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Abstract—Digital twin technology is crucial to the development
of the sixth-generation (6G) Internet of Vehicles (IoV) as it allows
the monitoring and assessment of the dynamic and complicated
vehicular environment. However, 6G IoV networks have critical
challenges in network security and computational efficiency,
which need to be addressed. Existing digital twin technologies in
6G IoV networks often suffer from limitations such as reliance
on static models and high computational demands, leading to
unstable attack detection and inefficiencies. Their results for
attack detection performance metrics, precision, detection rate,
and F1-Score are insufficient for 6G IoV. Moreover, these systems
concentrate all computational processes within the digital twin’s
service layer, leading to inefficiencies. To address these challenges,
we introduce a novel artificial intelligence (AI) enhanced digital
twin framework designed to significantly improve 6G IoV net-
work security and computational efficiency under dynamic condi-
tions. Our framework employs an advanced feature engineering
module that uses feature selection methods and stacked sparse
autoencoders (ssAE) to reduce feature dimensions within the
cyber twin layer, effectively distributing the overall computational
load. It also utilises an online learning module which enables a
network-aware attack detection mechanism for precise attack
detection. The proposed solution exhibits a stable performance
of around 98% success rate regarding attack detection metrics
against two datasets. Specifically, our solution reduces system
latency by 12%, energy consumption by 15%, RAM usage
by 20%, and improves packet delivery rates by 6.1%. These
findings underscore the potential of our framework to enhance
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the robustness and responsiveness of 6G IoV systems, offering
a significant contribution to vehicular network security and
management.

Index Terms—AI, Security, Digital Twin, IoV, ITS, VANET.

I. INTRODUCTION

THE evolution of vehicular ad-hoc networks (VANETs)
marks an important advancement in road safety and

transportation efficiency, as the World Health Organization
underscored in its Global Status Report on Road Safety
in 2023 [1]. VANETs are becoming increasingly important
in the sixth-generation (6G) Internet of Vehicles (IoV) era,
since Internet-connected systems in vehicles, which consist of
sensors, actuators, and smart devices, allow different objects to
collect, transfer, and process data. 6G networks are expected
to transform VANETs further, improving on the developments
of fifth-generation (5G) networks by delivering higher data
rates, lowering latency to almost real-time, and expanding
coverage. To enable 6G IoV networks, digital twin technology
is essential for monitoring and analysing the dynamic and
complex nature of the vehicular environment [2], [3].

In the 6G IoV, vehicular networks are essential as they allow
vehicles to communicate with each other (vehicle-to-vehicle
(V2V) communication), and with the infrastructure (vehicle-
to-infrastructure (V2I) communication). By giving drivers pre-
cise and timely traffic information, vehicular communication
improves comfort, safety on the road, and the feasibility
of implementing autonomous vehicles [4]. However, these
advancements also introduce new challenges in managing the
complexity and security of vehicular networks, underscoring
the necessity for innovative solutions.

A. Motivation

There is currently an increase in adverse attacks, especially
in V2I communications, due to the heterogeneity and dynamic
topology of vehicular networks [5]–[7]. The attackers cause
significant harm by employing sophisticated attacks and inter-
fering with vehicle services. By making the 6G IoV network
unavailable or unresponsive to intended customers, a cyber
attack, such as distributed denial of service (DDoS), attempts
to interfere with vehicular services and systems. This kind
of attack leaves these vehicles inoperable, causing a negative
impact on service providers and customers. Moreover, the
attack could result in vehicle problems, traffic congestion,
interference with vehicular communication, and even accidents
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Fig. 1. The performance analysis of current solutions.

[8], [9]. Consequently, it is crucial to create advanced defen-
sive systems to protect VANETs from attacks and maintain
their dependability in this 6G IoV age.

The recent works on vehicular network attack identification
using digital twin technology [10], [11] are not sufficient
to meet the 6G IoV network performance metrics such as
detection rate, precision, and F1-score as can be seen in Fig. 1.
These solutions use the static model, which is unsuitable for
the 6G IoV networks since they require dynamic solutions to
handle different attacks and heterogeneity in their network.
Moreover, they are unstable between various data. For exam-
ple, when we compare the performance results of the solutions
in [10], [11] on two datasets, there is a difference of around
15% between performance results. Similarly, the performance
result of the random forest and decision tree algorithms
in [11] showed approximately 25% differences between the
two datasets. Therefore, the current solutions are not stable
and capable of handling diverse attacks in dynamic 6G IoV
environments. There is a need for an advanced solution that
can dynamically identify attacks and has stable performance
in the 6G IoV environments.

The other problem is the computational load in the current
vehicular network identification solutions, which directly af-
fects the system’s end-to-end latency, an important factor for
attack detection time. The growth of vehicular communication
systems highlights the increased computational load in 6G
IoV environments. The current research on vehicular networks
using digital twin technology has a significant overall com-
putational system burden since all computational operations
are performed at the digital twin’s service layer [12], [13].
Therefore, their total end-to-end latency, energy consumption,
RAM usage, and packet delivery rate results are not adequate
to handle the 6G IoV environments. This computational load
must be distributed for the system to function more effectively
and quickly identify attacks.

To address these two main challenges, an online learning
approach can be utilised for dynamic attack identification,
while the digital twin layer, not its service layer, can be used

for feature engineering and feature dimension reduction to split
the system computational load. Moreover, network data can be
effectively processed and analysed by utilising the capabilities
of a stacked sparse autoencoder (ssAE) [14], [15]. The ssAE
extracts relevant characteristics for cyber security applications
such as anomaly detection, pattern identification, and attack
detection [16]. It reduces the dimensionality of the data while
maintaining its key features and minimising the difference
between the original and recreated data.

