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Abstract—The rapid advancement in consumer technology has
led to an exponential increase in the connected devices, resulting
in an enormous and continuous flow of data, particularly the
image data. This data needs to be processed, managed, and
secured efficiently, especially in the quantum-enabled consumer
technology era. This paper, in this regards, presents a quantum
image encryption scheme featuring a novel two-phase chaotic
confusion-diffusion architecture. The proposed architecture con-
sists of four distinct confusion-diffusion modules that perform
a simultaneous qubit and pixel-level encryption on both the
position and intensity of quantum encoded pixels. Moreover,
quantum circuits for ′qubit-level chaotic transformation′ and
′chaos-based selective perfect shuffle operation′ have been im-
plemented, which collectively enhance the encryption strength of
the proposed scheme. Extensive evaluation has been performed
based on various statistical security parameters, such as entropy
and correlation. When subjected to differential attacks, the
proposed scheme proved its resilience exhibiting ideal results
of average 99.6% NPCR (Number of Pixels Change Rate) and
33.5% UACI (Unified Average Changing Intensity). Besides, the
proposed scheme also demonstrated resilience against occlusion
attacks. Tests involving 50% data occlusion from encrypted
images validated the proposed scheme’s capability to successfully
decrypt the tampered images, recovering maximum information.

Index Terms—Quantum image encryption, chaos, quantum
cryptography, chaotic quantum encryption, qubit transformation,
consumer technology.

I. INTRODUCTION

QUANTUM computing, which harnesses the principles of
quantum mechanics like coherence, entanglement, and

superposition of qubits, can revolutionise various industries
including consumer technology (CT) [1], [2]. The growing
complexity of CT and the increase in number of connected
devices is generating huge amount of data that must be
processed and managed efficiently. Among this data, there
has been an increase in the transmission of image data across
various networks for consumer applications, including smart
homes, healthcare, banking, and smart education [3], [4].
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Traditional computers can’t keep up with this massive data
overload in these interconnected environments. Quantum com-
puters, however, hold immense potential to handle this large
volume of data and can transform the ever-evolving field of
consumer technology [5]. However, the transmission/storage
of this enormous amount of post-quantum CT data raises
significant concerns about its security and privacy, and neces-
sitates a re-evaluation of data security protocols, especially for
image data. Image data will make up a significant portion of
the information that will be transmitted extensively in post-
quantum consumer technology (CT) applications, including
smart cities, healthcare, and digital rights management. The
unauthorised access of digital image data can result into
financial fraud, intellectual property rights issues, and identity
theft [6]. Image encryption plays a crucial role in securing
these images from unauthorised access and cyber attacks [7],
[8]. Various encryption techniques can be found in literature
that have been proposed to secure digital data including images
and videos [9]–[12]. But these techniques might not be suitable
in the post quantum CT era. For the security of post-quantum
computing systems, quantum cryptography is required [13].
Quantum cryptography, especially quantum image encryption
(QIE), ensures the privacy and integrity of images in this new
era of quantum-enhanced consumer technology. Focusing on
the security of the image data in post quantum CT scenarios,
this paper aims at designing of a new and robust quantum
image encryption method, which proves to be secure and
efficient for the quantum computing platforms.

Quantum image encryption techniques can be primarily cat-
egorized into either spatial or frequency domain approaches.
A generalised framework of quantum image encryption is
depicted in Fig. 1. To apply quantum image encryption al-
gorithms on classic image data, the classic images need to be
represented in quantum domain using quantum image repre-
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Fig. 1: A generalized schematic of quantum image encryption.

This article has been accepted for publication in IEEE Transactions on Consumer Electronics. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TCE.2024.3415411

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Edinburgh Napier University. Downloaded on June 26,2024 at 01:31:46 UTC from IEEE Xplore.  Restrictions apply. 



IEEE TRANSCATIONS ON CONSUMER ELECTRONICS, VOL. XX, NO. XX, XXXX 2024 2

Quantum Plain 

Image

ȁ ۧ𝐼

Plaintext

Image

𝐼

Quantum Image 

Preparation
Quantum 

Confusion 

Module 1

Quantum 

Diffusion 

Module 1

Phase 1 of Quantum Encryption

Phase 1 

Encrypted 

Image

ȁ ۧ𝐸1

Phase 2 of Quantum Encryption

Quantum 

Confusion 

Module 2

Quantum 

Diffusion 

Module 2

Phase 2 

Encrypted 

Image

ȁ ۧ𝐸2

Cipher Image

ȁ ۧ𝐶

Quantum

Measurement
Inverse 

Confusion 

Module 1

Inverse 

Diffusion 

Module 1

Phase 2 of Decryption

Phase 1 

Decrypted 

Image

ȁ ۧ𝐷1

Phase 1 of Decryption

Inverse 

Confusion 

Module 2

Inverse 

Diffusion 

Module 2

Phase 2 

Decrypted 

Image

ȁ ۧ𝐷2

Decrypted 

Image

ȁ ۧ𝐼

Fig. 2: A high-level flowchart of the proposed two-phase confusion-diffusion quantum encryption algorithm

sentation (QIR) models [14], [15]. These QIRs are designed
to encode classic images in the quantum domain based on
certain criteria; for instance, some models use the color model
or visual contrasts to encode image content, some others
utilize coordinate systems to extract image information, and
yet others encode both color and position data of pixels. In
the context of color model and visual contrast category, a tech-
nique for encoding and retrieving geometrical shapes in binary
images is introduced in [16]. They use maximally entangled
quantum states for this purpose. In addition, one of the most
utilised QIR in this category is the Flexible Representation for
Quantum Images (FRQI), designed to integrate grayscale color
and position data of an image into a standardized quantum
state [17]. This model encodes a 2n × 2n grayscale image
using 2n+1 qubits by mapping the pixel’s coordinate data
onto 2n qubits within computational basis states and encoding
color data into a singular qubit through angle encoding.
Furthermore, to simulate human visual perception accurately,
QIRs for full-color images have also been designed that cater
all three RGB (Red, Green, Blue) channels of a color image.
These representations use dual quantum state sets to represent
a specific number of colors (M) and pixels (N) within an image
[18], or they might also utilise varying angular levels for RGB
data combined with location information (along the Y- and X-
axes) for image representation [19], [20]. The most common
RGB QIR is the Multi-Channel Quantum Images (MCQI)
model [21].

