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Abstract—Edge computing emerges as a pivotal model in the
era of next-generation consumer electronics and the emerging
challenges of multimodal data-driven decision-making. Specif-
ically, edge computing offers an open computing architecture
for the vast and diverse consumer multimodal data generated
by mobile computing and Internet of Things (IoT) technologies.
While edge computing is instrumental in optimizing latency
and bandwidth control in processing consumer multimodal data,
the viability of employing edge resources is complicated by
high service costs and the complexities of managing multimodal
data diversity. This study introduces an innovative optimiza-
tion method for distributing multimodal data on edge storage,
considering both the I/O (input/output) speed and the overall
distribution cost. The core part of our approach is the de-
ployment of intelligent algorithms that ensure equitable data
distribution across storage servers, thus eliminating unused space
and reducing extra costs. Given the complexity of this NP-hard
(non-deterministic polynomial-time) challenge, our study reveals
a unique model incorporating an edge-broker component in
combination with novel algorithms. The proposed algorithms aim
to harmonize data distribution and reduce resource allocation
expenses in a multimodal edge environment. Our proposed
approach achieves excellent results, highlighting the efficacy of
the proposed algorithms in several parameters such as makespan,
cost, multimodal data security, and total processing time. Em-
pirical tests reveal that the BCA (Best Clustering Algorithm)
performs best, achieving a minimum load balancing rate of
92.2%, an average variance of 0.04, and an average run time
of 0.56 seconds.
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I. INTRODUCTION

Edge computing provides services for applications with
strict quality of service constraints, including low-latency 5G
and IoT applications. However, due to their limited computing
capacity, edge data centers are not able to respond to a
large number of user queries. Additionally, the diversity of
user data creates significant challenges in analysis speed,
processing, and intelligent decision-making. Therefore, opti-
mizing resource management is crucial to delivering scalable
services to end-users. Several scheduling applications can be
considered for intelligent decision-making [1], [2], [3], [4], [5],
[6]. Traditional optimization methods are no longer suitable,
and there is a growing demand for the development of faster
and more advanced algorithms.

Many researchers have studied the problem of planning
and resource allocation in an edge environment. Some of
them were able to provide solid formulations and approaches
and developed heuristic classification and algorithms suit-
able for this problem [7], [8], [9], [10], [11]. In [12], the
authors summarized the different scheduling algorithms by
providing a thorough classification and a comparative study
of the main algorithms developed in recent years. The in-
terest was mainly focused on scheduling issues in the edge
environment. The categorization of models, algorithms, and
heuristics was organized according to the design basis. The
advantages and disadvantages of each algorithm have been
discussed in more detail. Additionally, reference [12] sum-
marized future directions related to scheduling issues. The
authors in [13] discussed the basic task scheduling concept in
a cloud environment by presenting a literature review of the
scheduling issues. Various meta, evolutionary, physical, and
hybrid planning techniques were reviewed, depending on the
nature of the planning problem. The objective was to classify
central resource allocation systems [13].