B. Coverage of Paper and Contributions

In this paper, the ssAE is utilised thanks to its enhanced
feature extraction and efficient dimensionality reduction capa-
bilities. To mitigate the challenges mentioned above, this work
primarily focuses on V2I communication, specifically on forti-
fying roadside unit (RSU) security. Furthermore, we introduce
an innovative approach based on artificial intelligence (AI) to
enhance the security aspects of 6G IoV networks by applying
digital twin technology and AI algorithms, focusing on cyber
security and computational efficiency. Our work stands out
by proposing a comprehensive layered system architecture
that integrates data, cyber twin, and security layers, uniquely
addressing the challenges of high mobility and heterogeneity
in 6G IoV environments, as can be seen in Fig. 2. We
employ a feature engineering module, which includes a ssAE
algorithm for efficient feature dimension reduction, and an
online learning module that provides stable attack identifica-
tion performance in the cyber twin layer. Our novel approach
addresses the inherent challenges of 6G IoV networks, such as
high mobility and heterogeneity. It pioneers the use of digital
twin technology for real-time monitoring and management
of vehicular networks, offering significant advancements over
existing methodologies regarding computational system load
and stable system performance.

Our main contributions to this paper are outlined below:
• We propose a digital twin-assisted smart attack detection

framework to handle different attacks in the 6G IoV
environments, especially those targeting RSUs.

• We provide an online learning module to ensure the stable
performance of our detection mechanism in a network-
aware manner. This module mainly consists of AutoFS
and AutoCM components to find the best feature selection
and classification techniques for the network.

• We introduce a feature engineering module which utilises
a ssAE algorithm to decrease data dimension. We employ
the feature engineering and online learning modules in the
cyber twin layer of the proposed framework to divide the
overall computational load of the system.

• We present an automated neighbour RSU relation to share
the malicious IP address of the vehicle between neighbour
RSUs.

This paper extends the framework presented in our confer-
ence paper [2] by incorporating several significant advance-
ments tailored for 6G networks. In this paper, we employed a
feature engineering module, AutoCM element ( [2] includes
only multi-layer perceptron (MLP) for classification), division
of the system’s overall computational load between cyber
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twin and security layers, and an automated neighbour RSU
relation unlike [2]. The conference paper’s AutoFS module
includes recursive feature elimination (RFE), backward feature
elimination, chi-square, fisher score, and analysis of variance
(ANOVA) F-value selection algorithm. After conducting the
comprehensive experiment, we replaced the backward feature
elimination and fisher score with the principal component
analysis (PCA) and random forests for feature importance
algorithms in this paper since their results were better.

The remainder of the document is structured as follows:
Section II gives an overview of the related work. In Section III,
we first propose and provide a detailed explanation of our
system model. Then, we analyse how our solution performs
in Section IV, and provide a discussion in Section V. The
paper is then concluded in Section VI.

II. RELATED WORK

In recent years, digital twin technology has gained signifi-
cant attention in the development of intelligent transportation
systems. For example, [17] explore the role of digital twins in
connected and automated vehicles, emphasizing their potential
to revolutionize the transportation domain by enabling real-
time communication and predictive analytics. A digital twin
framework was proposed for smart city traffic management,
utilizing real-time data to optimize traffic flow and enhance
safety. However, this approach focuses primarily on traffic
efficiency and lacks specific mechanisms for attack detection
within vehicular networks. Similarly, the convergence of the
Internet of Things (IoT) and AI technologies has paved the
way for innovative digital twin architectures. [18] explores task
offloading and task caching strategies in nearby edge servers
to lower the latency and so provides a powerful computing
infrastructure through mobile edge computing-based ultra-
reliable and low-latency communications digital twin archi-
tecture. Nevertheless, there are also no specific procedures for
attack detection in this work.

There are only a few studies in the literature focusing on
attack identification using digital twin technology for vehicular
networks. In [19], a support vector machine algorithm using
digital twins was used for malicious node identification. Digi-
tal twins were employed to find and eliminate malicious nodes
on a VANET architecture in this work. However, the solution
used the static model and could not adapt to the dynamic
nature of the vehicular network. Moreover, this work does not
provide any metric related to computational load, which is
important for efficient attack detection. The work in [13] pro-
posed a blockchain-enabled decentralised trust management
system to identify malicious vehicles using digital twins tech-
nology. The proposed method is not aware of the network and
does not update itself according to the network condition to
provide stable performance for attack detection. It is, therefore,
not suitable for use in a vehicular network. The performance
was only evaluated in terms of transmission overhead, which
is insufficient to determine the system computational load.
The work [10] provided a blockchain and attention-based
bidirectional long short-term memory (LSTM) framework,
which uses a digital twin for attack detection in the vehicle-to-
everything environment. The authors tested the effectiveness

of this framework using two well-known Internet-of-Things
datasets. However, the results indicated approximately a 14%
difference between datasets, which is a huge difference and
does not provide stable performance in the dynamic nature of
IoV networks. Furthermore, no computational load metric is
provided by this work, which is essential for effective attack
detection in the vehicle-to-everything environment.