Similarly, for the QIR category that utilises coordinate
system representations, an early example includes the qubit
lattice that maps each pixel to an individual qubit, organizing
images into two-dimensional qubit arrays without preliminary
processing [22]. The previously described FRQI model also
utilizes the Cartesian system, and comprehensive studies have
been conducted on it for quantum operations such as flipping,
coordinate swapping, orthogonal rotations, etc. [23], [24].
Finally, sveral QIRs have also been designed for the third
category that uses two basic parameters of image information,
i.e., color and position. For instance, some models establish
a one-to-one correspondence between the color frequency of
a monochromatic wave and a qubit’s angular parameter to
encode color data, as seen in qubit lattice models [22], FRQI

[17], and Quantum States for M Colors and N Coordinates
(QSMC and QSNC) [18].

One of the most utilised quantum representation, that utilises
the color intensity and position information is the the novel
enhanced quantum representation (NEQR) model [25]. In this
QIR, the image with its color (intensity) information is stored
in only two qubit sequences, and this information is actually
encoded in the basis states. This is an improved version of the
FRQI model, and stores a n-qubit basis states to represent the
intensity of the pixel in a range of [0, 2n−1]. Furthermore, the
Generalized NEQR (GNEQR) model has also been proposed
in [26] employs 2n+10 qubits to represent a 2n × 2n RGB
color image, showcasing advancements in quantum image
representation for enhanced storage capabilities.

The two fundamental characteristics of a secure encryption
algorithm are confusion and diffusion [27]. Similarly, quantum
encryption algorithms also comprise of these two compo-
nents: scrambling (diffusion) and replacement (confusion).
The Quantum scrambling and replacement techniques focus on
two important parameters of a pixel, i.e., position and inten-
sity/color information [28].Scrambling (diffusion) techniques
shuffle the positions of pixels, while replacement (confusion)
techniques change the pixel values to modify the image’s
statistical characteristics [29]. Notable quantum scrambling
methods include the Hilbert [30], Arnold [31], and Fibonacci
transforms [31]. The Arnold and Fibonacci transforms utilize
simple and modular addition to rearrange the pixels, whereas
the Hilbert method relies on a recursively generated scanning
matrix for this purpose. Speaking of replacement techniques, a
technique introduced in [32] combines bit-plane shuffling with
the Arnold Transform within the NEQR model to transform the
pixel values effectively, and to enhance the securityof the en-
cryption scheme. Similarly, quantum image decomposition has
been introduced in [33] by breaking down grayscale images
into smaller feature sets using a binary tree structure. This is
used in conjunction with encryption through random phase and
quantum rotation techniques. Focusing on RGB images, Yan
et al. [34] developed a technique that simultaneously applies
color and geometric transformations to improve the scrambling
process, enhancing the overall image security.

A strong encryption algorithm should incorporate both
confusion and diffusion processes, simultaneously at the pixel
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Fig. 3: Basic quantum gates with their notations, equaitons, and matrices.

and qubit-level to increase the non-linearity and randomness
in the encrypted image. Most of the existing QIE schemes
primarily focus either on the quantum confusion modules or
the diffusion modules, with very few incorporating both to
make a robust confusion-diffusion architecture. Moreover,
the quantum circuits utilised in existing schemes are not
controlled by chaotic maps that introduce an extra layer of
complexity and non-linearity in the quantum operations. This
paper, in this regards, proposes a quantum image encryption
algorithm featuring a novel two-phase chaotic confusion-
diffusion architecture. This architecture consists of four strong
confusion-diffusion modules. A high-level flowchart to depict
the proposed two-phase quantum image encryption scheme
is given in Fig. 2. Each phase implements a standalone
confusion-diffusion architecture. The final encrypted image
undergoes two distinct confusion-diffusion architectures
and the output of the first phase is encrypted again in the
second phase resulting in the final encrypted image. The
four confusion-diffusion modules utilise quantum circuits
for qubit-level chaotic transformation, chaotic permutation,
and a fast geometric transformation block, which collectively
enhance the encryption strength of the proposed algorithm.

The main contributions of this paper are:

1) A quantum image encryption algorithm, featuring a
novel two-phase confusion-diffusion architecture is de-
veloped. The architecture consists of four distinct
confusion-diffusion modules that encrypt both the co-
ordinates(positions) and pixel intensities of the quantum
image. Each phase ensures encryption at both the qubit
and the pixel level.

2) A quantum circuit for qubit-level transformation is pre-
sented. This circuit randomly permutes and transforms
the qubits of each pixel based on a chaotic key and
quantum CNOT gates.

3) A quantum circuit for chaotic selective perfect-shuffle
operation is presented. This operation is chaotic key con-
trolled and ensures a random qubit-plane shift operation
on each pixel using the quantum SWAP gates.

4) A quantum circuit for multi-geometric transformation
block is presented. This circuit performs three different

block-wise fast geometric transformations on the ’po-
sition qubits’ of each pixel resulting in a pixel-level
scrambling.

