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A B S T R A C T

In this paper, we present an extensive review of the most recent works for
Alzheimer’s disease (AD) prediction, particularly Moderate Cognitive Impairment
(MCI) conversion prediction. We aimed to identify the most useful brain-magnetic
resonance imaging (MRI) biomarkers as well as the most successful deep learning
frameworks used for prediction. To achieve this, we analysed more than 130
works and 7 review articles. A closer look revealed that the hippocampus is
an important region of interest (ROI) is affected early by AD and that many
related features help detect the disease in its early stages. However, considered
alone, this ROI is not sufficient enough to ensure high prediction performance.
Therefore, many other brain regions can also provide additional information to
improve prediction accuracy. In relation to state-of-the-art deep neural networks,
the U-Net represents the most efficient architecture for hippocampus segmentation.
The best Dice Similarity Coefficient (DSC) value, equal to 94%, was achieved by
the RESU-Net architecture. The best results for MCI conversion prediction were
obtained for two models that identify significant landmarks from the whole brain
for classification. The multi-stream convolutional neural network achieved the best
AUC and specificity of 94.39% and 99.70%, respectively. Finally, a region ensemble
model delivered the best accuracy of 85.90%, demonstrating the need for further
research to address this challenging problem.

1. Introduction
Dementia, also known as major neurocognitive disorder, is a group of symptoms that can be caused by a

number of diseases which over time leads to a loss of cognitive functioning. It typically affects older people,
with symptoms worsening over time. Signs include memory problems, difficulty concentrating, language
and communication problems and changes in personality and/or behaviour [1]. According to the World
Health Organization (WHO), approximately 90 million people are living with dementia worldwide, and this
number is expected to increase to 150 million in 2030 and 300 million by 2050, due to population aging [1].
The underlying causes of dementia can involve neurodegeneration, which is the slow and progressive loss
of neuronal cells in specified regions of the brain which results in impaired decision making and memory
amongst others. Non-neurodegenerative mechanisms include vascular dementia [1]. Alzheimer’s disease (AD)
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is the most common cause of dementia, affecting over 50 million people worldwide [1],[2] and constituting
60-70% of total cases of dementia [3]. AD is characterized by progressive and irreversible neurodegeneration,
leading to cognitive and memory impairments and eventually death. A transitional state between normal
cognition and the preclinical phase of dementia is referred to as mild cognitive impairment (MCI), where
patients show objective deficits and moderate cognitive problems. MCI can represent the prodromal stage of
AD. Some previous studies have found that individuals with MCI progress to AD at a rate of approximately
5–25% per year [4]. MCI can be classified, according to its various clinical outcomes, into: progressive MCI
(pMCI) and stable MCI (sMCI). An open research challenge is the early and accurate diagnosis of AD, and
the detection of early stages, including MCI. Clinical symptoms of AD predominantly appear in advanced
stages, i.e., many years after the onset of the processes causing this disease. Therefore, identifying biomarkers
for differentiating between individuals with MCI at high risk of conversion to AD dementia versus stable
MCI patients is of great importance. Early diagnosis allows for optimal patient care, and such patients can
help us develop and trial novel treatments to slow disease progression and one day reverse it. Currently, there
are different measurements used for the diagnosis of AD. In addition to clinical assessment and cognitive
evaluation using neuropsychological tests, diagnosis relies on Electroencephalographic (EEG) signals [5] and
various modalities of neuroimaging. These modalities include T1-weighted anatomical magnetic resonance
imaging (MRI) [6], functional MRI [7], positron emission tomography (PET) scans (especially 18F 2-fluoro-2-
deoxy- D-glucose (FDG), Amyloid-� and tau) [8]-[9], single-photon emission computed tomography (SPECT)
[1],[10], diffusion tensor imaging (DTI) [11] and cerebrospinal fluid (CSF) or plasma amyloid-�/tau. These
different neuroimaging modalities were widely used to identify heterogeneous functional and structural
changes at brain level for AD patients including the amyloid plaques, hypo-metabolism [12], and neurological
atrophy. In this context, diverse structural biomarkers have been explored to early detect and differentiate
between sMCI and pMCI. These biomarkers include cortical thinning, high-dimensional features based on
grey matter (GM) and white matter (WM) volume distribution of whole brain [13], as well as atrophy and
shape deformity of individual structures such as carpus callosum (CC), hippocampus (HC) and ventricle
[14]. In fact, in AD, the tissue loss starts from the GM and it extends over to WM, CC and HC. The rapid
damage of tissues leads to structural changes, such as ventricle enlargement, reduction in size of HC and GM,
in the brain [14]. Numerous studies have been published on diagnosing AD using the different neuroimaging
modalities. Some of them have exploited one modality (particularly PET and MRI) while some others have
combined multi modalities in order to provide different information about AD and then increase classification
performances [15]. PET imaging has been shown to be efficient for the early diagnosis of AD as functional
brain abnormalities are readily detectable in prodromal stage of AD using this technique. In fact, blood
flow, glucose metabolism and oxygen are easily visible in the working brain tissues, thus reflecting brain
activity and providing insight into its function. Despite the efficiency of PET imaging, it is in general more
invasive and more expensive than other modalities. Moreover, it involves injection of a radioactive tracer.
Therefore, many researchers were resorted to study MRI imaging. Indeed, MRI is characterized by its high
spatial resolution and its sensitivity to the shape and volume of the brain. Therefore, it is able to identify the
structural atrophy in early stages of AD. Moreover, unlike PET and SPECT techniques, this neuroimaging
modality does not involve radioactive pharmaceutical injection during acquisition process and thereby it is
safer for repetitive use in tracking development of the disease. In this context, several MRI-based approaches
have been proposed for the early AD prediction.
Otherwise, over the past few decades, artificial intelligence (AI) has been successfully applied in many
domains such as robotics, education, and health care [16]. In particular, for the healthcare domain, AI
techniques ranging from machine learning to deep learning are mainly used for the purpose of disease
diagnosis by providing and intelligent health systems for both common and rare diseases [16]. For example,
P.Wu, et al. proposed, in [17], a novel attention-based glioma grading network (AGGN). This method
included three meticulously designed modules which are a dual-domain attention module, a multi-scale
feature extraction and a multi-modal information fusion one [17]. Thus, it enhanced the ability to distinguish
intra-class variability and inter-class similarity existing at different grades of glioma by efficiently capturing
potential correlations and key information from scattered features in different imaging modalities [17].
Therefore, it succeeded to achieve good performances even without the manual labeled tumor masks.
Moreover, H. Li, et al., developed, in [18], a Cov-Net-based model for accurate recognition of COVID-19 from
chest X-ray images. This model is able to build robust and highly discriminative features by implementing
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a meticulously designed attention mechanism and a set of skip-connected dilated convolution kernels with
different dilation rates [18]. In particular, different machine learning (ML) methods have been progressively
developed for the diagnosis and prognosis of AD using neuroimaging modalities. Many types of classifiers such
as support vector machines (SVM), linear discriminant analysis (LDA), K-nearest neighbours (KNN), and
random forests have been frequently used to identify patterns in data that differentiate between several classes
in dementia [19]-[22]. SVM has been shown to be the most efficient for AD as well as MCI classification [23].
Moreover, N. Zeng, et al. introduced, in [24], a new switching delayed particle swarm optimization (SDPSO)
algorithm to optimize the SVM model. It used principal component analysis (PCA) for feature extraction
and then applied the SDPSO-SVM method to ensure the classification [Y4]. The proposed approach achieved
excellent classification accuracies and that outperformed several SVM algorithms [24]. Recently, motivated
by the rapid development of computer science and the accumulation of clinical data, deep learning (DL), a
computationally powerful tool, has become very popular in the AD research. Particularly, DL techniques have
been extensively exploited to extract high-level features and then performing the AD diagnosis [23]. Some of
DL studies have limited to differentiate between AD patients and healthy controls and they have shown high
performances. While others have focused on the most challenging problem which is to differentiate between
sMCI and pMCI of the prodromal stage of AD. For example, N. Zeng, et al., proposed in, [25], a novel deep
belief network (DBN) based multi-task learning algorithm for AD prediction. This new algorithm applied,
in addition to the PCA, a multi-task feature selection approach to reduce the feature dimension [25]. Then,
it exploited the DBN to achieve the classification task. Moreover, to get over the overfitting problem and
also enhance the generalization ability and robustness of the model, it used many techniques such as the
dropout technology and zero-masking strategy [25]. The proposed approach achieved satisfactory results in
multiple binary classification tasks.
There are a number of reviews in the literature on diagnosing AD using DL [[26]-[31]]. They have evaluated
the main DL models developed for the early prediction of AD using one or more neuroimaging modalities.
Some reviews have focused more on the main efficient DL architectures [26]-[29] whilst others have been
interested in the neuroimaging techniques and features used to ensure a good prediction [30],[31].
In this paper, we provide a detailed overview of the most important recent papers, from 2018 to 2022,
that investigate and analyze main methods used to for the early prediction of AD. We limited our survey
on the works based on structural MR images because many interesting results and conclusions, about the
contribution of this neuro-image modality on the early AD prediction, have been explored. Moreover, it is
the most used modality in our country for the diagnosis of AD disease in addition to the other advantages
mentioned above.
In summary, the main objectives of this review are to:

• Provide the important biomarkers for structural MR images used to detect whether an MCI subject
will convert to AD or not;

• Discuss the main DL architectures developed to achieve this challenging task;

• Provide the most recent architectures proposed in the literature for the segmentation of the full
hippocampus as well as its subfields;

• Present the important features extracted from the hippocampus for the early AD prediction;

• Show the limited contribution of the hippocampus considered alone and the importance of other zones
identified by significant landmarks in the MRI images to improve the prediction performances.

