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Abstract: Current synthetic aperture radar (SAR) automatic target recognition (ATR) algorithms
primarily operate under the closed-set assumption, implying that all target classes have been pre-
viously learned during the training phase. However, in open scenarios, they may encounter target
classes absent from the training set, thereby necessitating an open set recognition (OSR) challenge
for SAR-ATR. The crux of OSR lies in establishing distinct decision boundaries between known
and unknown classes to mitigate confusion among different classes. To address this issue, we in-
troduce a novel framework termed reinforced class separability for SAR target open set recognition
(RCS-OSR), which focuses on optimizing prototype distribution and enhancing the discriminability of
features. First, to capture discriminative features, a cross-modal causal features enhancement module
(CMCFE) is proposed to strengthen the expression of causal regions. Subsequently, regularized
intra-class compactness loss (RIC-Loss) and intra-class relationship aware consistency loss (IRC-Loss)
are devised to optimize the embedding space. In conjunction with joint supervised training using
cross-entropy loss, RCS-OSR can effectively reduce empirical classification risk and open space risk
simultaneously. Moreover, a class-aware OSR classifier with adaptive thresholding is designed to
leverage the differences between different classes. Consequently, our method can construct distinct
decision boundaries between known and unknown classes to simultaneously classify known classes
and identify unknown classes in open scenarios. Extensive experiments conducted on the MSTAR
dataset demonstrate the effectiveness and superiority of our method in various OSR tasks.

Keywords: synthetic aperture radar (SAR); open set recognition (OSR); class separability reinforcement;
discriminative feature capture; embedding space optimization

1. Introduction

Synthetic aperture radar (SAR) automatic target recognition (ATR) precisely identifies
target types subsequent to target detection, constituting a prominent and challenging
research focus in the field of intelligent interpretation of SAR images [1–3]. Most current
research adheres to the closed-set assumption: all testing classes align with those used for
training [4]. Under the closed-set assumption, SAR-ATR algorithms leveraging machine
learning or convolutional neural networks (CNNs) have exhibited remarkable proficiency
across diverse scenarios [5–9]. However, when extending to open-world scenarios, where
it is obviously impractical to construct a complete training set covering all classes, these
methods may make overconfident predictions about unfamiliar unknown classes [10,11].
Therefore, real-world recognition poses an open set challenge, rendering an open set
recognition (OSR) approach more desirable to ensure the robust deployment of SAR-ATR
models [12,13]. The problem of OSR lies in constructing distinct decision boundaries among
different classes to simultaneously classify the known and identify the unknown. It is more
congruent with practical scenarios, exhibiting a human-like ability to classify the familiar
and identify the unfamiliar.
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OSR transcends the limitations of conventional closed-set assumptions in SAR-ATR. It
does not require any prior information or labeled samples after deployment, thereby better
aligning with the demands of open scenarios where unknown classes may emerge [14,15].
Figure 1 provides an intuitive visualization of closed set recognition (CSR) and OSR models,
where KC_x denotes known classes, while UKC_x represents unknown classes. The dotted
lines represent the decision boundaries for each class. In Figure 1a, the decision boundaries
of CSR extend infinitely, leading to overlap between known and unknown classes, which
can result in missed alarms and an inability to address open space risk [16]. Conversely,
in Figure 1b, the decision boundaries of OSR are confined, thereby reserving space for
unknown classes and effectively reducing open space risk.

Figure 1. The illustration of the closed/open set recognition models. (a) depicts a closed-set classifier,
which solely learns decision boundaries for classifying known classes, thus leading to the misiden-
tification of unknown classes. Conversely, (b) illustrates the OSR model, which features confined
decision boundaries that compress the space occupied by known classes, thereby reserving extra
space for unknown classes. The colored dashed lines represent decision boundaries for different
classes.

To effectively identify unknown targets and correctly classify known targets, the OSR
model confronts both empirical classification risk ℜε( f ) and open space risk ℜO( f ) [12].
The goal of the OSR task is to find a measurable recognition function f ∈ ℵ by minimizing
the combination of ℜε( f ) on labeled known data and ℜO( f ) on potential unknown data
simultaneously. Figure 2 illustrates ℜε( f ) and ℜO( f ) in the embedding space, with dashed
circles indicating decision boundaries. As the radius of concentric circles decreases, more
known targets are misidentified as unknown classes, leading to an increase in ℜε( f ).
Conversely, as the radius increases, more unknown targets are erroneously classified as
known classes, thereby increasing ℜO( f ). This implies a negative correlation between ℜε( f )
and ℜO( f ). To strike a balance between these risks, Yang et al. [17,18] proposed prototype
representation as an alternative to the SoftMax layer, presenting generalized convolutional
prototype learning (GCPL) and convolutional prototype network (CPN) for constructing a
compact embedding space. To explicitly model open space risk, Chen et al. [19,20] forged
a novel path, successively proposing reciprocal points learning (RPL) and adversarial
reciprocal point learning (ARPL).
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Figure 2. Diagram of open space risk and empirical classification risk.

The aforementioned studies have yielded promising results, offering valuable refer-
ences for future research. Nevertheless, there remain unsolved issues that require further
exploration. Many existing methods rely on assumptions, such as larger reconstruction er-
rors for unknown classes and adherence to the Gaussian distribution of data representation.
However, these assumptions are typically empirical or heuristic, yielding poorer robustness.
Moreover, the prevailing discriminative-based models ignore the phenomenon of excessive
occupation of the embedding space by known classes, which leads to the misclassification
of unknown classes. In response to the aforementioned dilemma and analysis, we propose
RCS-OSR, a novel framework for SAR target open set recognition, aimed at reinforcing
class separability and enhancing the discriminability of features. The main contributions
and innovations are briefly enumerated as follows:

(1) A novel RCS-OSR framework is proposed for classifying known classes and identify-
ing unknown classes in open scenarios. By emphasizing reinforced class separability,
this framework can effectively distinguish between known and unknown classes
that are prone to confusion in open scenarios. By designing regularized intra-class
compactness loss (RIC-Loss) and intra-class relationship aware consistency loss
(IRC-Loss), along with joint supervised training that utilizes cross-entropy loss, it
enhances the discriminability of the extracted features, balancing open space risk
and empirical classification risk.

(2) A CMCFE module with causal region-aware capability is proposed, which can en-
hance feature discriminability by strengthening the representation of causal regions
through attention mechanisms. Furthermore, a multi-scale abstract features aggre-
gation branch and an auxiliary handcrafted feature injection branch are employed
to enhance the model’s capability in extracting information from local regions of
diverse scales.

(3) A class-aware OSR classifier with adaptive thresholding is proposed, which effec-
tively leverages the differences between different classes. By calculating the distances
between correctly classified samples and their corresponding prototypes during train-
ing, the similarity distribution matrix can be generated, with the queried maximum
value serving as the adaptive threshold for this class of targets.

2. Related Works
2.1. Open Set Recognition

According to Geng et al., the OSR methods can be categorized into traditional machine
learning-based (ML-based) and deep learning-based methods (DL-based) [12].
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ML-based Models: While traditional ML-based methods have thrived in closed-set sce-
narios, their performance significantly diminishes in open scenarios. To accommodate the
dynamic nature of open scenarios, Scheirer et al. [21] formulated mathematical definitions
for open space risk and introduced the one-versus-set machine (1-VS-SET) to tackle the
OSR problem. For better probabilistic modeling, Scheirer et al. [22] proposed the compact
abating probability (CAP) theory, which suggests that the probability of a sample belong-
ing to known classes decreases as it ventures into the open space. Drawing from CAP,
Scheirer et al. [22] successively proposed the Weibull-calibrated support vector machine
(W-SVM) model, leveraging insights from extreme value theory (EVT) and employing the
Weibull distribution to model known classes. Additionally, Scherreik et al. introduced
the probabilistic open set SVM (POS-SVM) [23] and the probabilistic open set SVM model
via cross-validation (POS-SVM-CV) [24] for OSR. Rudd et al. [25] incorporated EVT into
the classifier to achieve a more compact statistical model. Zhang et al. [26] introduced the
sparse representation-based OSR model, which combines EVT with generalized sparse
representation to model the tail distribution of reconstruction errors. Given that traditional
ML-based algorithms require manual feature engineering, which is highly dependent on
domain knowledge and expertise and is susceptible to noise and outliers, this paper focuses
on DL-based models.

DL-based Models: Deep neural networks (DNNs) have been extensively utilized
in computer vision tasks, yielding advanced results. However, these deep models often
utilize SoftMax to normalize the classification logits, which results in an inherent closed-
set property. Following [12], there are two lines of research in DL-based OSR models:
discriminative-based and generative-based models.