The application of scheduling algorithms in edge com-
puting environments has gained increasing interest from the
scheduling and optimization community [14],[15]. The effi-
cient distribution of workflow tasks across available resources
necessitates complex algorithms due to the complex nature of
parameters such as cost, delay, and Quality of Service (QoS).
[16], [17]. In [18], the authors criticize existing schedul-
ing approaches, arguing that the distribution of tasks is not
founded on robust approaches and assumptions. It has been
highlighted that most developed algorithms are only effective
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under specific conditions. The authors developed and tested
several algorithms for application in both homogeneous and
heterogeneous environments. In [19], the authors employed
a correlation spectral-density technique to develop heuristic
scheduling tasks for hybrid storage. In [20], the authors
combined genetic algorithms with other heuristics to develop
novel hybrid heuristics, termed HSGAs, for effectively or-
dering workflow graphs. Furthermore, the authors optimized
makespan and load balancing using the same approach. Re-
cently, the authors in [21] proposed novel scheduling algo-
rithms for drone battery management. These algorithms can be
leveraged across various application domains. Controlling and
reducing costs of edge services are important factors for many
businesses. If proper measures are not taken carefully, bills will
increase unnecessarily. The optimization and minimization
of this cost have been the subject of several bibliographic
researches.
Different models are presented in the literature to optimize
costs in data storage [22]. In [23], the authors made a new
database for looking at the effects of only keeping some
analysis requests from the Database Management System
(DBMS) to the Amazon Web Services (AWS) service. They
demonstrated that migrating some DBMS components to the
AWS platform could be more cost-effective. In [24], the
authors addressed the problem of big data stream planning.
They proposed a simulation model to manage file transfers,
taking into account cost and time constraints. In [25], the
authors developed a cost optimization model for data in
the cloud environment. Scientific workflow is modeled as a
directed graph Directed Acyclic Graphs (DAG). In this work,
general-purpose cloud benchmarks were used to evaluate their
model and demonstrated that their model could minimize the
cost of workflow running under time constraints. The authors
of [26] proposed a workflow scheduling model to optimize cost
in the case of scientific workflow applications. The developed
model was utilized to optimize the makespan and overall
computational costs.

In the article [27], the authors considered that applications
used in cloud-based industrial control systems are more sus-
ceptible to threats. Security for these types of applications
should be highly prioritized. A safety-aware dynamic schedul-
ing method based on the Particle Swarm Optimisation (PSO)
algorithm was developed in [27]. It has been demonstrated
that via scheduling policy [27], one can achieve a balance
between safety and scheduling performance. The article [28]
proposed a QoS model for evaluating performance in data
centers. In this work, the cross-entropy-based algorithm was
used to assess QoS. Previous literature reveals that several
researchers have studied the development of IoT technology
and contributed to developing many models and methods to
make this technology more efficient and cost-effective. The
combination of IoT and AI technologies, also known as AIoT,
is in high demand. Researchers are attempting to leverage
the strengths of each technology. The paper [29] presents the
design of the basic technologies of AIOT. The authors in [30]
proposed an algorithm to assess network health, reliability, and
efficiency for an edge application. This work aims to minimize
the network delay and evaluate the edge network against

the cloud network. The work discussed in [31] proposed
collaborative scheduling methods based on the analysis and
synthesis of calculation tasks in edge computing. In [32], a
study of edge server network design is proposed. They aimed
to balance the cost of network building and the density in
the edge computing environment. A model of cost-density
constraint as a constrained optimization problem is proposed,
and various tests were conducted to solve this problem at large
and small scales. The techniques used in [33], [34], [35], [36],
[37], [38] and [39] can be enhanced by clustering algorithms.

The data scheduling problem in edge environments has been
extensively studied, as evidenced by the related literature. The
main aim is to find a solution that ensures a proper allocation
of edge resources to minimize costs. However, cost optimiza-
tion is a complex issue and needs further investigation. The
developed models, applied under specific requirements, need
further refinement to support workflows and reduce overall
costs. In this work, we have developed a heuristic scheduling
method for minimizing edge storage costs.

Service providers offer great potential to reduce the cost of
data storage, but the overall cost remains high. Using intelli-
gent scheduling algorithms helps reduce this storage cost by
redirecting data to the right places, minimizing unused space,
and avoiding unnecessary data transfer between resources. Our
contribution consists of developing and testing new algorithms
to reduce the storage gap between the different available
resources and thus avoid additional costs.

The main aim of this work is to reduce global storage
consumer costs by optimizing storage resource allocation. To
achieve this, we will develop intelligent scheduling strategies
and new algorithms. This approach prevents unbalanced loads,
reduces the need for future data transfers, minimizes unneces-
sary migration, and maintains high security. Several algorithms
are proposed, and tests are analyzed to achieve the aforemen-
tioned. A few algorithms are based on the clustering method,
such as the clustering two-groups algorithm, and others are
based on the randomization method, such as the random-
clustering two-groups algorithm. The primary objective of
developing these six algorithms is to identify the most efficient
data scheduling method, minimizing resource capacities and
processing time differences.