The rest of the paper is organised as follows. Section
II presents the preliminary knowledge and basic theory of
quantum computing and quantum image encryption. Section
III entails the procedure of encoding a classic image into
quantum representation. Section IV provides details on the
chaotic key generation process. Section V presents the design
and implementation for the proposed encryption scheme. Sec-
tion VI presents the results of the proposed scheme and its
performance against various attacks followed by a clear and
concise conclusion in Section VII.

II. PRELIMINARIES

A. Quantum Bits and Registers

Similar to the concept of a classic bit, a qubit or quantum
bit is the most fundamental block/unit of data in quantum
computers [35]. The main difference is that a qubit can exist
in a superposition state. This state is described as a unit vector
in two-dimensional Hilbert space. This vector or a qubit is
described as:

|ψ⟩ = cos

(
θ

2

)
|0⟩+ eiϕ sin

(
θ

2

)
|1⟩ (1)

|ψ⟩ = α| ↑⟩+ β| →⟩ (2)

where | ↑⟩ and | →⟩ are the basis states orthogonal to
each other, and α and β are the probability amplitudes. The
probabilities for |ϕ⟩ to be in the | ↑⟩ and | →⟩ states are |α|2
and |β|2, respectively, satisfying the normalization condition
|α|2 + |β|2 = 1. This statement means that the qubit’s state
vector has been normalized to a length of 1. By defining | ↑⟩
as |0⟩ and | →⟩ as |1⟩, |ψ⟩ can be expressed as:

|ψ⟩ = α|0⟩+ β|1⟩ (3)

where |0⟩ and |1⟩ become the computational basis states that
establish an orthonormal basis in this vector space.
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In quantum computing, the qubit states |0⟩ =

(
1
0

)T

and

|1⟩ =

(
0
1

)T

serve as the computational basis, spanning a

two-dimensional Hilbert space H2.
A quantum register consists of several qubits and serves as

the quantum counterpart to a classical computer’s register. In
quantum computing, operations are carried out by manipulat-
ing the qubits within such a register. The states of individual
qubits in the quantum register determines the overall state of
the quantum register. To determine this, a tensor product ⊗ of
the states of these individual bits is taken. The tensor product
|u⟩ ⊗ |v⟩, involving two quantum states |u⟩ and |v⟩, is often
abbreviated as |uv⟩ or |u⟩|v⟩. Similarly, A⊗n represents the
n-times product (tensor) of the matrix A with itself .

For example, in a quantum register holding two qubits, there
are four basic computational states: |00⟩, |01⟩, |10⟩, and |11⟩.
These two qubits can be in a superposition of these four states
and can be expressed as:

|ψ⟩ = α00|00⟩+ α01|01⟩+ α10|10⟩+ α11|11⟩ (4)

The tensor product, represented by the symbol ⊗, is a mathe-
matical operation that merges smaller vector spaces to form a
larger vector space, specifically within the context of a Hilbert
space. When applied to two matrices, where M is an n × n
matrix and N is an m × m matrix, the result of the tensor
product M ⊗ N is a new matrix of size nm × nm. This
resultant matrix is structured as a block matrix, where each
block is constructed by multiplying the elements of matrix M
with the entire matrix N and is given as:

M ⊗N =

 M0,0N · · · M0,n−1N
...

. . .
...

Mn−1,0N · · · Mn−1,n−1N

 (5)

In a 2n-dimensional Hilbert space for an n-qubit system, a
computational basis state |i⟩, with i ranging from 0 to 2n− 1,
is constructed via the tensor products of n computational basis
states:

|i⟩ = |in−1⟩ ⊗ |in−2⟩ ⊗ · · · ⊗ |i1⟩ ⊗ |i0⟩ = |in−1in−2 · · · i1i0⟩
(6)

where i =
∑n−1

j=0 ij × 2j , with each ij being either 0 or 1.
An n-qubit quantum system can be described as a superpo-

sition of its 2n quantum computational basis states:

|ψ⟩ =
2n−1∑
k=0

ak|k⟩ (7)

where k is the binary string kn−1kn−2 · · · k1k0, and ak are
complex coefficients satisfying the normalization condition:

2n−1∑
k=0

|ak|2 = 1 (8)

B. Quantum Circuits and Gates

Quantum circuits provide the essential framework that fa-
cilitates quantum computing by enabling the manipulation and

processing of quantum information. It actually enables the
execution of quantum operations or computations. A quantum
operation, whereas, is a combination of logic gates, more
particularly, the quantum logic gates, commonly referred to
as just ’quantum gates’. A quantum circuit is read from left
to right, representing the passage of time or movement of a
photon from one place to another [35]. Quantum gates are
written in the form of unitary matrices. For a quantum gate,
the count of qubits at both the input and output must match.
Therefore, a gate that operates on n qubits is depicted by a
unitary matrix of size 2n × 2n.

III. NOVEL ENHANCED QUANTUM IMAGE
REPRESENTATION (NEQR) AND GNEQR

The NEQR [25] stores the pixel intensity and position infor-
mation of a pixel in two entangled qubit sequences. It stores
the the complete image in the superposition of the two qubit
sequences. The NEQR model is preferred because it supports
quantum image processing more efficiently than FRQI and
most importantly it offers flexible and easy computational
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Fig. 4: NEQR image representation. (a) A 4x4 quantum image.
(b) NEQR expression for a 2x2 sample image.
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state preparation and measurement process as compared to
FRQI. In NEQR, for an image with the grayscale pixel inen-
sity range 2q , the binary sequence CY X

0 CY X
1 . . . CY X

q−2C
Y X
q−1

encodes the gray-scale value f(Y,X) of the corresponding
pixel (Y,X) as: f(Y,X) = CY X

0 CY X
1 . . . CY X

q−2C
Y X
q−1, where

CY X
k ∈ [0, 1], f(Y,X) ∈ [0, 2q − 1].
The NEQR representation of a 2n×2n image is as follows:

|I⟩ = 1

2n

2n−1∑
Y=0

2n−1∑
X=0

|f(Y,X)⟩|Y X⟩

=
1

2n

2n−1∑
Y=0

2n−1∑
X=0

q−1⊗
i=0

|CY X
i ⟩|Y X⟩

(9)

A 4x4 NEQR quanutm image representation is shown
in Fig. 4a, whereas a 2x2 sample image with its NEQR
expression is given in Fig. 4b, and the quantum circuit for
the NEQR preparation of the sample image given in Fig. 4b
is given in Fig. 5.