The discriminative-based models focus on constraining the decision boundaries of
known classes and identifying unknown classes through a threshold [12]. Bendale et al. [27]
pioneered the adaptation of DNNs for OSR by substituting the SoftMax layer with the
OpenMax layer. They calibrated the activation vector of a test sample using the Weibull
distribution of known classes, thereby effectively transforming the OSR problem into a CSR
problem with K + 1 classes. Yoshihashi et al. [28] proposed a classification reconstruction
learning approach for open set recognition, termed CROSR, which integrates supervised
classification with unsupervised reconstruction. CROSR leverages latent representations to
complement crucial features absent in the classification branch. Similarly, Poojan et al. [29]
introduced a class conditioned autoencoder (C2AE) for open set recognition, employing
both cross-entropy and conditional autoencoder loss functions. Sun et al. [30] proposed
conditional Gaussian distribution learning (CGDL), which can learn distinct Gaussian
distributions from diverse feature representations. Dang et al. [31] and Ma et al. [4]
proposed SAR target OSR models with incremental learning ability, which refined decision
boundaries and constructed probabilistic models using both positive and negative samples.
Wang et al. [32] devised an entropy-aware meta-learning method for SAR target OSR,
yielding a highly separable feature space. To explicitly optimize the embedding space,
various approaches with distance-based loss were proposed to enhance the discriminability
of feature representations. Miller et al. [33] introduced a novel loss term for OSR, named
class anchor clustering loss, which encouraged known classes to cluster tightly around
class-specific centers within the logit space.

The generative-based models aim to synthesize unknown classes using generative
adversarial networks (GANs) and variational autoencoders (VAEs) [12]. Ge et al. [34]
extended OpenMax by incorporating GANs to generate unknown classes for learning
discriminative decision boundaries. Neal et al. [35] proposed a counterfactual image
generation method (OSRCI) for the OSR problem. By training an encoder-decoder structure
with adversarial loss, OSRCI can acquire an embedding space with manageable open space
risk. Geng et al. [36] devised two approaches for generating SAR targets of unknown classes:
spatial clipping generation (SCG) and weighted generation (WG). However, optimizing
the embedding space solely through generative means may be constrained by the data
distribution, limiting the variability of generated samples and diminishing the model’s
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classification performance. Recently, some hybrid models have emerged, yet they are
heuristic and lack rigorous theoretical foundations [37].

2.2. Prototype Learning

The prototype serves as an average or optimal exemplar of a class, thereby offering a
succinct representation for the entire class [17,18]. The most well-known prototype learning
method is k-nearest neighbors (KNN) [38]. Based on KNN, Kohonen introduced learning
vector quantization (LVQ) [39] to enhance computational efficiency. However, most of these
previous works relied on manual feature engineering. Recently, there has been a trend
towards integrating prototype learning with deep neural networks. Notable examples
include GCPL, CPN, and RPL, as introduced in Section 1.

Prototype learning offers a powerful representation approach for classification [17].
Generally, it primarily focuses on minimizing the intra-class distance for known features,
which aids in establishing a closed decision boundary but often ignores the potential risk
of open space posed by unknown data. To bolster the model’s robustness against unknown
data, we focus on enhancing the representation capability and optimizing the embedding
space. Correspondingly, the CMCFE module is designed to integrate information from
different modalities. Additionally, our hybrid loss function takes into account both the
distance relationship between samples in local regions and the global spatial relationship
during the prototype optimization process.

3. Methodology

To better address OSR problems, we first formalize its definition. Assuming a training
set Dtrain = {(xi, yi)} ⊆ Xtr × K with K known classes, yi ∈ K = {k1, k2, · · · , kn} is the
label of xi. The testing set Dtest = {

(
xi, yi

)
} ⊆ Xte × Ω includes both K known classes and

the potential unknown classes U, whose labels belong to N + 1. The goal of OSR is to derive
a model fosr based on Dtrain , which can accurately classify known data {xi ∈ Xte, yi ∈ K},
and effectively identify unknown data {xi ∈ Xte, yi ∈ U} [40].

3.1. Overview of RCS-OSR

The overall architecture of our proposed RCS-OSR is illustrated in Figure 3a. In
the training process, known classes from Dtrain are first fed into the CMCFE module,
from which refined features with enhanced discriminability can be extracted. The CMCFE
module consists of a multi-scale abstract features aggregation branch and an auxiliary
features injection branch, which will be introduced in detail in Section 3.2. Upon initializing
the prototypes, we formulate a hybrid loss function to jointly supervise model training
and calibrate the prototypes by optimizing the embedding space. This hybrid loss func-
tion comprises three components: RIC loss, IRC loss, and cross-entropy loss, with the
RIC loss being a combination of L11 and L12. Figure 3b elucidates the principles of RIC
loss and IRC loss in the prototype calibration procedure. By attracting samples to their
corresponding prototypes and penalizing the distances between prototypes of different
classes, the RCS-OSR method achieves reinforced class separability, thereby enhancing
classification performance. Upon completion of the training, the prototypes associated with
each category are saved.

In the testing phase, Dtest are utilized as input, which includes known and unknown
classes. After calculating the distances between the test sample fϕ(t) and the saved pro-
totypes, a class-aware OSR classifier is introduced to assign adaptive thresholds for each
class, as shown in Figure 3c. If the distance between the test sample and the nearest pro-
totype is below the threshold, it is classified as a known class; otherwise, it is rejected as
unknown. Next, we will provide a detailed description of the proposed methods and the
implementation process in the following subsections.
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Figure 3. Illustration of our proposed RCS-OSR framework. (a) illustrates the overall architecture.
For training, the close world data is utilized, which consists only of known classes. First, the CMCFE
module (the detailed structure of CMCFE is shown in Figure 4) is used for feature extraction, and then
the procedure of prototype calibration is conducted to optimize the embedding space. Specifically, we
designed a hybrid loss function for joint supervision, which consists of three terms, i.e., L1, L2, and L3.
(b) vividly illustrates the principle of the designed hybrid loss function in enhancing class separability
during prototype calibration. For testing, the real world data, which consists of both known and
unknown classes, is first fed into the CMCFE for feature extraction to obtain fϕ(t). Afterwards,
the distance between fϕ(t) and the saved prototypes from the training process is calculated for
classification. Finally, the class-aware OSR classifier is devised to classify known classes and identify
unknown classes, as illustrated in (c).

3.2. Cross-Modal Causal Features Enhancement Module

For SAR-ATR, the discriminative information in the target and shadow regions is the
basis for classification. Hence, these areas are termed causal regions, with their features
referred to as causal features. Conversely, the background region is termed the non-causal
region, with its features denoted as non-causal features [3,41]. Existing SAR-ATR experi-
ments assume that datasets are sufficiently large, diverse in classes, and contain samples of
each class in various background clutters [42]. However, the reality is that most publicly
available datasets are confined to a single imaging environment and are of a small scale.
In such cases, situations may arise where the background clutter region contains pseudo-
discriminative information useful for inference, despite lacking information pertaining to
the target’s geometric structures and electromagnetic scattering patterns. In this paper,
we refer to the model’s acquisition of non-causal features as overfitting, which can have
stochastic effects, either positive or negative.

Given the dynamic and open nature of real battlefield environments, it is imperative
for the model to prioritize information directly pertaining to the target’s response while
minimizing the influence of background clutters. Therefore, we introduce the CMCFE
module to enable the extraction of robust and discriminative causal features. Moreover,
the hybrid attention mechanism facilitates the dynamic adjustment of attention across
image regions, allowing for adaptation to emerging novel features.
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Figure 4. The detailed architecture of the CMCFE module. Specifically, the CMCFE consists of two
branches: (a) a multi-scale abstract features aggregation branch for extracting multi-scale abstract
features, which will be introduced in Section 3.2.1 and (b) an auxiliary features injection branch for
obtaining handcrafted features, which will be described in Section 3.2.2. Afterwards, we devised (c)
the CMHF2 block to fuse FA and FH from the two branches, which will be presented in Section 3.2.3.
Additionally, (d) illustrates the detailed structure of the MSFE block. In this figure, conv, GAP,
and PCBAM denote convolution, global average pooling and PCBAM operations, respectively.
The internal structure of PCBAM is shown in Figure 5.

Figure 5. The structure diagram of PCBAM. The two parallel branches, CAM and SAM, compute
the channel attention map WC(Fl) and the spatial attention map WS(Fl), respectively. Subsequently,
the output feature map Fp is derived through a parallel connection.

Figure 4 illustrates the detailed structure of the CMCFE module, comprising a multi-
scale abstract features aggregation branch (as depicted in Figure 4a) and an auxiliary
features injection branch (as depicted in Figure 4b). The CMCFE module mines rich
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information from SAR images by incorporating attention mechanisms to direct the model’s
focus towards causal regions and by injecting handcrafted features as prior knowledge to
enhance the feature representation ability. Figure 4c shows the process of fusing abstract
features FA and handcrafted features FH . Figure 4d provides the detailed implementation
of three MSFE blocks shown in Figure 4a. Further elaboration on the CMCFE module will
be provided subsequently.

3.2.1. Multi-Scale Abstract Features Aggregation Branch

For SAR OSR tasks, the models need to classify known classes and identify unknown
ones, demanding more sophisticated feature extraction strategies. To fully exploit the rich
information in SAR images, we introduce a multi-scale feature extraction block (MSFE) to
extract both high-level semantic features and shallow structural features, thereby enhancing
the model’s feature representation capability. Specifically, as shown in Figure 4a, the multi-
scale abstract features aggregation branch contains three MSFE paths with different kernel
sizes to extract features at different scales. The internal structure of the MSFE block is
depicted in Figure 4d.