This review is organized as follows: Section II presents an overview of neuroimaging modalities exploited
for AD diagnosis. In Section III, we define the datasets used in the literature. In Section IV, we outline the
general pipeline of an AD diagnosis system. Section V is dedicated to presenting and analyzing different
methods developed for the early prediction of AD patients, including those based on the segmentation of
the hippocampus and others using significant zones identified from the whole brain. Section VI is devoted
to discussion and future directions. The paper is closed by a conclusion.
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2. Overview of neuroimaging modalities
With the increasing of MCI and its potential conversion to AD, the structure and metabolic rate of the

brain change accordingly. The degenerative histological changes include cerebral glucose hypo-metabolism,
amyloid plaques, and shrinkage of cerebral cortices (transentorhinal cortex and neocortex). These changes
could be visualized with the help of biomedical imaging techniques such as MRI, PET and SPECT [3],[32].
These data modalities were shown to be relevant for identifying MCI and AD. Images can be divided into
structural imaging including sMRI, CT, functional imaging containing fMRI, PET and SPECT. With these
different imaging modalities, the ability to automatically quantify brain morphology, function, connectivity,
and pathology has improved considerably.

2.1. Anatomical MRI
MRI is a non-invasive widely accessible tool that can be used in vivo to identify sensitive and

specific markers for early AD diagnosis. Particularly, 3D T1-weighted volumetric-MRI gives high-resolution
information about the brain structure. In fact, it provides accurate measurements of structural metrics like
thickness, volume, surface area and shape for the whole brain or for ROIs (especially the hippocampus
(HC) and the entorhinal cortex [33]) to identify brain atrophy and evaluate its degree based on various
visual rating scales. Therefore, this allows not only to separate healthy subjects from AD patients with high
precision but also to differentiate pMCI and sMCI for early AD diagnosis. Indeed, based on the Braak study
for AD staging [34], the disease begins from the transentorhinal cortex (stages I and II), progressing then
to the hippocampus (stages III and IV), and finally involving the neocortex (stage V) [35]. These stages
were defined based on the changes of accumulation of the neurofibrillary tangles as well as the progression
of brain atrophy according to diverse MRI studies [35]. Consequently, several works have focused on HC as
a very important ROI and many efforts have been directed to perform accurate segmentation of the HC for
subjects with MCI to extract significant HC subfields and then properly assess relevant geometrical features
helping the good prediction of the AD. In section V, we will discuss the most recent works that use this
modality for the early detection of AD.

2.2. Functional MRI
Functional MRI (fMRI) represents a non-invasive method to analyze subtle functional connectivity

between different brain regions. In fact, it provides a measure of changes in blood oxygen levels that is an
indicator of neuronal activity. fMRI is usually acquired during cognitive tasks or also during a resting state
(so called rs-fMRI or task-free fMRI (TF- fMRI)). Also, fMRI sequence can be obtained easily during routine
clinical structural MRI sessions. Rs-fMRI is emerging as an interesting biomarker that becomes increasingly
popular for the AD diagnosis. Several studies have assessed the effects of AD onto brain resting-state activity
using rs-fMRI. These studies have proved that the posterior cingulate, precuneus, medial prefrontal cortex
and the hippocampus are the main regions of the Default Mode Network (DMN), a distributed network of
cortical regions that characterizes the resting state of the human brain, involved in AD [36]. In fact, they have
shown that AD causes the decrease of DMN connectivity in addition to the decrease functional synchrony
in the hippocampus and its connectivity to the rest of the DMN [36]. Several ML/DL approaches have
been developed for the diagnosis of AD from rs-fMRI [36]. They have achieved high accuracies especially
for the binary classification of AD vs CN and MCI vs CN. Despite their good performances, they were
performed in very small samples (around 20 participants per group). Therefore, there is a need to evaluate
these techniques across large, multicenter, datasets.

2.3. Diffusion MRI/DTI
Diffusion MRI or diffusion tensor imaging (DTI) is a non- invasive technology that represents the white

matter (WM) fiber bundles in the brain. It allows the analysis of water diffusion at the microstructural level
of the brain. This imaging modality is sensitive to the microstructural damage that may be present in the
white matter bundles and offers different measures of its integrity [11],[37]. It can also be used to measure
the anatomical connectivity between brain regions and detect injuries and signs of impairment that are not
detectable with standard anatomical MRI [11],[37]. Therefore, it has become one of the most popular MRI
techniques in brain research, as well as in clinical practice [38]-[40]. Particularly, DTI has offered a valuable
tool for both the detection of AD and its early stage. In fact, it has contributed to the search for early
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biomarkers of the disease [37]. Several ML-based studies have been proposed for the diagnosis of AD and its
early-stage MCI using DTI [41]-[52]. They have shown that AD and MCI patients exhibit aberrant fractional
anisotropy (FA) and mean diffusivity (MD) values (low FA and high MD) in the white matter of specific
cerebral regions, especially the hippocampus and the amygdala, with less severity for MCI [11]. They also
showed that measures of diffusivity extracted from the hippocampus are better predictors of MCI conversion
to AD than its volume [44].

2.4. PET tracers
Positron Emission Tomography (PET) is a functional imaging technique used to explore brain functional

activity associated with different cognitive states. It provides a representation of a specific metabolic process
through the detection of a positron-emitting isotope tied to a biologically active molecule [53]. The analysis
of the resulted phenomenon allows the detection of cognitive abnormalities in the brain. The well-known
radioactive PET tracers used for diagnosing dementia are [18F] FDG PET, Amyloid-� PET, Tau PET and
SV2A PET.
PET represents the second most-widely used modality after anatomical MRI in AD-related ML/DL studies.
The main benefit of this technique is its ability to detect the earliest pathological changes for AD (for
example amyloid � (A�) deposition and tau hyperphosphorylation). In fact, the first stages of the disease
are characterized by the loss of synapses and the depositions of certain lesions such as extracellular A�
amyloid plaques and intracellular tau neurofibrillary tangles in many regions of the brain [35],[54]. Moreover,
blood flow, oxygen and glucose metabolism in the working brain tissues are easily visible, thus reflecting
brain activity and providing insight into its function [1]. More details for the FPG PET tracer and the
others are given in [55]. Although PET tracers become standard tools for clinicians allowing early diagnosis
of many neurodegenerative diseases (especially AD and MCI) by providing key biomarkers, they have
many limitations. In fact, hypometabolic patterns, for example, overlap between multiple neurodegenerative
diseases. A� positivity can also refer to various neurodegenerative diseases [55]. Furthermore, the PET process
itself (isotope production, radiochemistry, scan) is expensive compared to MRI [55].

2.5. SPECT tracers
Single-Photon Emission Computed Tomography (SPECT) imaging is a functional nuclear imaging

technique that aims to evaluate the regional cerebral perfusion of the brain using a specific radioactive
tracer [1]. The analysis of captured two- or three-dimensional images allows the dementia diagnosis. In this
context, some available biomarkers for AD in clinical use are the cerebral blood flow (CBF)-SPECT and the
dopamine transporter single photon emission CT (DAT- SPECT) [1]. They assess cerebral perfusion and
investigate the functional integrity of dopaminergic nigrostriatal, respectively, offering thus promising tools
for diagnosis and prognosis of dementia [56]-[58]. Despite the importance of the different modalities in the
diagnosis of AD, we will focus, in this survey, only on the anatomical (or structural) MR images. In fact,
many significant results, about the contribution of this neuro-image modality on the early detection of the
disease, have been discussed. Moreover, it is less expensive compared to other modalities, non-invasive and
widely accessible tool. Furthermore, it is the most used modality in our country for the diagnosis of AD.

3. Datasets used in the literature
There exist several publicly available neuroimaging datasets that have been used in the literature for

the diagnosis of AD and greatly supported the research in dementia. These datasets are the Alzheimer’s
Disease Neuroimaging Initiative (ADNI), the Open Access Series of Imaging Studies (OASIS), the Australian
Imaging, Biomarker & Lifestyle Flagship Study of Ageing (AIBL), the Minimal Interval Resonance Imaging
in Alzheimer’s Disease (MIRIAD) and the CADDementia, structural brain MRI scans. The most frequently
used dataset is the ADNI. It was initially launched in 2003 as a public private partnership by the National
Institute on Aging (NIA), the National Institute of Biomedical Imaging and Bioengineering (NIBIB), the
Food and Drug Administration (FDA), private pharmaceutical companies and non-profit organizations [59].
It is led by Principal Investigator Michael W. Weiner, MD [3]. ADNI represents a longitudinal multicentric
project that contains studies of over a thousand subjects, recruited from over 50 sites across the U.S. and
Canada, in different stages ranging from healthy controls (HC) and MCI to AD patients. The first ADNI
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study, ADNI-1, was extended to ADNI-GO in 2009 by a Grand Opportunities grant, and further extended
to ADNI- 2, and ADNI-3 in 2011 and 2016 respectively, by competitive renewals [60]. Each baseline ADNI
dataset contains images from different neuroimaging modalities: anatomical MRI, FDG PET, amyloid PET,
tau PET, diffusion MRI, and functional MRI captured for some subjects at multiple time points1. Data also
includes extensive clinical and cognitive testing, as well as genetic data. Another frequently used dataset is
OASIS. It is a series of MRI datasets stored in different collections. The initial dataset released in 2007 is
OASIS-1 [61]. It consists of a cross-sectional collection of 416 subjects, aged from 18 to 96 years, including
a group of hundred elderly subjects clinically diagnosed with very mild to moderate AD. The other OASIS
dataset (OASIS-2) was released in 2010. It represents a longitudinal study of 150 older adults (including
some with mild to moderate AD). The latest release in OASIS is OASIS-3. It represents a longitudinal
neuroimaging (MRI and PET), clinical, cognitive, and biomarker dataset for 609 normal aging adults and
489 individuals at various stages of cognitive decline including AD. They were collected across several
ongoing projects through the WUSTL Knight ADRC over the course of 30 years. Moreover, the AIBL
dataset was launched in 2006 [62]. It includes approximately 1100 participants (AD patients, MCI patients
and HC). It contains anatomical MRI and amyloid PET images in addition to clinical and cognitive scores.
Particularly, the Australian ADNI, a subset of the AIBL dataset, is publicly available through the same
technical infrastructure as the ADNI thanks to a collaborative agreement with, and funding from, the AD
association. This subset was added directly to the ADNI cohort enhancing its scientific value. Furthermore,
the MIRIAD dataset, a database of volumetric T1 MRI scans of 46 mild–moderate Alzheimer’s subjects and
23 healthy elderly people, was established in 2013 [63]. It includes a total of 708 scans conducted by the
same radiographer with the same scanner and sequences at intervals from 2 weeks to 2 years from baseline,
with accompanying information on gender, age and Mini Mental State Examination (MMSE) scores [63].
Therefore, it is particularly interesting as a common resource for researchers to measure longitudinal volume
change in serially acquired MR, understand the progression of the disease, and then provide longitudinal
biomarkers [63]. In addition to these publicly available datasets, some researchers have used in their studies
other multicenter research datasets. However, these datasets are not publicly available [53].
Table 1 contains a more comprehensive analysis of dataset characteristics and their impacts on model
performances.