The generalised model of NEQR is an extension of the
NEQR. GNEQR is more efficient and can handle large range
of pixel intensities by using fewer bits. The benefit of using
GNEQR is that it can represent images more efficiently,
especially with varying level of detail and colour depth. Most
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importantly, it reduces the resources required for the quantum
image processing tasks. GNEQR is defined as [36]:

|G⟩ = 1√
3
(|IR⟩ |01⟩+ |IG⟩ |10⟩+ |IB⟩ |11⟩)

=
1√
3
× 1

2n

2n−1∑
Y=0

2n−1∑
X=0

(|RY X⟩ |Y X⟩ |01⟩+ |GY X⟩ |Y X⟩ |10⟩

+ |BY X⟩ |Y X⟩ |11⟩) (10)

This model is based on the decomposition of a colored
image into three channels: Red, Green, and Blue, which in
their decomposed form are expressed as:

|IR⟩ =
1

2n

2n−1∑
Y =0

2n−1∑
X=0

|RY X⟩ |Y X⟩ =
1

2n

2n−1∑
Y =0
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X=0

q−1⊗
K=0

∣∣∣RK
Y X

〉
|Y ⟩ |X⟩ ,

|IG⟩ =
1

2n

2n−1∑
Y =0

2n−1∑
X=0

|GY X⟩ |Y X⟩ =
1

2n

2n−1∑
Y =0

2n−1∑
X=0

q−1⊗
K=0

∣∣∣GK
Y X

〉
|Y ⟩ |X⟩ ,

|IB⟩ =
1

2n

2n−1∑
Y =0

2n−1∑
X=0

|BY X⟩ |Y X⟩ =
1

2n

2n−1∑
Y =0

2n−1∑
X=0

q−1⊗
K=0

∣∣∣BK
Y X

〉
|Y ⟩ |X⟩ ,

(11)

where |Ryx⟩, |Gyx⟩, and |Byx⟩ are defined as:

|Ryx⟩ = |rq−1,yxrq−2,yx . . . r0,yx⟩,
|Gyx⟩ = |gq−1,yxgq−2,yx . . . g0,yx⟩,
|Byx⟩ = |bq−1,yxbq−2,yx . . . b0,yx⟩. (12)

The quantum circuit of GNEQR is given in Fig. 6. Here, the
quantum balck-box (the quantum-oracle NEQR) prepares the
quantum image and the unitary operation Rx(arctan(

√
2)) is

defined as:

Rx(arctan(
√
2)) =

[
cos(arctan(

√
2)) sin(arctan(

√
2))

sin(arctan(
√
2)) − cos(arctan(

√
2))

]
=

[
1√
3

√
2√
3√

2√
3

− 1√
3

]
(13)

IV. THE PROPOSED QUANTUM IMAGE ENCRYPTION
SCHEME

The proposed quantum image encryption algorithm consists
of two phases. Each phase consists of standalone confusion-
diffusion modules. Each phase ensures the encryption of both
parameters: the position and the intensity of each pixel. The
combination of confusion-diffusion modules, consisting of
various quantum transformations and operations, ensures that
in each phase, the input image undergoes encryption at both
the qubit-level and pixel-level. The detailed flowchart of the
proposed scheme is given in Fig. 9, whereas the quantum
circuit for the complete encryption stage is given in Fig. 10.
The details of individual modules and operations utilised in
the proposed approach are described below.

A. Chaotic Key Generation Module

1) The De Jong Fractal Map: The De Jong Fractal Map,
recognized for its intriguing and chaotic properties, is at-
tributed to Peter de Jong. It is characterized by a specific set
of parametric equations given below [37].

This article has been accepted for publication in IEEE Transactions on Consumer Electronics. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TCE.2024.3415411

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Edinburgh Napier University. Downloaded on June 26,2024 at 01:31:46 UTC from IEEE Xplore.  Restrictions apply. 



IEEE TRANSCATIONS ON CONSUMER ELECTRONICS, VOL. XX, NO. XX, XXXX 2024 6

xγ+1 = sin(a · yγ)− cos(b · xγ) (14)
yγ+1 = sin(c · xγ)− cos(d · yγ) (15)

In these equations, xγ+1 and yγ+1 represent the new positions
in the system, derived from the preceding positions xγ and yγ ,
respectively. Adjusting the values of the parameters a, b, c, and
d within these equations can lead to more complex chaotic
fractal patterns. These patterns for different parameters are
illustrated in the Fig. 7.

2) Van Der Pol Oscillator: The discretized version of the
Van der Pol oscillator, a non-linear dynamical system, is
expressed through the following equations [38]:

xγ+1 − xγ
h

= vγ (16)

vγ+1 − vγ
h

= µ(1− x2γ)vγ − xγ (17)

Here, xγ and vγ serve as discrete approximations for x(t)
and its time derivative dx

dt at discrete time intervals t = γh,
respectively. The timestep h and the nonlinearity parameter
µ play crucial roles in dictating the system’s behavior, which
includes chaotic dynamics as depicted in Fig. 7.