The MSFE block, following the convolution module, is composed of convolution, max
pooling, dropout, and flattening layers, along with the parallel convolutional block attention
(PCBAM) module to filter out the background information. As depicted in Figure 5,
the PCBAM is used to compute channel attention and spatial attention [43], enabling the
model to focus on causal areas. Following the mechanism of human visual information
processing, the MSFE model begins with a sequence of three convolutional layers, each
featuring varying kernel sizes to capture features at different scales. The detailed process
unfolds as follows.

Given the input feature map Fin ∈ RC×H×W , where C, H, and W represent the number
of channels, height, and width, respectively, three parallel branches employ convolutional
kernels of different sizes to process Fin , yielding Fout1 ∈ RC×H×W , Fout2 ∈ RC×H×W ,
and Fout3 ∈ RC×H×W , respectively. The kernel sizes for the three paths are set to 3 × 3,
5 × 5, and 7 × 7, respectively. Subsequently, the features extracted from the three branches
are aggregated to obtain the multi-scale feature Fouta ∈ RC×H×W . For each branch, MSFE
applies convolution, max pooling, and dropout operations sequentially to process Fin and
obtain F′

in ∈ RC×H×W , as depicted in Figure 4d. Next, F′
in serves as the input for PCBAM to

compute channel and spatial attention maps, and obtain F′
out ∈ RC×H×W . After the global

average pooling (GAP) operation, the CNN abstract features FA ∈ RC×H×W are obtained,
as shown in Figure 4a.

As illustrated in Figure 4d, the PCBAM block is embedded into the backbone network
to optimize channel and spatial information. The detailed operation process of the PCBAM
block, as depicted in Figure 5, comprises a channel attention module (CAM) and a spatial
attention module (SAM) [43]. Specifically, CAM combines spatial information using both
average pooling and max pooling operations. The extracted features are then passed
through a shared network to generate the channel attention map WC(Fl) ∈ RC×1×1.

WC(Fl) = σ(MLP(AνgPool(Fl) + MaxPool(Fl))) (1)

where Fl ∈ RC×H×W denotes the input feature map. σ is the sigmoid function, and MLP
denotes a shared multi-layer perceptron with one hidden layer. AvgPool and MaxPool
represent average pooling and max pooling operations on the feature map, respectively.

SAM pays more attention to the target’s location information in the image, allowing
the model to focus on crucial areas. SAM combines max pooling and average pooling
to extract spatial features, then uses a 7 × 7 convolutional layer to fuse the feature maps,
generating the final spatial attention map WS(Fl) ∈ R1×H×W after activation.

WS(Fl) = σ( f 7×7[AνgPool(Fl); MaxPool(Fl)]) (2)
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where f 7×7 denotes the convolutional operation with a 7 × 7 kernel size. After acquiring
both CAM and SAM branches, the output feature map Fp ∈ RC×H×W is obtained through
a parallel connection.

Fp = Fl ⊗ WS(Fl) + Fl ⊗ WC(Fl) (3)

where ⊗ denotes the multiplication operation.
The parallel structure of PCBAM can flexibly integrate channel information and spatial

information without the influence of sequential transmission, allowing each module to
focus on different types of information. The integration of the attention mechanism enables
the model to prioritize discriminative causal features crucial for the SAR OSR tasks [44].
Moreover, when encountering unknown classes, the model can focus on target areas,
thereby minimizing the interference of irrelevant information and bolstering robustness in
complex scenes.

3.2.2. Auxiliary Features Injection Branch

CNN eliminates the need for manual feature engineering but suffers from poor in-
terpretability, which can be mitigated by injecting traditional handcrafted features [45].
Traditional handcrafted feature extraction methods for SAR images leverage expertise in
target properties and electromagnetic scattering characteristics to enhance the discrim-
inability and interpretability of features. Generally, handcrafted features can be divided
into global and local features. Global features describe the overall distribution but may
neglect local structures and details. Examples of such features include local binary pattern
(LBP) [46] and histogram of oriented gradients (HOG) [47], etc. In contrast, local features
capture key points for detailed texture and structure information, yet they are prone to
interference from outliers, as seen in methods like scale invariant feature transform (SIFT)
and speed up robust features (SURF), etc. [48]. To leverage the robustness of global fea-
tures and the sensitivity of local features effectively, our method integrates both to achieve
better discriminability.

As shown in Figure 4b, following the extraction of FHOG as the global feature and
FSIFT as the local feature, we concatenate them to form a longer feature vector FH .

FH = Concat(N(FHOG), N(FSIFT)) (4)

where Concat(·) denotes the concatenation operation, and N(·) represents normalization.

3.2.3. Cross-Modal Hybrid Feature Fusion Block

Given the substantial disparities in dimensions and semantics between traditional
handcrafted features FH ∈ RC×H×W and deep abstract features FA ∈ RC×H×W , employing
linear concatenation to fuse features from different modalities may compromise the quality
of the output features, thereby limiting the model’s performance [45]. To leverage the
differences and correlations between the two modal features and alleviate information
dilution during feature fusion, this paper introduces a cross-modal hybrid feature fusion
block (CMHF2), as illustrated in Figure 4c. It aims to optimally exploit the inherent
complementary relationship between handcrafted features and abstract features for their
mutual enhancement.

In CMHF2, we initially adopt a 1 × 1 convolutional layer to compress the channels.
Then, the cross-multiplication operation is utilized to enhance the correlation between the
two cross-modal features and effectively suppress irrelevant ones. The detailed process is
outlined as follows:

F′
A = Conν1×1(FA)⊗ Conν1×1(FH), F′

H = Conν1×1(FH)⊗ Conν1×1(FA) (5)

where Convν1×1(.) denotes the 1 × 1 convolutional layer, and ⊗ represents the multiplica-
tion operation.
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Next, we employ the PCBAM block to enhance the representation of cross-modal
features in both the spatial and channel dimensions, thereby improving the response
of causal features. Additionally, skip connections are adopted to mitigate the dilution
of information.

F′′
A = PCBAM(F′

A)⊕ FA, F′′
H = PCBAM(F′

H)⊕ FH (6)

where PCBAM(·) and ⊕ represent PCBAM block and addition operation, respectively.
To fully mine the heterogeneity of cross-modal features, we concatenate the self-

enhanced features and feed them into a 3 × 3 convolutional layer for feature refinement.

FCM = Conν3×3(Concat(F′′
A, F′′

H)) (7)

where FCM denotes the output feature, and Convν3×3(.) denotes the 3 × 3 convolutional
layer, and Concat(·) represents the concatenation operation.

Finally, we introduce skip connections to capture residual information, thereby better
retaining and utilizing the differences between original features.

Fout = Conν3×3(Concat(FCM, FA, FH)) (8)

where Fout ∈ RC×H×W represents the output feature refined by the CMHF2 block. Fout can
also be expressed as fϕ(x). Specifically, x denotes the input image, and fϕ(·) represents
the function representation of the CMCFE module, where ϕ is the set of parameters for the
CMCFE module.

3.3. Hybrid Loss for Discriminative Prototype Learning

The positional relationship between different classes can be characterized by intra-
class compactness and inter-class separation. In Figure 6a, the black double dashed arrows
represent intra-class compactness, showing how closely instances of the same class are
clustered. The closer the instances with the same label are, the more compact the clusters
become, indicating higher intra-class compactness. Similarly, inter-class separation is
depicted by red double dashed arrows, illustrating the distance between samples with
different labels in the embedding space. The farther apart samples of different classes are,
the stronger the model’s classification ability.

Figure 6. (a) Explanation of intra-class compactness and inter-class separation; (b) illustration of the
benefits of a compact embedding space. Prototype learning constructs a compact embedding space
with closed decision boundaries to minimize open space risk.

As mentioned above, constructing an embedding space with reinforced class separa-
bility is crucial for improving the performance of OSR. As shown in Equation (9), the center
loss [49] can increase intra-class compactness by minimizing the distance between a sample
and its corresponding prototype. As illustrated in Figure 6b, prototype learning promotes
a more compact embedding space under the constraint of center loss.
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Lcenter =
1
2 ∑

1≤l≤M

∥∥ fϕ(xl)− pij
∥∥2

2 (9)

where fϕ(xl) represents the feature vector of the test sample xl and
{

Pij

∣∣∣j ∈ {1, 2, · · ·K}
}

denotes the prototypes corresponding to class i ∈ {1, 2, · · ·C}, with K denoting the number
of prototypes in each class and C being the number of known classes.

It can be found that Lcenter only focuses on making the samples of the same class closer
in the embedding space, but it does not directly affect the distances between samples of
different classes, since there are no prototypes involved in their loss calculation. Further-
more, we have observed that Lcenter only considers the distance between a sample and its
corresponding prototype. It treats samples with the same distance to the prototype equally,
disregarding their distribution around the prototypes. This may result in samples with
equal distances to the prototype being uniformly distributed in concentric circles, which
induces cluster overlapping.