4. General pipeline of an AD diagnostic system
The AD diagnosis system is a succession of important steps starting from image pre-processing until the

classification task.

4.1. Pre-processing
The pre-processing of MR images, coming from a magnetic resonance (MR) scanner, includes different

techniques to improve the quality of brain scans. These techniques are mainly brain extraction, bias field
correction, noise reduction and image registration. In fact, skull-stripping should be performed to remove
‘nonbrain tissue’ such as skull, neck, muscles and bones [64], [65]. Moreover, the inhomogeneity of image
intensities, due to the strength of the magnetic field, should be corrected using, for example, a nonparametric
non-uniform intensity normalization algorithm [64], [65]. After, affine or non-linear image registration should
be achieved, by setting the default parameters, to convert the alignment of the structural MR images from
spatial to common anatomical spaces and register them to a common template.
We note that these preprocessing steps are implemented in several publicly available neuroimaging software
tools such as the Freesurfer tool that impliedly includes the preprocessing techniques with the brain
segmentation process. After image preprocessing and registration, each MR image can be cropped into
a patch with a bounding cube for the ROI to speed up the learning process. The size of the cube is optimally
chosen to keep important context information for ROI segmentation.

1Note here that all the modalities are not present for all the subjects. For instance, tau PET is available only in ADNI3.
Moreover, DTI and fMRI are not found in ADNI1 and only about half of the subjects in ADNI1 have FDG PET [53]
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Table 1
Open Datasets comparaison

Dataset Description Characteristics Impact on model performances

ADNI ADNI-1 (2003): 200 NC, 400 MCI, and 200 Mild AD Collect multicenter enhance model performances

Modalities: MRI and FDG PET datasets multimodal (sMRI, FDG PET, as it provides a large amount

ADNI-GO (2009): 200 early MCI (EMCI) amyloid PET, tau PET, diffusion a large amount of data with different

new subjects and around 500 NC and MCI MRI, and fMRI) and longitudinal data on AD modalities and of good quality

subjects rolled over from ADNI-1 Provide raw data as well as pre-processed data - ensure reliability and generalizability

Modalities:MRI scans, FDG and F18 Amyloid Consider different classes (NC, of the performance results of a

PET scans, clinical and cognitive information, AD, MCI, pMCI, sMCI, EMCI, given model since evaluated

, and APOE genotyping and LMCI) allowing interesting on multicenter data.

ADNI-2 (2011): multiple new subjects-150 NC, researches to ensure the allow researchers to develop important

150 EMCI, 150 late MCI (LMCI), and 200 mild AD detection of AD from early stages models that predict the MCI

Around 450–500 CN and MCI subjects rolled conversion to AD (sMCI vs pMCI classification)

over from ADNI-1 and 200 EMCI added from ADNI GO which is the most challenging

Modalities: longitudinal clinical, MRI, PET issue helping clinicians to take effective

(18F-Florbetapir and FDG), cognitive, blood and interventions for the progression of the disease

CSF biomarkers on new subjects

with fMRI, DTI, ASL biomarkers

ADNI-3 (2016): new came up 135–500 NC,

150–515 MCI and 85–185 AD subjects from

longitudinal study in addition to 295–330 NC,

275–320 MCI and 130–150 AD new patients

Modalities: longitudinal tau-PET scans with AV1451

OASIS OASIS-1 (2007): cross-sectional data set Collect MRI and PET images of good quality enhance model performances as it

included MRI data from 416 subjects aged 18 to Provide longitudinal data for patients with different ages provides a large amount of data especially with

96 years (for 100-AD and 316-NC subjects) Contain only three classes (NC, MCI and AD) the addition of the latest version OASIS-3

OASIS-2 (2010): longitudinal MRI data of 150 cannot be used to predict the MCI

older adults (72 NC, 64 AD and 14 MCI patients) conversion to AD (sMCI vs pMCI classification)

OASIS-3 (2018): longitudinal neuroimaging (MRI and PET),

clinical, cognitive, and biomarker dataset

for 609 NC and 489 MCI and AD subjects

AIBL Launched in 2006 Collect MRI and PET images of good quality cannot be used to predict the MCI

Longitudinal study over around 1100 participants Consider only elderly patients conversion to AD (sMCI vs pMCI classification)

having age more than 60 years divided into Contain only three classes (NC, MCI and AD) the unbalanced data can cause the degradation of

211-AD, 768-NC and 133-MCI cohort Unbalanced data (with a large number of NC patients) the model performances if not well adressed.

Modalities:clinical and cognitive assessment, MRI,

biological samples, PET, and lifestyle assessment

MIRIAD Established in 2013 only T1 MRI images conducted by the same present some limitations for model

708 longitudinal T1 MRI scans of 46 mild– radiographer with the same scanner and sequences performances if considered alone for the

moderate AD and 23 NC, with accompanying information Only two classes experiments: the efficiency (small dataset to train a deep model)

on gender, age and MMSE scores and the generalizability (same scanner and a single center)

4.2. ROI segmentation
The segmentation represents a challenging task that may affect classification performances in disease

diagnosis. For AD classification, this task was considered differently in many papers. Some papers applied
firstly tissue segmentation to obtain GM, WM and CSF tissues and then structural segmentation of one
or more tissue to obtain relevant features such as regional cortical thickness. Several works segmented the
whole brain on anatomical regions (ROIs) and extracted global features such as volumes, surfaces and shapes
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directly from ROIs [76]-[77]. While some recent works applied ROI subfields segmentation to extract relevant
local features by focusing on the different subfields instead of considering the ROI as a full block.

4.3. Feature extraction
The features extraction step aims to extract discriminant features from brain images and then obtain

relevant information for classification. This step was considered differently in the literature. In fact, in the
past few decades, the extraction of the features has been independent of the classification model. However,
recently, it has been included in the classification process to avoid sub-optimal learning performance for
AD diagnosis due to the possible heterogeneous nature of features and classifiers. Many types of local and
global features have been extracted from structural MRI. These features can be divided into six different
categories: voxel-level, vertex-level, sliced-level, ROI-level, patch-level, and whole-image-level [31],[78], [79]. In
[31], authors reviewed these different approaches and discussed the advantages and drawbacks of each group.
Despite the fact that the patch-level representation was proved to be the most effective in characterizing
the early AD- related structural changes of the brain, the selection of discriminative patches from tens of
thousands of patches in each MR image represents a delicate and challenging task [31]. Consequently, in
recent years, many efforts have been directed to perform an automatic discriminative landmarks detection
from MR images and then extract patches from these landmarks to learn features [80]. While some papers
have considered the preselection of the most informative patches based on anatomical landmarks isolated
to feature extraction model and disease diagnosis, the most recent ones have performed these tasks in
a unified deep-learning framework [80]. Otherwise, according to the manner of AD alterations detection,
the features can be classified into inter-subject similarity and intra-subject variability [81]. The first class
detects similarities between persons from different groups showing specific disease severities [22]-[82]-[87].
Although the efficiency of the first type of features, they have some limitations due to the fact that structural
atrophies leading to cognitive decline are not homogeneous within a given subject [81]. To deal with this
drawback, intra-subject variability can provide relevant information by focusing on the relationships between
different inter-related regions for a subject [81]-[88]-[91]. The most used features in the literature include the
shape, surface area and volume features from HC and entorhinal cortex [92]. Moreover, they integrate the
normalized hippocampal volume (NHV), the surface roughness (SR), the local surface roughness (LSR), the
asymmetries between right and left hippocampus [60], the mean curvature of the cortical surface [93]-[94]
and recently the average of principal curvature ratio within hippocampal subfields [95] and the entorhinal
cortex texture [79], [96].

4.4. Classification
This step allows the diagnosis of AD patients. Most papers considered binary classification: AD vs. NC,

MCI vs. NC, early MCI (eMCI) vs. late MCI (lMCI) and pMCI vs. sMCI. Simply classifying AD patients
from NC is a relatively easy task. However, it is not very significant. In fact, distinguishing AD from NC
can be achieved easily by focusing on the behaviors of the patients and many indicators in clinical diagnosis.
Therefore, the most challenging classification is the prediction of pMCI from sMCI and NC. Indeed, as pMCI
would progress to AD, identifying pMCI allows to ensure early and accurate diagnosis of AD and then detect
the disease from its early stages.

