
1

User Preferences-Based Proactive Content Caching
with Characteristics Differentiation in HetNets

Na Lin, Yamei Wang, Enchao Zhang, Graduate Student Member, IEEE, Shaohua Wan, Senior Member, IEEE,
Ahmed Al-Dubai, Senior Member, IEEE, Liang Zhao, Member, IEEE,

Abstract—With the proliferation of mobile applications, the
explosion of mobile data traffic imposes a significant burden on
backhaul links with limited capacity in heterogeneous cellular
networks (HetNets). To alleviate this challenge, content caching
based on popularity at Small Base Stations (SBSs) has emerged
as a promising solution. However, accurately predicting the file
popularity profile for SBSs remains a key challenge due to vari-
ations in content characteristics and user preferences. Moreover,
factors such as content size and the length of time slots (that is,
the time duration of the update cycle for SBSs) critically impact
the performance of caching schemes with limited storage capacity.
In this paper, a realism-oriented intelligent caching (RETINA)
is proposed to address the problem of content caching with
unknown file popularity profiles, considering varying content
sizes and time slots lengths. Our simulation results demonstrate
that RETINA can significantly enhance the cache hit rate by
4%–12% compared to existing content caching schemes.

Index Terms—Heterogeneous Cellular Networks, Reinforce-
ment Learning, Content Caching, unknown file popularity pro-
files, content characteristics, user preferences.

I. INTRODUCTION

With the evolution of communication technologies, the
volume of mobile data traffic has witnessed a significant surge,
particularly in video services [1]. Cisco projects that global
mobile data traffic will expand nearly eight-fold by 2023 [2],
placing considerable strain on backhaul links with limited
capacity. Multimedia content, including movies, music and
video clips, constitutes the predominant share, accounting for
80% of the total data traffic. To address the increasing demand
for mobile data, the concept of Heterogeneous Cellular Net-
works (HetNets) has been introduced [3]. HetNets leverage a
mix of Small Base Stations (SBSs) and Macro Base Stations
(MBSs) to serve users over short-distance communication
links, thereby enhancing network capacity and spectrum ef-
ficiency [4]–[6]. However, the cost associated with high-speed
links connecting HetNets to the core network is exorbitant,
and the user’s Quality of Experience (QoE) is significantly
impacted by connection quality. Furthermore, a notable trend

Na Lin, Yamei Wang and Liang Zhao are with the School of Computer
Science, Shenyang Aerospace University, Shenyang 110136, China. (e-mail:
linna@sau.edu.cn; a13483024838@163.com; lzhao@sau.edu.cn).

Enchao Zhang is with the Graduate School of Informatics and Engineer-
ing, University of Electro-Communications, Tokyo, Japan. (e-mail: zhangen-
chaogm@gmail.com).

Shaohua Wan is with the Shenzhen Institute for Advanced Study, University
of Electronic Science and Technology of China, Shenzhen 518110, China. (e-
mail: shaohua.wan@ieee.org).

Ahmed Y.Al-Dubai is with the School of Computing, Edinburgh Napier
University, UK. (e-mail: a.al-dubai@napier.ac.uk).

Liang Zhao is the corresponding author.

is that a small subset of content generates the majority of
mobile traffic. Consequently, caching popular content at SBSs
has emerged as a viable strategy to enhance user QoE and
alleviate backhaul pressure.

Efficient content caching at Small Base Stations (SBSs)
necessitates the deployment of suitable caching strategies,
which involve determining the content file to cache within the
SBSs’ limited caching capacity. The file popularity profile,
representing the anticipated number of requests for each
content file and indicative of user preferences, serves as a
pivotal metric for designing optimal caching strategies [7].
However, in practical scenarios, user preferences are often
unknown beforehand. Hence, the accuracy of predicting the
file popularity profile emerges as a critical determinant of
the caching scheme efficiency. In recent years, predicting file
popularity profiles has garnered significant attention from both
academia and industry. Due to the dynamic nature of file
popularity, Reinforcement Learning (RL) has been proposed
to learn file popularity online [8]–[13]. RL-based algorithms
allow users to learn optimal caching strategies through in-
teractions with the environment, facilitating real-time model
updates. Consequently, RL presents a promising solution for
content caching with time-varying file popularity. However,
existing RL-based content caching schemes face challenges
related to caching scheme performance and training efficiency,
necessitating further research and development efforts.

First, existing research often overlooks the influence of con-
tent characteristics on the content caching process. Variations
in content characteristics result in differences in the actual
size of the content. For instance, multimedia files encompass
diverse types such as movies, short videos, and music, each
varying in size. Given the limited caching capacity of SBSs,
the size of the content becomes a crucial factor in content
caching decisions. When faced with files of similar popularity
but varying sizes, prioritizing smaller files for caching con-
serves storage space, allowing SBSs to cache a greater number
of popular files and maximize the overall rewards of the
caching scheme. Thus, addressing the variance in content size
across different file types emerges as a critical consideration.

Second, each SBS covers a distinct area in HetNet. Users
located in different areas may prefer different types of files.
Consequently, the consumption duration of each file type
varies, significantly impacting the training efficiency of RL-
based caching schemes. However, current RL-based caching
schemes assume uniform time slot lengths across all SBSs,
overlooking this variability. This assumption can lead to the
following situations. On the one hand, the length of the time

2

TABLE I
COMPARISON BETWEEN RELATED WORK AND OUR WORK

Studies Heterogeneous network topology Modeling caching
problem

Content
characteristics

The variety of user prefer-
ences in different regions

this work multiple SBSs CMAB
√ √

[18]-[20] multiple SBSs MDP × ×
[21] single SBS CMAB

√
×

[17],[22-30] multiple SBSs CMAB × ×
[31],[33] multiple SBSs Contextual MAB × ×
[32] single SBS Contextual MAB × ×

slots is too short for a region. In the current time slot, most
users still consume content from the prior slots, causing a
large reduction in the number of available users (i.e. those
who can request files during the request phase). Therefore,
there is insufficient experience to learn knowledge of the file
popularity profile, which decreases the training efficiency. On
the other hand, the length of the time slots is too long. Most
users have consumed the content requested in the current
time slot and must wait for the arrival of the next time slot,
increasing the total training costs. Hence, determining the
time slot lengths for SBSs based on the consumption duration
of file types preferred by users in the corresponding SBS
coverage area is imperative for enhancing training efficiency
and optimizing caching scheme performance.

To fill the aforementioned gaps, we propose a realism-
oriented intelligent caching (RETINA) scheme for HetNet.
RETINA leverages the RL-based algorithm to facilitate adap-
tive content caching without requiring prior knowledge, mak-
ing it well-suited for predicting time-varying file popularity.
Furthermore, RETINA comprehensively considers differences
in content characteristics and user preferences during the
content caching process. The key contributions of this paper
are outlined as follows.

• To address the challenges posed by time-varying file
popularity, we introduce an adaptive caching scheme
called RETINA, designed to predict file popularity online.
The proposed scheme efficiently delivers caching services
with high effectiveness.

• Comprehensively addressing the impact of differences in
content characteristics on caching system performance,
RETINA integrates factors such as file popularity profiles
and file sizes to generate caching strategies, thereby
enhancing the overall performance of the caching scheme.

• To accommodate diverse user preferences across different
regions, we propose a lightweight algorithm to adaptively
determine the length of time slots for Small Base Stations
(SBSs). This approach significantly enhances the training
efficiency of RETINA.