Motivated by this, we thoroughly explore a feature constraint method based on reg-
ularization techniques to boost both intra-class compactness and inter-class separation,
as shown in Figure 3b. Our proposed RIC-Loss, as shown in Equation (10), extends the
original center loss by incorporating two additional regularization constraint terms. Specif-
ically, L11 constrains the distance between samples and their corresponding prototypes,
while L12 penalizes the distances between prototypes of different classes.

L1 = L11 + λ1L12 (10)

L11 =
1
2 ∑

1≤l≤M
δ(
∥∥ fϕ(xl)− pij

∥∥2
2 > γ1) ·

∥∥ fϕ(xl)− pij
∥∥2

2 (11)

L12 =
1

∑1≤i,k<C,i ̸=k δ

(∥∥∥pij − pkj

∥∥∥2

2
> γ2

)
·
∥∥∥pij − pkj

∥∥∥2

2
+ ε

(12)

In Equation (10), λ1 is a hyperparameter used to balance the effects of L11 and L12.
In our experiments, λ1 is set to 1. Specifically, the first term in Equation (10) is shown in
Equation (11), where δ(condition) = 1 if the condition is satisfied, and δ(condition) = 0 if
not. γ1 is a regularization term employed to constrain the intra-class distance.

The second term of Equation (10) is shown in Equation (12). L12 serves as a penalty
term for the distance between prototypes of different classes. During training, prototypes of
different classes tend to move away from each other, as shown in Figure 3b. In Equation (12),
pij and pkj represent the prototypes corresponding to class i and k, respectively, with i ̸= k.
Additionally, γ2 is a regularization term designed to constrain the distances between
different prototypes, where ε is a constant term greater than 0. When the distance between
prototypes of different classes falls below γ2, ε can slow down the update speed of the
model parameters, thereby enhancing the model’s robustness. To simplify hyperparameter
configurations, we set γ1 and γ2 as learnable parameters and update them in a data-
driven manner.

To further optimize the embedding space, the IRC-Loss, as illustrated in Equation (13),
is proposed to constrain the label consistency among nearest-neighbor samples, thereby
promoting intra-class compactness. In Equation (13), d( fϕ(xi), fϕ(xj)) denotes the distance
between two feature vectors, mc represents the sample set belonging to class ‘c’ in the
current mini-batch, and T is the temperature factor. Specifically, T is set to the variance of
all sample feature vectors within the current mini-batch, denoted as T = σ2.

L2 = − 1
M ∑

i∈1...M
log

(
∑i,j∈1...mc ,j ̸=i e−d( fϕ(xi), fϕ(xj))/T

∑k∈1...M,k ̸=i e−d( fϕ(xi), fϕ(xk))/T

)
(13)
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The previously designed loss functions L1 and L2 optimize the prototype distribution
by incorporating regularization terms. However, they neglect the separability of different
classes. Inspired by Wen et al. [49], we incorporated the cross-entropy loss function L3 to
emphasize the overall distribution and the model’s classification performance. L3 is placed
behind the classification layer and computes the penalty term by assessing the difference
between the predicted label and the ground-truth label, thereby enhancing the model’s
classification capabilities. L3 is expressed as:

L3 = − 1
M ∑

1≤l≤M
log p(yl = k|xl) (14)

For obtaining prototype representations with reinforced class separability, three dis-
tinct loss functions are integrated collaboratively to supervise the training.

Lh = ω1L1 + ω2L2 + L3 (15)

where ω1 and ω2 are hyperparameters used to balance the contribution of the first and
second terms. Specifically, we set ω1 = 0.7 and ω2 = 0.5.

Algorithm 1 delineates the comprehensive procedures for implementing the proposed
RCS-OSR. During training, only Dtrain with known classes is utilized and the hybrid loss is
employed for supervision.

Algorithm 1 Pseudo-code of the Proposed RCS-OSR Algorithm

Input: Known class targets Dtrain for training, hyperparameters: γ1, γ2, λ1, ω1, ω2, initial-
ized learning rate l = 0.001, and the number of training iterations t = 0.

Output: The set of parameters for the CMCFE module ϕ, and all saved prototypes pij.
1: Initialize CMCFE module and all prototypes.
2: while training not converge do
3: t = t + 1
4: Select a mini-batch M samples from Dtrain and feed them into our model
5: Calculate the representation loss L1, L2 and classification loss L3, respectively.
6: Calculate the hybrid loss Lh = ω1L1 + ω2L2 + L3
7: Compute the backpropagation gradients ∂Lh/∂ϕ and ∂Lh/∂pij

8: Update the CMCFE module parameters ϕt+1 by ϕt+1 = ϕt − lt · (∂Lt
h/∂ϕt)

9: Calibrate the prototypes pt+1
ij by pt+1

ij = pt
ij − lt · (∂Lt

h/∂pt
ij)

10: end while

3.4. Class-Aware OSR Classifier with Adaptive Thresholding

Facing unknown inputs from novel classes, an intuitive approach for classification is to
impose a threshold over the output distance [18]. It assumes that unknown classes typically
reside far from the prototypes of known classes. However, DL-based methods are prone to
overfitting the training data, resulting in excessively confident predictions. Therefore, they
assign high probabilities even to unknown classes, making the threshold difficult to tune.
Additionally, due to the unique semantic information of known classes in different tasks, it
is challenging to determine a universal threshold suitable for all OSR tasks.

To exploit the differences among classes, we dynamically assign a class-aware thresh-
old for each class according to the distance distribution, as shown in Figure 3c. Particularly,
after training, we can obtain the feature vector fϕ(xm) of the correctly predicted sample
xm, and the prototypes pij of each class. Then, we can generate the similarity distribution
matrix D ∈ Nt × C for each class by calculating the Euclidean distance between them.

D =
{

dmi =
∥∥ fϕ(xm)− pij

∥∥2
2

}
(16)
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where i ∈ {1, 2, · · ·C}, m = 1, 2, . . . , Nt , Nt denotes the number of samples per class.
The element dmi in row m, column i of the similarity distribution matrix signifies the
Euclidean distance between sample xm and its corresponding prototype pij.

For each test sample xt, the label corresponding to the nearest prototype is selected as
its candidate label, denoted as ycandidate. Subsequently, the distance distribution of the class
ycandidate in the similarity distribution matrix D can be obtained by using ycandidate as the col-
umn index value. The maximum distance element value dycandidate = max1≤m≤Nt dmycandidate

is then designated as the adaptive threshold τycandidate for the class ycandidate. Finally, the clas-
sification rules are presented in Equation (17), if the distance between a test sample xt and
its nearest prototype is less than the corresponding threshold τycandidate of that prototype, it
is classified into that class; otherwise, it is identified as the unknown class.

ypred =


ycandidate, min1≤j≤K

∥∥ fϕ(xt)− pycandidate j
∥∥2

2 ≤ τycandidate

unknown, min1≤j≤K
∥∥ fϕ(xt)− pycandidate j

∥∥2
2 > τycandidate

(17)

4. Experiments and Results
4.1. Experimental Setup
4.1.1. Dataset Description and Implementation Details

The MSTAR dataset, provided by Sandia National Laboratory in the U.S., operates
in the X-band frequency and HH polarization mode, with a resolution of 0.3 m × 0.3 m.
Figure 7 shows the SAR images and their corresponding optical images. It includes
ten vehicle classes with different depression and azimuth angles, as detailed in Table 1.
The training and testing sets are based on depression angles of 17◦ and 15◦, respectively.

Figure 7. Optical and SAR images of ten classes in the MSTAR dataset.
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Table 1. Detailed information of the MSTAR dataset under SOC.

Type Train Number Test Number

1-2S1 17◦ 299 15◦ 274
2-ZSU234 17◦ 299 15◦ 274
3-BRDM2 17◦ 298 15◦ 274
4-BTR60 17◦ 256 15◦ 195
5-BMP2 17◦ 233 15◦ 195
6-BTR70 17◦ 233 15◦ 196

7-D7 17◦ 299 15◦ 274
8-ZIL131 17◦ 299 15◦ 274

9-T62 17◦ 299 15◦ 273
10-T72 17◦ 232 15◦ 196

Total 2747 2425

In this paper, the model was trained using the Adam optimizer for 120 epochs with
a batch size of 128. We implemented a learning rate decay strategy, starting from 0.001.
Throughout all experiments, each class was assigned a corresponding prototype. Addition-
ally, the SAR images were uniformly cropped to a size of 64 × 64.

4.1.2. Evaluation Protocols

We randomly select several classes from the MSTAR dataset as known classes for
training and assign the remainder as unknown ones. During testing, we employ all ten
target classes. Following [12], we use Openness to denote the ratio of known classes to
unknown classes, which represents the complexity of the OSR task.

Openness = 1 −
√

2 · Ntrain
Ntarget + Ntest

(18)

where Ntrain and Ntarget represent the number of known classes during training and testing,
respectively, Ntest represents the total number of classes during testing, and Ntrain = Ntarget.