B. Step-1: Chaotic Qubit-Level Transformation

This transformation serves as the first confusion module of
Phase 1, named as PM1

1 in Fig. 9. In this step, a chaotic qubit-
level transformation operation is performed on each pixel
(Y,X). This operation transforms the grayscale value of the

(a) (b)

Fig. 7: Chaotic behaviour of the De Jong Fractal Map for: (a)
a = 1.645, b = 1.905, c = 0.320, d = 1.530. (b) a = 1.42, b =
−2.28, c = 2.38, d = −2.08.

(a) (b)

Fig. 8: Chaotic behaviour of the Van Der Pol Oscillator for:
h = 0.29 and µ = 0.06

pixel by performing a random qubit-level permutation of each
pixel. The permutation sequence is key controlled, obtained
by the chaotic De-Jong map. An 8-bit key is generated
for each pixel, which defines the order of qubit permuta-
tion. These qubits get X-ored with eachother using quantum
CNOT gates, and hence result in the transformation of the
grayscale intensity of each pixel. The quantum circuits based
on two chaotic keys depicting the random order of qubit
permutation is given in Fig. 11a and Fig. 11b, respectively.
After this step, the grayscale intesity of each pixel transforms
from |p7yx, p6yx, . . . , p1yx, p0yx⟩ to |p7′yx, p6

′

yx, . . . , p
1′

yx, p
0′

yx, ⟩. The
transformed qubits obtained after applying the quantum cir-
cuits in Fig. 11a and Fig. 11b are given in 18 and 19,
respectively.

p7
′

yx = p0yx ⊕ p7yx, p6
′

yx = p2
′

yx ⊕ p6yx,

p5
′

yx = p3
′

yx ⊕ p5yx, p4
′

yx = p5
′

yx ⊕ p4yx,

p3
′

yx = p1
′

yx ⊕ p3yx, p2
′

yx = p7
′

yx ⊕ p2yx,

p1
′

yx = p6
′

yx ⊕ p1yx, p0
′

yx = p0yx.

(18)

p7
′

yx = p5
′

yx ⊕ p7yx, p6
′

yx = p6yx,

p5
′

yx = p2
′

yx ⊕ p5yx, p4
′

yx = p7
′

yx ⊕ p4yx,

p3
′

yx = p6yx ⊕ p3yx, p2
′

yx = p0
′

yx ⊕ p2yx,

p1
′

yx = p4
′

yx ⊕ p1yx, p0
′

yx = p3
′

yx ⊕ p0yx.

(19)

C. Step-2: Block-wise Quantum Geometric Transformations

This block serves as the diffusion module in the Phase 1
of the proposed encryption scheme, named as PM2

1 in Fig. 9.
In this step, the output of the preceding confusion module is
divided in 1024 equal blocks of 8x8 size. On each block, three
fast geometric transformations inspired from [30] are applied
that result in the pixel-level scrambling of the image. Let Γ
be the matrix form of a 2k × 2k image, then, three operations
ΓV F
I , ΓHF

I , and ΓCS
I are given by:

Γ =


p1,1 p1,2 · · · p1,2k
p2,1 p2,2 · · · p2,2k

...
...

. . .
...

p2k,1 p2k,2 · · · p2k,2k

 (20)

The operations are defined as follows:
• The vertical flip, i.e., flipping along the y-axis (ΓV F

I ):

ΓV F
I =


p2k,1 p2k,2 · · · p2k,2k
p2k−1,1 p2k−1,2 · · · p2k−1,2k

...
...

. . .
...

p1,1 p1,2 · · · p1,2k

 (21)

• The horizontal flip, flipping along the x-axis (ΓHF
I ):

ΓHF
I =


p1,2k · · · p1,2 p1,1
p2,2k · · · p2,2 p2,1

...
. . .

...
...

p2k,2k · · · p2k,2 p2k,1

 (22)
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Fig. 9: The proposed quantum image encryption algorithm with Two-Phase Confusion Diffusion Acrhitecture.

• The coordinate swap (ΓCS
I ):

ΓCS
I =


p1,1 p2,1 · · · p2k,1
p1,2 p2,2 · · · p2k,2

...
...

. . .
...

p1,2k p2,2k · · · p2k,2k

 (23)

The Quantum implementation circuits for these transfor-
mations are given in Fig. 12 and an exhibit of how these
operations scramble the pixel in each block if given in Fig. 13.
An 8x8 block is considered to illustrate the transformations.

D. Step-3: Chaotic Selective Shuffle Operation

This module incorporates a chaos-based selective perfect
shuffle operation and is named as PM1

2 in Fig. 9. This module
utilises three bit shift operations based on the perfect shuffle
approach: 1) 2-bit left shift, 2) 2-bit right shift, 3) 4-bit left
shift. Two of these operations, i.e., R − P2n−1,2 and P2,2n−1
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0

Fig. 10: Quantum circuit of the complete encryption scheme.
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Fig. 11: Quantum circuits for Chaotic Qubit Transformations

are developed by adding an extra bit reversal operation before
shifting the qubits. The third operation R− P2m−1,2n , on the
other hand, is a multi-bit shift operation. For the multi-bit shift
operation, 4-bit left shift operation is utilized. The quantum
circuit for the 4-bit left operation is depicted in Fig. 15b. The
De Jong map is utilised to generate a selection key. This key
dictates that the selection of operation for each pixel. The entry
’0’ in the key corresponds to first bit-shift operation, the entry
’1’ corresponds to second bit-shift operation, and similary ’2’
corresponds to third bit-shift operation. For example, for pixel
1, if the first entry in the key is ‘0’, first shift operation will
be applied on pixel 1. Similarly, for pixel 2 if the entry in
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the key is 1, then second operation will be applied on pixel
2. This key is highly random and ensures random selection of
operation on each pixel.