In another study [11], the authors proposed a deep learning-
based framework to catch intrusions in an IoV network. It
utilised a stacked variational autoencoder and attention-based
bidirectional LSTM. In this work, digital twin technology
was employed to map RSU servers to enable the building of
the vehicular association model. The proposed solution was
evaluated using two widely recognised datasets. Nonetheless,
the findings reveal a significant distinction of about 15%
between the datasets, highlighting unstable performance within
the ever-changing IoV networks. This study overlooks the
system computational burden metrics, a critical element for
successful attack detection within the IoV ecosystem. The
authors in [20] presented an LSTM-based actor-critic deep
reinforcement learning system for attack detection in vehicle-
to-grid-enabled cyber-physical systems by utilising a digital
twin approach. The performance results of this work are
insufficient to evaluate the attack detection performance of the
proposed system. The presented system used a static model,
which does not have any updating method. Therefore, it is not
appropriate to provide a stable performance in the dynamic
vehicular network environment. Moreover, the work in [21]
presented a digital twin-assisted honeypot system to enhance
security by providing insights into attacks, demonstrating its
effectiveness in detecting and mitigating simultaneous. The
proposed system utilises a dynamic model updating approach
to handle different types of attacks. However, this work also
has drawbacks since all computational systems and algorithms
work on the digital twin’s service layer. Therefore, it is not
proper for the 6G IoV network. The authors in [22] offered
a deep learning and identity-based encryption approach to
scrutinise the anomalies in 6G IoV communication systems.
Even though the attack detection performance result of the
proposed solution exhibited around 97%, the evaluation is
made by only one dataset. Therefore, the performance results
against different datasets are unknown. Similarly, the system’s
computational load metrics results are also unknown. [23]
introduces a novel approach to improve the energy efficiency
and operational effectiveness of UAVs in serving terrestrial in-
telligent IoT by leveraging digital twin technology. To provide
a clearer explanation of the implementation steps of digital
twins in the dynamic characteristics of IoV environments, we
drew upon the insights from this study.

The above-mentioned investigations highlight the significant
yet under-exploited capabilities of securing IoV networks.
Nonetheless, there is a noticeable shortfall in efficiently inte-
grating digital twins and AI models to boost security, providing
stable performance in 6G IoV networks. A dynamic attack
detection system in IoV environments is needed to handle
variations in network data while providing stable attack detec-
tion performance. Moreover, the current digital twin-enabled
studies in vehicular networks indicate that the system load is
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Fig. 2. The proposed system architecture for cyber-resilient 6G IoV networks.

significantly high, necessitating load distribution to enhance
system performance and enable faster detection of attacks. At
this point, digital twin technology can be effectively utilised
to divide computational load throughout the vehicular system.
In this paper, we aim to address these two shortfalls, offering
an innovative strategy for securing V2I communication and
diminishing the workload of the 6G IoV environments.

III. PROPOSED FRAMEWORK

In this framework, the RSUs collect all communication
requests from the vehicles within their transmission range.

A. Mathematical Model of the RSU Traffic

We assume that vehicles share the appropriate channels of
an RSU within its transmission area and that every vehicle has
an equal priority, which means there is no priority between
them. To model vehicle communication requests, we use the
M/M/m queuing model, a fundamental concept in queuing
theory. Queuing theory is a mathematical study of waiting
lines or queues that helps predict queue lengths and waiting
times. The M/M/m model specifically represents a system with
multiple servers (m), where arrivals follow a Poisson process
and service times are exponentially distributed. In our case,
the model treats vehicle communication requests on a first-in-
first-out (FIFO) basis, ensuring that requests are processed in
the order they are received.

The nomenclature table can be seen in Table I, which
provides definitions for the symbols used throughout the paper
to enhance clarity and understanding of the mathematical
formulations.

The number of communication requests in each time slot
is used to characterise the system’s condition. The servers
are modelled as channels. Every time slot’s total number

TABLE I
NOMENCLATURE TABLE

Symbol Description
vnum Number of vehicles demanding communication
cnum Number of channels available at the RSU
λ Arrival rate of communication demands
µ Service rate of each channel per request
ρ Traffic intensity
P0 Probability of zero communication requests

Pvnum Probability of having vnum vehicles
℘ Probability that all requests are accepted
ξ Probability that requests are queued

PQueue Probability of a communication request waiting
TAVGQ Average waiting time in the queue
Θ Sparsity constraint weighting factor
σ Nonlinear activation function used in neural networks

Wij ssAE weight matrix between input and hidden layers
Wjk ssAE weight matrix between hidden and output layers
φ1, φ2 Bias vectors for hidden and output layers in ssAE

ρ Predefined sparsity parameter in the ssAE algorithm
J(W, b) Loss function for reconstruction error in ssAE

Jsparse(W, b) Total loss function with sparsity penalty in ssAE
λ Weight attenuation coefficient in ssAE loss function
γi Threshold factor for the i-th classification algorithm

V(I) Verifying threshold function for system reliability
R System reliability metric

of communication requests is compared with the number of
channels that are accessible during that same time slot. The
requests are held until the following time slot to check the
availability of channels if none are available to serve. Fig. 3
illustrates the state diagram representing the communication
demands from vehicles within the transmission range of a
RSU using an M/M/m queuing model. This model helps
in understanding the flow and processing of communication
requests, where each vehicle request is treated based on the
availability of channels. cnum represents the channel numbers
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of the RSU, and vnum means the number of vehicles which
demand the communication. λ indicates the arrival rate of
the communication demands, and µ represents the channel’s
service rate for each request, which is dependent on time.
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Fig. 3. The state diagram of the communication demands from vehicles within
the transmission range of the RSU.

In this diagram, each state corresponds to a specific con-
dition of the RSU as it processes communication requests.
The transitions between states indicate changes based on
the availability of communication channels and the arrival
of new requests. For instance, when the number of vehicle
requests is less than or equal to the number of available
channels (vnum ≤ cnum), the RSU can directly handle these
requests, all requests are accepted. Conversely, if the requests
exceed available channels (vnum > cnum), the remaining
requests have waited in the queue, following a first-in-first-out
order. This ensures that all requests are eventually serviced as
channels become available. The diagram helps visualize key
metrics such as the probability of the system being idle (P0)
and the likelihood of having a specific number of requests
being processed (Pvnum ). By understanding these probabilities
and the average waiting time in the queue (TAVGQ

), the
diagram demonstrates how the RSU efficiently handles varying
levels of communication demand. The equation (1) describes
the probability of having a specific number of vehicles (vnum)
in the system, accounting for the availability of channels
(cnum), the service rate (µ), and the arrival rate (λ) of the
communication requests:

Pvnum−1 = min(vnum, cnum)
µPvnum

λ
, ∀ vnum ∈ [1, .., vtot]

(1)
in which vtot is total number of vehicles. The probability of
all channels’ busy situation is calculated by (2).