5. Main methods for the classification of AD and its prodromal stage
In this section, we will survey the most recent papers (from 2018 to 2022) that present important works

for AD prediction from its prodromal stage. We particularly focus on the biomarkers that allows to detect
whether an MCI subject will convert to AD or not and discuss the main DL architectures developed to
achieve this challenging task.
As previously stated, the hippocampus is one of the important regions which is early affected by AD. The
segmentation of this ROI represents a challenging task that has attracted much attention over the last few
decades. Therefore, before surveying the MCI converter prediction models, we will expose, in the following,
the most recent architectures proposed in the literature for the segmentation of the hippocampus.
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5.1. Models for hippocampus segmentation
Many software tools have been developed over the years by different scientific groups applying various

algorithms for automatic brain segmentation (multi-atlas segmentation, model-based segmentation). The
most used tools for neuroimaging studies are FreeSurfer 5.0, 5.3.0, 6.0, 7.0 [68], First of FSL 5.0 [69],
statistical parametric mapping (SPM) [97], and Automatic segmentation of hippocampus subfield (ASHS)
(segmentation of the hippocampus subfield using the included atlas) [98]. These tools have been widely
used to segment the human brain including the hippocampus. Moreover, the FreeSurfer, SPM, and FSL
are not limited to segmentation alone. They ensure also image preprocessing. Despite their efficiency, these
tools are time-consuming. Recently, FASTSURF, a semi-automatic contouring-based segmentation model
was developed for the hippocampus segmentation [99]. It used a mesh processing technique. Compared to
FreeSurfer, and FSL, this model was found superior.
More recently, authors proposed the FastSurfer, a fast and robust method for volumetric segmentation,
morphometric estimation of brain structures including cortical thickness, and reconstruction of cortical
geometry [100]. This method ensures the segmentation of the whole-brain (cortical and subcortical regions)
into 95 classes including the hippocampus, in under only 1 min on the GPU. The FastSurfer outperforms
FreeSurfer with respect to runtime, reliability and sensitivity In the last years, many DL-based models
have been proposed for HC segmentation. Most of them were limited to full hippocampus segmentation
and considered the hippocampus as a single structure due to image resolution restrictions. However, some
methods were interested to the HC subfield segmentation.

5.1.1. DL-based methods for entire hippocampus segmentation
In [77], P. Yi, et al. conducted a comprehensive review of hippocampal segmentation in brain MRI images

using traditional ML and DL methods. Moreover, they presented the well-known toolkits applied to brain
hippocampal segmentation. Many recent hippocampal segmentation methods were reviewed. These methods
are based on a Convolutional neural network (CNN) and U-net. Some of them segmented the hippocampus
on a 2D slice sequence while others worked directly on a 3D volume. Despite the computational cost of the
3D method, it is more popular as it naturally captures all spatial contexts contrarily to the 2-D techniques
that often ignores the context information on the vertical axis. The most recent CNN-based models are those
proposed in [101]-[110]. They paid attention particularly to the speed of segmentation and achieved a Dice
score up to 87%. Moreover, the U-net network was known to be one of the most successful segmentation
methods. In this context, many U-net-based models have been built for the hippocampus segmentation and
achieved very interesting results [111]-[115]. Moreover, D. Carmo et al. proposed in [116] an extended 2D
Consensus Hippocampus Segmentation method (E2DHipseg). The method was based on a full convolutional
network inspired by a 3-plane U-net. Evaluated on HarP dataset, this work achieved a DSC of 90% compared
to the Hippodeep [103], the QuickNat [106] and the Freesurfer version 6.0 with DSCs equals to 85%, 80%
and 70%, respectively.
Some methods, among those mentioned above, have released their code or software packages and provided
open toolkits for hippocampus segmentation [77]. Some toolkits are Hippodeep [103], quickNat [106], deepNat
[104], HippMapp3r [115] and E2DHipseg [116]. Recently, S. Nobakht, et al. developed in [117] an automatic
segmentation tool (DeepHarp) to segment the hippocampus from T1-weighted MRI datasets according to the
ADNI harmonized hippocampal protocol (HarP). It combines a traditional atlas-based segmentation method
with an optimized CNN architecture. The new tool was compared to FSL and Freesurfer algorithms and the
two DL approaches, QuickNat and HippoDeep. It was shown that DeepHarp achieved the highest Dice score
in accuracy (0.893 for left HC and 0.889 for right HC) using 23 test datasets (46 hippocampi segmented from
ADNI-Harp data) while HippoDeep fulfilled the highest Dice score in robustness (0.957 for left HC and 0.96
for right HC). More recently, H. A. Helaly et al. proposed, in [118], a DL-AD hippocampus segmentation
framework (DL- AHS) based on U-Net for automatic AD left and right hippocampus segmentation. The
framework was applied on the baseline coronal T1-weighted structural MRI data obtained from ADNI
and neuroimaging tools and resources collaboratory (NITRIC) datasets. Two different architectures were
developed. The first, SHPT-Net model, used simple hyper-parameters tuning in the U-Net while the second,
denoted by RESU-Net, applied a transfer learning technique in which the ResNet blocks are integrated in
the U-Net. It was proved that both proposed architectures are robust and accurate. They achieved high
performance with DSC values equals to 93.5% and 94% for SHPT-Net and RESU-Net, respectively. They
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also outperformed many state-of-the-art models [102],[116], [117]. An open-source code of this framework is
available at https://github.com/hadeerhelaly/hippocampus- segmentation.
All the aforementioned methods only achieved the hippocampus segmentation, independently from the
prediction task. However, there is some models that combined hippocampal segmentation with disease
diagnosis to improve the prediction performances. In fact, integrating hippocampus segmentation into AD
diagnosis is often beneficial to each other. In [119], the hippocampus segmentation was achieved with the
clinical score regression by a multi-task deep learning (MDL) method. The proposed network applied an
U-Net architecture with a Dice-like loss function for hippocampus segmentation. It was shown that the
model reaches the best Dice similarity coefficient (DSC) of 0.893 and positive predicted value (PPV) of
0.890 in hippocampus segmentation compared with the Random Forest (RF) regression-based method and
the Multi-atlas (MA) based method. This proves that the MDL method succeeded to locate the boundary of
hippocampus accurately. After, in [59], the hippocampal segmentation and the disease status classification
tasks were jointly performed by a multi-model DL framework based on CNN. The deep CNN model used
ResNet blocks to generate a volumetric HC segmentation mask. The proposed framework was compared to
other HC segmentation methods including FSL, the U-Net architecture proposed in [119] and the HippoDeep
[103]. It was proved that it achieves the best dice similarity coefficient of 87.0% on the ADNI dataset versus
72.2%, 73.8% and 84.6% for the other methods, respectively. Moreover, it achieves the best positive predicted
value (84.6% on the ADNI) and segmentation sensitivity (89.7% on the ADNI), which indicate that it can
effectively detect hippocampal regions from the background. Moreover, in [120], J. Sun et al. proposed
an improved end-to-end dual-functional 3D CNN to simultaneously perform segmentation of the bilateral
hippocampi from 3D brain MRI scans and diagnosis of AD progression states. The proposed network was
based on the V-Net and applied to 132 samples from ADNI. It achieved DSCs equals to 0.9035 ± 0.020 and
0.9162 ± 0.023 for left hippocampi and right hippocampi, respectively.
Table 2 provides a more detailed comparison of these architectures highlighting their strengths and their
weaknesses.

5.1.2. DL-based methods for HC subfields segmentation
Motivated by the fact that AD affects differently the various HC subfields at different moments during

the disease progression, automatic and accurate HC subfield segmentation becomes crucial to obtain early
biomarkers of the disease and efficiently detect the conversion of MCI to AD. In addition to Freesurfer that
ensures the HC subfield segmentation, some DL-based methods have been recently proposed for hippocampus
subfield segmentation. In [121], Y. Shi, et al. proposed the UGNET method using an adversarial training
approach. Moreover, in [122], H. Zhu, et al. integrated U-net and dilated dense network to develop a new fully
convolutional network (FCN) for HC subfield segmentation of infants and adults. They proposed two versions,
the Dilated Dense U-Net (DUnet) and the Residual DUnet (ResDUnet). Although their good performances,
these methods are unable to well generalize on unseen data. After, in [123], Z. Yang, et al. developed a
multi-scale CNN based Automated hippocampal subfield Segmentation Toolbox (CAST) to quickly and
accuratelysegment the different hippocampal subfields in less than 1 min for a subject. CAST showed good
segmentation accuracy in terms of dice coefficient (DSC) score. It significantly improved the reliability of
segmenting small subfields, such as CA2, CA3, and the entorhinal cortex (ERC). Moreover, it is flexible
and capable to segment raw images taken from different MRI scanner vendors with different acquisition
parameters without revising any settings and network architecture. It is also applicable for multiple imaging
modalities. Both the scripts and trained model are publicly available at https://github.com/pipiyang/CAST.
More recently, in [124], J. Manjón, et al. developed the DeepHIPS, a novel 3D UNET-based segmentation
method using deep supervision and low-resolution feedback to facilitate the training process. Evaluated
on two publically available datasets Kulaga-Yoskovitz and Winterburn, it was proved that the new method
outperforms the classic UNET (notably for the Winterburn dataset). In fact, it achieved mean DICEs equals
to 0.9116 and 0.9083 for Kulaga-Yoskovitz and Winterburn, respectively, compared to 0.9083 and 0.6148
for classic UNET. It was also shown that DeepHIPS succeeded to segment all hippocampus subfields better
than HIPS [125] and ResDUnet [122] methods with an average of 0.9037 over Kulaga-Yoskovitz dataset
compared to 0.8879 and 0.8960 for HIPS and ResDUnet, respectively.
Table 3 provides a more detailed comparison of the different discussed HC subfields segmantation models,
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Table 2
DL-based methods for entire hippocampus segmentation