The P2n is the perfect shuffle permutation that has two
different forms defined as follows [26], [39], [40]:

P2n−1,2 =
(
P2n−2,2 ⊗ I2

)
(I2n−2 ⊗ P2,2) , (24)

P2,2n−1 =
(
I2 ⊗ P2,2n−2

)
(P2,2 ⊗ I2n−2) , (25)

where P2,2 represents a two qubit swap gate as shown in Fig.
3.
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Fig. 12: Quantum circuits of geriatric transformations. (a)
ΓV F
I – vertical flip. (b) ΓHF

I – horizontal flip. (c) ΓCS
I – co-

ordinate swap.
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Fig. 13: Sample of geometric transformation operations on
an 8x8 image block. (a) normal image. (b) output of ΓV F

I –
vertical flip. (c) output of ΓCS

I – coordinate swap. (d) output
of ΓHF

I – horizontal flip.

Applying P2n−1,2 and P2,2n−1 to the state |jnjn−1 · · · j2j1⟩,
we have

P2n−1,2 |jnjn−1 · · · j2j1⟩ = |j1jnjn−1 · · · j2⟩ ,
P2,2n−1 |jnjn−1 · · · j2j1⟩ = |jn−1 · · · j2j1jn⟩ .

(23)

These operations represent a cyclic shift operator. To
acheive multi-bit shift operations, the iterations of P2n,2m−1

and P2m−1,2n are given by

P2n,2m−1 = (P2,2m−1 ⊗ I2n−1)(I2 ⊗ P2n−1,2m−1),

P2m−1,2n = (I2 ⊗ P2m−1,2n−1)(P2m−1,2 ⊗ I2n−1).
(30)

The quantum circuits for the bit-shift operations P2n−1,2

and P2,2n−1 are realised in Fig. 14.

Transformation function for the Bit Shift Approach
Extending the perfect shuffle approach to multi-bit shift

operations, the realised quantum circuits via quantum swap
gates are given in Fig. 15. The shift operation is performed on
the gray value

∣∣∣p7′yxp6′yx · · · p1′yxp0′yx〉, and new order is obtained

as
∣∣∣p2′yxp3′yx · · · p0′yxp1′yx〉.
To realise this bit-shift operation mathematically for a pixel

(Y,X), the transformtion function is VY X defined as follows
[32], [41].

VY X (|PY X⟩) = VY X

(∣∣p7Y Xp
6
Y X · · · p1Y Xp

0
Y X

〉)
=

∣∣∣p2′Y Xp
3′

Y X · · · p0
′

Y Xp
1′

Y X

〉
(26)

Then define the sub-operation WY X by using permutation
operator VY X .

WY X =

I⊗8 ⊗
2n−1∑
y=0

2n−1∑
x=0

|yx⟩ ⟨yx|

+ VY X ⊗ |Y X⟩ ⟨Y X| (27)

⋮ ⋮
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Fig. 14: Quantum circuits for perfect shuffle P2n−1,2 and
P2,2n−1
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Fig. 15: Quantum circuits for multi-bit shift operations. (a) 2
bit left shift. (c) 4 bit left shift.

where the quantum sub-operation WY X is unitary. The bit-
level permutation of pixel (Y0, X0) can be accomplished by
applying the sub-operation WY0X0 on quantum state |I1⟩ and
obtain the following resultant.

WY0X0
(|I1⟩) =WY0X0

 1

2n

2n−1∑
y=0

2n−1∑
x=0

|Pyx⟩
∣∣y′〉 ∣∣x′〉

=
1

2n


2n−1∑
y=0
x=0

yx̸=Y0X0

|Pyx⟩
∣∣y′〉 ∣∣x′〉

+ VY X

(∣∣PY0X0

〉)
|Y0X0⟩



=
1

2n


2n−1∑
y=0
x=0

yx̸=Y0X0

∣∣Py′x′
〉 ∣∣y′〉 ∣∣x′〉

+
∣∣∣p2′

Y0X0
p
3′
Y0X0

· · · p7′
Y0X0

p
0′
Y0X0

p
1′
Y0X0

〉
|Y0X0⟩

)
(28)

The procedure involves the application of the transformation
WY1X1

to the existing state, aiming to adjust the grayscale
level of the pixel situated at coordinates (Y1, X1).

WY1X1
WY0X0

(|I1⟩) = WY1X1
WY0X0

 1

2n

2n−1∑
y=0

2n−1∑
x=0

|Pyx⟩
∣∣y′〉 ∣∣x′〉

=
1

2n

( 2n−1∑
y=0
x=0

yx̸=Y0X0,Y1X1

|Pyx⟩
∣∣y′〉 ∣∣x′〉

+
∣∣∣p2′Y0X0

p3
′

Y0X0
· · · p0

′
Y0X0

p1
′

Y0X0

〉
|Y0X0⟩

+
∣∣∣p2′Y1X1

p3
′

Y1X1
· · · p0

′
Y1X1

p1
′

Y1X1

〉
|Y1X1⟩

)
(29)
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Fig. 16: Quantum circuit for the chaotic seed diffusion module.