Pvnum = P0
(cnumρ)

vnum

vnum !
, ∀ vnum ∈ [0, 1, .., cnum] (2)

where P0 shows the probability of zero communication re-
quests of the vehicles in the system, which is given in (4) and
ρ is the intensity of traffic, which is given in (3).

ρ =
λ

cnumµ
(3)

P0 =

[
cnum−1∑
vnum=0

(cnumρ)
vnum

vnum !
+

(cnumρ)
cnum

cnum !(1− ρ)

]−1

(4)

The probability of vnum vehicles in the system is calculated
by using Pvnum

. ℘ is the probability of all communication

requests being accepted, given in (5), and ξ is the probability
of the communication request being waited in the queue, given
in (6).

Pvnum =

{
℘, vnum ≤ cnum
ξ, vnum > cnum

℘ = P0
(cnumρ)

vnum

vnum !
(5)

ξ = P0
(cnum)cnum(ρ)vnum

cnum !
(6)

The probability of waiting in the queue for a communication
request is calculated using the Erlang C Formula as

PQueue =
P0 (cnumρ)

cnum

cnum ! (1− ρ)
(7)

The average waiting time in the queue for the communica-
tion request is calculated by

TAVGQ
=
ρ PQueue

λ (1− ρ)
(8)

B. Automated Neighbour RSU Relations

After modelling the communication requests of vehicles for
an RSU, we work on the neighbour relations of RSUs. In our
system, each RSU has its own Internet Protocol (IP) block-
list, which includes previously defined malicious vehicles’ IP
addresses. We describe an automated neighbour RSU relation,
which is similar to our previous work [24]. However, the main
aim of this automated neighbour RSU relation is to share the
malicious vehicles’s IP addresses between neighbour RSUs.
The sequence diagram of the proposed automated neighbour
RSU relation can be seen in Fig. 4.

When a vehicle sends a connection request to the RSU,
it first checks its IP blocklist and then checks the neighbour
RSU IP blocklists. If the IP address is not in the blocklist, the
proposed smart attack detection mechanism starts to work to
identify whether there is any attack on the system or not. If
there is no attack on the communication request, it is taken to
the available channel in the RSU, which is situation ℘ in (5).
The communication request is brought to the queue if there is
no available channel in the RSU, which is situation ξ in (6).

C. Proposed Attack Detection

The proposed smart attack detection system architecture
follows a layered design methodology, combining interactions
between physical and digital layers to create a comprehensive
framework within 6G IoV networks. It is organised into
three distinct layers: data, cyber twin, and security. As shown
in Fig. 2, each layer is essential to the 6G IoV’s overall
functionality and security. The proposed system re-trains its
models using the latest traffic data thanks to the online learning
module, ensuring that it remains current with evolving attack
tactics. The proposed system architecture is in line with the
Internet Engineering Task Force (IETF) digital twin network
architecture. Moreover, the proposed system also aligns with
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Fig. 4. The sequence diagram of automated neighbour RSU relation for malicious vehicles’ IP list in 6G IoV networks.

the Gemini Principle by clearly defining its purpose, ensuring
trust, and delivering critical functions for 6G IoV networks.
The framework’s purpose is to enhance vehicular network
security and efficiency, addressing the pressing need for adapt-
able solutions in dynamic environments. Trust is established
through the integration of AI-driven analytics and real-time
data processing, ensuring accurate and reliable threat detec-
tion. Functionally, the framework operates across multiple
layers, each contributing to its overall goal of providing robust,
efficient, and scalable security for next-generation vehicular
networks. By focusing on these core components, the frame-
work represents a significant advancement in the application
of digital twin technology to intelligent transportation systems,
offering improved performance and resilience against cyber
threats.

1) Data Layer: The foundational layer of our framework,
the data layer, is essential for collecting and disseminating
information in the 6G vehicular networks’ layers. It effectively
merges vehicles and RSUs to gather data that supports a high-
fidelity representation of physical objects in the cyber twin
layer and security evaluations of the proposed solution. The
accuracy of the data layer in real-time data representation
and communication is essential to preserving the digital twin-
enabled vehicular network system’s efficiency and integrity.

2) Cyber Twin Layer: The cyber twin layer plays a crucial
role in generating dynamic digital models that mirror the
physical elements of the 6G IoV networks, enhancing the
system’s adaptability and accuracy in reflecting real-world
conditions. It processes feature engineering to reduce load in
the security layer. This layer includes a feature engineering
module and an online learning module.

Feature Engineering Module: This module includes a
ssAE algorithm to reduce the data’s feature dimensions. The
ssAE algorithm is an advanced neural network architecture pri-
marily used for dimensionality reduction and feature extraction
of the data. To generate the ssAE, multiple sparse autoencoder
layers are stacked, with each layer’s output serving as the
layer’s input. Thanks to its hierarchical structure, the network
can gradually learn sophisticated, high-level features from
data.

The core operation of the ssAE involves two key phases:
encoding and decoding. During the encoding phase, the net-
work compresses the input data X into a lower-dimensional
representation H using the transformation:

H = σ(WijX + ϕ1) (9)

where Wij defines the weight matrix between the input and
hidden layers of the ssAE, σ stands a nonlinear activation
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function, and ϕ1 is the bias vector for the hidden layer.
The decoding phase aims to reconstruct the input data from

this compressed form, generating a reconstruction Y through
the transformation:

Y = σ(WjkH + ϕ2) (10)

where the bias vector for the output layer is ϕ2 and the weight
matrix from the hidden layer to the output layer is Wjk. The
objective is to minimise the reconstruction error, encouraging
the network to preserve essential information while filtering
out noise.