The rest of the paper is structured as follows. We discuss
related work in Section II. The system model and problem
formulation are introduced in Section III. In Section IV, we
present our realism-oriented intelligent caching scheme named
RETINA and the analysis of RETINA. Section V shows
simulation results. Section VI concludes the paper.

II. RELATED WORK

In this section, we summarize the existing work in the field
of content caching with unknown file popularity profiles. We
begin by summarizing the state-of-the-art trends in content
caching. Next, we discuss the existing works by classifying
them into two categories. Finally, we highlight the advantages
of our proposed scheme, RETINA, by addressing the limita-
tions of existing caching schemes.

A. Recent Trends in Content Caching

To address the increasing demand for mobile data, most
recent works study the problem of caching popular content
at SBSs to enhance user QoE and alleviate backhaul pres-
sure. For instance, the works of [14]–[16] study the content
placement problem in heterogeneous cellular caching networks
with the aim of minimizing average user-experienced delay.
The proposed schemes consider the stochastic arrival of user
requests and traffic models, providing corresponding closed-
form expressions. The author considers user mobility and
proposes three novel mobile-aware caching schemes [15]. The
work of [14] considers the overlapping coverage area of SBSs
and proposes a Cooperative Most Popular Caching (CMPC)
scheme. In [16], the author proposes a new analysis method
based on queuing theory to find the minimum cache size for
SBSs. However, these works overlook the dynamic nature of
file popularity. In practice, file popularity is unknown and
time-varying, critically impacting the performance of caching
systems. Consequently, in recent years, most works have
focused on the content caching problem of unknown file
popularity and applied online RL to meet the time-varying
file popularity profiles.

The RL-based algorithms allow users to learn optimal
caching strategies online through interactions with the envi-
ronment, facilitating real-time model updates. Accordingly, the
caching strategy can be dynamically adjusted to keep up with
trends of the time-varying file popularity profiles in real-time.
Consequently, RL presents a promising solution for content
caching with time-varying file popularity. The RL algorithms
can be based on Markov decision processes (MDP) or Multi-
armed bandits (MAB) [17]. MDP generally models a problem
as a multi-state decision process, while MAB is usually a
stateless (or single-state) model. The state-of-the-art works in
MDP and MAB are discussed in the following subsections.

3

B. Markov Decision Processes-Based Schemes

MDP is normally a multi-state model (i.e., a problem is
modeled as a multi-state decision process). The time-varying
system state is a crucial factor in the decision-making process
[18]. For instance, the authors of [19] consider actual time-
varying channels and model them as a finite-state Markov
channel. The caching problem is modeled to an MDP and the
deep Q-learning algorithm is proposed to resolve the problem.
The set of caching scheme states is a vector of content decision
(i.e., whether the content is cached). In [20], the authors
model the caching problem and joint pushing as an infinite-
horizon average-cost MDP. The value function approximation
of Q-learning and a deep Q-network are applied to resolve
the problem. However, a common challenge in the MDP-
based RL algorithms is the lack of a theoretical guarantee of
performance, as the performance of the MDP-based algorithms
cannot be mathematically proven to converge to an optimal
value. Conversely, MAB offers a straightforward solution to
content caching problems without the need for MDP modeling.
Moreover, MAB-based algorithms are often more accessible
for implementation in practice. Consequently, much of the
research in wireless content caching has focused on MAB-
based algorithms, as we review in the following.

C. Multi-armed bandit-Based Schemes

In the study of the prediction of file popularity profiles
based on MAB, the prediction problem is modeled into two
aspects, which are the stochastic combinatorial MAB (CMAB)
problem and the stochastic contextual bandit problem. Most
researchers study the prediction problem based on the stochas-
tic CMAB problem [17], [21]–[30]. The work of [21] is the
first work utilizing the MAB theory to resolve the problem
of content caching with unknown file popularity profiles. The
authors model the problem of content caching as a stochastic
CMAB problem and design an online learning scheme to
solve it. This work only sets content with different sizes but
ignores the impact of the content size on the performance of
the caching scheme during the process of content caching.
In [29], their study particularly satisfies multiple small-cell
scenarios. They consider that the network shares limited
external resources, such as wireless backhaul resources and
computational resources, and provide the intelligent scheme
based on the stochastic CMAB with locked-up slots. In [26],
the authors consider the scenario in which SBSs’ coverage
zones overlap. They model the problem of content caching as
a stochastic CMAB problem with asleep arms and present an
online learning scheme to address this problem, which users
located in an overlapping area can freely select to connect
to their preferred SBS. In [17], the authors consider users’
availability and model the problem of content caching as a
stochastic CMAB with asleep arms. Then, the authors provide
an online learning scheme to address the problem. In their
work, some arms are “asleep” (or unavailable) if they cannot
provide feedback within the required time slot range.

With regard to the work of stochastic contextual bandits, in
[31]–[33], the authors model the problem of content caching
as a stochastic contextual MAB problem. The learning agent

Fig. 1. Heterogeneous network topology.

utilizes users’ contextual information to learn the caching strat-
egy, such as their gender, age, mood, and location. However,
users do not want to divulge contextual information for their
own privacy protection in real life. Therefore, the achievement
of contextual information is unpractical to collect by network
operators. Consequently, the problem transformation of the
stochastic contextual bandit is unnecessary.

D. Summary
Through extensive literature review in the field of content

caching with unknown file popularity profiles, we discover
the bottleneck issues in state-of-the-art works. First, most
existing work ignores the impact of the differences in content
characteristics during the process of content caching. Due to
the differences in content characteristics, the actual size of the
content is various. Considering the limited caching capacity
of SBSs, the factor of content size plays an important role
in content caching. Therefore, this paper considers the differ-
ence in the content’s actual size when designing a caching
scheme. Second, users located in different areas may prefer
different types of files. Accordingly, the consumption duration
of each type of file is different, which needs to be highlighted.
However, in the existing RL-based caching work, the whole
service time is slotted, and the length of each time slot is the
same. This setup reduces the training efficiency and increases
the training cost of RL. Consequently, it is necessary that the
lengths of time slots for SBSs be determined according to the
usage duration of file types preferred by users in the same
SBS serving area. In our work, we leverage the MAB-based
algorithm to learn file popularity profiles. We simultaneously
consider both the difference in content characteristics and
the variety of user preferences during the process of content
caching. To the best of our knowledge, the proposed scheme
is the first work to solve the problem of content caching with
unknown file popularity profiles that jointly consider these two
factors.

III. SYSTEM MODEL AND PROBLEM FORMULATION

A. Network Model
We consider a heterogeneous cellular network where k

cache-enabled SBSs are placed in the coverage area of an

4

MBS. As illustrated in Fig. 1, each SBS covers a disjointed
area and works independently. Define the set of all SBSs as
K := {1, 2, ...,K}, and set Uk collects all users served by
SBS k. Denote the set of all available files stored at the
remote cloud server as F with size |F|, by Sf the size of
the f -th file in F. All files are divided into n types, and the
set of consumption duration of each file type is defined as
L := {l1, l2, ..., ln}. Moreover, we utilize θkf,t to express the
popularity of file f ∈ F for SBS k at t-th time slot, and
then the file popularity profile for SBS k is represented as
Θk := {θkf : ∀f ∈ F}.