The remainder of this paper is structured as follows: Section
2 provides a detailed problem description. Section 3 discusses
the proposed model for load balancing in edge computing.
Section 4 explains the proposed load-balancing algorithms.
Section 5 presents experimental results and discussions. The
conclusion is presented in Section 6.

II. PROBLEM DESCRIPTION

The accelerated development of IoT and AIoT has sparked
fundamental interest in the volume of data that needs to
be supported. However, considering the limited resource
capacity and financial budgets of most consumers, applying
smarter models can help mitigate this challenge.The following
paragraph highlights the problem addressed in this work.

Fig 1 shows the IoT architecture tree [40]. IoT connects
objects and devices equipped with sensors, enabling them to
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exchange data among themselves and with other systems. IoT
applications cover various domains, each generating a wide
variety of data.
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Fig. 1. IoT architecture tree

Edge computing technology has several applications, such
as autonomous vehicles, healthcare, security solutions, agri-
culture, and industry. Utilizing edge computing (Figure 1) for
processing and data storage can enhance service speed and
stability. However, traditional data flow management methods
can result in server overloads and network service denials. The
overall cost of resources can increase significantly. A smart,
balanced data storage planning approach can reduce delays and
minimize the overall cost. Therefore, developing collaborative
and selective scheduling models is important to meet the
demands of real-time IoT applications. The significant increase
in data volumes (Figure 2), primarily from IoT networks, has
complicated analysis in traditional data centers. Edge com-
puting aids in minimizing the number of processes required
in the cloud. A primary advantage of edge computing is the
reduced data transmission times and the lowered hardware and
storage process costs. The following paragraph describes the
cost formulation and mathematical model used in this study.

Generally, to estimate the overall cost of storage operations,
one should begin by calculating fixed and recurring server
expenses. Fixed costs include the expenses for server pur-
chase licenses, operating systems, and, notably, memory and
storage space. Concurrently, recurring costs encompass net-
work connectivity, maintenance, administration, and network
monitoring. The literature reveals that various heuristics and
meta-heuristics have been devised to optimize storage costs.
Despite these advancements, the wastage of storage resources
persists and remains a significant challenge. Researchers have
previously outlined that a vacuum of reserved capacity and
space exists, which can lower storage costs and CPU cycles.
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Fig. 2. IoT and Edge devices

The problem under study involves developing a method
that reduces the overall storage cost in edge computing while
ensuring an equitable distribution of files.

The description of variables is provided in Table I.

TABLE I
VARIABLE NOMENCLATURES

Variable Description

SF Set of files
SS Set of servers
fn Number of files
Sn Number of servers
j File index
i server index
K Number of tasks
Si Server i
Cu Cost unit
Ctot Total Cost
Fj File j
fsj The size of the file j
usj The used space when the file j is stored
Tsi The total space in Si when finishing the storing

Tsmin The minimum used space for all Si, i ∈ {1, · · · , Sn}

As outlined in [25], one can estimate the total cost in edge
computing through Equation (1)):

Ctot =
∑

i∈Sn,k∈K

(Pi.Hi,k + PR + CT
i,s).Ti,k (1)

• Ti,k: integer, it represents the number of tasks that are
proposed on server i type k.

• Hi,k: Running time of servers i and type k.
• Pi: Fee (in US dollars) for running a server of type k for

one hour.
• Ck,s: Cost of data transfer between servers for type k and

a storage site S.
• PR: Price per task for queuing service.