Moreover, the ssAE introduces a sparsity constraint on the
hidden layer activation to enforce sparsity, ensuring that only a
small fraction of neurons are active at any given time. This is
achieved by penalising the deviation of the average activation
of hidden neurons from a predefined sparsity parameter ρ,
using the Kullback-Leibler (KL) divergence [25].

The overall loss function of the ssAE combines the re-
construction error with the sparsity penalty, facilitating the
extraction of significant and compact representations from
high-dimensional data.

Jsparse(W, b) = J(W, b) + Θ

m∑
j=1

KL
(
ρ
∥∥∥ρ̂j) (11)

where m represents the count of hidden units while Θ is a
weighting factor that determines the intensity of the item. Fur-
thermore, to avoid overfitting, the error function incorporates
weight attenuation terms [25].

Jsparse(W, b) = JE(W, b) + Θ

m∑
j=1

KL
(
ρ
∥∥∥ρ̂j)

+
λ

2

3∑
r=1

m∑
i=1

m+1∑
j=1

(wr
ij)

2

(12)

where λ denotes the weight attenuation coefficient.
Algorithm 1 shows the pseudocode of the ssAE algorithm,

indicating that our ssAE module runs the ssAE algorithm to
reduce the data dimension. Firstly, the inputs and outputs are
specified in lines 1-2. After that, the encoder and decoder
layers are initiated in lines 4-5. Lines 6-9 show the encoded
data for each layer from 1 to k. Then, the final encoded
representation Xk is set as Y , which is the data with reduced
dimensions. The encoded data are decoded to reconstruct the
input. In line 13, for each decoder from k down to 1, the i-th
decoder is applied to the output of the next layer up or the
encoded representation if it is the first decoder in the sequence.
Finally, the algorithm returns the reduced dimension data Y.

After reducing the dimension of the data in the ssAE
module, the low-dimensional data is sent to the online learn-
ing module to decide on the network feature selection and
classification methods.

Online Learning Module: This module includes a labelling
algorithm from our previous study [26], an AutoFS compo-
nent, an AutoCM element, and a final selection algorithm.
We adjust the AutoFS and AutoCM elements from our prior
work [27], [28] and update them according to the specific

Algorithm 1 Feature Dimension Reduction using ssAE.
1: Input: for every data point X ∈ Rn×m, n stands the

number of samples, and m is the number of features
2: Output: Reduced dimension data Y
3: procedure SSAE(X)
4: Initialise encoder layers E1, E2, ..., Ek

5: Initialise decoder layers D1, D2, ..., Dk

6: for i = 1 to k do
7: Xi ← Apply encoder Ei to X or Xi−1 if i > 1
8: Xi ← Apply sparsity constraint to Xi

9: end for
10: # Encoded representation with reduced dimension
11: Y ← Xk

12: for i = k down to 1 do
13: Y ← Apply decoder Di to Y
14: end for
15: return Y
16: end procedure

requirements of the 6G IoV environment. Thanks to this
module, our system works in a network-aware manner.

The AutoFS element contains five feature selection (FS)
algorithms: chi-square, RFE, PCA, random forests for feature
importance, and ANOVA F-value selection. Each algorithm is
tailored to specific data types and requirements, allowing the
system to dynamically choose the most appropriate method
based on current data characteristics and network conditions.

The AutoCM component encompasses four classification
methods (CM): MLP XGBoost, LSTM, and support vector
machines (SVMs) detection algorithms to provide flexibility
and adaptability in handling various attack scenarios within
6G IoV environments. Each algorithm serves a specific role:
MLP is employed for complex pattern recognition, XGBoost is
employed for its efficiency in structured data analysis, LSTM
is used for sequential pattern detection, and SVM is used for
high-dimensional classification.

Since we use supervised learning algorithms, we also define
a labelling algorithm to label unlabelled data when updat-
ing the network FS and CM methods. This algorithm uses
one thousand samples of the current network data, which is
represented by udata in Y and one thousand samples of the
baseline data, which is signified by bdata. The pseudocode of
our labelling algorithm can be seen in Algorithm 2. Firstly,
the inputs and outputs are defined in lines 1-2. K-Means
clustering is used to initially separate the udata into two
groups, setting K = 2 to categorize data likely based on the
presence or absence of attacks in lines 4-5. The initial clusters
are then used to configure the Expectation-Maximization (EM)
algorithm. The EM algorithm is applied to assign probabilistic
labels to the data in line 9. After that, bdata is used to enhance
the labelling accuracy. The second EM process is then applied
for refined labelling. Lastly, the new labels l′ are merged with
the baseline data bdata, and the fully labelled data ldata is
returned in lines 16-18. This algorithm plays a crucial role
in the dynamic updating of our framework’s methods. We
rigorously evaluate the accuracy of this algorithm using cross-
validation techniques. In a series of evaluations, it achieved
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Fig. 5. The working logic of the proposed online learning module.

an accuracy of around 97.21%. This metric is critical as it
ensures that the system can accurately process and label new
and evolving data streams effectively. High labelling accuracy
enhances the precision of our FS processes and the efficacy of
classification algorithms, leading to improved detection rates
of potential threats within the 6G IoV environment. To sustain
this level of performance, the baseline dataset will be regularly
updated at predefined intervals. These updates ensure that the
algorithm remains aligned with the latest network behaviours
and emerging threats, thereby maintaining high accuracy and
adaptability in rapidly changing 6G IoV environments.

