
Journal of Information Security, 2023, 14, 264-293
https://www.scirp.org/journal/jis

ISSN Online: 2153-1242
ISSN Print: 2153-1234

DOI: 10.4236/jis.2023.144016 Aug. 16, 2023 264 Journal of Information Security

Majority Voting Ransomware Detection System

Simon R. Davies* , Richard Macfarlane , William J. Buchanan

School of Computing, Edinburgh Napier University, Edinburgh, UK

Abstract
Crypto-ransomware remains a significant threat to governments and compa-
nies alike, with high-profile cyber security incidents regularly making head-
lines. Many different detection systems have been proposed as solutions to
the ever-changing dynamic landscape of ransomware detection. In the major-
ity of cases, these described systems propose a method based on the result of a
single test performed on either the executable code, the process under inves-
tigation, its behaviour, or its output. In a small subset of ransomware detec-
tion systems, the concept of a scorecard is employed where multiple tests are
performed on various aspects of a process under investigation and their re-
sults are then analysed using machine learning. The purpose of this paper is
to propose a new majority voting approach to ransomware detection by de-
veloping a method that uses a cumulative score derived from discrete tests
based on calculations using algorithmic rather than heuristic techniques. The
paper describes 23 candidate tests, as well as 9 Windows API tests which are
validated to determine both their accuracy and viability for use within a ran-
somware detection system. Using a cumulative score calculation approach to
ransomware detection has several benefits, such as the immunity to the occa-
sional inaccuracy of individual tests when making its final classification. The
system can also leverage multiple tests that can be both comprehensive and
complimentary in an attempt to achieve a broader, deeper, and more robust
analysis of the program under investigation. Additionally, the use of multiple
collaborative tests also significantly hinders ransomware from masking or
modifying its behaviour in an attempt to bypass detection. The results achieved
by this research demonstrate that many of the proposed tests achieved a high
degree of accuracy in differentiating between benign and malicious targets
and suggestions are offered as to how these tests, and combinations of tests,
could be adapted to further improve the detection accuracy.

Keywords
Ransomware Detection, Malice Score, Score Card, Malware, NapierOne
Dataset

How to cite this paper: Davies, S.R., Mac-
farlane, R. and Buchanan, W.J. (2023) Ma-
jority Voting Ransomware Detection Sys-
tem. Journal of Information Security, 14,
264-293.
https://doi.org/10.4236/jis.2023.144016

Received: April 21, 2023
Accepted: August 13, 2023
Published: August 16, 2023

Copyright © 2023 by author(s) and
Scientific Research Publishing Inc.
This work is licensed under the Creative
Commons Attribution International
License (CC BY 4.0).
http://creativecommons.org/licenses/by/4.0/

Open Access

https://www.scirp.org/journal/jis
https://doi.org/10.4236/jis.2023.144016
https://www.scirp.org/
https://orcid.org/0000-0001-9377-4539
https://orcid.org/0000-0002-5325-2872
https://orcid.org/0000-0003-0809-3523
https://doi.org/10.4236/jis.2023.144016
http://creativecommons.org/licenses/by/4.0/

S. R. Davies et al.

DOI: 10.4236/jis.2023.144016 265 Journal of Information Security

1. Introduction

Crypto-ransomware infections remain a significant threat to governments and
companies alike with high-profile cyber security incidents regularly making head-
lines [1] [2]. The detection of ransomware is often described as an arms race [3]
between threat actors and the people responsible for developing effective mal-
ware countermeasures and techniques.

There are two main approaches used in malware analysis in general and ran-
somware analysis in particular Static Analysis [4], where the evaluation of the
program is performed without the actual execution of the code. Essentially the
program contents are examined in an attempt to determine the nature of the
program and its possible application. This is normally achieved by attempting to
isolate and identify known patterns or signatures within the code. Static analysis
scales well and can provide better coverage of a ransomware binary code. How-
ever, static analysis can produce false execution behaviour as code paths may not
be reachable during actual execution [5] and tell-tale signatures may not be
known at the time of analysis. Dynamic Analysis, on the other hand, executes
the program under investigation in an instrumented or monitored manner and
garners more factual information on the behaviour and effect of the program.
Dynamic analysis can provide more accurate information on the actual execu-
tion behaviour of the investigated binary, though dynamic analysis can be com-
putationally expensive [6] and contains some element of risk.