In the rest of this work, we will consider k and s as constants.
Our goal is to minimize the term (Pi.Hi,k) in Equation (1)
with :

Pi = (Tsmin +Gvi/sn) ∗ Cu. (2)
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and
Gvi = (Tsi − Tsmin). (3)

Gvi : is the gap space between servers i and the lowest server
space.
The total gap between server-used spaces is denoted by Gv
and given in Equation (4).

Gv =

Sn∑
i=1

(Tsi − Tsmin). (4)

Minimizing the term (Pi.Hi,k) as considered in Equation
(1) is equivalent to reducing the term Gv. The remainder of
this paper will discuss algorithms that aim to achieve this goal.

The following example illustrates the key function of the
scheduling problem.

Example 1: Let fn = 7 and sn = 2. Table II represents the
size fsj for each file Fj .

TABLE II
SIZE-FILE VALUES FOR EXAMPLE 1.

Fj 1 2 3 4 5 6 7

fsj 20 10 13 5 12 8 15

Let us assume that we have the schedule shown in Fig 3.
This schedule is based on the smallest first algorithm. It is
observed that files {1, 2, 3, 4} are assigned to server 1, while
files {5, 6, 7} are assigned to server 2.
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Fig. 3. Files schedule for Example 1.

The total used space in server 1 is 48, as shown in Fig 3.
However, the total used space in server 2 is 35. Thus, the used
space 35 is the minimum used space, denoted by Tsmin = 35.
The gap between the used spaces is denoted by Gv, which is
calculated as Gv = Ts1 − Tsmin = 48− 35 = 13.

This work aims to minimize the Gv gap across servers.
An algorithm that achieves a minimum gap of less than 13 is
necessary.

Minimizing the Gv is the primary goal of this work.
Adopting a different schedule than the one presented in Figure

3, example 2 demonstrates improved results and a minimum
gap of less than 13.

Example 2: The same instance detailed in Table III is taken
in this example. The schedule illustrated in Fig 4 is based on
the biggest first algorithm. This schedule shows that the total
used space in server 1 is 40. However, the total used space
in server 2 is 43 (Tsmin = 40). The gap between the used
spaces is Gv = Ts2 − Tsmin = 43− 40 = 3.
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Fig. 4. Files schedule for Example 2.

The schedule illustrated in example 2 gives a better result
than the schedule in example 1. The gained space here is
10 units. The outcome of the scheduling instance depicted
in example 2 can serve as baseline information for predicting
and estimating capacity allocation. This approach dynamically
determines capacity needs and subsequently reduces allocation
costs.

III. PROPOSED MODEL FOR LOAD BALANCING

The research discussed above underlines the challenges of
identifying optimal scheduling solutions in an edge comput-
ing environment. Many researchers have outlined multiple
research directions that warrant further exploration and deep-
ening.

Within a computing environment, models developed by
[41] and optimization methods discussed in the literature
often provided optimal solutions. Due to their complexity,
these solutions may require significant computational time.
The primary issue involves dispatching files to each storage
resource to minimize allocation costs. The architecture shown
in Figure 5 consists of the following model components:

• File manager is a mapping event in which files to be
stored should be grouped into a batch before being sent.

• The edge broker is an intermediary between AIoT cus-
tomers and edge service providers.

• Developed heuristics aim to deliver appropriate schedul-
ing solutions, ensuring the shortest possible makespan.
These heuristics consider the incoming workflow, queued
data, and resource allocation state.

• Edge contains all servers capable of directly receiving
storage data.
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• Cloud resources comprise all available Virtual Machines
(VMs) that can accommodate additional storage data

The main idea of this study is to assign data to suitable
servers in the Edge environment. Intelligent scheduling of real-
time data flow is an essential process for guiding files to be
stored. After receiving user requests, the task manager com-
ponent should gather accepted files, analyze them according
to customer constraints, and estimate the needed capacities.