For comprehensive evaluation, we select several metrics, including precision, recall,
F1macro and accuracy. Specifically, accuracy reflects the model’s overall accuracy across all
samples. F1macro calculates the mean F1 scores across all classes, where F1 is the harmonic
mean of precision and recall. The definitions of these metrics are as follows:

accuracy =
∑M

i=1 TPii

Ntotal
(19)

precision =
∑M

i=1 pi

M
, pi =

TPi
TPi + FPi

(20)

recall =
∑M

i=1 ri

M
, ri =

TPi
TPi + FNi

(21)

F1macro =
∑M

i=1 F1i

M
, F1i = 2 × precisioni × recalli

precisioni + recalli
(22)

where M denotes the number of target classes and Ntotal represents the total test instances.

4.2. Comparison with Other OSR Methods

To verify the effectiveness of our proposed method, several DL-based OSR algorithms
are selected for comparison. The detailed introductions are as follows:

(1) SoftMax compares the highest probability with a threshold for open set recognition.
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(2) OpenMax substitutes the SoftMax layer with the OpenMax layer to generate prob-
abilities for unknown classes and converts the OSR task into a CSR task with
K + 1 classes [27].

(3) GCPL calculates the distances among prototypes for classification. Additionally,
GCPL combines discriminative and generative losses to reduce open space risk [17].

(4) CGDL proposes a novel method, conditional Gaussian distribution learning, based
on the variational auto-encoder, which can classify known classes by forcing different
latent features to approximate different Gaussian models [30].

(5) CAC allocates anchored class centers to known classes to increase intra-class com-
pactness, which can reserve extra space for the emergence of unknown classes [33].

(6) ARPL introduces an adversarial margin constraint to confine the open space based
on RPL. Additionally, it devised an instantiated adversarial enhancement method to
generate diverse unknown classes [20].

4.2.1. Performance Comparison on the MSTAR Dataset

For a fair comparison, we adopt the experimental setups from Ma et al. [50] and
Geng et al. [36]. Specifically, BMP2, BTR70, and T72 are chosen to constitute the training
set, while the test set encompasses all 10 classes. During the evaluation phase, precision,
recall, F1macro, and accuracy are employed.

Table 2 shows the performance comparison of different methods. Our proposed al-
gorithm outperforms the others in three OSR metrics. The recall and precision of other
methods have exhibited varying degrees of decline, which may be attributed to overfitting
the training data, leading to decreased performance. In particular, SoftMax captures only
rudimentary discriminative features of known classes but struggles to provide a compre-
hensive representation, resulting in poor performance in identifying unknown classes with
an F1macro of 64.2%. While OpenMax slightly boosts OSR performance, the inherent simi-
larity between known and unknown classes curtails its efficacy. Compared with SoftMax,
it only increases by 3.3%.

Table 2. OSR performance of different methods on the MSTAR dataset (Bold and underline indicate
the highest and second maximum values in the respective column).

Methods
OSR Performance (%)

Recall Precision F1macro Accuracy

SoftMax 65.7 65.4 64.2 -
OpenMax 76.0 67.8 67.5 78.2

OSmIL 93.4 87.0 89.9 93.7
CGDL 90.7 85.1 87.6 92.5
CAC 84.8 88.4 86.2 92.4
EVM 90.5 81.0 85.0 91.8
GCPL 86.3 73.1 78.3 85.6
ARPL 68.8 55.6 59.4 71.9

GvRSC 73.2 67.8 69.2 -
Ours 94.1 87.8 90.7 94.2

Autoencoder (AE)-based methods, such as CGDL, are adept at acquiring diverse low-
dimensional feature representations through data reconstruction. However, they exhibit
two notable limitations: the pixel-level reconstruction often retains background information
extraneous to the targets, thereby impeding the model’s ability to capture discriminative
features. Additionally, such irrelevant information can interfere with the classification
of known classes, leading to a reduction in the accuracy of CSR. In contrast to AE-based
methods, RCS-OSR can maintain high accuracy for the CSR task while also improving
several OSR metrics by 3.4%, 2.7%, 3.1% and 1.7%, respectively. This is because it can
enhance the discriminability of target features by guiding the model to focus on causal
areas and employing a hybrid loss for supervised learning. Similarly, when compared with
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other discriminative models, such as CAC and OSmIL, RCS-OSR also demonstrates its
superiority by optimizing the embedding space and incorporating a class-aware classifier
to reinforce class separability.

Compared to generative models like ARPL and GvRSC, RCS-OSR shows superior
improvements of 25.3%, 32.2%, 31.3% and 22.3%, respectively. This is because generative
models may struggle with data generation due to constraints of the training data and
may not generalize well to unseen classes. In contrast, RCS-OSR employs a more flexible
discriminative model to effectively adapt to diverse distributions. In conclusion, RCS-OSR
ensures both accurate classification of known classes and precise identification of unknown
classes simultaneously, thereby effectively addressing the challenges in open scenarios.

Figure 8 illustrates the confusion matrix for various methods. It reveals that other
methods experience significant confusion between certain classes in open scenarios. Specif-
ically, despite ARPL’s superior performance on natural images, its efficacy on SAR datasets
is suboptimal. Most unknown classes are erroneously classified as known ones, leading to
significant confusion among different classes. Furthermore, the classification capability for
known classes is significantly diminished. This shortfall can be attributed to the genera-
tive strategy employed by ARPL, which struggles to capture the discriminative features
inherent in SAR images. The EVM enhances the model’s capacity for recognizing unknown
classes by incorporating extreme value theory to align with the tail distribution. However,
it fails to sustain the model’s high-precision performance in closed-set classification tasks.
While discriminative models such as CAC, CGDL, and GCPL have improved the open set
recognition performance of the model, they remain susceptible to missed and false alarms
when encountering targets of unknown classes.

Figure 8. Confusion matrix for different methods using BMP2, BTR70, and T72 as known classes.
Each row of the matrix represents the true label, while each column represents the predicted label,
with “0”–“2” denoting the known classes and “U” indicating the unknown class.

In contrast, our proposed algorithm exhibits accurate identification of unknown classes,
while maintaining high classification accuracy for known classes, effectively alleviating
confusion. Additionally, the true positive rate (TPR) and false positive rate (FPR) are
derived from the confusion matrix, as shown in Table 3. The proposed algorithm can
classify known classes with a TPR of 94.38%, which is 0.98% higher than that of OSmIL.
Although CAC has slightly better identification ability for unknown classes, it significantly
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compromises the classification accuracy for known classes. In conclusion, the proposed
algorithm offers precise and dependable classification results.

Table 3. Comparisons of different methods for receiving known classes and identifying unknown ones
(%) (Bold and underline indicate the highest and second maximum values in the respective column).

Methods Classifying Known: TPR Identifying Unknown: 1-FPR

OSmIL 93.4 93.1
EVM 91.8 92.3

OpenMax 74.9 79.3
CAC 81.09 96.34

CGDL 90.09 93.36
GCPL 86.69 85.36
ARPL 68.21 73.31
Ours 94.38 94.23

Figure 9 provides an intuitive comparison of the OSR performance across various
methods. It is obvious that the proposed RCS-OSR is situated at the upper left corner,
indicating high TPR and low FPR, which demonstrates its superiority. Specifically, the TPR
for our proposed algorithm is 94.38%, demonstrating a robust classification capability for
known classes. Although its FPR is marginally worse than that of the CAC, the TPR
significantly surpasses that of CAC. This disparity arises because CAC employs anchored
class centers for diverse targets, requiring careful selection of the anchor magnitude to
achieve optimal performance. Consequently, there is a propensity for known classes to be
misidentified as unknown ones. Furthermore, the immobility of the class center hinders its
ability to fully leverage the global spatial distribution information, potentially leading to
open space risk.

In contrast, our proposed RCS-OSR sets the class center as a learnable parameter,
assigns one or more prototypes to each class, associates them with their corresponding
embedding features via a hybrid loss, and continuously optimizes these during training.
Therefore, RCS-OSR can capture potential spatial distribution information more flexibly
and comprehensively. In conclusion, our proposed RCS-OSR can precisely classify known
classes and simultaneously identify unknown ones.

Figure 9. Visual comparison of OSR performance for different methods.
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4.2.2. Performance Comparison Against Various Openness and Epochs

To assess the model’s performance under various levels of Openness, we randomly
selected classes [7, 6, 5, 4, 3] as known data, while the remaining classes [3, 4, 5, 6, 7] were
considered unknown data, resulting in an Openness range from 9.25% to 32.06%.

As illustrated in Figure 10, the open space risk escalates with the increase in Openness,
leading to serious confusion between different classes and a decline in OSR performance
across all methods. There is a clear performance stratification among different methods.
RCS-OSR notably outperforms OpenMax and GCPL, particularly in scenarios with high
Openness. This proves that optimizing the prototype distribution can construct more dis-
tinct decision boundaries, thereby improving resilience against open space risk. Moreover, it
is evident that the performance fluctuation of RCS-OSR across various levels of Openness is
merely 11.87%, surpassing the second-ranking method, CGDL, by 3.32%. This underscores
its robustness and superior resilience against the open space risk across diverse scenarios.

Figure 10. Performance comparison of different methods. (a) F1macro score against various levels of
Openness. (b) Accuracy against various levels of Openness.