Algorithm 2 Labelling Algorithm.
1: Input: unlabelled data (udata), baseline dataset (bdata)
2: Output: labelled data (ldata)
3: procedure LABEL(udata, bdata)
4: Define K = 2 for K-Means algorithm
5: Cluster udata into two groups using K-Means
6: # to determine the range of initial values
7: Use the clusters for EM
8: # to assign weighted probabilistic labels to udata
9: x′ ← Apply EM algorithm

10: # bdata includes 65% attack samples
11: Use bdata with its one thousand samples
12: # to find the local maximum likelihood estimation
13: y′ ← Combine bdata and udata
14: y′′ ← Apply the other EM algorithm using y′

15: # to decide the final labels, take both EM outputs
16: l′ ← Use ensemble learning x′ and y′′

17: ldata ← Merge l′ with the bdata
18: Return ldata with two thousand samples
19: end procedure

If any performance metrics fall below its specified threshold
weights, the online learning module updates the network FS

and network CM method, taking one thousand samples of the
current network data using the labelling and final selection
algorithms. This update information comes from the security
layer, which checks the reliability of the system.

After taking the update information from the security layer,
one thousand samples of the current network data are handled
by the online learning module. The data is labelled using
the labelling algorithm. After labelling the data, the AutoFS
component uses this labelled data. Then, the output of the
AutoFS is sent to the AutoCM element. The AutoCM trains
and tests the data for each algorithm separately. After that,
it sends each algorithm’s precision, recall, and detection time
metrics to the final selection algorithm. The working logic of
the online learning module can be seen in Fig. 5.

Algorithm 3 delivers the pseudocode of our final selection
algorithm. This algorithm decides on the network FS and CM
techniques according to the precision, recall, and detection
time metrics of the algorithms. The final selection algorithm
sends the best FS approach information to the network FS
method in the cyber twin layer, and then the network FS
method starts to operate with this new algorithm. The final
selection algorithm sends the best CM technique information
to the network classification algorithm in the security layer,
which then begins to operate with this new method. This adap-
tive selection ensures that the system can efficiently respond to
emerging threats or changes in data and network environments,
maintaining high performance in attack detection and system
efficiency.

Thus, the online learning mechanism maintains the system’s
stable performance in a network-aware manner. It works nearly
in real-time. To efficiently manage the computational intensity
posed by multiple algorithms, we employ a microservice-based
architecture where different components of the online learning
module run as independent, smaller services. This enhances
scalability and allows for the efficient management of different
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Algorithm 3 Final Selection Algorithm
1: Input: precision (P), recall (R), and detection time (dt)

for each CM method and its pair FS techniques
2: Output: bestFS and bestCM for the system
3: procedure FINAL-METHODS(P, R, dt)
4: # to store precision, recall, and detection time for each

FS and CM combination
5: Initialize matrix M
6: for i = 1 to 5 do
7: for j = 1 to 4 do
8: # metric vector for ith FS and jth CM
9: Vij ← vector of P, R, dt

10: M [i, j] ← Vij
11: end for
12: end for
13: # αij , βij are the weights for ith FS and jth CM
14: # ψij is the weighted sum of P and R
15: bestFS, bestCM ← 0, 0
16: maxScore ← -∞
17: for i = 1 to 5 do
18: for j = 1 to 4 do
19: ψij ← (%55) × R + (%45) × P
20: scoreij ← αij × ψij + βij × dt
21: if (scoreij > maxScore)
22: maxScore ← scoreij
23: bestFS, bestCM ← i, j
24: end if
25: end for
26: end for
27: Return bestFS, bestCM
28: end procedure

algorithms running concurrently. Additionally, conditional ac-
tivation of these methods ensures that computational resources
are judiciously used, maintaining system performance without
unnecessary resource expenditure. These strategies ensure that
our framework remains both effective and efficient, capable of
meeting the rigorous demands of 6G IoV networks.

3) Security Layer: This layer detects attacks in the IoV
network. Our approach integrates a sophisticated classification
architecture to classify the network traffic into “attack” or
“not attack” categories. It includes the network classification
algorithm, attack classification, and the verifying threshold
components.

Recognising the dynamic nature of the 6G IoV environment,
where network data flow and characteristics are subject to
frequent changes, our system adopts an online learning module
in the cyber twin layer. This continuous learning process is
supported by monitoring the system reliability metric against
the predefined threshold. If the metric value dips below the
threshold, it triggers the update mechanism to the online
learning module, which includes network-aware FS and CM
selection processes in the cyber twin layer, to find the best
suitable methods for the network in near real-time. This en-
sures that the model’s performance remains stable and reliable,
adapting to the evolving network environment and maintaining
high accuracy in attack detection. We define the following

objective to this end.

V (ℑ) =

{
1, if ℜ < ℑ
0, otherwise

where V (ℑ) shows the verifying threshold function and ℑ is
the threshold value; if it delivers “1,” the update mechanism
to the online learning module is triggered. The following
objective is used to calculate the system reliability metric:

ℜ =
TP

FN + TP
(13)

where ℜ denotes the network classification algorithm relia-
bility, emphasising the false negative (FN) and true positive
(TP) metrics because of their importance in data classifica-
tion. When an attack is not found, the verifying threshold
component thoroughly examines the system’s classification
technique’s reliability. The threshold (ℑ) is calculated as:

ℑ = τ + γi ϱ , ∀ i ∈ [1, 4] (14)

where τ is mean and ϱ is standard deviation. γi is the threshold
factor of the ith classification algorithm.

This proactive and adaptive attack detection framework
signifies a significant step forward in securing 6G IoV net-
works against an ever-growing spectrum of cyber threats,
thereby safeguarding the integrity and reliability of vehicular
communication systems.

IV. PERFORMANCE EVALUATION

We aim to demonstrate the effectiveness of our proposed
framework in a simulated 6G IoV environment, in this section.
The primary purpose of this experiment is to validate the
framework’s ability to handle dynamic and high-mobility
scenarios typical in vehicular networks, while ensuring robust
security and efficient resource management.