E. Step 4: Chaotic Seed Diffusion

The final module of this encryption scheme is the chaotic
seed diffusion module and is named as PM2

2 in Fig. 9.
It involves generating a 256 × 256 random matrix using
the discretized Van Der Pol Oscillator. This matrix is then
combined with the output of a confusion module through a
bitwise XOR operation, that is realised via combination of
CNOT gates depicted in Fig. 16 and the encrypted image can
be represented by:

|C⟩ = |S⟩ ⊕ |I2⟩

=
1

2n

2n−1∑
Y=0

2n−1∑
X=0

(
|SY X⟩ ⊕

∣∣∣P ′

Y X

〉)
|Y X⟩

=
1

2n

2n−1∑
Y=0

2n−1∑
X=0

|CY X⟩ |Y X⟩ (30)

V. RESULTS AND ANALYSIS

The proposed two-phase QIE scheme has been extensively
evaluated for several security evaluation parameters, histogram
analysis, correlation analysis, entropy, the Number of Pixel
Change Rate (NPCR), the Unified Average Changed Intensity
(UACI), etc. All tests are performed on five grayscale test
images,i.e., Baboon, Apple (binary), Jupiter, Medical Imaging,
and Cameraman. The proposed scheme is simulated and evalu-
ated in MATLAB using classical equivalents of quantum gates.
Fig 17 shows the visual encryption and decryption results
for the proposed two-phase QIE scheme. It can be observed
that the input images are effectively encrypted, concealing all
visual information.

A. Histogram Analysis

A histogram usually represents the frequency of occurrence
of each intensity level within the image. This information
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(k) (l) (m) (n) (o)

Fig. 17: Visual Encryption Analysis of the proposed scheme. (a-e) Plaintext images. (f-j) Encrypted Images. (k-o) Decrypted
Images.

is crucial in term of image encryption, as it can be used
to retrieve the original information in the image. Ideally,
an encrypted image’s histogram should resemble a uniform
distribution, where each pixel intensity has roughly the same
frequency of occurrence. Fig. 18 shows that the histogram
analysis, depicting the equally distributed frequency of occur-
rence for all test images. This means that the encrypted image
has equal frequency of occurrence for all pixel intensities,
thereby making it difficult for the attackers to predict the
frequency of occurrence of any specific pixel intensity in the
original image.

B. Correlation Analysis
Correlation is the relationship between the adjacent pixels

of an image. In a plaintext image, adjacent pixels tend to have
correlated or similar values in certain regions due to shapes
and structure of objects in the image. An effective encryption
algorithm should reduce or ideally break this correlation,
making the encrypted image appear as random noise and the
ideal value of correlation for an encrypted image should be
zero. The correlation coefficient is found by:

CorrC =

∑M
p=1

∑N
q=1 (P (p, q) − O(P )) (C(p, q) − O(C))√∑M

p=1

∑N
q=1 (P (p, q) − O(P ))2

∑H
p=1

∑N
q=1 (C(p, q) − O(C))2

(31)

where,

•
∑M

p=1

∑N
q=1(· · · ) and

∑H
p=1

∑N
q=1(· · · ) represent dou-

ble summations over the pixels, iterating through rows p
and columns q.

• P (p, q) and C(p, q) denote the pixel intensities at a
particular row-column position in their respective images.

• O(P ) and O(C) refer to the expected values for their
corresponding images.

All images were analyzed for the effective dispersion of
correlation coefficients and the results are displayed in Fig.
19. The widely dispersed correlation coefficients validates
that the encryption algorithm has successfully broken the
inherent correlations between adjacent pixels. This is why the
vertical, horizontal, and diagonal correlation coefficients for
the encrypted Baboon image showing near to zero values are
given in Table I.

C. Entropy Analysis

Entropy serves as an indicator of the unpredictability or
disorder within a system. In information theory, it is utilized
to gauge the level of uncertainty in forecasting the outcome
of a random variable. For a discrete random variable X with
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(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

Fig. 18: Histogram Analysis of encrption scheme. (a-e) histograms of plaintext images. (f-j) histograms of the ciphertext
images.

(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

Fig. 19: Correlation analysis of encryption scheme. (a-e) correlation coefficients of plaintext images. (f-j) correlation coefficients
of ciphertext images.

probability mass function p(|x⟩), the entropy H(X) is defined
as:

H(X) = −
∑

|x⟩∈X

p(|x⟩) log2 p(|x⟩) (32)

Where:
• |x⟩ is an outcome of the random variable X .
• p(|x⟩) is the probability of occurrence of |x⟩.
As Grayscale images typically have pixel intensities in a

range of 0 and 255. The ideal entropy for such an image is
given by:

Hmax = log2 L (33)

Where L is the number of distinct grayscale levels (i.e., 256
for 8-bit images). Thus, the ideal entropy for an 8-bit grayscale
image is:

Hideal = log2 256 = 8 (34)

So, the maximum entropy of a 256× 256 grayscale image is
8 bits/pixel, indicating complete randomness.

The results of the entropy for the test images is given in
Table II. The entropy values of encrypted images are ideally

TABLE I: Correlation Analysis of Cipher Images

Sr. Image Correlation Correlation Coefficients
Horiz Vert Diag

1 Baboon 0.00024 0.0012 0.0065 -0.0071
2 Jupiter 0.00047 0.0027 0.0029 0.0026
3 Medical Imaging 0.00036 -0.0070 -0.0032 0.0031
4 Apple Binary 0.0024 -0.0089 0.0015 0.0055
5 Cameraman 0.0001 0.0089 0.0044 0.0054
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Fig. 20: Results of differential attack on test images. (a-e) Plaintext Images. (f-j) Ciphertexts of original palintext images. (k-o)
Ciphertexts of corrupted plaintext Images with 1-bit change. (p-t) difference between both ciphertext images.

close to 8, indicating a high level of randomness within these
images. This high randomness is a key factor in ensuring the
robustness and security of the encryption method used.