Figure 11a presents the confusion matrix under an Openness condition of 0, corre-
sponding to a closed-set scenario. The results indicate that the proposed RCS-OSR exhibits
minimal misclassifications and achieves high recognition accuracy. As Openness increases,
both the number of unknown classes and the risk associated with open space rise. Never-
theless, the algorithm maintains robust classification capabilities. Notably, in environments
with low levels of Openness, the algorithm demonstrates strong recognition of unknown
classes, suggesting that it can establish a more distinct decision boundary. In contrast, even
when faced with high Openness and some misclassifications of unknown classes as known
ones, the algorithm retains high accuracy in both known class classification and unknown
class recognition, demonstrating its robust classification performance.
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Figure 11. OSR performance of our proposed RCS-OSR against varying Openness.

5. Discussion
5.1. Ablation Studies

The proposed RCS-OSR reinforces class separability by optimizing both the prototype
representation and its distribution. To verify the performance gains of each component,
we conducted ablation studies on the MSTAR dataset with four randomly selected known
classes and six unknown classes.

As shown in Table 4, “Baseline” denotes the baseline model. Meanwhile, “MSFE”, “Aux-
iliary features branch”, “CMHF2”, and “Hybrid Loss” represent four strategies designed
to enhance the network structures and optimize the embedding space. The accuracy and
F1macro of these four strategies outperform those of the baseline model. The first three
strategies effectively enhance the model’s feature representation capability by aggregating
multi-scale features and injecting handcrafted features, thus obtaining more discriminative
prototype representations. Compared to others, the hybrid loss yields the most significant
performance improvement, with F1macro increasing by 2.87% and accuracy by 4.16%. This
improvement is attributed to the model’s ability to simultaneously enhance intra-class
compactness and inter-class separation under the supervision of hybrid loss, leading to a
prototype distribution with reinforced class separability. When the aforementioned four
strategies are combined, the performance is further improved.

Table 4. Progressive ablation experiments on the MSTAR dataset (%) (Bold and underline indicate
the highest and second maximum values in the respective column).

MSFE Auxiliary Features CMHF2 Hybrid Loss
OSR Performance

F1macro Accuracy

- - - - 74.26 73.03
✓ - - - 77.10 75.75
✓ ✓ - - 77.66 76.37
✓ ✓ ✓ - 78.63 77.44
✓ ✓ ✓ ✓ 81.50 81.60
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5.2. Performance Comparison with Different Loss Functions

The distance-based loss functions attract positive samples while repelling negative
samples, thus aiding in the learning of more discriminative features. Building on this,
our proposed hybrid loss can further refine the prototype representation by incorporating
regularization constraints. To validate its effectiveness, we have chosen center loss [49]
for comparison.

As shown in Table 5, our hybrid loss achieves the best performance on all metrics.
Specifically, center loss shows an improvement of 7.27% and 7.75% compared to the cross-
entropy loss. This improvement is attributed to center loss’s capability to minimize intra-
class differences by optimizing the distance between samples and their corresponding
centers, thereby yielding more compact feature representations. Upon incorporating the L1
constraint based on center loss, there is a respective increase of 3.59% and 3.65%. This indi-
cates that L1 can further optimize the prototype distribution. Upon adding the L2 constraint,
the performance is further improved, demonstrating that the L2 effectively constrains label
consistency, thereby obtaining feature representations with reinforced class separability.
Furthermore, after integrating cross-entropy loss, the model can effectively utilize inter-
class supervision information to enhance its classification capability.

Table 5. OSR performance comparison of our hybrid loss and other distance-based losses (%) (Bold
and underline indicate the highest and second maximum values in the respective column).

Loss Function F1macro Accuracy

Cross Entropy 67.25 66.27
Center Loss 74.52 74.02

Center Loss + L1 78.11 77.67
Center Loss + L1 + L2 79.24 79.51

Ours 81.50 81.60

5.3. Effectiveness Evaluation of CMCFE

The RCS-OSR enhances the model’s feature representation ability by incorporating
handcrafted features and cross-modal feature fusion techniques. In this section, we con-
ducted experiments to validate its effectiveness, as detailed in Table 6.

Table 6. Effectiveness evaluation of the CMCFE module (%) (Bold and underline indicate the highest
and second maximum values in the respective column).

Fusion Strategy F1macro Accuracy

Baseline 78.33 77.39
Method 1 78.36 77.32
Method 2 79.52 78.36

Ours 80.93 81.14

“Baseline” represents the use of only CNN abstract features without any injection
of handcrafted features. Conversely, “Method 1” and “Method 2” denote the application
of direct concatenation and weighted concatenation strategies, respectively, to fuse the
cross-modal features [45]. With the injection of handcrafted features, both “Method 1” and
“Method 2” outperform the “Baseline”. This is because the handcrafted features leverage
expertise and encompass information about the target’s structures, texture, and other
characteristics. To some extent, these features can compensate for potential deficiencies or
missing information in abstract features, and richer information can improve the model’s
classification performance.

It is noteworthy that despite a slight improvement in the F1macro of “Method 1”, there is
a decline in accuracy, suggesting that the direct concatenation strategy may induce learning
ambiguity and yield adverse outcomes. Compared to “Method 1” and “Method 2”, the pro-
posed RCS-OSR shows improvements of 2.6% and 3.75% over them, respectively. This is
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because the CMCFE module can guide the model to concentrate on causal areas, thereby
extracting more discriminative features. Moreover, the designed cross-modal feature fusion
strategy can effectively integrate information, leading to better performance gains.

5.4. Influence of Prototype Number K

In prior experiments, each class was assigned only one prototype. To investigate
the impact of varying the number of prototypes, we conducted trials across three distinct
network architectures: ResNet-18, ResNet-34, and ResNet-50 [51]. As shown in Figure 12,
setting more prototypes can better represent the internal differences between classes,
thereby facilitating recognition performance. Nevertheless, it is observed that a surge in
the number of prototypes does not significantly boost performance and may even lead to
a decline.

This phenomenon can be attributed to two primary factors. Firstly, on a small-scale
dataset such as MSTAR, an increase in the number of prototypes may induce overfitting on
certain classes, thereby impeding generalization to unknown classes. Secondly, an increase
in the number of prototypes could potentially obscure the decision boundaries, which in
turn could degrade the model’s performance. Moreover, it could significantly escalate the
computational costs for both training and inference, which is unacceptable in resource-
constrained scenarios. Given the RCS-OSR’s proficiency in feature extraction, we set K = 1,
i.e., employing a single prototype for each class.

Figure 12. Influence of the number of prototypes K.

5.5. Hyperparameters Analysis of the Hybrid Loss Function

As depicted in Equation (10) and (15), the model involves three hyperparameters:
ω1, ω2, and λ1 , where λ1 balances the intra-class compactness and inter-class separation,
while ω1 and ω2 are used to equilibrate L3 with L1 and L2, respectively. For sensitivity
analysis, we conducted experiments on the MSTAR dataset with four known classes and
six unknown classes, as described in Section 5.1.

Initially, we fixed λ1 = 1 to analyze the influence of ω1 and ω2. As shown in Figure 13,
when both ω1 and ω2 are set to zero, the F1macro metric is only 65.72%. The reason is
that when the model is solely supervised by the cross-entropy loss, it tends to separate
prototypes of different classes to minimize classification errors. In this case, the model’s
performance may be influenced by intra-class variations. However, with the addition
of L1 and L2 regularization, the model not only optimizes its classification ability but
also its prototype distribution, resulting in an improvement of approximately 13.74%,
demonstrating their effectiveness. Furthermore, as the weights of L1 and L2 increase,
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the curve exhibits an initial rise followed by a decline. This is because when the weights are
excessively high, the model prioritizes prototype distribution optimization at the expense
of its classification capability. To simultaneously ensure the optimization of feature learning
and classification ability, we set ω1 = 0.7 and ω2 = 0.5.

Figure 13. Different settings of ω1 and ω2.

Next, we fixed the values of ω1 and ω2. As illustrated in Figure 14, with the increase in
Openness, the model’s performance gradually declines. When the Openness is low, the per-
formance of λ1 = 0.1 outperforms others. This is attributed to the L11, which can effectively
enhance intra-class compactness and promote tighter clusters. With higher openness, where
unknown classes predominate, increasing λ1 can guide the model to emphasize inter-class
separation, thereby improving performance. However, it is noteworthy that the model’s
efficacy diminishes with excessively large values. Consequently, an intermediate value is
typically more appropriate for most scenarios.

Figure 14. Performance of varying λ1 with increasing Openness.
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6. Conclusions

In open-world scenarios, instances of unknown classes may be misclassified as known
classes by CSR classifiers. OSR aims to classify known classes and simultaneously identify
unknown ones. However, there are two main challenges in OSR tasks: addressing the
serious confusion between different classes and balancing empirical classification risk with
open space risk.