Reference Method Methodology Strengths Weaknesses

[103] Hippdeep CNN-Based model - Short running time (<2min for the segmentation
of raw brain T1 images)

- Independent from the prediction t

- Quite robust to changes in the subject and MRI
contrast

- Segment the hippocampus as a sin
structure

- Open toolkit

- DSC equal to 85%

[106] QuickNAT A fully CNN: it follows a consensus of multiple 2D
U-Net like architectures

- Short running time (complete hippocampal seg-
mentation within 20s)

- Independent from the prediction t

- It provides a trained model that can segment
multiple brain regions

- Segment the hippocampus as a sin
structure

- Open toolkit

- DSC equal to 80%

[116] E2DHipseg, an extended 2D consensus hippocampal
segmentation method

Full CNN inspired by a 3-plane U-net (merging
sagittal, coronal and axial modified U-Nets into an
activation consensus), including residual connection
and VGG weight transfer

- Efficient DL segmentation model (DSC equal to
90%) thus using 3-plane U-Net can enhance the
performances of the segmentation task

- Independent from the prediction t

- Open toolkit - Segment the hippocampus as a sin
structure

[117] DeepHarp It combines a traditional atlas-based segmentation
method with an optimized CNN architecture

- A simple method, as it only requires an atlas reg-
istration and subsequent application of the trained
CNN

- Independent from the prediction t

- Robust and accurate method (DSC equal to 89.3%
for left HC and 96% for right HC)

- Segment the hippocampus as a sin
structure

- Validated using 114 multi-center datasets of
patients with AD, MCI, HC and cerebrovascular
disease

[118] • SHPT-Net • SHPT-Net: use of simple hyper-parameters tun-
ing in the U-Net

-Very robust and accurate methods (DSC=93.5%
for SHPT-Net and 94% for RESU-Net)

- Independent from the prediction t

• RESU-Net • RESU-Net: integration of ResNet blocks in the
U-Net

- Open source code - Segment the hippocampus as a sin
structure

[119] Multi-task DL method (MDL) U-Net architecture with a Dice-like loss function - It combines hippocampal segmentation with dis-
ease diagnosis to improve the prediction perfor-
mances

- Limited to full hippocampus segm
tation

- Smooth and accurate method as it can remove
some confounding voxels very well

- Tested only on the ADNI-1 datab

- DSC equal to 89.3%

[59] Multi-model CNN model based on Resnet blocks - It enhances AD prediction performances by in-
tegrating the hippocampus segmentation task with
AD classification

- Limited to full hippocampus segm
tation

- Tested on the ADNI dataset and the HarP dataset

- DSC equal to 87% on the ADNI dataset and DSC
of 86.7% on the HarP dataset

[120] Dual-functional neural network 3D-CNN based on V-Net - It enhances AD prediction performances by using
V-Net and jointly learning hippocampus segmenta-
tion and AD classification

- The study included only 132 samp
100 for the training phase, and
remaining 32 for the test

- Robust for both left and right HC segmentation
with DSC equal to 90.5% for left HC and 91.6% for
right HC

-It does not segment the HC subfie

their strengths and their weaknesses.

5.2. Models for AD classification and MCI converter prediction
In this subsection, we will expose and analyze the most recent methods (from 2018) developed for MCI

converter prediction. We will particularly focus on the biomarkers used to ensure the early prediction of
AD. We note that the reviewed studies differed by the sample sizes of the dataset. Therefore, it is difficult
to quantitatively compare them. However, a qualitative analysis of the results can be performed.
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5.2.1. Models based on the hippocampus features
In this subsection, we will present the well-known models developed for AD prediction from early stages,

based on features extracted from the hippocampus and its surrounding regions. In [126], a new approach
was proposed to predict the MCI-to-AD conversion using MRI images from ADNI database. This approach
reduced the amount of input images by slicing the data in different directions. Moreover, it exploited different
useful information obtained from both CNN-based features and FreeSurfer- based features for sMCI vs pMCI
classification. The CNN was firstly trained with AD/NC patches and then used to extract deep features
from 2.5D patches related to hippocampus regions of MCI subjects. Furthermore, FreeSurfer extracted more
morphological information from the whole brain such as surface area, cortical volume and cortical thickness
average providing thus complementary information for good classification. It was shown that the 2.5D CNN
model, when trained by the CN vs. AD training set, particularly achieved the best accuracy in the sMCI
vs. pMCI task with an accuracy of 73.04%. It was also proved that the full model achieved an accuracy of
79.9% and an AUC of 86.1% in leave-one-out cross-validations. These results outperformed those obtained
with only CNN-based features or FreeSurfer-based features.
In [127], S. Basaia, et al., developed a CNN-based DL algorithm for the prediction of the individual diagnosis
of AD, sMCI and pMCI based on a single cross-sectional brain structural T1-weighted MRI images for
1409 subjects from ADNI dataset (294 AD, 253 pMCI, 510 sMCI and 352 NC) and 229 subjects from an
independent Milan dataset (124 with probable AD, 27 pMCI, 23 sMCI, and 55 NC). The major contribution
of this paper with regard to many previous works is its ability to compare data from different centers,
neuroimaging protocols and scanners then resulting in more reliable and reproducible results. It was proved
that the proposed method achieved very high rates in the AD vs HC classification with 99% using the ADNI
dataset only and 98% using both ADNI and Milan datasets. Moreover, for the most challenging classification
sMCI vs pMCI, it reached an accuracy of 75% for the two datasets. In [128], C. Platero et al. exploited the
local surface roughness (LSR) as a new marker for discriminating AD progression by assessing hippocampal
atrophy. This new marker was derived from the mean curvatures in the most statistically significant local
regions of the hippocampal surfaces. It was used to differentiate among four clinical groups: NC, subjective
cognitive decline (SCD), MCI (sMCI and pMCI), and AD by detecting significant differences in hippocampal
atrophy for them. The performances of the new proposed marker were tested using T1-weighted MRI images
of 307 subjects (70 NC, 87 SCD, 137 MCI and 13 AD). Moreover, 97 patients with MCI were classified into
61 sMCI and 36 pMCI after a follow-up of 3-year. The LSR was compared to other traditional markers that
are left and right hippocampal volumes (LV and RV), normalized hippocampal volumes (NHV) (volumes
averaged and normalized with ICV) and hippocampal SR. It was proved that this marker succeeded in
better discriminating between clinical groups at different stages especially between the NC and SCD with
an accuracy equal to 68.2% compared to that obtained with NHV which is 57.2%. Moreover, the classification
accuracy of the LSR for sMCI and pMCI was 74.3% while it achieved only 68.3% with NHV.
Furthermore, it was shown, in the maps of the mean curvature of each group, that the atrophy patterns
extended particularly to the CA1 and subiculum subfields of the hippocampus. Furthermore, to predict AD
and understand the evolution of the disease, Y. Liu et al., developed in [129] a novel general system AD
using longitudinal data from ADNI dataset. The data corresponds to 3D whole brain DTI images for 151
subjects (51 AD and 100 non-AD) measured at four-time points of baseline, 6 months, 12 months, and 24
months.
On the one hand, the classification task in the new system was ensured by the CNN model Visual Geometry
Group (VGG) that contained, in addition to max-pooling layers, a global average pooling (GAP) layer to
improve the AD prediction accuracy. It was shown that using the training dataset at baseline, the VGG
model achieved accuracies of 0.8675, 0.8452, 0.8335, and 0.7463 in predicting AD in the test datasets at
baseline, 6 months, 12 months, and 24 months, respectively. Moreover, it achieved AUCs of 0.8571, 0.8291,
0.8583, and 0.7756 for prediction of AD in the test datasets at baseline, 6 months, 12 months, and 24 months,
respectively, using the training data at the same time points.
On the other hand, another important module was used for the discovery of potential causal relationships
between the brain neuroimaging regions and AD and then the identification of brain regions underlying
AD. This module was based on the conditional generative adversarial network (CGAN) and two-sample
tests. It was proved that the ventricular system (the ventricles and enlarged ventricle) represents a useful
biomarker for the diagnosis of AD whereas the temporal lobes (including the hippocampus) are crucial in AD
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development at the early stages. To improve the AD and MCI diagnosis, R. Cui and M. Liu proposed, in [130],
a new hippocampus analysis framework that integrates multi-level and multi-type features. The framework
combined local features extracted by a 3D Densely Connected Convolutional Networks (3D DenseNets)
and traditional global shape features obtained by applying a SPHARM-PDM (Spherical Harmonic shape
description) [131] on the binary hippocampal masks. The 3D DenseNet was built on 3D local patches covering
the whole hippocampus and its surrounding regions such as amygdala and parahippocampal gyrus to extract
much more useful information. It was proved that the combination of DenseNet and shape analysis performs
better than the use of each method alone for all binary classifications: AD vs. NC, pMCI vs. sMCI and
MCI vs. NC. Moreover, by comparing DenseNet to shape analysis, it was shown that local visual features
provide much more information about AD diagnosis than global features. Furthermore, the new method
was compared to previous methods using conventional features such as hippocampal volume, GM volumes
of 93 ROIs of the whole brain and voxel-wise features. It was proved that it achieves the best performances
for all classifications and particularly for AD vs. NC with an area under the ROC curve of 96.95% and
an accuracy of 92.29%, which is higher than the ROI-based-method (86.51%) and voxel- based-method
(86.02%). For the most challenging scenario pMCI vs. sMCI, it achieved an AUC ROC of 79.7% and an
accuracy of 75.00% that improved those of ROI-based method (AUC of 71.89% and accuracy of 73.23%)
and voxel-based method (AUC of 73.83% and accuracy of 72.98%). After, K. Popuri, et al. proposed, in
[132], a new framework that not only predicts the current clinical diagnosis of a subject from its associated
MRI image at any stage of the disease progression spectrum but also determine if he will convert to AD
(dementia of Alzheimer’s type (DAT)) (DAT+ trajectory) or it will stay non AD in the future (DAT−
trajectory) over different ranges of time to conversion (TTC) before the disease onset. The new developed
system applied both tissue and structural segmentation to extract different anatomical ROIs from GM and
CSF tissue regions. After, the structural volume-based features in most discriminative ROIs was used to
compute a new AD biomarker that is a MRI DAT score defined as a similarity metric between the subject’s
MRI structural patterns and the DAT patterns by measuring the neurodegeneration in the brain though an
ensemble-learning based classifier. Therefore, based on this score, it assesses the presence of AD structural
atrophy patterns in NC and MCI stages. The classifier is trained on the two extremes groups of patients: NC
and AD and evaluated independently on many images from different databases: ADNI, AIBL, OASIS, and
MIRIAD. It was shown that entorhinal, inferior temporal, middle temporal, and fusiform areas represent
the top cortical ROIs (left and right) exploited by the classifier to compute the score. Moreover, the new
system achieved good performances particularly for short TTC with an AUC of 0.81 for TTC of 6 months
and 0.73 for TTC of up to 7 years for sMCI versus pMCI classification. However, it failed to expect the NC
to be on the DAT+ trajectory, especially for long TTC. Therefore, additional features other than volumes
should be considered to improve the performance of the model particularly during the early stage. In the
same context and motivated by the fact that entorhinal cortex is the first region affected by AD, L. S., et al.
investigated, in [96], entorhinal cortex texture to identify MCI patients from an early stage and differentiate
sMCI from pMCI. They used 608 structural MR images from the ADNI dataset (194 NC, 200 MCI, 84
MCIc or pMCI, and 130 AD subjects). Authors showed that entorhinal cortex texture changes can predict
the conversion from MCI to AD better than the hippocampal atrophy. Moreover, combining texture and
volume features improved the classification performances to reach AUCs of 0.914, 0.740, 0.756 and 0.780
for NC vs. AD, NC vs MCI, sMCI vs MCIc (pMCI) and MCI vs AD groups. They also showed that
the entorhinal cortex degeneration was more pronounced in the pMCI subjects than in the MCI persons
whereas hippocampal volume reduction in both pMCI and MCI stable groups was similar. This proves
that particularly through entorhinal cortex analysis, we could identify that MCI subjects in the future
could develop the disease. Recently, A. Li, et al. developed in [60], a multi-channel cascaded CNNs-based
method that exploited, in addition to hippocampal shapes, asymmetries in the atrophy between left and
right hippocampus to enhance the classification performances. They used 807 structural MR images from
the ADNI dataset (194 AD, 164 pMCI, 233 sMCI, and 216 NC). The proposed system was composed of a
multi-channel 3D CNNs to extract features of left and right hippocampal shapes from binary hippocampus
segmentation masks as well as asymmetrical features by analyzing internal differences between the two
hippocampus masks. Moreover, a 2D CNN was cascaded at the end of the deep 3D CNNs to capture
high-level correlation features by combining the features from the two hippocampi. These high-level features
are finally used with the asymmetry features for early diagnosis and classification of AD patients. It was
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proved that the proposed method achieved accuracies of 85.9%, 73.3% and 71.0% and AUCs of 88.4%,
74.6% and 71.9%. For AD vs. NC, MCI vs. NC and pMCI vs. sMCI classifications, respectively. Moreover,
it performed better than the individual 3D CNNs for learning the combined shape and asymmetry features.
Furthermore, it was shown that the new proposed method outperformed the traditional SPHARM-PDM
[131] illustrating then its capability to well modeling the 3D surface of the hippocampal structure for disease
diagnosis. However, it achieved lower performances than the method in [130] that used a DenseNet built on
3D local patches covering the whole hippocampus and its surrounding regions providing then much more
visual and appearance information. In [95], unlike most studies which extracted features from the entire
hippocampus, T. H. K, et al. focused on the hippocampus subfields to identify relevant features allowing to
predict whether an MCI patient will convert to AD using structural MRI images from the ADNI database.
The features models variations, including atrophy and structural changes to the cortical surface. In fact, the
authors exploited the relationship between the alteration of the hippocampal subfields and the progression of
cognitive impairment and extracted strong neuropathological features that are the rate of change in volume
and the surface area from the hippocampal sub-regions. Moreover, they noticed that the boundaries of the
hippocampal subfields grow increasingly spurious during conversion to AD. Consequently, they proposed the
average of ratio of principal curvatures (RPC) as a new important biomarker in addition to the principal
curvatures (maximum and minimum curvatures) to detect whether an MCI subject will develop AD according
to the change in surface pattern. It was proved that the presubiculum, the subiculum, CA1, CA4, and the
molecular layer are the important ROIs from which the most relevant features used in the MCI prediction
are extracted. Moreover, based on these features, the proposed work achieved an accuracy of 79.95%.
In table 4, we summarize the different models which exploit HC features to early predict AD.