B. Cache Model

In the problem of content caching with unknown file pop-
ularity profiles, MBS acts as a learning agent to learn the file
popularity profile and develops the caching strategy for SBSs.
In addition, each SBS acts as a storage device with a capacity
of c < |F| to store the favorite content of the served users.
The MBS has higher computing power than the SBS, while
the SBS is considerably closer to its users compared with the
MBS. Obviously, this design can reduce backhaul traffic and
energy consumption. Define pkt as the caching strategy of SBS
k at t-th time slot. We define αk

f,t as the caching state of file
f for SBS k at t-th time slot.

αk
f,t =

{
0, if the file f is not cached at SBS k
1, if the file f is cached at SBS k (1)

C. Request Model

For the user group Uk, each of them sends the request inde-
pendently and follows a Zipf distribution [34]. The popularity
of the file depends on how many times it is requested. The
probability of the j-th most popular content being requested
is shown as,

pj =
1

jγ
∑N

i=1 i
−γ

, where j ∈ {1, 2, ...,F} (2)

where pj is the probability that the file j is requested by the
users, N being the number of files, γ being the skewness of
the content popularity profile. The larger the γ, the popularity
profile becomes more skewed, i.e., the more concentrated on
the high-ranked content requested by the users.

D. Service Model

The whole service time is divided into slots with slot index
t = 1,2,..., T. In each slot, the following happens in sequence.
(i) Each SBS reports the availability (see Remark) of users
served to MBS, and MBS develops a caching strategy pkt ⊆ F
for SBS k according to currently available users uk

t ⊆ Uk.
(ii) MBS renews the SBS cache based on the caching strategy
just determined. (iii) Each SBS broadcasts a list of cached
content to its users, and all available users consume their
favorite content. SBS then observes and reports the rewards
of cached files to MBS. (iv) MBS updates the file popularity
profile based on reports and adjusts the length of the next slot
for SBSs.

TABLE II
NOTATIONS

Notation Definition
F Collect all the Content
K Collect all the SBSs
Sf The size of the f -th file in F
Uk Collect the users served by SBS k ∈ K
L The consumed time set of each file type
pkt Caching strategy for SBS k in t-th time slot
uk
t Collect the available users for SBS k in t-th time

slot
c Caching size of the SBS
αk
f,t The caching state of file f for SBS k at t-th time

slot
γ The skewness of the content popularity profile
θkf,t The popularity of file f ∈ F for SBS k at t-th

time slot
Θk The file popularity profile for SBS k, i.e., Θk :=

{θkf : ∀f ∈ F}
Ak
t The number of each file requested by available

users in the SBS k at t-th time slot
Hk

t The cache hit rate of SBS k

Q Request times queue
S Request probability stock

Remark: The availability of users means that a user is
available if he/she can request the cached files within the
length of the current slot t, i.e., [t, t+ 1].

E. Problem Formulation

In our work, each SBS has to cache the users’ favorite
files. Therefore, the target of the learning agent is to generate
optimal caching strategies to maximize the cache hit rate of
the caching scheme. Set Ak

t := {Ak
1,t, A

k
2,t, ..., A

k
f,t} is defined

as the number of each file requested by available users in
the SBS k at t-th time slot. And then the total number of
requests from the available users of the SBS at t-th time slot
is |Ak

t | :=
∑f

i=1 A
k
i,t. Hence, the cache hit rate of SBS k can

be expressed as,

Hk
t =

∑f
i=1 A

k
i,t · αk

i,t

|Ak
t |

. (3)

The learning agent aims to maximize the cache hit rate of
the caching scheme. Therefore, the problem is formulated as,

max
pk
t

:

T∑
t=1

K∑
k=1

Hk
t

s.t. pkt ⊆ F,
∑
j∈pk

t

Sj ≤ c, ∀k ∈ K. (4)

For better readability, we summarize the notations as TA-
BLE II.

5

IV. THE PROPOSED SCHEME

In this section, we present the details of RETINA to solve
the above optimization problem. The proposed scheme tackles
three primary challenges. The first challenge is uncertainty, as
the file popularity profile Θk needs to be evaluated. Accord-
ingly, we face a dilemma between exploration (estimating the
reward of the other arm to reduce the influence of uncertainty)
and exploitation (pulling the empirically best arms to achieve
the highest instantaneous reward). In our scheme, the MAB-
based algorithm is employed to balance exploitation and ex-
ploration, thereby maximizing the expected cumulative reward.
The second challenge is differences in content characteristics,
as the fact that the factor of content size critically impacts the
performance of caching systems with limited storage capacity
of SBSs. We improve the Upper Confidence Bound (UCB)
algorithm to increase the performance of RETINA. The third
challenge is the variety of user preferences in different regions,
as the length of time slots impacts the performance of caching
schemes. A lightweight algorithm is proposed to adaptively de-
termine the length of time slots for SBSs, which significantly
improves the training efficiency of RETINA. The specific
implementation details are as follows in the subsections.

A. The balance of exploitation and exploration

In this subsection, the MAB-based algorithm is utilized
to maximize the expected sum reward via exploration-
exploitation management. We transform the content caching
problem into the MAB, which refers to a player playing
a slot machine with multiple arms. Every time the player
pulls an arm, the machine gives him a reward from an
unknown statistical function. The player aims to maximize
the reward. In the beginning, the player knows nothing about
the rewards of all the arms of the machine. It becomes a
challenge to determine how to pull different arms within a
limited number of attempts to obtain the greatest reward. To
maximize the reward, the player explores to better exploit the
arm. Therefore, we confront a dilemma between exploitation
(pulling the empirically best arms to achieve the highest
instantaneous reward) and exploration (estimating the reward
of the other arm to reduce the influence of uncertainty). In
MAB algorithms, the UCB algorithm [35] can better balance
exploitation and exploration. Consequently, UCB is used to
maximize the expected sum reward.

In the UCB learning model, agent, action, and reward
need to be defined properly. In our caching scheme, MBS
is regarded as the agent, and a file is treated as an arm. The
caching decision of content f is treated as an action, which is
defined as af (i.e., if content f is cached in the SBS af = 1
and if not af = 0). The reward is defined as the varying of
the cache hit rate. For the SBS k, the reward in the t-th period
is defined as,

Rk
t = Hk

t −Hk
t−1. (5)

The UCB algorithm can achieve a relative balance of
exploration and exploitation based on the currently known
average reward of the rocker’s arm plus a ”boundary value”.

The core idea of UCB is to remain optimistic in the face
of uncertainty by constructing a confidence radius around the
estimation. We define the upper confidence bound θ

k

f,t of the
estimation for each arm (i.e., each file) as follows [35],

θ
k

f,t := θ̂kf,Nk
f,t

+

√
1.5 ln t

Nk
f,t

, (6)

where Nk
f,t records the times that the file f has been chosen

at the end of t-th time slot and θ̂k
f,Nk

f,t

is the empirical mean
reward (the average observed value) of the file f after all these
Nk

f,t observations. We call
√

1.5 ln t
Nk

f,t

the confidence radius, and
it is essentially the standard deviation of the mean. According
to the reflection of the above formula, with the increasing
value of the mean, the standard deviation is decreased, which
further leads to the increasing chosen probability. Meanwhile,
those arms that have been chosen fewer times will also obtain
experimental opportunities. Mathematically, the true mean of
θ̂kf lies inside the confidence radius surrounding the empirical
mean with a high likelihood according to Hoeffding’s inequal-
ity [36]. If the file f has been chosen numerous times, it is
intuitive that θ

k

f,t is extremely close to the true mean θkf .
When running the UCB algorithm, the values of θ̂k

f,Nk
f,t

and

Nk
f,t need to be maintained for all f ∈ F respectively. At the

end of t-th slot, the values of θ̂k
f,Nk

f,t

and Nk
f,t can be updated.