In this paper, we propose a SAR target open set recognition framework, RCS-OSR,
which thoroughly explores reinforced class separability and discriminative representations.
To improve its ability to classify known classes and identify unknown classes in open
scenarios, RCS-OSR focuses on optimizing prototype representation and the embedding
space. It incorporates a cross-modal causal features enhancement module to integrate
information from diverse sources, thereby enhancing target characterization. Furthermore,
the hybrid loss is designed to optimize the prototype distribution within the embedding
space, aiming to increase intra-class compactness and inter-class separation for reinforced
class separability. Experimental results demonstrate the superiority of our proposed method
compared to other state-of-the-art (SOTA) methods across varying levels of Openness.

Author Contributions: The conceptualization was a joint endeavor involving F.G., X.L. and R.L.,
with A.H. taking charge of data curation. F.G. performed the formal analysis, while funding acqui-
sition was a collaborative effort between F.G. and J.W. The investigation was led by F.G. and X.L.,
and the methodology was crafted by F.G., X.L. and J.S. F.G. and J.W. were responsible for project
administration, and the securing of resources was achieved by F.G., J.W. and J.S. Software develop-
ment was a team effort among F.G., X.L. and R.L., under the guidance of F.G. and R.L. Validation was
carried out by F.G. and R.L., and visualization was a collaborative task among F.G., X.L. and A.H.
The initial draft was composed by F.G. and X.L., with the review and editing process managed by
F.G. and R.L. All authors have read and agreed to the published version of the manuscript.

Funding: This research was funded in part by the National Natural Science Foundation of China
under Grant 62371022 and in part by UK Engineering and Physical Sciences Research Council (EPSRC)
Grants Ref. EP/T021063/1 (COG-MHEAR) and EP/T024917/1 (NATGEN).

Data Availability Statement: The original contributions presented in the study are included in the
article, further inquiries can be directed to the corresponding author.

Acknowledgments: The researchers wish to express their sincere appreciation to the reviewers and
editorial team for their perceptive feedback and suggestions, which significantly improved the quality
of this paper.

Conflicts of Interest: The authors declare no conflicts of interest.

References
1. El-Darymli, K.; Gill, E.W.; Mcguire, P.; Power, D.; Moloney, C. Automatic Target Recognition in Synthetic Aperture Radar Imagery:

A State-of-the-Art Review. IEEE Access 2016, 4, 6014–6058. [CrossRef]
2. Gao, F.; Kong, L.; Lang, R.; Sun, J.; Wang, J.; Hussain, A.; Zhou, H. Sar Target Incremental Recognition Based on Features with

Strong Separability. IEEE Trans. Geosci. Remote Sens. 2024, 62, 5202813. [CrossRef]
3. Wang, C.; Luo, S.; Pei, J.; Huang, Y.; Zhang, Y.; Yang, J. Crucial Feature Capture and Discrimination for Limited Training Data

SAR ATR. ISPRS J. Photogramm. Remote Sens. 2023, 204, 291–305. [CrossRef]
4. Ma, X.; Ji, K.; Feng, S.; Zhang, L.; Xiong, B.; Kuang, G. Open Set Recognition With Incremental Learning for SAR Target

Classification. IEEE Trans. Geosci. Remote Sens. 2023, 61, 1–14. [CrossRef]
5. Yue, Z.; Gao, F.; Xiong, Q.; Wang, J.; Huang, T.; Yang, E.; Zhou, H. A Novel Semi-Supervised Convolutional Neural Network

Method for Synthetic Aperture Radar Image Recognition. Cogn. Comput. 2021, 13, 795–806. [CrossRef]
6. Zhou, Y.; Liu, H.; Ma, F.; Pan, Z.; Zhang, F. A Sidelobe-Aware Small Ship Detection Network for Synthetic Aperture Radar

Imagery. IEEE Trans. Geosci. Remote Sens. 2023, 61, 1–16. [CrossRef]
7. Zeng, Z.; Sun, J.; Wang, Y.; Gu, D.; Han, Z.; Hong, W. Few-Shot SAR Target Recognition through Meta Adaptive Hyper-parameters

Learning for Fast Adaptation. IEEE Trans. Geosci. Remote Sens. 2023, 61, 5219517. [CrossRef]
8. Huang, H.; Gao, F.; Sun, J.; Wang, J.; Hussain, A.; Zhou, H. Novel Category Discovery without Forgetting for Automatic Target

Recognition. IEEE J. Selected Topics App. Earth Observ. Remote Sens. 2024, 17, 4408–4420. [CrossRef]
9. Zhang, F.; Sun, X.; Ma, F.; Yin, Q. Superpixelwise Likelihood Ratio Test Statistic for PolSAR Data and Its Application to Built-up

Area Extraction. ISPRS J. Photogramm. Remote Sens. 2024, 209, 233–248. [CrossRef]

http://doi.org/10.1109/ACCESS.2016.2611492
http://dx.doi.org/10.1109/TGRS.2024.3351636
http://dx.doi.org/10.1016/j.isprsjprs.2023.09.014
http://dx.doi.org/10.1109/TGRS.2023.3283423
http://dx.doi.org/10.1007/s12559-019-09639-x
http://dx.doi.org/10.1109/TGRS.2023.3264231
http://dx.doi.org/10.1109/TGRS.2023.3325988
http://dx.doi.org/10.1109/JSTARS.2024.3358449
http://dx.doi.org/10.1016/j.isprsjprs.2024.02.009


Remote Sens. 2024, 16, 3277 24 of 25

10. Zeng, Z.; Sun, J.; Xu, C.; Wang, H. Unknown SAR target identification method based on feature extraction network and KLD–RPA
joint discrimination. Remote Sens. 2021, 13, 2901. [CrossRef]

11. Liao, N.; Datcu, M.; Zhang, Z.; Guo, W.; Zhao, J.; Yu, W. Analyzing the separability of SAR classification dataset in open set
conditions. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2021, 14, 7895–7910. [CrossRef]

12. Geng, C.; Huang, S.j.; Chen, S. Recent Advances in Open Set Recognition: A Survey. IEEE Trans. Pattern Anal. Mach. Intell. 2020,
43, 3614–3631. [CrossRef]

13. Li, Y.; Ren, H.; Yu, X.; Zhang, C.; Zou, L.; Zhou, Y. Threshold-free Open-set Learning Network for SAR Automatic Target
Recognition. IEEE Sens. J. 2024, 24, 6700–6708. [CrossRef]

14. Fang, L.; Yang, Z.; Ma, T.; Yue, J.; Xie, W.; Ghamisi, P.; Li, J. Open-World Recognition in Remote Sensing: Concepts, challenges,
and opportunities. IEEE Geosci. Remote Sens. Mag. 2024, 12, 8–31. [CrossRef]

15. Zhang, X.Y.; Xie, G.S.; Li, X.; Mei, T.; Liu, C.L. A survey on learning to reject. Proc. IEEE 2023, 111, 185–215. [CrossRef]
16. Xia, Z.; Wang, P.; Dong, G.; Liu, H. Spatial Location Constraint Prototype Loss for Open Set Recognition. Comput. Vis. Image

Underst. 2023, 229, 103651. [CrossRef]
17. Yang, H.M.; Zhang, X.Y.; Yin, F.; Liu, C.L. Robust Classification with Convolutional Prototype Learning. In Proceedings of the

IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–23 June 2018; pp. 3474–3482.
18. Yang, H.M.; Zhang, X.Y.; Yin, F.; Yang, Q.; Liu, C.L. Convolutional Prototype Network for Open Set Recognition. IEEE Trans.

Pattern Anal. Mach. Intell. 2020, 44, 2358–2370. [CrossRef] [PubMed]
19. Chen, G.; Qiao, L.; Shi, Y.; Peng, P.; Li, J.; Huang, T.; Pu, S.; Tian, Y. Learning Open Set Network with Discriminative Reciprocal

Points. In Proceedings of the Computer Vision–ECCV 2020: 16th European Conference, Glasgow, UK, 23–28 August 2020; pp.
507–522.

20. Chen, G.; Peng, P.; Wang, X.; Tian, Y. Adversarial Reciprocal Points Learning for Open Set Recognition. IEEE Trans. Pattern Anal.
Mach. Intell. 2021, 44, 8065–8081. [CrossRef]

21. Scheirer, W.J.; de Rezende Rocha, A.; Sapkota, A.; Boult, T.E. Toward Open Set Recognition. IEEE Trans. Pattern Anal. Mach. Intell.
2012, 35, 1757–1772. [CrossRef]

22. Scheirer, W.J.; Jain, L.P.; Boult, T.E. Probability Models for Open Set Recognition. IEEE Trans. Pattern Anal. Mach. Intell. 2014,
36, 2317–2324. [CrossRef]

23. Scherreik, M.D.; Rigling, B.D. Open Set Recognition for Automatic Target Classification with Rejection. IEEE Trans. Aerosp.
Electron. Syst. 2016, 52, 632–642. [CrossRef]

24. Scherreik, M.; Rigling, B. Multi-Class Open Set Recognition for SAR Imagery. In Proceedings of the Automatic Target Recognition
XXVI; SPIE: Bellingham, WA, USA, 2016; Volume 9844, pp. 150–158.