The resource manager sweeps up all available resources
and collects information about Edge servers. This component
translates this information to the task scheduler. The load
balancer component instantly calculates the percentage of used
capacities in each server. This information is received by
the resource manager component. The task manager gathers
information again, checks the developed heuristic results,
and assigns each file to the suitable server. The developed
heuristics component, the heart of our work, operates in
collaboration with the task scheduler. It collects the necessary
information and dynamically calculates the best solution to
assign and dispatch each file to its corresponding servers. Fig
5 shows the proposed model.
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Fig. 5. Novel proposed model for load balancing in Edge computing

The main idea of this study is to assign IoT data to
the appropriate Edge storage servers. Dynamic scheduling
is important in guiding tasks within the Edge environment.
Without a scheduling process, global costs can increase, and
resource capacity can be lost. To apply the scheduling process,
we need to analyze the storage resources’ number and state.

In this work, we focus on developing scheduling algorithms
that play the primary role of the ”Load balancer” component.
The following section details the proposed algorithms.

IV. LOAD BALANCING ALGORITHMS

Six algorithms for load balancing in the Edge are presented.
The first one is based on the dispatching rules. The second one
is based on the clustering method, which uses two groups to
classify files to be scheduled. The third algorithm is similar
to the previous one, but we add the probabilistic aspect to
choose between groups. The excluding-files clustering two-
groups algorithm will be presented as the fourth algorithm.
The randomization method is applied to propose the random-
clustering two-group algorithm as the fifth algorithm. Finally,
the last algorithm is based on the choice of two proposed
algorithms, and the best solution will be picked.

A. Longest File First algorithm (LFF )

The initial stage in this technique is to arrange all files
in decreasing order of size. Then, we assign the first file
to the server with the minimum total used space until all
files are scheduled. This rule-based dispatching algorithm is
characterized by its fast time execution. This algorithm is
denoted by LFF . The complexity of LFF is O(nlogn).
Hereafter, SCHD(F ) is the procedure that schedules the file
F on the server with the minimum used space. We denote by
DecR() the procedure that sorts the set of given files according
to the decreasing order of their size.

Algorithm 1 Longest File First algorithm (LFF )
1: Call DecR(SF )
2: Call SCHD(F )
3: Calculate Gv
4: Return Gv

B. Standard Clustering Two-groups algorithm (SCT )

This approach is mostly based on the clustering method.
This clustering detects two file clusters, indicated by the
symbols G1 and G2. The initial stage of this approach is
sorting the files in decreasing order of size. The second step
of this algorithm is constructing G1 and G2. At this stage,
G1 and G2 are empty. The final step is distributing the files
and starting G1 and G2. The first file is assigned to G1 and
the second to G2. The third file is assigned to the group with
the minimum used space until all files are assigned. Now, G1
and G2 are constructed. The fourth step involves assigning the
files to servers. This phase is based on a random selection of
G1 and G2, with the probability sigma for selecting G1 and
the probability 1 − sigma for selecting G2. Once the group
is selected, the first file is picked and assigned to the server
with the minimum total used space. This procedure will be
repeated 2500 times.

We denoted by FFG(1) and FFG(2) the first file in the
group G1 and the first file in the group G2, respectively.

Algorithm 2 Standard Clustering Two-groups algorithm
(SCT )

1: Call DecR(SF )
2: Construct G1 and G2
3: for (ter = 1 to 2500) do
4: for (j = 1 to fn) do
5: dr =random(1,2)
6: if (dr = 1) then
7: Call SCHD(FFG1)
8: else
9: Call SCHD(FFG2)

10: end if
11: end for
12: Calculate Gvter
13: end for
14: Determine Gv = min

1≤ter≤2000
Gvter
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C. Choosing Clustering Two-groups algorithm (CCT )

This algorithm uses the same method applied in Subsection
IV-B. The difference is in the fourth step. Indeed, the choice
between G1 and G2 can be either by applying the probability
σ once or by choosing the group with the maximum used
space. Once the group is selected, the first file is picked and
assigned to the server with the minimum total used space.
This procedure will be repeated 2500 times. We denoted by
MinG(X1, X2) the function that can return the group that
has the maximum used space between two given groups as
inputs X1 and X2.