Then, the rules to update these two values can be grouped into
(7),

Nk
f,t = Nk

f,t−1 + 1

θ̂kf,Nk
f,t

=
Nk

f,t−1θ̂
k
f,Nk

f,t−1

+ θ̂k
f,Nk

f,t

Nk
f,t

. (7)

To comprehensively consider the impact of the difference
in file size on the performance of the caching scheme, we
add the file size to the indicator calculation formula θ

k

f,t.

Specifically, we multiply θ
k

f,t by a weight 1
Sj

(reciprocal of

file j size), j ∈ pkt , marked as θ̃kf,t. It means the value per
unit size. The advantage of this modification is that the MBS
considers the file popularity profile and the actual size of files
simultaneously when generating caching strategies for SBSs
(i.e., selecting files with the maximum value of θ̃kf,t instead of

θ
k

f,t at each slot), which can improve the performance of the
caching scheme. θ̃kf,t is defined in (8),

θ̃kf,t :=

(
θ̂kf,Nk

f,t
+

√
1.5 ln t

Nk
f,t

)
1

Sj
. (8)

B. The adaptive setting of the length of time slots

1) The description of algorithm 1: Due to the variety
of user preferences in different areas and the difference in
file sizes, the lengths of time slots for SBSs be determined
according to the usage duration of file types preferred by users
in the same SBS serving area. The specific method is shown
in Algorithm 1. We use LT to represent the length of the next

6

slot. Specifically, we set up a stack Sk for SBS k. The stack
Sk stores n elements as {r1, r2, ..., rn}, and rn represents the
probability that the n-th file type is requested. Meanwhile, we
use queue Q to store the times of requests for each file type
as Q = {q1, q2, ..., qn}. Queue Q can be obtained by MBS. At
the end of each slot, MBS calculates the value of rn according
to the user’s request queue Q and sorts them in descending
order, and then pushes them to Sk in turn, as shown in Lines
1 to 5. We use tp to represent the file type represented by
the top element of the stack, i.e., tp ∈ [1, n]. Consequently,
rtp represents the value of the top element in the stack S. If
rtp is less than the specific value v, then it will be popped
from the stack S, as shown in Lines 6 to 8. Finally, we judge
whether stack S is empty. If stack S is not empty, then there
must be at least one file type being requested that exceeds v.
Then we set LT = ltp. Conversely, the request probability of
each file type is less than v, and then we set LT to one of the
maximum values in the set L, as shown in lines 9 to 13.

Algorithm 1 Length Of Next Slot
Input: Stack S: Store the probability of each file type being

requested;
Request Queue Q: Store the times of requests for

each type of file;
n: Number of file types;
v: The baseline to determine the length of the next

time slot;
Output: LT : Length of the next slot;

1: Initial request queue Q = {q1, q2, ..., qn};
2: for i = 1 to n do
3: Calculate the probability of the i-th file type being

requested based on ri =
qi∑n

j=1 qj
,∀i ∈ [1, n];

4: end for
5: Sort {r1, r2, ..., rn} in descending order and Stack in turn;
6: while rtp < v do
7: pop;
8: end while
9: if Stock S != NULL then

10: LT = ltp;
11: else
12: LT = max(L);
13: end if

2) The determination of the value of v: in this subsection,
we adaptively adjust the system setting to meet the time-
varying user preference and further improve the training
efficiency of RETINA. The value of v represents the baseline
to determine the length of the next time slot. For instance,
when v is set to 70%, if the request rate for a file type
reaches 70%, the length of the next time slot is designed
to the usage duration of this file type. The high value of
v denotes the high request probability of a certain type. A
large proportion of users’ requirements are satisfied when the
length of the next time slot is adjusted to the usage duration
of this file type, which means that the number of available
users increases at the next time slot. Therefore, RETINA has
sufficient experience to learn knowledge of the file popularity
profile, which improves the training efficiency of RETINA.

Fig. 2. The training efficiency of RETINA under different circumstances.

This condition denotes that the value of v has a critical impact
on training efficiency. In addition, since the setting of the
length of time slots is related to user preference, the value of v
that can achieve optimal training efficiency is different under
different user preference distributions. We can dynamically
adjust this parameter according to different distributions of
user preferences.

For different user preference distributions, we provide the
simulation results on the training efficiency of RETINA under
different values of v, which assist the determination of the
value of v (as shown in Fig. 2). γ represents the degree of
concentration of user request files, which reflects the largest
user preference distribution. Three distributions of user prefer-
ences are set as γ = 0.5, 0.75, 1 to represent ”unconcentrated”,
”relative concentration”, and ”quite concentration”. As shown
in Fig. 2, with the increase of γ, RETINA converges faster.
The reason for this phenomenon is that if most users have
the same preference, the variance of the data set and action
space of RL is low, and the convergence speed to generate the
optimal caching strategy is relatively fast.

When γ = 0.5, with the increased value of v, the training
efficiency of RETINA is greatly improved. The reasons are
as follows. First, when v is set to [30% − 50%], due to the
non-centralized distribution of user preferences, there may be
a request rate of between 30% and 50% for a certain file type.
The length of the next time slot is set to the consumption
duration of this file type, which cannot meet the file usage
duration of about 70% users. Consequently, the number of
available users decreases at the next time slot, and RETINA
has insufficient experience to learn knowledge of the file
popularity profile, which reduces the training efficiency of
RETINA. Second, when the value of v is set to a larger
value, there is no file type with a request rate for the value
of v. The length of the next time slot is set to the largest
consumption duration of all file types, which can meet the
file usage duration of most users. Consequently, the training
efficiency of RETINA is improved. When γ = 0.75, due to
the relative concentration of user preference distribution, there
may be a request rate of 70% for a certain file type. The length

7

of the next time slot is set to the consumption duration of this
file type, which cannot meet the file usage duration of about
30% users. Consequently, the training efficiency of RETINA
is reduced. Under this preference distribution, there is no file
type with a request rate of 90%. Consequently, the length of
the next time slot is set to the largest consumption duration
of all file types, which improves the training efficiency of
RETINA. When γ = 1, the training efficiency of RETINA
under different v values has a low variance. This is because
the distribution of user preference is quite concentrated, and
there may be a request rate of 90% for a certain file type. The
length of the next time slot is set to the consumption duration
of this file type, which can meet the file usage duration of
most users. In conclusion, v can be set to about 90% when
γ = 0.5 and γ = 0.75, and v can be set to any value between
10% and 100% when γ = 1.