25. Rudd, E.M.; Jain, L.P.; Scheirer, W.J.; Boult, T.E. The extreme value machine. IEEE Trans. Pattern Anal. Mach. Intell. 2017,
40, 762–768. [CrossRef] [PubMed]

26. Zhang, H.; Patel, V.M. Sparse representation-based open set recognition. IEEE Trans. Pattern Anal. Mach. Intell. 2016, 39, 1690–1696.
[CrossRef] [PubMed]

27. Bendale, A.; Boult, T.E. Towards Open Set Deep Networks. In Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 1563–1572.

28. Yoshihashi, R.; Shao, W.; Kawakami, R.; You, S.; Iida, M.; Naemura, T. Classification-reconstruction learning for open-set
recognition. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Long Beach, CA, USA,
16–17 June 2019; pp. 4016–4025.

29. Oza, P.; Patel, V.M. C2ae: Class Conditioned Auto-Encoder for Open-Set Recognition. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, Long Beach, CA, USA, 15–20 June 2019; pp. 2307–2316.

30. Sun, X.; Yang, Z.; Zhang, C.; Ling, K.V.; Peng, G. Conditional Gaussian Distribution Learning for Open Set Recognition. In
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, WA, USA, 14–19 June 2020;
pp. 13480–13489.

31. Dang, S.; Cao, Z.; Cui, Z.; Pi, Y.; Liu, N. Open Set Incremental Learning for Automatic Target Recognition. IEEE Trans. Geosci.
Remote Sens. 2019, 57, 4445–4456. [CrossRef]

32. Wang, C.; Luo, S.; Pei, J.; Liu, X.; Huang, Y.; Zhang, Y.; Yang, J. An Entropy-Awareness Meta-Learning Method for SAR Open-Set
ATR. IEEE Geosci. Remote Sens. Lett. 2023, 20, 1–5.

33. Miller, D.; Sunderhauf, N.; Milford, M.; Dayoub, F. Class Anchor Clustering: A Loss for Distance-Based Open Set Recognition. In
Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision, Virtual, 5–9 January 2021; pp. 3570–3578.

34. Ge, Z.; Demyanov, S.; Chen, Z.; Garnavi, R. Generative Openmax for Multi-Class Open Set Classification. arXiv 2017,
arXiv:1707.07418

35. Neal, L.; Olson, M.; Fern, X.; Wong, W.K.; Li, F. Open Set Learning with Counterfactual Images. In Proceedings of the European
Conference on Computer Vision (ECCV), Munich, Germany, 8–14 September 2018; pp. 613–628.

36. Geng, X.; Dong, G.; Xia, Z.; Liu, H. SAR Target Recognition via Random Sampling Combination in Open-World Environments.
IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2022, 16, 331–343. [CrossRef]

37. Zhang, H.; Li, A.; Guo, J.; Guo, Y. Hybrid Models for Open Set Recognition. In Proceedings of the Computer Vision–ECCV 2020:
16th European Conference, Glasgow, UK, 23–28 August 2020; pp. 102–117.

http://dx.doi.org/10.3390/rs13152901
http://dx.doi.org/10.1109/JSTARS.2021.3100342
http://dx.doi.org/10.1109/TPAMI.2020.2981604
http://dx.doi.org/10.1109/JSEN.2024.3354966
http://dx.doi.org/10.1109/MGRS.2024.3382510
http://dx.doi.org/10.1109/JPROC.2023.3238024
http://dx.doi.org/10.1016/j.cviu.2023.103651
http://dx.doi.org/10.1109/TPAMI.2020.3045079
http://www.ncbi.nlm.nih.gov/pubmed/33326375
http://dx.doi.org/10.1109/TPAMI.2021.3106743
http://dx.doi.org/10.1109/TPAMI.2012.256
http://dx.doi.org/10.1109/TPAMI.2014.2321392
http://dx.doi.org/10.1109/TAES.2015.150027
http://dx.doi.org/10.1109/TPAMI.2017.2707495
http://www.ncbi.nlm.nih.gov/pubmed/28541894
http://dx.doi.org/10.1109/TPAMI.2016.2613924
http://www.ncbi.nlm.nih.gov/pubmed/28114060
http://dx.doi.org/10.1109/TGRS.2019.2891266
http://dx.doi.org/10.1109/JSTARS.2022.3225882


Remote Sens. 2024, 16, 3277 25 of 25

38. Kuncheva, L.I.; Bezdek, J.C. Nearest Prototype Classification: Clustering, Genetic Algorithms, or Random Search? IEEE Trans.
Syst. Man Cybern. Part C Appl. Rev. 1998, 28, 160–164. [CrossRef]

39. Kohonen, T. Improved Versions of Learning Vector Quantization. In Proceedings of the 1990 Ijcnn International Joint Conference
on Neural Networks, San Diego, CA, USA, 17–21 June 1990; pp. 545–550.

40. Bendale, A.; Boult, T. Towards Open World Recognition. In Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, Boston, MA, USA, 7–12 June 2015; pp. 1893–1902.

41. Yang, Z.; Yue, J.; Ghamisi, P.; Zhang, S.; Ma, J.; Fang, L. Open Set Recognition in Real World. Int. J. Comput. Vis. 2024, 132,
3208–3231. [CrossRef]

42. Li, W.; Yang, W.; Liu, L.; Zhang, W.; Liu, Y. Discovering and explaining the noncausality of deep learning in SAR ATR. IEEE
Geosci. Remote Sens. Lett. 2023, 20, 1–5. [CrossRef]

43. Woo, S.; Park, J.; Lee, J.Y.; Kweon, I.S. CBAM: Convolutional Block Attention Module. In Proceedings of the Proceedings of the
European Conference on Computer Vision (ECCV), Munich, Germany, 8–14 September 2018; pp. 3–19.

44. Ma, F.; Sun, X.; Zhang, F.; Zhou, Y.; Li, H.C. What Catch Your Attention in SAR Images: Saliency Detection Based on Soft-
Superpixel Lacunarity Cue. IEEE Trans. Geosci. Remote Sens. 2022, 61, 1–17. [CrossRef]

45. Zhang, T.; Zhang, X. Injection of Traditional Hand-Crafted Features into Modern CNN-based Models for SAR Ship Classification:
What, Why, Where, and How. Remote Sens. 2021, 13, 2091. [CrossRef]

46. Ghannadi, M.A.; Saadaseresht, M. A modified local binary pattern descriptor for SAR image matching. IEEE Geosci. Remote Sens.
Lett. 2018, 16, 568–572. [CrossRef]

47. Nehary, E.A.; Dey, A.; Rajan, S.; Balaji, B.; Damini, A.; Chanchlani, R. Synthetic Aperture Radar-Based Ship Classification Using
CNN and Traditional Handcrafted Features. In Proceedings of the 2023 IEEE Sensors Applications Symposium (SAS), Ottawa,
ON, Canada, 18–20 July 2023; pp. 01–06.

48. Ma, J.; Jiang, X.; Fan, A.; Jiang, J.; Yan, J. Image Matching from Handcrafted to Deep Features: A Survey. Int. J. Comput. Vis. 2021,
129, 23–79. [CrossRef]

49. Wen, Y.; Zhang, K.; Li, Z.; Qiao, Y. A Discriminative Feature Learning Approach for Deep Face Recognition. In Proceedings of the
Computer Vision–ECCV 2016: 14th European Conference, Amsterdam, The Netherlands, 11–14 October 2016; pp. 499–515.

50. Ma, X.; Ji, K.; Zhang, L.; Feng, S.; Xiong, B.; Kuang, G. SAR Target Open-Set Recognition Based on Joint Training of Class-Specific
Sub-Dictionary Learning. IEEE Geosci. Remote Sens. Lett. 2024, 21, 3342904. [CrossRef]

51. He, K.; Zhang, X.; Ren, S.; Sun, J. Deep Residual Learning for Image Recognition. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 770–778.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1109/5326.661099
http://dx.doi.org/10.1007/s11263-024-02015-9
http://dx.doi.org/10.1109/LGRS.2023.3266493
http://dx.doi.org/10.1109/TGRS.2022.3231253
http://dx.doi.org/10.3390/rs13112091
http://dx.doi.org/10.1109/LGRS.2018.2876661
http://dx.doi.org/10.1007/s11263-020-01359-2
http://dx.doi.org/10.1109/LGRS.2023.3342904

	Introduction
	Related Works
	Open Set Recognition
	Prototype Learning

	Methodology
	Overview of RCS-OSR
	Cross-Modal Causal Features Enhancement Module
	Multi-Scale Abstract Features Aggregation Branch
	Auxiliary Features Injection Branch
	Cross-Modal Hybrid Feature Fusion Block

	Hybrid Loss for Discriminative Prototype Learning
	Class-Aware OSR Classifier with Adaptive Thresholding

	Experiments and Results
	Experimental Setup
	Dataset Description and Implementation Details
	Evaluation Protocols

	Comparison with Other OSR Methods
	Performance Comparison on the MSTAR Dataset
	Performance Comparison Against Various Openness and Epochs


	Discussion
	Ablation Studies
	Performance Comparison with Different Loss Functions
	Effectiveness Evaluation of CMCFE
	Influence of Prototype Number K
	Hyperparameters Analysis of the Hybrid Loss Function

	Conclusions
	References