Algorithm 3 Choosing Clustering Two-groups algorithm
(CCT )

1: Call DecR(SF )
2: Construct G1 and G2
3: for (ter = 1 to 2500) do
4: for (j = 1 to fn) do
5: dr =random(1,2)
6: if (dr = 1) then
7: Call SCHD(FFG(1))
8: else
9: Call SCHD(FFG(2))

10: end if
11: if (j ̸= fn) then
12: Call G = MinG(G1, G2)
13: Call SCHD(FFG(G))
14: end if
15: end for
16: Calculate Gvter
17: end for
18: Determine Gv = min

1≤ter≤2500
Gvter

D. Excluding-files Clustering Two-groups algorithm (ECT )

First, we sort the files in decreasing order of size. Next,
we exclude the sn longest files, denoting the set of these files
as FL. The set of the remaining files is represented by FR.
Finally, sn is scheduled to exclude files on servers individually.
This procedure is repeated 2,500 times. We denote SCT () as
the procedure detailed in Algorithm 2.

Algorithm 4 Excluding-files Clustering Two-groups algorithm
(ECT )

1: Call SCT (FR)
2: SCHD(FL)
3: Calculate Gv
4: Return Gv

E. Random-Clustering Two-groups algorithm (RCT )

This algorithm is based on the randomization method.
Firstly, we apply the same procedure to generate two groups
like SCT . Once the group is chosen, we choose randomly
between the first and the second file in the selected group.
This randomization is based on probability α to select the first

file and the probability 1 − α to select the second file. This
procedure will be repeated 3500 times, and the best solution
will be picked.

F. Best Clustering algorithm (BCA)

BCA algorithm is constructed by calling the SCT and
RCT , and the minimum value will be picked. The best result
is chosen between SCT and RCT , and the final value of
BCA is returned. This demonstrates that none of the proposed
algorithms have dominance. Indeed, the experimental results
confirm that in Table IV, the percentage of SCT is 75.7%, and
the percentage of RCT is 51.8%. However, when we calculate
the minimum between SCT and RCT , the percentage of this
new value is 92.2%. The complexity of BCA is O(n2).

V. EXPERIMENTAL RESULTS AND DISCUSSIONS

This section presents the experimental results of executing
the proposed heuristics to determine the lower and upper
bounds of fsj . The experiments were carried out using Mi-
crosoft Visual C++. The uniform distribution is denoted by
U [], while the normal distribution is represented by N []. This
study considers five classes as follows:

• Class 1: fsj ∈ U [50, 200].
• Class 2: fsj ∈ U [150, 500].
• Class 3: fsj ∈ U [100, 500].
• Class 4: fsj ∈ N [300, 50].
• Class 5: fsj ∈ N [400, 100].

The selected total number of files fn and the selected total
number of servers Sn are shown in Table III.

TABLE III
NUMBER OF FILES AND SERVERS’ DISTRIBUTION

fn Sn

10,30,50 3,4,5
100,300,500 10,20,30

1000,2000,3000 10,20,30,50

In this context, for each class and each fn and Sn, 10
instances were generated. Table III shows the number of the
generated instances (3× 3+ 3× 3+ 3× 4)× 10× 5 = 1500.

The dataset used in this study is available for download
from [42].

The metrics used in this work are presented as follows:

• A∗ denotes the minimum Gv values retrieved after exe-
cuting the six considered algorithms.

• A represents Gv values obtained by the presented algo-
rithm.