The problem of automatic malware detection is a difficult one, with no full
solution in sight despite decades of research [7]. The traditional approach, based
on analysis of static signatures, is increasingly rendered ineffective by polymor-
phism and the widespread availability of program obfuscation tools [8] [9]. Us-
ing such tools, malware creators can quickly generate thousands of binary va-
riants of functionally identical samples, effectively circumventing signature-based
approaches. As a result, in recent years, the focus of the research community has
increasingly shifted toward dynamic, behaviour-based analysis techniques. Be-
havioural approaches sidestep the challenges of obfuscated binary analysis. In-
stead, they focus on the run-time behaviour of malware processes, which is dif-
ficult to alter without breaking core functionality and is therefore considered a
reliable fingerprint for malware presence [7].

Over the years many different detection systems have been proposed as solu-
tions to the ever-changing dynamic landscape of ransomware detection. These
approaches have leveraged many different techniques such as machine learning
[4] [10] [11] [12] [13] [14], neural networks [15] [16] [17] [18], file entropy [14]
[19] [20] [21] [22], kernel hooking and process behaviour [23] [24] [25] [26]. In
the majority of cases, the described systems propose a method based on the re-
sult of a single test performed on either the executable code, the process under
investigation, its behaviour or its output. Many of the proposed systems claim to
archive relatively high accuracy. Unfortunately, the researchers rarely publish
enough detail of their research or the datasets used to allow the reported results

https://doi.org/10.4236/jis.2023.144016

S. R. Davies et al.

DOI: 10.4236/jis.2023.144016 266 Journal of Information Security

to be replicated. Berrueta [27] identifies that there are no common metrics of
accuracy and performance in ransomware detection. The fragmentation of
scientific research on ransomware combined with a lack of coherent investiga-
tion methodology is a major challenge in this research [28]. This view is sup-
ported by Maigida [29] who states that the lack of readily available data is also
hindering the speedy development of detection and prevention solutions.

In a small subset of ransomware detection systems, the concept of a scorecard
is employed. In these specific detection systems, multiple tests are performed on
various aspects of a process under investigation. The results of each test contri-
bute to an overall score for the process. A decision can then be made, based on
this score, as to whether the process under investigation is benign or malicious.
The main proponent of this approach was Kharraz [30] in their implementation
of the Redemption detection system. In this work, they refer to this cumulative
score as a Malice Score, and for the remainder of this paper, we will use their
terminology when discussing this combined ranking score. Other detection sys-
tems that have also used this concept of a cumulative malice score are [31] [32]
[33] [34] [35].

None of the described systems used an analytical or algorithmic approach to
calculating values that could then be combined into a cumulative malice score,
rather they relied on some form of machine learning to determine the result.
This paper describes the work performed by the authors in building on the orig-
inal research conducted by Kharraz [30], enhancing and updating their ap-
proach and proposing many new discretely calculated static and dynamic analy-
sis tests that could be incorporated into the final malice score calculation.

A majority voting approach was chosen for the ransomware detection system
proposed in this work. With this type of system, each of the underlying contri-
buting tests generates a binary output. The result of an individual test can be ei-
ther that it is considered malicious or it can be considered benign. These indi-
vidual contributing scores are calculated using algorithmic rather than the heu-
ristic techniques previously proposed in earlier research. Once all the tests have
been performed, the resulting votes are then collated into two sets, malicious
votes and benign votes. The final classification decision of the detection system
is then determined from the set that received the majority of votes. An advan-
tage of this approach is that the system requires no training, as the constituent
values are calculated using discrete reproducible tests that require no prior
knowledge or model training. These proposed new additional tests are validated
using a modern and diverse dataset [36] to determine both their accuracy and
viability for use within a ransomware detection system. In the initial design, each
test has an equal weighting and thus an equal contribution to the final result.
However, this design may be adapted in later iterations by the inclusion of
weighting and bias to the results of individual tests, allowing their votes to have
more effect on the final decision.

There are many benefits associated with using a cumulative score calculation
approach to ransomware detection. For example, when using such an approach,

https://doi.org/10.4236/jis.2023.144016

S. R. Davies et al.

DOI: 10.4236/jis.2023.144016 267 Journal of Information Security

the detection system does not rely on a single specific attribute to base its deci-
sion on whether the program under investigation is malicious or not. Rather it
can leverage multiple tests that can be both comprehensive and complimentary
in an attempt to achieve a broader, deeper and more robust analysis of the pro-
gram under investigation. Also, such a system would be easier to enhance, as
adding additional tests based on new research would be straightforward. Bias
from one particular test [4] [7] would also be mitigated, and the weighting of
each contributing test could be adjusted to improve accuracy. Additionally, the
use of multiple collaborative tests also significantly hinders ransomware from
masking or modifying its behaviour in its attempt to bypass detection [7] [37].