Algorithm 2 The RETINA Scheme
1: for All k ∈ K do
2: Initialize: cache all files at least once, observe the

rewards, update θ̂kf,0 and Nk
f,0, and set LT = max(L);

3: for All t = 1, 2, ..., T do
4: Nk

f,t = Nk
f,t−1, ∀f ∈ F;

5: θ̂kf,t = θ̂kf,t−1, ∀f ∈ F;
6: SBS observe the available users uk

t ⊆ Uk and
report to MBS;

7: MBS calculate the UCB estimate θ̃kf,t,∀f ∈ F
based on (8), and develop caching strategy pkt by
resolving (4);

8: SBS play pkt ;
9: MBS update Nk

f,t and θ̂k
f,Nk

f,t

base on (7);
10: Get LT by running Algorithm 1 and adjust the

length of the next slot to LT ;
11: end for
12: end for

C. The overall caching scheme (RETINA)

Based on the above, the overall caching scheme called
RETINA is presented in Algorithm 2. For SBS k, the content
in the file library is cached at least once during initialization.
Then SBS k observes the condition of the cached content to
obtain the initially estimated content demand, and the MBS
updates the parameters θ̂k

f,Nk
f,0

and Nk
f,0, as shown in Lines 1

to 2. In t-th time slot, we use the values of θ̂kf,t and Nk
f,t gained

at the end of time slot t−1 as the input of the current slot, as
shown in Lines 4 to 5. The MBS observes the set of available
users uk

t ⊆ Uk and calculates the UCB estimate defined in
(8) for each available user, and develops caching strategy pkt
for SBS k. After that, the SBS refreshes the cache based
on the caching strategy determined by MBS and broadcasts
the cached content list to available users. All available users
consume their favorite content, and then the SBS observes and
reports the rewards of cached content to the MBS. Finally, the
MBS updates θ̂k

f,Nk
f,t

and Nk
f,t for all arms in pkt according

to actual observations and gets the length of the next slot LT
by running algorithm 2, as shown in Lines 6 to 9. In this

way, a stable caching strategy is obtained by continuous online
learning.

D. The complexity analysis of RETINA
In this subsection, we analyze the time and space complex-

ity, and the communication overhead for the proposed scheme.
For the purpose of simplicity, we only analyze one SBS since
each SBS works independently.

1) The time complexity analysis: In terms of time com-
plexity, it appears that solving the optimization problem (4)
consumes resources. first, an effective method to compute∑

i∈pk
t
θ̃kf,t for all j ∈ F. Second, these values are sorted in

descending order, and select the top c values as the optimal
caching strategy. The time complexity of these values being
sorted is O(|F|log|F|).

2) The space complexity analysis: Regarding the space
complexity, the MBS requires maintaining two values Nk

f,t

and θ̂kf,t for each file. The space complexity is O(|Uk||F|) for
SBS k because there are |Uk||F| pairs for SBS k. In addition,
MBS needs to maintain the queue Q and stock S. In each slot,
stock S and queue Q can buffer T values. In conclusion, the
cost of maintaining the buffer is O(|Uk||F|).

It indicates that our proposed RETINA scheme is efficient
for the O(|U||F|) space complexity and the O(|F|log|F|) time
complexity.

3) Communication overhead analysis: The length of each
message used in communications is analyzed. There are four
types of communication between the MBS, SBS, and users.
Firstly, when the users report their availability to MBS by
their connected SBS (i.e., a binary variable), the information
cost for the communication is O(|U|). Secondly, MBS tells
SBS to cache c content, and SBS broadcasts cached content
to the users. Consequently, the information cost for the com-
munication is O(c). Thirdly, when the users request cached
content, the information cost for the communication is O(U).
Finally, when SBS informs corresponding observational results
to MBS, the information cost for the communication is O(c).

As a result, the overall communication overhead of RETINA
is O(U+ c).

TABLE III
SIMULATION PARAMETERS AND VALUES

Parameter Value
The number of files 1000
Size of each file 10-500 MB
Total size of the files 260000 MB
The caching capacity of SBS 16000 MB
The number of users 30, 50, 70
The number of file types 8
The resolution of the user’s device 720P
The video code rate 3Mb/s

V. RESULTS AND DISCUSSION
A. Experiment Settings and Scenarios

In this section, RETINA is implemented to verify its perfor-
mance. Experiments are conducted in the general scenario of

8

HetNet, where three SBSs are deployed within the coverage of
one MBS. According to the simulation setting in [17], there
are 30, 50, and 70 users respectively located in these three
SBSs. We evaluate the performance of RETINA on video files.
Note that we assume that the network environment and the
data transmission rate of users are the same. We set the file
amount to 1000 and the total file size to 260000 MB, i.e.,
|F| = 260000 MB. The caching capacity of each SBS is
16000 MB, i.e., 6%|F|. The size of each file is set to vary
randomly from 10 MB to 500 MB, which is derived from a
realistic data set. We set the type of file amount to 8, and the
required consumption duration of each type is given by the
Eq. 9,

li =
Sf · 8
r

(9)

where r is the video code rate. We assume that the resolu-
tion of the user’s device is 720P , and r is set to 3Mb/s.
The Zipf distribution is used to model the request of users.
Furthermore, Different values are set for experimental pa-
rameters, including the parameter of Zipf γ and the caching
capacity of SBSs. The set of Zipf parameter γ is denoted
as Γ := [0, 0.5, 0.75, 1], and the set of caching capacities is
denoted as C := [5%, 10%, 15%]. We show the simulation
parameters and the values in TABLE III.

B. Counterparts

To verify the performance of RETINA, we compare
RETINA with the following schemes.

Optimal: Optimal has prior knowledge of file popularity
profiles, which means that the popularity of the files requested
by the user is known in advance. Under this assumption,
Optimal can optimally cache the files requested by the user
at the current moment and maximize the utility of the limited
caching capacity, which is unrealistic. Optimal is only used to
describe the upper bound of the performance of online learning
schemes.

CFAUD: CFAUD is proposed in [17], the authors consider
users’ availability and delayed feedback. The authors model
the problem of content caching as a stochastic CMAB with
asleep arms and provide a UCB-based scheme to address the
problem. In their work, some arms are ”asleep” (or unavail-
able) if they cannot provide feedback within the required time
slot range.

UCB-CS: UCB-CS is proposed in [26], the authors model
the problem of content caching with unknown file popularity
profiles under multiple SBSs as a stochastic CMAB problem
and make use of the UCB algorithm to solve it. Our scheme
fills some gaps in the UCB-CS scheme by considering the
impact of the actual size of files on the caching scheme and
the lengths of time slots.

ϵ−greedy: In the ϵ−greedy scheme, MBS randomly caches
c files according to probability ϵ and caches c files with
the highest empirical mean with probability 1 − ϵ. In our
experiment, we set ϵ = 0.1.

SCCP: In [37], the authors devise a smart content caching
policy (SCCP) for content caching in the heterogeneous

Fig. 3. Performance evaluation of RETINA and other UCB-based schemes.

cellular network. The authors adopt the cubic exponential
smoothing method to predict the number of downloads of
content downloaded by users.

Myoptic: Myopic is that the agent will cache the popular
content that was requested by users in the prior time slot. At
the same time, the agent will randomly replace the content
that has not been requested by users in the last time slot.

F-UCB: The UCB scheme that only considers the file size
but not the length of time slots is called F-UCB.

T-UCB: The UCB scheme that only considers the length of
time slots but not the file size is called T-UCB.