• Prg is the percentage for each algorithm to reach A∗.
• GP = A−A∗

A , if A approaches to 0 then G is equal to 0.
GP values are between A∗ and A

• AG denotes the GP average for a fixed instance number.
• T is the running time in seconds, or ”-” if the time is

less than 0.001 s.
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A. Global results

Table IV shows the presentation of the global results for all
six considered algorithms according to Prg, AG, and T . Best
results are achieved by BCA as depicted in Table IV, with
Prg = 92.2%, an average gap of 0.04, and a running duration
of 0.56 seconds. SCT has achieved the second-best results
with Prg = 75.7%. Surprisingly, ECT gives bad results with
only Prg = 3.2%. Table IV shows no dominance between all
proposed algorithms.

TABLE IV
GLOBAL RESULTS PRESENTATION FOR ALL ALGORITHMS

LFF SCT CCT ECT RCT BCA

Prg 22.3% 75.7% 30.3% 3.2% 51.8% 92.2%
AG 0.45 0.08 0.39 0.74 0.24 0.04
T - 0.20 0.15 0.20 0.37 0.56

B. File number variation

Table V shows the results for all algorithms when fn
changes through AG and T . For the BCA algorithm, it is
clear to see that when fn increases, the running time increases.
When fn = 3000, the average gap is equal to 0.02. This means
that with big-scale instances, the best-proposed algorithm
provides good results. On the other hand, an average gap of
0.54 is reached for RCT when fn = 3000. The maximum
gap value of 0.87 is noted for ECT when fn = 300.

TABLE V
RESULTS PRESENTATION FOR ALL ALGORITHMS WHEN fn CHANGES

fn

10 30 50 100 300 500 1000 2000 3000

LFF
AG 0.31 0.73 0.69 0.58 0.51 0.38 0.31 0.36 0.31
T - - - - - - - - -

SCT
AG 0.09 0.06 0.06 0.10 0.08 0.07 0.23 0.02 0.02
T - - 0.01 0.02 0.06 0.10 0.22 0.45 0.68

CCT
AG 0.29 0.47 0.58 0.51 0.42 0.34 0.30 0.36 0.30
T - - - 0.02 0.05 0.08 0.18 0.34 0.50

ECT
AG 0.58 0.84 0.74 0.64 0.87 0.69 0.70 0.76 0.85
T - - 0.01 0.02 0.06 0.10 0.26 0.45 0.66

RCT
AG 0.00 0.29 0.36 0.36 0.19 0.17 0.05 0.14 0.54
T - 0.01 0.01 0.04 0.12 0.19 0.40 0.79 1.29

BCA
AG 0.00 0.04 0.04 0.10 0.04 0.05 0.03 0.01 0.02
T - 0.01 0.02 0.06 0.18 0.29 0.63 1.23 1.97

C. Servers number variation

Table VI depicts the results for all algorithms when sn
changes through AG and T . The AG values provided by the
BCA algorithm are the lowest compared to other algorithms.
For a large number of servers (i.e., Sn = 50, AG = 0.02),
the BCA algorithm continues to be the best in terms of the
gap. For Sn = 5, AG is equal to zero, which means that the
BCA reaches its perfect value. In addition, we notice that for
Sn ≤ 5, the running processing time T is less than 0.01s for

all the algorithms. This means that for a number of Sn ≤ 5,
the proposed algorithms run similarly. Beyond the value of
Sn = 5, T increases for all the algorithms, especially for the
BCA algorithm, which provides a T value of 1.64. For the
algorithm LFF , the running time is always less than 0.01 s.