The remainder of the paper is structured as follows. In Section 2, we discuss
some of the main techniques used in ransomware detection and discuss in detail
other techniques that use a collaborative voting approach or a combined scoring
technique. In Section 3, we provide a description of the candidate tests that
could potentially be included in the cumulative malice scoring calculation and
outline the methodology used in the experiments. In Section 4, we present the
recorded results and discuss the consequences of the findings with regard to the
development of anti-ransomware techniques, and we provide some recommen-
dations for crypto-ransomware detection approaches moving forward. Finally,
in Section 5, we discuss the main findings and conclusions gained from this re-
search together with possible limitations in using this approach and suggest fur-
ther research that could be conducted based on the findings from the research
presented in this paper.

The main contributions of this paper are:
− Design, development and detailed description of 23 potential ransomware

detection tests.
− Investigation into the amount and frequency of Windows API calls within the

ransomware executable files and volatile memory of a ransomware process.
− Validation of the effectiveness of the proposed tests in detecting ransomware.
− A ransomware detection system based on algorithmic derived ransomware

indicators.
− The use of a modern publicly available dataset during the development and

testing of the system. The majority of the similar systems proposed in the li-
terature use datasets that are up to 14 years old.

2. Related Work

Over the last 20 years, a significant number of ransomware detection systems
have been proposed in the research literature. The approaches used by these de-
tection systems can be loosely divided into two categories. In one approach, a
single method or test is developed which is then used to determine if the system
is being attacked by ransomware. The alternative approach is to use machine
learning to perform the identification. With the machine learning approach, the
system designers identify key features from the running process and system un-

https://doi.org/10.4236/jis.2023.144016

S. R. Davies et al.

DOI: 10.4236/jis.2023.144016 268 Journal of Information Security

der investigation. The machine learning model then attempts to determine pat-
terns within these features on which to base its judgement. A decision, or classifi-
cation, is then made, based on the measured values of these features, as to whether
the system is under attack or not.

Examples of single-method approaches are [10] [12] [38] [39] [40] [41]. In
these cases, the entire effectiveness of the detection technique relies solely on the
ability of this single criterion to distinguish between benign and malicious pro-
grams [42]. For example, one particular technique used in the identification of
ransomware execution is to use the calculated entropy value of the files created
by a process. Encrypted files tend to have a high entropy value whereas the en-
tropy value of plain text files is much lower. Encrypted output files generated
during the execution of a ransomware program would tend to have higher en-
tropy values, possibly allowing them to be identified as a product of a ransom-
ware infection. Unfortunately, this technique struggles to correctly distinguish
between encrypted files and benign files that also have high entropy such as
compressed files. The use of entropy as a detection metric has also been called
into question [37] [43] as there exist techniques that could be used by ransom-
ware to avoid detection via encoding or, in some other way, manipulating the
encrypted output file.

Examples of ransomware detection techniques that have leveraged machine
learning are [4] [10] [11] [12] [13] [14] or similarly neural networks [15] [16]
[17] [18]. These systems are trained using extracted features from typical ran-
somware processes or systems that are being attacked by ransomware. Examples
of features that are used in these systems are: write entropy, file overwrite beha-
viour, directory traversal, directory listing, cross-file type access, read/write/
create/close operations, temporary files, file type coverage, file similarity, file
type change and access frequency [42]. In most cases, with systems that rely on
machine learning to determine if a system is being attacked, the significance of
the individual extracted features and their subsequent impact on the final classi-
fication is represented internally by the detection system’s model and is not im-
mediately obvious to an observer. Inadequacies with this approach have been
investigated in the literature [42] which discusses classifier evasion techniques,
known as adversarial machine learning that can be leveraged by ransomware
developers to avoid classification and subsequent detection.