C. Performance Evaluation of RETINA

To assess the effect of the length of the files and time
slots on the caching scheme, we have conducted extensive
evaluations by vertical comparisons, as shown in Fig. 3. Fig. 3
presents the time-averaged cache hit rate of RETINA, F-UCB,
T-UCB, and UCB. The comparison between RETINA and T-
UCB reflects the impact of the file size on the caching scheme.
The comparison between RETINA and F-UCB reflects the
impact of the length of time slots on the caching scheme.
First, RETINA and F-UCB consider the file size and add
this indicator to our evaluation. The file popularity and the
file size are considered simultaneously for the generation of
caching strategies. However, T-UCB and UCB do not consider
the file size. Consequently, the performance of RETINA and
F-UCB has more advantages than T-UCB and UCB. Second,
RETINA and T-UCB devise the adaptive setting of the length
of time slots for SBSs, which can ensure sufficient knowledge
for UCB to learn in each time slot. Consequently, RETINA and
T-UCB can converge at a faster speed. However, F-UCB and
UCB show disadvantages in terms of training efficiency since
they cannot adjust the length of time slots adaptively. Third,
RETINA and F-UCB have similar performance, but RETINA
converges faster than F-UCB. In addition, RETINA and T-
UCB have similar training efficiency, but the performance
of RETINA is better than T-UCB. In conclusion, RETINA
outperforms other UCB-based schemes in terms of cache hit
rate and training efficiency because it comprehensively con-
siders these two critical factors. The comparative evaluation

9

(a) SBS 1 (b) SBS 2 (c) SBS 3

Fig. 4. The time-averaged cache hit rate of Optimal, RETINA, CFAUD, UCB-CS, ϵ-greedy, SCCP, and Myoptic for different periods. We vary the number
of users as |Uk| = 30, 50, 70. Fig.4 (a) indicates experimental results as the |U1| = 30. Fig.4 (b) indicates experimental results as the |U2| = 50. Fig.4 (c)
indicates experimental results as the |U3| = 70.

(a) c = 5%|F| (b) c = 10%|F| (c) c = 15%|F|

Fig. 5. The time-averaged cache hit rate of Optimal, RETINA, CFAUD, UCB-CS, ϵ-greedy, SCCP, and Myoptic for different periods. We vary the caching
capacity of SBS as c = 5%|F|, 10%|F|, 15%|F|. Fig.5 (a) indicates experimental results as the c = 5%|F|. Fig.5 (b) indicates experimental results as the
c = 10%|F|. Fig.5 (c) indicates experimental results as the c = 15%|F|.

demonstrates that RETINA can adaptively adjust its caching
strategy with high effectiveness.

D. Comparative Performance Evaluation

We run all of the aforementioned schemes with three differ-
ent numbers of user settings, i.e., |Uk| = 30, 50, and 70. We
run 5000 times for each simulation and take the average value
as the simulation result. Simulation results are presented in
Fig. 4. The time-averaged cache hit rate with 30 users, 50
users, and 70 users are shown in Fig. 4(a), Fig. 4(b), and
Fig. 4(c) respectively. The Optimal has the maximum cache
hit rate because it knows the expected number of requests
for each file in advance and chooses the best content every
time. The time-averaged cache hit rate of RETINA is better
than that of CFAUD, UCB-CS, ϵ-greedy, SCCP, and Myoptic.
The time-averaged cache hit rate of RETINA is 4% higher
than that of the best-performing CFAUD among the reference
schemes on average under different numbers of users. The
reason for this phenomenon is that RETINA considers the
impact of file size during the learning process, and the file
size is added to the indicator calculation formula of UCB to
maximize the time-averaged cache hit rate with the limited
cache capacity of SBSs. In addition, the time-averaged cache
hit rate of CFAUD and UCB-CS is larger than ϵ-greedy. This

is because CFAUD and UCB-CS are closer to the exploitation
stage, which effectively reduces the number of explorations.
However, ϵ−greedy only caches c files with probability ϵ and
caches c files with the highest empirical mean with probability
1 − ϵ. The performance of UCB-based schemes is better
than SCCP. The reason for this phenomenon is that SCCP is
based on exponential smoothing. In exponential smoothing,
the predicted value is the weighted sum of the previous
observations. Consequently, the exponential smoothing has a
lag effect, which indicates SCCP is insensitive to changes in
user preference. In summary, due to the time-varying nature
of file popularity, UCB-based caching schemes have more
advantages than SCCP in dynamic scenarios. The learning
ability of Myoptic is very weak since Myoptic only keeps the
popular content that was requested by the user in the previous
time slot. Consequently, Myoptic has the worst performance.
As a consequence, RETINA is superior to CFAUD, UCB-CS,
ϵ-greedy, SCCP, and Myoptic in different numbers of users.

We also analyze the effect of caching capacity on the time-
averaged cache hit rate. The caching capacity of the SBS is
set to 5%|F|, 10%|F|, and 15%|F|. Other parameters have not
changed. Due to the independence and similarity of these three
SBSs, we only demonstrate experiment results of SBS 1. Fig. 5
indicates the time-averaged cache hit rate of caching schemes

10

(a) γ = 0 (b) γ = 0.5

(c) γ = 0.75 (d) γ = 1

Fig. 6. The time-averaged cache hit rate of Optimal, RETINA, CFAUD, UCB-CS, ϵ-greedy, SCCP, and Myoptic for different periods. We change the parameter
of Zipf as γ = 0, 0.5, 0.75, 1. Fig.6 (a) indicates experimental results when γ = 0. Fig.6 (b) indicates experimental results when γ = 0.5. Fig.6 (c) indicates
experimental results when γ = 0.75. Fig.6 (d) indicates experimental results when γ = 1.

in various caching capacities. From Fig. 5(a), Fig. 5(b), and
Fig. 5(c), we can observe that the time-averaged cache hit
rate of each scheme increases as the caching capacity of the
SBS increases. This is because SBS can cache more users’
favorite files with the increase in cache capacity. Consequently,
more users are able to access their favorite content via the
SBS, thus increasing the hit rate of the caching scheme. There
is no doubt that Optimal has the best performance. Besides,
RETINA has better performance than CFAUD, UCB-CS, ϵ-
greedy, SCCP, and Myoptic in various caching capacities. The
time-averaged cache hit rate of RETINA is on average 4%
higher than that of the best-performing CFAUD among the
reference schemes under various caching capacities of SBS.
The reason for this phenomenon is that RETINA adds the
file size to the indicator calculation formula. Consequently,
RETINA makes the time-averaged cache hit rate as large as
possible at the limited caching capacity of SBS. To sum up,
RETINA is suitable for various caching capacities of the SBS.

We further assess the impact of parameter γ on the time-
averaged cache hit rate, and the test set is Γ := [0, 0.5, 0.75, 1].
γ is the skewness of the content popularity profile, which

represents the degree of concentration of user request files.
Consistent with the above, other parameters have not changed,
and we only analyze SBS 1. Simulation results are indicated in
Fig. 6. Figs. 6(a), 6(b), 6(c), and 6(d) show the time-averaged
cache hit rate of Optimal, RETINA, CFAUD, UCB-CS, ϵ-
greedy, SCCP, and Myoptic in different popularity parameters
for different periods. As shown in Fig.6, with the increasing
value of γ, the performance of these caching schemes is
continuously improved. The reason for this phenomenon is
that file requests are increasingly focused on a small number
of files, which indicates that the estimation of file popularity is
critical. When γ = 0, it indicates that the content requested by
users is relatively scattered. Because of the limited caching ca-
pacity of SBSs, each online learning scheme does not perform
very well. However, RETINA is better than CFAUD, UCB-CS,
ϵ-greedy, SCCP, and Myoptic. The time-averaged cache hit
rate of RETINA is 10% better than that of the best-performing
CFAUD among the reference schemes as shown in Fig. 6(a).
The reason for this phenomenon is that RETINA considers the
impact of file size on performance. When the file requested by
users is relatively scattered, the size of the files is important.

11

In addition, we can see that the performance of CFAUD and
UCB-CS is better than ϵ-greedy and Myoptic. This is because
CFAUD and UCB-CS are closer to the exploitation stage with
the increase of γ and are more dependent on the estimation of
content demand. When γ = 1, the performance of RETINA is
comparable to that of CFAUD, which is the result in Fig. 6(d).
This is because the caching capacity of SBSs may not be less
than the size of the popular content as the requested content
is more and more concentrated on a very small amount of
content. To sum up, the applicable γ value range of RETINA
is [0, 1), and this range is also of practical significance.