TABLE VI
IMPACT OF THE CHANGE OF sn ON THE CONSIDERED ALGORITHMS

sn

3 4 5 10 20 30 50

LFF
AG 0.66 0.54 0.53 0.40 0.42 0.37 0.39
T - - - - - - -

SCT
AG 0.07 0.07 0.08 0.11 0.07 0.09 0.08
T - - - 0.18 0.23 0.27 0.63

CCT
AG 0.48 0.53 0.34 0.34 0.39 0.36 0.38
T - - - 0.11 0.17 0.22 0.53

ECT
AG 0.73 0.58 0.86 0.89 0.85 0.48 0.83
T - - - 0.20 0.24 0.27 0.61

RCT
AG 0.16 0.17 0.32 0.34 0.22 0.20 0.19
T 0.01 0.01 0.01 0.38 0.44 0.50 1.02

BCA
AG 0.01 0.00 0.07 0.06 0.02 0.05 0.02
T 0.01 0.01 0.01 0.55 0.68 0.77 1.64

D. Class variation

Table VII shows the impact of the change of Class on the
considered algorithms using AG and T . We notice a small
variation in the running time T with all the algorithms. This
means that the class variation does not influence T . The best
values of AG are also given by the BCA algorithm. BCA
algorithm has achieved the same value of AG (0.02) for
classes 1, 4, and 5, and a little higher values for classes 2
and 3.

TABLE VII
RESULTS PRESENTATION FOR ALL ALGORITHMS WHEN Class CHANGES

Class

1 2 3 4 5

LFF
AG 0.37 0.43 0.44 0.50 0.51
T - - - - -

SCT
AG 0.08 0.13 0.11 0.05 0.06
T 0.20 0.20 0.21 0.19 0.19

CCT
AG 0.30 0.34 0.35 0.47 0.49
T 0.15 0.16 0.17 0.14 0.14

ECT
AG 0.84 0.85 0.86 0.59 0.60
T 0.22 0.21 0.20 0.19 0.19

RCT
AG 0.24 0.29 0.32 0.16 0.16
T 0.38 0.39 0.37 0.35 0.35

BCA
AG 0.02 0.06 0.05 0.02 0.02
T 0.58 0.59 0.58 0.54 0.55

E. Algorithms comparison

Hereafter, we denote by the pair (fn,Sn) all different values
of fn and Sn. In total, we have 30 pair values beginning with
pair(10,3) and ending with pair(3000,50). Figure 6 illustrates
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the comparison based on AG and pair (fn,Sn) between the
algorithms LFF and SCT . We notice that SCT outperforms
LFF since the AG values are the lowest.
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Fig. 6. Comparison based on AG and pair (fn,Sn) between LFF and SCT
algorithms

Figure 7 depicts a comparison between the algorithms CCT
and ECT according to AG and pair(fn,Sn). The variation of
AG with the CCT algorithm is the lowest compared to the
ECT algorithm, which is characterized by the non-stability
of AG values. The curve of the ECT algorithm is above the
curve of CCT . This means that CCT gives better results than
ECT .
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Fig. 7. Comparison between CCT and ECT algorithms based on AG and
pair (fn,Sn)

Figure 8 illustrates a comparison between RCT and BCA
algorithms based on AG and pair (fn,Sn). The BCA algo-
rithm presents the best results compared to the RCT algorithm
according to AG values.
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Fig. 8. Comparison between RCT and BCA algorithms according to AG
and pair (fn,Sn)

VI. CONCLUSION

This study introduces an advanced heuristic scheduling
methodology to reduce consumer expenses while enhancing
edge storage efficiency. It proposes six novel algorithms,
detailing their theoretical concepts and practical applications.
Extensive experiments have been conducted to evaluate the
performance of these algorithms. The results indicate that
these algorithms significantly contribute to lowering consumer
costs. Various metrics, including gap, percentage Prg, and
runtime, have been used to highlight the unique advantages
and limitations of each algorithm within the edge computing
context. The experiments demonstrate the superior perfor-
mance of the clustering and randomization methods. The
Best Clustering Algorithm (BCA) achieved an excellent ef-
ficiency rate of 92.2% and an average runtime of merely
0.04 seconds, highlighting the effectiveness of the proposed
approach. Future research will further refine the proposed
algorithms using innovative strategies, potentially integrating
Variable Neighborhood Search (VNS) and other meta-heuristic
techniques. The development of a comparative lower bound
for gap evaluations is also planned. Additionally, the proposed
solutions could be applied to various problems and contexts,
including heterogeneous edge-cloud environments.
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