However, in a few proposed ransomware detection systems, the designers do
try to provide insight into the machine-learning techniques used and how the
tested features affect the overall decision-making process. The developers of the
detection system UNVEIL [34] and its successor Redemption [30], introduce the
concept of a malice score which is a combined weighted score derived from the
outcome of individual feature tests. The system detects suspicious activity using
dynamic analysis and generates a malice score using a heuristic function. Inputs
to this function are various behavioural features such as file entropy changes,
writes that cover extended portions of a file, file deletion, processes writing to a
large number of user files, processes writing to files of different types and back-

https://doi.org/10.4236/jis.2023.144016

S. R. Davies et al.

DOI: 10.4236/jis.2023.144016 269 Journal of Information Security

to-back writes. CryptoLock [44] propose a similar approach summing the results
of various tests into a cumulative scoring they refer to as a Reputation Score.
This score is derived from measurements of file type changes, the similarity be-
tween original and written content and output file entropy values. Another de-
tection system, RWGuard [35], does mention the specific features that are in-
spected and include file IO, decoy files, file change monitoring and crypto API
monitoring. However, very little detail on how the specific calculations are per-
formed is provided. DNA-Droid [45], was the only detection system found that,
leveraged a combination of static and dynamic analysis as the inputs to their
neural network model. In all cases if this cumulative score is above a certain
threshold, then the process is deemed to be malicious, otherwise, the process is
considered benign.

However, in all these cases, the individual test results and thresholds are still
determined heuristically via the machine-learning model. The model itself de-
cides the significance and weighting given to each extracted feature and the in-
fluence that each feature has on the final classification. Reducing the entire deci-
sion-making process to effectively a black box function. A consequence of this is
that it is difficult for the designers to directly affect the final decision, thus pre-
venting them from being easily able to tune and influence the decision-making
process and final classification produced by the model. The resulting quality
and accuracy of the decisions made by these systems are essentially reliant on
the quality of the training data used to develop the models in the first place.

No ransomware detection systems have been identified in the literature that
uses a malice scoring type approach where the constituent scores contributing
to the final malice score are determined using analytical or algorithmic calcu-
lation methods as opposed to the heuristics used in machine learning ap-
proaches.

3. Methodology

This section introduces a collection of potential tests that could be used in col-
laboration to determine if a process is malicious or benign. There is a binary
outcome for each of these tests with a test failure indicating that the subject of
the test is more likely to be malicious and passing the test indicating that it is
more likely to be benign. The resulting votes from each test are then recorded.
Each of these proposed test results would then contribute to the final overall ma-
lice score of the process under investigation. Each contributing test has the same
weighting and thus the same impact on the final scoring. After all the tests have
been conducted the classification decision is made, based on an aggregation of
received votes, malicious or benign. A conceptual overview of how the proposed
system would be configured is shown in Figure 1.

3.1. File Content Analysis

This collection of tests is performed on any output produced by the process. In
the majority of cases, this would manifest itself as files being written to disk. This

https://doi.org/10.4236/jis.2023.144016

S. R. Davies et al.

DOI: 10.4236/jis.2023.144016 270 Journal of Information Security

Figure 1. Overview of proposed system.

behaviour is common for processes such as editors, web downloads, email
clients, system logging, compression programs, as well as the output from cryp-
to-ransomware programs. These tests will use both the content of the file being
written as well as metrics derived from the file’s metadata such as file name and
extension.

The NapierOne [46] data set was leveraged in many of the tests that rely on
file analysis. This data set is ideally suited for this task as it contains many exam-
ples of the most commonly used file types. The data set contains 5000 example
files for each of the prevalent file types shown in Table 1.

Apart from the normal file types found in typical use, the NapierOne data set
also contains example files that have been encrypted by the ransomware strains
shown in Table 2. The data set contains 5000 example encrypted files for each of
these ransomware strains. (The SHA256 hash values for these ransomware
strains are provided in Table B1 which appears in the Appendix). According to
previous work [14] [47] the use of diverse families of ransomware strains is more
important than the number of ransomware samples from a few families for eva-
luating the performance of ransomware detectors. It is because the core beha-
vioural traits shown by crypto-ransomware in encrypting data attack do not
change from one variant to the other within a family [14].

The entire dataset used during this research contains 365,000 files covering 73
separate and distinct file types and is publicly accessible at www.napierone.com.
The dataset contains 210,000 benign files from the 42 different file types shown
in Table 1 and 155,000 encrypted files from the 31 ransomware strains shown in
Table 2.

File Magic Number Test. Magic numbers are usually the first few bytes of a
file. These are normally unique to a file format and can be used to identify many
common types of files [48]. While not all files contain this signature, for exam-
ple, plain text files such as CSS, CSV, JSON, SVG, TXT and XLST, file types such
as DOCX, PDF, XLSX and many others do contain this unique value. An exten-
sive search was performed in an attempt to generate a comprehensive list of
commonly used file types [36] [48]-[53] and where possible the corresponding
magic number and typical file extension for that type. This research resulted in

https://doi.org/10.4236/jis.2023.144016

S. R. Davies et al.

DOI: 10.4236/jis.2023.144016 271 Journal of Information Security

Table 1. NapierOne file types.