VI. CONCLUSION

In this paper, we conduct an extensive literature review in
the field of content caching based on the prediction of file
popularity profiles. The existing content caching schemes have
various gaps and face challenges that should be addressed be-
cause of the variety of user preferences and the differences in
content characteristics. To progress the state-of-the-art works,
we comprehensively address these challenges and propose a
realism-oriented intelligent caching scheme named RETINA,
aimed at maximizing cache hit rates. In the evaluation section,
we compare RETINA against other content caching schemes
to assess its training efficiency and scalability. Simulation
results indicate that RETINA can increase the cache hit rate
by 4%–12% compared with its counterparts.

ACKNOWLEDGMENT

This paper is supported in part by the Liaoning Provincial
Department of Education Science Foundation under Grant
LJKZ0206(Key Projects), in part by the Natural Science Foun-
dation of Liaoning Province under Grant 2021-BS-190, and
in part by the Liaoning Provincial Department of Education
Science Foundation under Grant JYT2020046.

REFERENCES

[1] H. Li, M. Sun, F. Xia, X. Xu, and M. Bilal, “A survey of edge caching:
Key issues and challenges,” Tsinghua Science and Technology, vol. 29,
no. 3, pp. 818–842, 2024.

[2] U. Cisco, “Cisco annual internet report (2018–2023) white
paper,” Online](accessed March 26, 2021) https://www. cisco.
com/c/en/us/solutions/collateral/executive-perspectives/annual-internet-
report/whitepaper-c11-741490. html, 2020.

[3] A. Ghosh, N. Mangalvedhe, R. Ratasuk, B. Mondal, M. Cudak, E. Visot-
sky, T. A. Thomas, J. G. Andrews, P. Xia, H. S. Jo et al., “Heterogeneous
cellular networks: From theory to practice,” IEEE communications
magazine, vol. 50, no. 6, pp. 54–64, 2012.

[4] Y. Zhang, M. A. Kishk, and M.-S. Alouini, “Computation offloading
and service caching in heterogeneous mec wireless networks,” IEEE
Transactions on Mobile Computing, vol. 22, no. 6, pp. 3241–3256, 2023.

[5] T. Cao, Z. Zhang, X. Wang, H. Xiao, and C. Xu, “Ptcc: A privacy-
preserving and trajectory clustering-based approach for cooperative
caching optimization in vehicular networks,” IEEE Transactions on
Sustainable Computing, pp. 1–16, 2024.

[6] H. Li, X. Li, C. Sun, F. Fang, Q. Fan, X. Wang, and V. C. M.
Leung, “Intelligent content caching and user association in mobile edge
computing networks for smart cities,” IEEE Transactions on Network
Science and Engineering, vol. 11, no. 1, pp. 994–1007, 2024.

[7] D. Liu, B. Chen, C. Yang, and A. F. Molisch, “Caching at the
wireless edge: design aspects, challenges, and future directions,” IEEE
Communications Magazine, vol. 54, no. 9, pp. 22–28, 2016.

[8] D. Qiao, S. Guo, D. Liu, S. Long, P. Zhou, and Z. Li, “Adaptive
federated deep reinforcement learning for proactive content caching
in edge computing,” IEEE Transactions on Parallel and Distributed
Systems, vol. 33, no. 12, pp. 4767–4782, 2022.

[9] Z. Wang, J. Hu, G. Min, Z. Zhao, and Z. Wang, “Agile cache replacement
in edge computing via offline-online deep reinforcement learning,” IEEE
Transactions on Parallel and Distributed Systems, vol. 35, no. 4, pp.
663–674, 2024.

[10] X. Liu, M. Derakhshani, and S. Lambotharan, “Contextual learning
for content caching with unknown time-varying popularity profiles via
incremental clustering,” IEEE Transactions on Communications, vol. 69,
no. 5, pp. 3011–3024, 2021.

[11] Y. Qian, R. Wang, J. Wu, B. Tan, and H. Ren, “Reinforcement learning-
based optimal computing and caching in mobile edge network,” IEEE
Journal on Selected Areas in Communications, vol. 38, no. 10, pp. 2343–
2355, 2020.

[12] Z. Yang, Y. Liu, Y. Chen, and L. Jiao, “Learning automata based q-
learning for content placement in cooperative caching,” IEEE Transac-
tions on Communications, vol. 68, no. 6, pp. 3667–3680, 2020.

[13] J. Shi, L. Zhao, X. Wang, W. Zhao, A. Hawbani, and M. Huang, “A novel
deep q-learning-based air-assisted vehicular caching scheme for safe
autonomous driving,” IEEE Transactions on Intelligent Transportation
Systems, vol. 22, no. 7, pp. 4348–4358, 2020.

[14] F. Rezaei, B. H. Khalaj, M. Xiao, and M. Skoglund, “Performance
analysis of heterogeneous cellular caching networks with overlapping
small cells,” IEEE Transactions on Vehicular Technology, vol. 71, no. 2,
pp. 1941–1951, 2022.

[15] S. A. A. Siahpoosh and F. Rezaei, “A study on the impact of mobility
on caching in non-standalone 5g vehicular networks,” Vehicular Com-
munications, vol. 41, no. Jun., pp. 1–11, 2023.

[16] F. Rezaei, B. H. Khalaj, M. Xiao, and M. Skoglund, “Delay and stability
analysis of caching in heterogeneous cellular networks,” in 2016 23rd
International Conference on Telecommunications (ICT), 2016, pp. 1–5.

[17] Z. Huang, B. Hu, and J. Pan, “Caching by user preference with delayed
feedback for heterogeneous cellular networks,” IEEE Transactions on
Wireless Communications, vol. 20, no. 3, pp. 1655–1667, 2020.

[18] F. Imani, Z. Qiu, and H. Yang, “Markov decision process modeling
for multi-stage optimization of intervention and treatment strategies in
breast cancer,” in 2020 42nd Annual International Conference of the
IEEE Engineering in Medicine Biology Society (EMBC), 2020, pp.
5394–5397.

[19] Y. He, Z. Zhang, F. R. Yu, N. Zhao, H. Yin, V. C. Leung, and
Y. Zhang, “Deep-reinforcement-learning-based optimization for cache-
enabled opportunistic interference alignment wireless networks,” IEEE
Transactions on Vehicular Technology, vol. 66, no. 11, pp. 10 433–
10 445, 2017.

[20] Z. Lin, W. Huang, and W. Chen, “Bandwidth and storage efficient
caching based on dynamic programming and reinforcement learning,”
IEEE Wireless Communications Letters, vol. 9, no. 2, pp. 206–209, 2020.

[21] P. Blasco and D. Gündüz, “Learning-based optimization of cache content
in a small cell base station,” in 2014 IEEE International Conference on
Communications (ICC). IEEE, 2014, pp. 1897–1903.

[22] X. Xu and M. Tao, “Decentralized multi-agent multi-armed bandit
learning with calibration for multi-cell caching,” IEEE Transactions on
Communications, vol. 69, no. 4, pp. 2457–2472, 2021.

[23] L. Su, R. Zhou, N. Wang, J. Chen, and Z. Li, “Multi-agent multi-armed
bandit learning for content caching in edge networks,” in 2022 IEEE
International Conference on Web Services (ICWS), 2022, pp. 11–16.