A. Simulation Environment and Strategy

To comprehensively assess the adaptability and robustness
of our proposed novel framework, we utilized a combina-
tion of state-of-the-art simulation tools: OMNeT++ (version
5.1), SUMO (version 0.30.0), INET (version 3.6), and Veins
(version 4.7), aligning with methodologies cited in previous
studies [29]. These tools enable us to emulate a dynamic and
realistic vehicular network environment where conditions such
as vehicle speed, traffic density, and communication interfer-
ence can change rapidly and unpredictably. We enhanced our
simulation setup to include dynamic changes in network con-
ditions that mimic real-world scenarios. By utilizing SUMO,
we modelled different traffic patterns, including peak hours
with high vehicle density and off-peak hours with lower traffic.
This helps in assessing how well the framework manages data
transmission and processing under varying loads. Using INET,
we simulated varying communication channel qualities and
interferences. The mobility patterns of the vehicles were varied
to include different speeds and abrupt changes in direction to
evaluate the system’s ability to handle high-mobility scenarios
typical of 6G IoV environments.
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We created cyber twins of physical nodes (vehicles) in
VANET using Eclipse Ditto, an open-source framework that
is scalable and versatile [30]. Thanks to this tool, we can dy-
namically adjust the simulation parameters in real-time based
on the emerging data from the vehicular network. This setup
ensures that the system’s response adapts to the simulated
environment’s evolving conditions, thereby demonstrating the
practical application of our framework in a dynamic setting.

Our assessment concentrated on measuring the system’s
capability to lower end-to-end delay and enhance the detection
of cyber threats, aiming to indicate the effectiveness and
efficiency of our solution in improving network performance
and security. We evaluated our proposed solution using two
different datasets:

• The first, known as the RF Jamming Dataset, includes a
variety of RF jamming attack scenarios in VANET envi-
ronments, featuring two subsets for different maximum
estimated relative speeds [31]. We merged these subsets
to evaluate our proposed solution thoroughly. Features
scenarios with RF jamming attacks, offering insights into
how the system handles aggressive interference.

• The second dataset, ToN-IoT, is designed to test the
robustness and efficacy of AI-based cybersecurity tools
in next-generation IoT and industrial settings [32]. It
provides a diverse range of IoT attack vectors, adding
complexity and helping validate the framework’s effec-
tiveness against sophisticated cyber threats.

TABLE II
COMPOSITE DATASET DISTRIBUTION: COMBINED RF JAMMING AND

TON-IOT DATASETS

Dataset Name Number of Samples
RF Jamming Dataset-1
(No Attack Samples) 1000

RF Jamming Dataset-2
(No Attack Samples) 1000

ToN-IoT Network Dataset
(Attack Samples) 600

Although the ToN-IoT is not initially VANET-focused,
by integrating non-attack instances from the RF Jamming
Dataset with attack cases from the ToN-IoT dataset, we built
a new dataset tailored for our VANET security analysis. This
composite dataset, detailed in Table II, was carefully curated
to balance attack and non-attack samples, providing a compre-
hensive basis for our performance evaluation. The new dataset,
which is combined with two datasets, is more IoT and VANET-
oriented. Thus, we aim to get more comprehensive results
for ITS using IoT and VANET data. We added randomly
generated attack data samples to the vehicular data during
the simulations, enhancing the dataset’s ability to test the
framework under varied and unexpected conditions.

B. Results

Firstly, we examined the attack detection performance of
our proposed solution using both the RF jamming dataset and
the composite dataset. Fig. 6 shows the performance results
of our solution regarding attack detection rate, precision, and
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Fig. 6. The performance analysis of proposed solution across datasets.

F1-score. The RF jamming dataset results in around 99%,
and the composite dataset results in stand around 98% suc-
cess regarding performance metrics of the proposed solution.
These results emphasise the stability of our proposed solution;
further, the solution promises an essential feature identifying
potential threats to ensure the security of VANETs.

After that, we scrutinised the effectiveness of our solution
under dynamic conditions. To this end, we periodically in-
jected attack samples from the composite dataset into the
simulation to test the system’s end-to-end latency, energy
consumption, RAM usage, and packet delivery rate capabilities
in real-time. This approach enables us to understand the
system’s responsiveness and adaptability to sudden changes in
the attack landscape. The end-to-end latency measures the time
taken for data to transmit from the source to the destination,
which is crucial for real-time applications. The second metric,
energy consumption, assesses the energy efficiency of the
system under varying network loads and mobility patterns. The
RAM usage metric helps us to evaluate the memory efficiency
of the system, which impacts the speed and responsiveness
of the data processing. The packet delivery rate checks the
reliability of the network in delivering data packets correctly
and completely despite the dynamic changes.

To compare the performance of our proposed solution
(PS), we created another VANET digital twin network, which
includes all processing components in its security layer with-
out feature engineering. It utilises the LSTM algorithm for
attack detection since it has been a more used method in
VANET attack identification works [5], [33]. This network is
called “VANET-2”. This comparison highlights how well our
system adapts to dynamic network changes compared to more
traditional approaches.

