi-barrier 851 

strategy to control outbreaks (428). 852 

This review can help to reduce the complexity of disinfection choices depending on the range of 853 

pathogen properties. At the same time, it proposes the best possible balance between patient and 854 

employee safety, i.e. IPC and ecological and economic sustainability. Through a novel classification of 855 

pathogens by their fomite-borne potential for transmission - completely independent of the taxonomic 856 

approach - a fact-based but also realizable and pragmatic recommendation can be prepared with a view 857 

to avoiding transmission. The attempt to classify pathogens by fomite-borne transmission potential 858 

should serve only as a first suggestion and should be improved by scientific discussion. In general, 859 

further studies should focus beyond the ecological and outbreak assessment –and target real life settings 860 

or near real life scenarios in order to emulate endemic settings. There is insufficient evidence regarding 861 

the impact of contaminated surfaces for encouraging contact-free transmission risk. Further analysis 862 

should cover aspects of ecological sustainability and should weight up the potential benefit for 863 

transmission and infection events against the additional ecological footprint from resource consumption, 864 

production, and waste management. 865 
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