5.2.2. Models based on whole brain features
In [133], M. Liu et al. developed a CNN-based multi-instance learning model (Deep MIL) for AD

classification and MCI conversion prediction. The proposed model first pre-selected the top 40 anatomical
landmarks via a data-driven landmark discovery algorithm to generate image patches. Then, it learned local
patch-level feature representations of image patches and global representations of multiple landmarks to
produce subject-level feature representations for AD diagnosis. The new proposed method was compared
to state-of-the-art approaches, the ROI-based method, the voxel based morphometry, the conventional
landmark-based morphometry (CLM) and a landmark-based deep single- instance learning (LDSIL) method
that is a variant of LDMIL. Trained on the ADNI-1 and evaluated on the ADNI-2 and the MIRIAD datasets,
it was proved that the proposed LDMIL method generally outperforms the other methods in both AD
vs. NC classification and MCI conversion prediction (pMCI vs. sMCI). On ADNI-2, it achieved an AUC
value of 0.959, which is much better than those yielded by ROI, VBM, and CLM methods. Moreover, it
obtained the best performances for MCI conversion prediction with an AUC of 0.7764 and an accuracy of
0.769. Furthermore, authors proposed to adopt the knowledge learned from AD and NC subjects to guide
the prediction of MCI conversion by training the classifier using pMCI and AD as positive samples, and
sMCI and NC subjects as negative ones in ADNI-1. The performances with transferred knowledge were
improved to achieve an AUC of 0.7904 and an accuracy of 0.7834. Moreover, C. Lian et al. proposed, in
[86], a hierarchical fully convolutional network (H-FCN) to locate both discriminative local patches and
regions in the whole brain sMRI and then automatically learn multi-scale (i.e., patch, region-, and subject
level) features for AD classification and MCI conversion prediction of subjects from the two independent
datasets (ADNI-1 and ADNI-2). The proposed H-FCN network included successively location proposals
followed by patch-level sub-networks, then region- level subnetworks, and finally a subject-level sub-network.
Therefore, it was fed not only by mono-scale feature representations, but fused complementary multi-scale
feature representations to achieve AD classification. To boost the diagnostic performance, authors applied
the network pruning strategy to remove uninformative patches and regions and then refine the initial H-FCN.
Moreover, they exploited the transfer learning technique to transfer the network parameters learned from
AD and NC subjects and then enhancing the pMCI vs. sMCI classification performances. Furthermore,
they used data augmentation to reduce the over-fitting risk. The main advantage of this work is that the
localization of discriminative brain regions in sMR images is unified with feature extraction and classifier
construction contrarily to many other works where these tasks are independent. The unification of these
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three important steps allows them to be more seamlessly coordinated in a task-oriented manner. This
improves diagnostic performance. Moreover, contrarily to the two well-known patch-based methods LBM
and DMIL that pre-selected the top 40 landmarks as inputs, the H-FCN method considered all anatomical
landmarks equally as potential location proposals to extract much more information for classification. In
fact, it was proved that the proposed H-FCN method outperforms ROI method [134], VBM method [135],
and the two well-known patch-based methods [133], [136], especially on the more challenging classification,
i.e., pMCI vs. sMCI. It achieves, indeed, the best performances with accuracy and AUC equals to 0.809
and 0.781, respectively, for an image patch size 25 × 25 × 25. After, M. Liu et al., applied in [137] a
data-driven technique to locate discriminative anatomical landmarks from MR images. Then, they proposed
a landmark-based deep feature learning (LDFL) framework using CNN models to jointly achieve features
extraction from informative patches and AD/MCI classification training. It was proved that the proposed
framework boosts the AD/MCI diagnosis performance, compared with several state-of-the-art methods.
Recently, Y.-X. Zhao et al. developed in [138] a region ensemble model based on a divide and conquer
strategy to better perform the MCI conversion prediction task and overcome the problem of dimensionality.
In fact, the model first extracted a global feature map from the whole brain. After, each regional feature
map, extracted using a segmentation model, was fed to a region-based diagnosis subnetwork to extract
discriminative features. Finally, an ensemble subnetwork was constructed for the weighted fusion of the
regional features with an attention mechanism to obtain the final description for the subject. Moreover, to
regularize the training process, the authors proposed a new relation regularized loss. Experiments on ADNI
1 and 2 for MCI conversion prediction proved that the proposed method has achieved better performances
when compared to state-of-the- art methods with an AUC ROC improved from 79.3% to 85.4%. Moreover, K.
Hett et al. proposed in [81] a new graph- based grading framework that exploited both inter-subject similarity
features and intra-subject variability features to provide complementary information for accurately predicting
conversion of MCI subjects to AD. The inter-subject similarities were estimated with a patch-based grading
(PBG) approach while intra-subjects’ variability were modeled by a graph-based approach (computed with
the difference of the grading value distributions for each structure). The new proposed framework was
applied to two different anatomical scales, the whole brain structures and the hippocampal subfields, to
finally develop a multiscale approach. This multi- scale graph-based grading (MGG) method efficiently
and simultaneously combined relevant information for the MCI conversion prediction. Evaluating the new
proposed method using the ADNI-1 dataset, it was proved that it achieved an 80.6% of AUC and 76% of
accuracy for the MCI conversion prediction (within three years). Moreover, when combined with cognitive
scores, the proposed method obtained 85.5% of AUC and 80.6% of accuracy. Otherwise, experiments have
shown that the most frequently selected brain structures are the temporal lobe, the postcentral gyrus, the
anterior cingulate gyrus, the hippocampus and the precuneus. Furthermore, the most frequently selected
hippocampal subfields are the CA1- SP, the CA1-SRLM, and the subiculum. More recently, C. Lian et al.
proposed in [139] an attention-guided DL framework to automatically extract multilevel (local and global,
inter-subject consistent and individual specific) discriminative features from the whole-brain sMRI scans
for AD diagnosis and MCI conversion prediction. The proposed framework took into account the fact that
the locations of the AD-associated brain atrophy as well as the different degrees of severity in certain brain
regions differ from one individual to another. Moreover, it exploited, in addition to information conveyed
in image patches, global structural information of the brain to boost the diagnostic performance. In fact, it
was composed of two stages. In the first stage, a backbone fully convolutional network (FCN) was built to
generate an AD attention map (DAM) for the localization of discriminative regions in each individual brain
sMRI. In the second stage, a multi-branch hybrid network (HybNet) was developed to learn high multilevel
features from DAM-weighted backbone feature maps and image patches extracted from the input sMRI for
brain disease diagnosis. Trained on ADNI-1 and evaluated on ADNI-2, the proposed method showed superior
performances for the MCI conversion prediction compared to the well-known DL models, the H-FCN [86],
and the DMIL [133]. It achieved indeed an accuracy of 0.827 versus 0.809 and 0.769 for the two other models,
respectively, and an AUC of 0.793 versus 0.781 and 0.776. Moreover, for the AD classification, the ACC and
AUC values were improved from 0.903 (for the H-FCN) to 0.919 and 0.951 (for H-FCN) to 0.965, respectively.
Furthermore, M. Ashtari-Majlan et al. developed, in [140], a new approach to identify the most statistically
significant anatomical landmarks and then extract the corresponding patches. The novel approach was based
on the multivariate T2 Hotelling statistical test. The patches were fed to a multi- stream deep CNN, one
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patch to each stream, to ensure the final classification.
This paper presents many strengths. In fact, it eliminated morphological structure deformations by using
rigid registration. This avoided possible inherent errors in the classification phase and reduced computational
complexity. Moreover, by employing T2 Hotelling test, it reduced the impact of potential errors caused by
inter-subject brain shape differences. Finally, it used transfer learning in the training phase for the pMCI
versus sMCI classification to overcome the complexity of learning due to the fact that structural changes
in MCI brains caused by dementia may be very subtle compared to CN and AD. Trained and evaluated
on ADNI-1, the multi-stream CNN method achieved high performances for AD versus CN as well as pMCI
versus sMCI classifications. It reached indeed an accuracy of 97.78% versus 91.90% and 90.30% for the
well-known HybNet [139] and H-FCN [86] models, respectively, when classifying AD and CN individuals.
Moreover, it achieved an AUC of 99.97% versus 96.5% and 95.1% for the two other methods, respectively.
Furthermore, it performed very well in distinguishing pMCI and sMCI with an AUC and a specificity of
94.39% and 99.70%, respectively. However, the best accuracy was still achieved by the region ensemble model
[138] with a value of 85.90%.
Table 5 focuses more on the models which identify essential landmarks from MR images to achieve the AD
prediction. In this table, we define the different methodologies developed in the literature by enumerating
their main steps, their strengths and their limits. Moreover, we present their landmarks identification process.