To comprehensively evaluate the performance of our pro-
posed framework under varying network loads, we meticu-
lously analyzed the latency dynamics. In Fig. 7, the latency
trends of the VANET-2 and our solution illustrate distinct
performance characteristics as data volume increases. For
VANET-2, there is a decrease followed by an increase in the



IEEE INTERNET OF THINGS JOURNAL, VOL. X, NO. X, X 2024 11

total end-to-end latency when the volume of data increases.
This pattern is typical of traditional systems that initially
handle increased loads efficiently but begin to struggle as
the loads surpass the system’s capacity to manage data ef-
ficiently. Conversely, our solution demonstrates significantly
better performance. We achieve this by strategically dividing
the computational load between the cyber twin layer and the
security layer, which enables more efficient data processing
and reduces the likelihood of congestion even as data volumes
increase. This enhancement in our solution results in an
approximately 12% reduction in system latency compared with
VANET-2. Specifically, our solution incorporates advanced
feature engineering in the cyber twin layer, which not only
optimizes data processing but also ensures that the system
adapts to increasing loads without the latency spikes seen in
traditional systems. Similarly, Fig. 8 reveals that the proposed
solution reduced the total energy consumption by approxi-
mately a 15% decrease compared to VANET-2. This metric
is important since it quantifies the efficiency improvement in
terms of energy usage.

300 350 400 450 500 550 600 650 700 750 800

Volume of data (kB)

16

16.5

17

17.5

18

18.5

19

19.5

20

20.5

T
h
e
 t
o
ta

l 
e
n
d
-t

o
-e

n
d
 l
a
te

n
c
y
 (

m
s
)

PS

VANET-2

16.51716.517 16.472
16.368

19.107

18.845

19.369

19.905

16.195

Fig. 7. The total end-to-end latency comparison regarding the volume of data.

After that, we investigated the total RAM usage and packet
delivery rate of our solution. Fig. 9 depicts the total RAM
usage comparison of our solution and VANET-2. While our
solution shows a stable performance, minimising the total
RAM usage, VANET-2 drastically consumes more RAM. Our
solution improves the total RAM usage by around 20% when
compared with VANET-2. The packet delivery rate comparison
of our solution and VANET-2 can be seen in Fig. 10 over
various simulation times. While VANET-2 exceedingly drops
packets, our solution presents a stable performance to this end.
Our solution slightly declines about 1.8% from its starting
value to its final value. On the other hand, the VANET-2
system shows a more significant decrease, with about 7.9%.
This indicates that our solution has improved performance over
VANET-2 by approximately 6.1% throughout the simulation
period in terms of packet delivery rate. Therefore, our solu-
tion is significantly more reliable in maintaining high packet
delivery rates than VANET-2.
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These performance results show the optimisation of our
solution, which translates into more sustainable and cost-
effective network operations, which is crucial for deploying
secure and efficient advanced vehicular networks. Through
rigorous simulation and analysis, we have demonstrated our
digital twin enhanced framework’s considerable RAM con-
sumption reduction, robust attack detection capabilities, and
increased packet delivery rates. These developments repre-
sent a major step towards more robust and environmentally
friendly intelligent transportation networks. It also highlights
the scalability and effectiveness of our system in supporting
VANET defences against dynamic cyber threats. This advances
the sustainability of vehicle networks and establishes a new
benchmark for implementing advanced vehicular communica-
tions, representing a critical milestone in advancing intelligent
transportation.

V. DISCUSSION

The practical implementation of the proposed system for
6G IoV networks requires careful consideration of several
deployment, integration, and operational factors. Firstly, the
infrastructure needs to support real-time communication and
processing, with RSUs capable of handling advanced AI algo-
rithms for analyzing data. It is also crucial to integrate software
and hardware to ensure compatibility with existing vehic-
ular communication standards and enable smooth operation
across different network layers. For successful deployment,
the framework should be able to work with current systems
by using middleware solutions to manage data translations.
Scalability and flexibility are key to handling increasing data
volumes and changing technology landscapes, making cloud
and edge computing essential parts of the system. Efficient
real-time data processing is vital to keep latency low and
responsiveness high. By addressing these practical aspects, the
proposed framework can significantly improve the security and
efficiency of 6G IoV networks, contributing to the develop-
ment of intelligent and resilient transportation systems.

The proposed framework for 6G IoV networks offers
significant advancements but also faces several challenges
and limitations that need attention. One major challenge is
managing the large amount of data generated by vehicles
and RSUs while keeping latency low and processing timely.
Another challenge is integrating the system with existing
older infrastructure, which may not easily support advanced
technologies. It is also complex to balance computational tasks
while ensuring low latency and energy efficiency, especially
in real-time scenarios. Scalability is another key concern, as
expanding the framework to handle large-scale deployments in
real-world settings requires more research and development.
Additionally, the framework needs to adapt in real-time to
quickly changing network conditions, which should be tested
in various environments to ensure it is robust and reliable.
Overcoming these challenges is crucial for optimizing the
framework’s performance and making sure it works well in
real-world 6G IoV networks.

VI. CONCLUSION

In conclusion, we have introduced a novel AI-enhanced
digital twin framework tailored to enhance the security and
computational efficiency of the 6G IoV network. The proposed
system employs an advanced feature engineering module using
the ssAE algorithm for effective feature dimension reduction
and a dynamic online learning module to maintain robust
attack detection performance in real-time. Our approach dis-
tributes computational loads efficiently across the cyber twin
and security layers, significantly improving system latency, en-
ergy consumption, and RAM usage. It improves RSU security
and promotes sustainable communication by enhancing com-
putational efficiency. Through comprehensive simulations, we
demonstrated that our framework enhances computational ef-
ficiency and secures communication within VANETs. Against
two datasets, our framework achieves around 98% success rate
in attack detection metrics, demonstrating its potential to se-
cure vehicular networks while promoting sustainable commu-
nication practices. In particular, it enhances the system latency
by about 12%, the RAM usage by about 20%, decreases the
total energy consumption by around 15%, and improves the
packet delivery rates by approximately 6.1% throughout the
simulation period against traditional architecture regarding the
system computational efficiency. Our framework promises a
safer and more effective future for vehicle communication and
represents a critical step towards realising reliable, secure, and
intelligent vehicular communication systems. Future research
will focus on further enhancing the adaptability and scalability
of the proposed framework.
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