Type Type Type Type

7ZIP EPS MP3 SVG

APK EPUB MP3 RAR

BIN EXE MP4 TIF

BMP GIF ODS TXT

CSS GZIP OXPS WEBP

CSV HTML PDF XLS

DLL ICS PNG XLSX

DOC JS PS XML

DOCX JPG PPT ZIP

DWG JSON PPTX

ELF MKV RAND

Table 2. NapierOne ransomware strains.

Strain Strain Strain

AVOSLOCKER DARKSIDE PHOBOS

BADRABBIT DHARMA RAGNAR

BLACKBASTA GANDCRAB RANSOMEX

BLACKCAT HELLOKITTY RYUK

BLACKMATTER JIGSAW SODINOKIBI

CERBER LOCKBIT SUNCRYPT

CHIMERA LORENZ TESLACRYPT

CLOP MAZE WANNACRY

CONTI MEDUSALOCKER WASTEDLOCKER

CRYPTOLOCKER NETWALKER

CUBA NOTPETYA

the creation of a reference list of more than 600 entries of documented magic
numbers and corresponding file extensions.

This test focuses on determining the magic number of the file under investi-
gation and then comparing it with the file name’s extension to confirm that they
correlate. As plain text files do not have a magic number, then these were ex-
cluded from this test. The test was then applied to all the remaining files within
the test dataset. For a file under test, if its magic number matched the correspond-
ing expected file extension, the test passed and the file was considered benign,
otherwise, the test failed and the file was considered a possible consequence of ma-
licious activity.

Printable Characters Test. This is a complimentary test and is only run on
files that do not usually contain a magic number. As these are plain text files,

https://doi.org/10.4236/jis.2023.144016

S. R. Davies et al.

DOI: 10.4236/jis.2023.144016 272 Journal of Information Security

then the majority of their contents should contain printable ASCII characters.
Examples of files of this type are markup files such as HTML or plain text doc-
uments such as TXT. The definition of printable characters are characters that
have an ASCII value between 32 and 126 as well as the format control characters
which have ASCII values between nine and 13. From analysing the nearly 50,000
plain text files in the NapierOne dataset, it was found that on average plain text
files contain at least 98% printable ASCII content.

The test was then applied to all the plain text files within the test dataset. For a
file under test, if its printable ASCII content was above 98%, then the test passed
and the file was considered benign, otherwise, the test failed and the file was con-
sidered a product of malicious activity.

File Entropy Test. A reoccurring theme within many crypto-ransomware
detection techniques is the concept of randomness and file entropy. Researchers
assert that a good indicator [37] [54] [55] [56] of crypto-ransomware activity is
the generation of files whose contents appears to be random and contain no dis-
tinguishable structure. It is agreed that Well-encrypted data should be indistin-
guishable from random data [57]. Traditionally researchers in crypto-ransomware
detection have chosen to use the value known as Shannon entropy [58] when
calculating this metric, however, in this research, it was decided to use the
chi-square [59] method of calculating this metric based on the findings of Davies
[60].

The test was then applied to all the files within the test dataset. For a file under
test, if its Chi-Square entropy probability value was less than 0.01 [61], then the
test passed and the file was considered benign. Otherwise, the test failed and the
file was considered the product of malicious activity.

BitByte Value Test. This test is based on the method described by Davies [62]
which successfully distinguished between encrypted files and all other file types.
This method is particularly effective at differentiating between encrypted and
compressed files. A separation which previously has been proven in the past to
be problematic to achieve with a reasonable level of accuracy. Essentially this test
is performed by profiling the entropy distribution of the first few hundred bytes
of the file under examination and comparing this profile with the entropy dis-
tribution of a control file. The difference in entropy profiles is then calculated
and a value known as a BitByte value is determined. Files that produce lower
BitByte values have a higher probability that their contents are encrypted. The
research [62] identified that any BitByte value below 56, indicates with high
probability, that the file is encrypted and thus possibly a consequence of a ran-
somware infection.

The test was then applied to all the files within the test dataset. For a file under
test, if its BitByte value was greater than 56, then the test passed and the file was
considered benign. Otherwise, the test failed and the file was considered a prod-
uct of malicious activity.