D. Resistance to Differential Attacks

Differential attacks aim to find differences between two
encrypted images that result from slight differences in their

TABLE II: Entropy of the plaintext and cipher images

Sr. Image Plaintext Image Cipher Image
1 Baboon 7.29 7.99
2 Jupiter 5.26 7.99
3 Medical Imaging 5.8 7.99
4 Apple Binary 1.03 7.99
5 Cameraman 7.04 7.99

plaintext versions. The proposed two-phase QIE scheme was
tested for differential attacks and the results are shown in
Fig. 20. The plaintext test image by altered by changing just
one bit in the plaintext image and then encrypted these 1-
bit-altered images. Row 3 in Fig. 20 depict the encrypted
images of the 1-bit altered plaintext images. The difference
between the original ciphertext and the 1-bit altered ciphertext
is depicted in Row 4 of Fig. 20. If the encryption was invariant
to the change of a single pixel, the difference between the two
encrypted images woulfd be 0, resulting in a completely black
difference image. However, as can be observed, the difference
images are not black.
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(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

Fig. 21: Resilience against occlusion attacks. (a to e) ciphertext images with occlusion attacks. (f-j) decrypted images.

E. Analysis of Number of Pixels Changing Rate (NPCR)

NPCR is often utilized to compare two encrypted images
that arise from minute variations in the original plaintext im-
ages. NPCR is a metric primarily used in the context of image
encryption to measure how sensitive an encryption scheme is
to slight changes in its input. NPCR can be computed for two
images C1 and C2 by:

1) Determine Differing Pixels: For each pixel position
(p, q), check if the pixel value in C1 is different from the
pixel value in C2. If they’re different, mark that position.

2) Compute the NPCR: The formula for NPCR is:

NPCR =
1

22n

∑
p,q

|∆(p, q)| × 100% (35)

.
Here: ∆ is the difference in pixel positions between C1 and
C2.
H denotes the height of the image and W denotes the width
of the image.

A high NPCR value (close to 100%) indicates that nearly
all the pixels between the two compared images differ from
each other. It can be seen in Table 11 that the NPCR values for
all three test images are close to 100% depicting the resilience
of the proposed scheme.

F. Analysis of Unified Average Changing Intensity (UACI)

The Unified Average Changing Intensity (UACI) metric
measures the average difference in pixel intensities between
two images. In image encryption, UACI is particularly useful
for assessing how minute changes in the original images
(plaintexts) affect the pixel values in their encrypted counter-
part. While NPCR focuses on the number of pixel positions
that change, UACI assesses the magnitude or intensity of those
changes. To compute the UACI between two images C1 and
C2, the following steps are followed:

1) Determine the Intensity Differences: For each pixel
position (p, q), compute the absolute difference between
the pixel values in C1 and C2.

2) Compute the UACI: The formula for UACI is:

UACI =
1

H ×W

H∑
i=1

W∑
j=1

(
|C1(p, q)− C2(p, q)|

L− 1

)
× 100%

Where:

• H and W are the height and width of the images,
respectively.

• L is the maximum possible pixel value. For an 8-bit
grayscale image, L = 256.

A high value of UACI value indicates a considerable aver-
age change in pixel brightness levels between two images.
In image encryption, this denotes that minute changes in
the original image result in significant changes in the pixel
values of the encrypted output, highlighting the encryption
algorithm’s sensitivity to input changes. On the other hand, a
low UACI might indicate that the encryption algorithm isn’t
introducing enough variability in pixel intensities, which could
be a potential security concern.

In the literature, a commonly cited ideal or threshold value
for UACI is approximately 33.46% for an 8-bit grayscale
image [42, 43]. This percentage means that the difference in
the pixel intensities of two images should be around 255/2
or 127.5. The calculation for this ideal value, considering the
maximum pixel value to be 255, is:

UACI =
127.5

255
× 100% ≈ 33.46%

A UACI value close to 33.46% indicates that the encryption
scheme effectively introduces variability in pixel intensities.
Table ?? shows that UACI for all test images is greater than
33.5%.
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TABLE III: Comparison of NPCR and UACI analysis

Image NPCR UACI
Baboon 99.7045% 33.5689%
Jupiter 99.7921% 33.5107%

Medical Imaging 99.7001% 33.5991%
Apple Binary 99.5069% 33.5001%
Cameraman 99.7092% 33.5994%

Average 99.6826% 33.5556%
Ref [42] 99.6573% 33.56%
Ref [43] 99.65% 33.5504%
Ref [44] 99.57% 33.51%

G. Resilience Against Data Loss

For the transmission of digital images over networks, a
primary concern is the susceptibility of these images to
noise and data loss, which could substantially compromise
the integrity of an encrypted image. Occlusion attacks, also
known as data loss attacks, represent a notable threat. An
occlusion attack involves an adversary maliciously removing
sections of a cipher image with the intent to invalidate the
decryption process. The proposed scheme has been evaluated
for both the data loss attacks and noise attacks. Fig. 21 offers
a visual representation of this test, showcasing the cipher
image ‘Baboon’ subjected to occlusion attacks of different
severities. The results show that even after 60% cropping of
the encrypted images, the algorithm successfully decrypted the
image revealing maximum information.

VI. CONCLUSION

This paper developed and evaluated a quantum image
encryption scheme designed to secure image data in the
quantum-enabled consumer technology. Through the intro-
duction of a two-phase chaotic confusion-diffusion architec-
ture, the scheme encrypts both the position and intensity
information of quantum image pixels at multiple levels. The
implementation of novel quantum circuits for qubit-level trans-
formations and chaos-based operations further strengthened
the designed confusion-diffusion modules. The comprehen-
sive evaluation of the scheme in terms of statistical security
parameters, like entropy, correlation, etc, demonstrated its
effectiveness. Furthermore, the results also demonstrated the
proposed scheme’s resilience to differential attacks. Even a
minute change in the plaintext led to a considerably different
encrypted image, highlighting the method’s sensitivity and
non-linearity.
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