[24] Y. Han, L. Ai, R. Wang, J. Wu, D. Liu, and H. Ren, “Cache placement
optimization in mobile edge computing networks with unaware environ-
ment—an extended multi-armed bandit approach,” IEEE Transactions
on Wireless Communications, vol. 20, no. 12, pp. 8119–8133, 2021.

[25] X. Xu, M. Tao, and C. Shen, “Collaborative multi-agent multi-armed
bandit learning for small-cell caching,” IEEE Transactions on Wireless
Communications, vol. 19, no. 4, pp. 2570–2585, 2020.

[26] B. Hu, Y. Chen, Z. Huang, N. A. Mehta, and J. Pan, “Intelligent caching
algorithms in heterogeneous wireless networks with uncertainty,” in
2019 IEEE 39th International Conference on Distributed Computing
Systems (ICDCS). IEEE, 2019, pp. 1549–1558.

[27] G. Xiong, S. Wang, G. Yan, and J. Li, “Reinforcement learning for
dynamic dimensioning of cloud caches: A restless bandit approach,” in
IEEE INFOCOM 2022 - IEEE Conference on Computer Communica-
tions, 2022, pp. 2108–2117.

[28] ——, “Reinforcement learning for dynamic dimensioning of cloud
caches: A restless bandit approach,” IEEE/ACM Transactions on Net-
working, pp. 1–15, 2023.

12

[29] B. Hu, M. Tanha, D. Sajjadi, and J. Pan, “Intelligent caching in dense
small-cell networks with limited external resources,” in 2018 IEEE 43rd
Conference on Local Computer Networks (LCN). IEEE, 2018, pp. 295–
298.

[30] Y. Miao, Y. Hao, M. Chen, H. Gharavi, and K. Hwang, “Intelligent
task caching in edge cloud via bandit learning,” IEEE Transactions on
Network Science and Engineering, vol. 8, no. 1, pp. 625–637, 2020.

[31] Y. Huang, P. Dai, K. Zhao, and H. Xing, “Contextual multi-armed bandit
learning for freshness-aware cache update in vehicular edge networks,”
in 2022 IEEE International Symposium on Product Compliance Engi-
neering - Asia (ISPCE-ASIA), 2022, pp. 1–6.

[32] S. Müller, O. Atan, M. van der Schaar, and A. Klein, “Context-
aware proactive content caching with service differentiation in wireless
networks,” IEEE Transactions on Wireless Communications, vol. 16,
no. 2, pp. 1024–1036, 2016.

[33] C. Dai, K. Zhu, R. Wang, and B. Chen, “Contextual multi-armed
bandit for cache-aware decoupled multiple association in udns: A deep
learning approach,” IEEE Transactions on Cognitive Communications
and Networking, vol. 5, no. 4, pp. 1046–1059, 2019.

[34] L. Breslau, P. Cao, L. Fan, G. Phillips, and S. Shenker, “Web caching
and zipf-like distributions: Evidence and implications,” in IEEE IN-
FOCOM’99. Conference on Computer Communications. Proceedings.
Eighteenth Annual Joint Conference of the IEEE Computer and Com-
munications Societies. The Future is Now (Cat. No. 99CH36320), vol. 1.
IEEE, 1999, pp. 126–134.

[35] P. Auer, N. Cesa-Bianchi, and P. Fischer, “Finite-time analysis of the
multiarmed bandit problem,” Machine learning, vol. 47, no. 2, pp. 235–
256, 2002.

[36] W. Hoeffding, “Probability inequalities for sums of bounded random
variables,” in The collected works of Wassily Hoeffding. Springer, 1994,
pp. 409–426.

[37] Y. Li, H. Ma, L. Wang, S. Mao, and G. Wang, “Optimized content
caching and user association for edge computing in densely deployed
heterogeneous networks,” IEEE Transactions on Mobile Computing,
vol. 21, no. 6, pp. 2130–2142, 2022.

Na Lin received the M.S. degree in computer sci-
ence from the Shenyang University of Technology,
China, in 2001, and the Ph.D. degree in computer
science from Northeastern University, China, in
2005. From 2006 to 2010, she worked as a Post-
doctoral Researcher in Northeastern University. She
is currently a Professor with the School of Computer
Science, Shenyang Aerospace University, China. She
was a visiting scholar at the University of Leicester,
UK, from 2019 to 2020. Her research interests
include air-ground integrated network, mobile edge

computing, intelligent transportation, FANET, UAV swarm and SDVN, etc.

Yamei Wang received the B.S. degree in com-
puter science and technology from Hebei Normal
University Of Science & Technology, China. She
is currently working toward the master’s degree in
computer technology with the School of Computer
Science, Shenyang Aerospace University, China.
Her research interests mainly include MEC, edge
caching, and reinforcement learning.

Enchao Zhang (Graduate Student Member, IEEE)
is currently pursuing his Ph.D. degree with the Grad-
uate School of Informatics and Engineering, Univer-
sity of Electro-Communications in Tokyo, Japan. In
2023, he obtained his M.S. degree from Shenyang
Aerospace University in China, where his graduation
thesis was recognized as the “Outstanding Master’s
Graduation Thesis in Liaoning Province”. He is the
recipient of the “Best Paper Award” at IEEE EUC-
2022. His current research interests mainly include
network communication, edge computing, quantum

computing and quantum AI.

Shaohua Wan (Senior Member, IEEE) received
the Ph.D. degree from the School of Computer,
Wuhan University in 2010. Since 2010, he has been
an associate professor with the School of Informa-
tion and Safety Engineering, Zhongnan University
of Economics and Law. From 2016 to 2017, he
was a visiting professor at with the Department
of Electrical and Computer Engineering, Technical
University of Munich, Germany. His main research
interests include deep learning for Internet of Things
and edge computing. He is an author of over 100

peer-reviewed research papers and books, including over 40 IEEE/ACM
Transactions papers such as TII, TITS, TOIT, TNSE, TMM, TCSS, TOMM,
PR, etc., and many top conference papers in the fields of Edge Intelligence.

Ahmed Y. Al-Dubai is Professor of Networking
and Communication Algorithms in the School of
Computing at Edinburgh Napier University, UK.
He received the PhD degree in Computing from
the University of Glasgow in 2004. His research
interests include Communication Algorithms, Mo-
bile Communication, Internet of Things, and Future
Internet. He received several international awards.

Liang Zhao (S’09–M’17) is a Professor at Shenyang
Aerospace University, China. He received his Ph.D.
degree from the School of Computing at Edinburgh
Napier University in 2011. Before joining Shenyang
Aerospace University, he worked as associate senior
researcher in Hitachi (China) Research and Devel-
opment Corporation from 2012 to 2014. He is also
a JSPS invitational Fellow (2023). He was listed
as Top 2% of scientists in the world by Standford
University (2022). His research interests include
ITS, VANET, WMN and SDN. He has published

more than 150 articles. He served as the Chair of several international
conferences and workshops, including 2022 IEEE BigDataSE (Steering Co-
Chair), 2021 IEEE TrustCom (Program Co-Chair), 2019 IEEE IUCC (Program
Co-Chair), and 2018-2022 NGDN workshop (founder). He is Associate Editor
of Frontiers in Communications and Networking and Journal of Circuits
Systems and Computers. He is/has been a guest editor of IEEE Transactions
on Network Science and Engineering, Springer Journal of Computing, etc. He
was the recipient of the Best/Outstanding Paper Awards at 2015 IEEE IUCC,
2020 IEEE ISPA, 2022 IEEE EUC, and 2013 ACM MoMM.