6. Discussion and future directions
Numerous studies have been conducted to early predict AD from MCI stage. The studies differed by

several factors including the sample sizes, the different extracted features (global, local, patch-level, region-
level, and subject-level), and the classification approaches. Some conclusions can be drawn by analyzing
the reviewed studies. The prediction of MCI converters to AD is still a challenging task. This task was
considered differently in all the works. Some of them considered the hippocampus as the most crucial
ROI that is early affected by the disease and then provided discriminative information for AD prediction
from MCI stage. Therefore, efforts were directed to accurately segment this region. In this context, the
3-D U-NET network was shown to be very performant for full HC as well as HC subfields segmentations.
It succeeded to capture all spatial aspects contrary to the 2-D techniques that often do not take into
account the context information on the vertical axis. Moreover, integrating hippocampus segmentation with
AD diagnosis in the same process often improves prediction performances. Furthermore, by analyzing the
relationship between the alteration of the hippocampal subfields and the progression of cognitive impairment
to AD, the presubiculum, subiculum, CA1-SP, CA1-SRLM, CA4, and molecular layer subfields were proved
to be the most significant parts involved in the MCI converters prediction. Although the importance of the
hippocampus, features extracted from this ROI can be reinforced by features from surrounding regions, such
as parahippocampus and amygdala, providing much more information to improve the prediction of AD from
early stages. Otherwise, some other cortical ROIs can be considered in assessing the presence of AD structural
atrophy patterns in NC and MCI stages and then helping to perfectly predict AD from these stages. These
ROIs are the entorhinal, inferior temporal, middle temporal, and fusiform areas. Particularly, the entorhinal
cortex texture changes were shown to be better than the hippocampal atrophy for the prediction of the
conversion from MCI to AD. This can be explained by the fact that the memory circuit starts from the
entorhinal cortex to the subiculum and then to CA1 and CA3. However, working directly on these predefined
regions for all images without taking into account the variability of the locations and the severity of brain
atrophy from one individual to another impacts the early prediction of AD. Therefore, many efforts were
directed towards identifying the most significant landmarks from the input MRI images, to be considered
in the classification process, ensuring accurate prediction of MCI conversion. Some research has shown that
there are differences between females and males in the structure of specific brain regions. They affirmed
that a woman’s hippocampus, associated with learning and memorization, is larger than a man’s and works
differently. Conversely, a man’s amygdala, related to the experience of emotions and the recollection of
such experiences, is larger than that of a woman. Furthermore, in [141], Wierenga LM et al., showed that
males have greater variability than females in all brain measures, including subcortical volumes and regional
cortical surface area and thickness. In addition, L. V. Eijk, et al., examined, in [142], sex differences in the
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hippocampal subfield volumes adjusted for brain size. They showed that males have a larger parasubiculum,
fimbria, hippocampal fissure, and presubiculum while females have larger volumes for the hippocampal tail
and no sex differences were found in the CA2/3, CA4, HATA, or GCDG subfields. Therefore, considering
these sex differences in the prediction process can improve its performance.
Moreover, it was shown in [143] that patients with cognitive impairment showed abnormal emotion patterns.
In [144], a novel DL-based system was proposed to detect cognitive impairment, by analyzing facial
expressions and emotions while participants watched designed video stimuli. This system achieved an
accuracy of 73.3%. Consequently, new DL models that combine MCI facial emotion with brain MR images
can be tested to show the impact of this combination on the prediction performances.
Finally, it was observed that there exists a compromised link between semantic organization and brain
oscillations in several neurological conditions such as AD or semantic dementia [145]. This can open new
perspectives in quantitatively analyzing neurological disorders connected with distorted semantics and
exploit this aspect in recent neuro-computational models [145].

7. Conclusion
In this paper, we provide a detailed review of the most recent works that have exploited structural MR

images for the early detection and prediction of AD in patients from their stage of MCI. We discussed the
main DL architectures developed to achieve this challenging task and highlighted decisive brain structures
for prediction. An important class of works were based on the hippocampus and its surrounding zones to
achieve an early AD diagnosis. Therefore, we presented, in this paper, the most recent architectures proposed
in the literature for the segmentation of the full hippocampus as well as its subfields. We showed that the
U-Net architecture is very efficient for the hippocampus segmentation. In particular, the RESU-Net was
shown to be most successful with a DSC value equal to 94%.
Despite the efficiency of the models based on the hippocampus, another class of works that identified the
most significant and informative landmarks from MRI images and extracted the corresponding patches as
inputs to the DL system, have shown very interesting results. The best results for the MCI conversion
prediction were then achieved by the multi-stream CNN with an AUC and a specificity of 94.39% and
99.70%, respectively, in addition to a region ensemble model with the best accuracy of 85.90%.
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Table 3
DL-based methods for HC subfields segmentation

Refer-
ence

Method Methodology Strengths Weaknesses

[121] UG-Net model and an adversarial
model

A generative network based on the
modified U-Net to conduct the 2D
segmentation of the slices extracted
from brain nuclear magnetic image
+an adversarial network with CNN
to discriminate the expert annotation
and the segmentation images gener-
ated by generative network

- UG-net can retain more local infor-
mation required for accurate segmen-
tation of small targets. It performs
on the dataset obtained from cen-
ter for imaging of neurodegenerative
diseases (CIND) for CA1, CA2, DG,
CA3, Head, Tail, SUB, ERC and
PHG in hippocampal subfields with
DSCs of 0.919, 0.648, 0.903, 0.673,
0.929, 0.913, 0.906, 0.884 and 0.889
respectively

It achieves higher accura
in the segmentation of t
hippocampal and the larg
subfields but it doesn’t pe
form well enough in t
smaller hippocampal su
fields

[122] • Dilated Dense UNet (DUnet) - It integrates dilated dense network
in the U-net to develop DUnet

- The integration of the dilated dense
network allows to effectively fuse the
low-level features in the contracting
path and the high-level features in
the expanding path which is not well
achieved with the Unet structure and
then obtain optimal results

- Enable to generalize o
unseen data

• Residual DUnet (ResDUnet) - It uses residual connections to group
every pair of convolutional layers in
DUnet and obtain the ResDUnet for
HC subfield segmentation

The use of residual connections en-
sures the promotion of information
propagation and the acceleration the
convergence

- Especially useful for se
menting infant hippocam
pal subfields (small stru
tures)

-Improvement of the average Dice
coefficient by 2.1 and 2.5% for in-
fant hippocampal subfield segmen-
tation, and 0.5 and 0.6% for adult
hippocampal subfield segmentation,
compared to the classic 3D U-net

[123] CAST - It is based on a 3D multi-scale deep
CNN

-Quickly and accurately segment the
different hippocampal subfields in
less than 1 min for a new subject

The training of CAST r
quires approximately thr
days on a single workstatio
with a high-quality GP
card

- Reliable in segmenting small sub-
fields such as CA2, CA3, and the
entorhinal cortex (ERC)

- Flexible and capable to segment raw
images taken from two different MRI
scanner vendors with different ac-
quisition parameters without revising
any settings and network architecture

- Applicable for multiple imaging
modalities

[124] DeepHIPS Novel 3D UNET-based segmentation
method using deep supervision and
low-resolution feedback to facilitate
the training process

- Reliable for segmenting raw images - Tested only on Kulag
Yoskovitz and Winterbu
datasets

- Robust with mean DICEs equals
to 0.9116 and 0.9083 for Kulaga-
Yoskovitz and Winterburn datasets

- The training datasets
the method are quite sm
to ensure a good generaliz
tion (especially in the ca
of Winterburn)
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Table 4
Models based on HC features

Reference Method or Biomarker Key points pMCI vs sMCI classification performances

[126] 2.5 D CNN model - Reduce the amount input data by slicing data in different
direction

Accuracy of 73.04%

- Use CNN model pretrained with AD/NC to classify pMCI versus
sMCI

- Combine features related to HC and global features from the
whole brain to improve the AD prediction

[127] CNN-based method - Reliable and general model, able to compare multi center data
taken from different protocols scanners

Accuracy of 75%

[128] The local surface roughness (LSR) - Develop the LSR as a new biomarker for early AD detection Accuracy of 74.3%

- Prove that the CA1 and subiculum subfields of the HC are the
most affected by the atrophy

Limit: use unbalanced data (only 13 AD)

[129] VGG model +CGAN - Use the CGAN to discover the potential causal relationship
between brain regions and AD

Prediction accuracies of the model using the training datase
at baseline to predict AD in the test datasets at baseline, 6
months, 12 months, and 24 months are 0.8675, 0.8452, 0.8335
and 0.7463, respectively

- Prove that the ventricular system is a useful biomarker for AD
diagnosis while the temporal lobes are crucial for early stages

[130] 3D-DenseNet +SHARPM-PDM - Combine multi-level and multi-type features to enhance classi-
fication performances

Accuracy of 75%

- Use 3D-DenseNet to extract local features and SHARPM-PDM
for global shape analysis

- Prove that local features are more relevant than global features
for MCI converter prediction

- Limited on binary classification

[132] An ensemble-learning- based MRDATS classifier -Propose a MRI DAT score based on volume features to measure
the similarity between the subject’s MRI patterns and the
predefined AD patterns and assess the presence of AD structural
atrophy patters in NC and MCI stages

- AUC of 81% for TTC of 6 months

- Tested on different public datasets - AUC of 73% for TTC of up to 7 years

- Not very efficient particularly for early detection of AD as it is
based only on volume features

[96] Entorhinal cortex texture and hippocampal volume features - Investigate entorhinal cortex texture and hippocampal volume
features for the early prediction of AD

AUC of 78%

- Prove that entorhinal cortex changes are more relevant than
hippocampal atrophy to identify MCI to AD converters

[60] Multi-channels cascaded CNNs (3D-CNN+2D-CNN) - Use 3D-CNN to extract global features from hippocampal
shapes and then 2D-CNN to refine them and capture high level
ones

- Accuracy of 71%

- Exploit the asymmetry between left HC and right HC - AUC of 71.9%

- Better than the SHARPM-PDM for the extraction of global HC
shape features

- Use only global features and this can reduce the model
performances

[95] - Curvature Analysis+ multi-layer perceptron classifier (MLP) - Propose the RCP as a new important biomarker for MCI to AD
converter

Accuracy of 79.95%

- RCP biomarker - Focus on HC subfields instead of the entire HC

- Prove that the presubiculum, the subiculum, CA1, CA4, and
the molecular layer are the most important ROIs used for early
prediction of AD
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Table 5
Models based on the whole brain

Reference Methodology Dataset Landmarks identification process Strengths Limits

[133] A CNN-deep MIL: 1) MR pre-
processing 2) Pre-selection of 40
anatomical landmarks 3) Landmark-
based instance extraction 4) Multi-
instance CNN classification

ADNI-1, ADNI-2 and
MIRIAD

Data-driven landmark discovery algorithm via
a group comparison between AD and NC
subjects in the training set (the landmarks
is defined according to their discriminative
power in distinguishing between AD and NC)

- Adopt the knowledge learned from AD and
NC subjects to guide the prediction of MCI
conversion

- Do not consider some confounding
such as age and gender in the discrim
landmark discovery

- AUC with transferred knowledge equal to
79.04% and accuracy equal to 78.34%

- Do not use any prior knowledge of pre
discovered AD-related brain areas to i
the landmarks

[86] A hierarchical fully convolutional
network (H-FCN): 1) MR pre-
processing 2) Location proposals 3)
patch-level sub-networks 4) region-
level sub-networks 5) subject-level
sub-network

ADNI-1 and ADNI-2 Construct the voxel-wise anatomical corre-
spondence across all linearly-aligned sMRIs
according to the Colin27 template then use
image voxels widely distributed over the whole
template brain image as location proposals

- Use prior knowledge to efficiently filter out
obviously uninformative voxels from selected
location proposals

-use fixed size of input image patche
structural changes caused by AD ma
across different locations

- Unify the localization of discriminative brain
regions in sMR images with feature extraction
and classifier construction to be more seam-
lessly coordinated in a task-oriented manner

- Use transfer learning

- Use the network pruning strategy to remove
uninformative patches and regions

- Accuracy of 80.9% and AUC of 78.1%

[137] Anatomical-landmark-based DL for
AD diagnosis: 1) MR pre-processing
2) A data-driven technique to locate
discriminative anatomical landmarks
from MR images 3) A landmark-
based deep feature learning (LDFL)
framework using CNN to jointly
achieve features extraction and clas-
sification

ADNI-1, ADNI-2 and
MIRIAD

An automatic landmark discovery method Integrating the features extraction with the
classification task boosts the AD/MCI diag-
nosis performances

[138] A region ensemble model using a
divide and conquer strategy: 1) ex-
tract global feature map from the
whole brain 2) fed each regional fea-
ture map to a region-based diagnosis
subnetwork to extract discriminative
features 3) construct an ensemble
subnetwork for weighted fusion of
the regional features with an atten-
tion mechanism to obtain the final
description for the subject

ADNI-1 and ADNI-2 Design an ensemble sub-network to automat-
ically identify discriminative regions in the
whole brain via an attention module

- Propose a novel regularized loss criterion to
regularize the training process

use hand-crafted hyper-parameters w
is a cumbersome process instead of r
proper cross-validation strategy

- Achieve very good results (AUC ROC equal
to 85.4% and accuracy of 85.9%)

[81] A multiscale graph-based grading
method: 1) Preprocessing 2) Brain
structure segmentation 3) Patch-
based grading approach 4) Graph-
based approach 5) Multiscale ap-
proach to analyze alterations of
whole brain structures and hip-
pocampus subfields at the same time

ADNI-1 It is not based on anatomical landmarks - Exploit the complementarity of hippocampal
subfields and whole brain analysis, and the
complementarity of inter-subject similarity
and intra-subject variability

Dependence of the method to the qua
segmentation maps

- Achieve an AUC of 85.5% and an accuracy
of 80.6%

– Prove that the most frequently selected
brain structures are the temporal lobe, the
postcentral gyrus, the anterior cingulate
gyrus, the hippocampus and the precuneus
and the most frequently selected hippocampal
subfields are the CA1-SP, the CA1-SRLM,
and the subiculum

[139] Attention-guided DL framework: 1)
Image pre-processing 2) A backbone
FCN to generate an attention map
containing discriminative regions 3)
A multi-branch HybNet to learn
multi-level features

ADNI-1, ADNI-2 and
AIBL

Use a backbone FCN automatically identify
discriminative brain regions from the whole-
brain sMRI yielding a DAM

- Take into account the variability in the
individuals’ brains

Performing discriminative regions local
and AD diagnosis independently

- Accuracy of 82.7%

[140] A multi-stream convolutional neural
network: 1) Image pre-processing 2)
Identify the most statistically signif-
icant anatomical landmarks 3) use
multi-stream deep CNN to ensure
the classification

ADNI-1 Multivariate T2 Hotelling statistical test - Use rigid registration to eliminate morpho-
logical structure deformations

- Evaluated only on ADNI-1

- Reduce potential errors caused by inter-
subject brain shape differences

- Use transfer learning

-AUC of 94.3% and specificity of 99.7%
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