Ransom Note Creation Test. During a crypto ransomware attack, one action
often performed by the malicious process is to generate a Ransom note file. The

https://doi.org/10.4236/jis.2023.144016

S. R. Davies et al.

DOI: 10.4236/jis.2023.144016 273 Journal of Information Security

purpose of this file generation is two-fold. Firstly, to inform the user that their
files have been encrypted and that they are the victim of a ransomware attack.
Secondly, the file’s contents will usually provide the victim with instructions on
how they can recover from the attack and retrieve their files. The Ransom note
normally explains how the victim should transfer a specific amount of cryp-
to-currency to the perpetrator of the attack in exchange for help in recovering
the affected files. There are normally several characteristics of this Ransom note
file that can be used to distinguish it from other files. The file is normally below
one KB in size, is plain text and usually contains some specific keywords such as:
encrypted, ransom, tor, onion, recover, wallet, bitcoin [63]. In this test, the ac-
tual file name is also analysed for typical ransom note file name strings such
as:decrypt, readme, restore and helpme. It has been identified that often these
ransom note files are created prior to the actual encryption of the target files, so
the identification of the creation of ransom notes would thus prove to be a good
predictor of impending file encryption. This approach was leveraged in the Hel-
Droid [64] ransomware detection system and utilised a text classifier that applies
linguistic features to detect threatening text.

The test was then applied to all the files within the test dataset. For a file under
test, if it is of limited size and its contents contain one or more of the trigger
keywords, then the test failed and the file is considered malicious. Otherwise, the
test passed and the file was considered benign.

3.2. File Name Analysis

This collection of tests is performed on the actual string value of the name of the
file being written. It has been a well-known phenomenon from crypto-ransomware
attacks that as well as encrypting the file contents, in the majority of cases, the
affected file names will also be modified. For example by adding an extra exten-
sion or changing the original file’s name. This set of tests focuses on attempting
to identify this change and will again leverage the content of the NapierOne data
set.

File Name Entropy Test. This test calculates the Shannon [58] entropy value
of the entire file name including any extensions that it may have. In normal op-
eration, users tend to use lower entropy strings when naming their files. An
analysis of the original file names used to populate the NapierOne dataset shows
that the average Shannon entropy of a file name is below six bits. This calculated
value proves to be also language-independent [65]. In many cases, when ran-
somware alters the contents of a file, it also alters the name of the file. Common
ransomware file name manipulations are the addition of random strings to the
name or its extension. This action would then increase the entropy of the affected
file’s name.

The test was then applied to all the files within the test dataset, using their orig-
inal file names. With regards to the files generated from the execution of ransom-
ware, then the filename generated by the ransomware was used. For a file under

https://doi.org/10.4236/jis.2023.144016

S. R. Davies et al.

DOI: 10.4236/jis.2023.144016 274 Journal of Information Security

test, if the calculated entropy value of the entire filename string is under six bits
then the test passed and the file was considered benign, otherwise, the test failed
and the file was considered malicious.

Known File Name Extension Test. As mentioned above, when ransomware
encrypts a file it often also tends to change or append an extra extension to the
affected file. Sometimes the text of this new extension relates to the name of the
ransomware but often the extension is a random string of between three and 50
characters in length. In normal operation, it is very rare that a file’s extension is
not a well-known value, as typically well-known applications generate files with
well-known extensions. This test is aimed at checking and confirming that the
extension of the file being written is one of the common extensions [36] [49]
[50] [52]. This test uses the collated list, created by the authors, of known exten-
sions which are also used in the Magic Number Test described in Section 3.1. If
the file extension is present in the list, then it is considered to be well-known. If
the file name contains multiple extensions, then this test is applied to the last ex-
tension.

The test was then applied to all the files within the test dataset. For a file under
test, if the file’s extension is well-known then the test passed and the file was
considered benign, otherwise, the test failed and the file was considered mali-
cious.

File Name Extension Entropy Test. This test calculates the Shannon [58]
entropy value of the file name’s extension. If the file has multiple extensions,
then the entropy of the entire extension chain is calculated. Often crypto-ransom-
ware will append an extra extension to a file that it has encrypted. This extension
can be a text string relating to the ransomware strain, but more recently it has
been a random string of between three and 50 characters. When analysing the
entropy value of all the extensions in the list of well-known extensions it was
found that they all had a Shannon entropy value of below six bits.

The test was then applied to all the files within the test dataset. For a file under
test, if the calculated entropy value of the file’s extension, or extensions, is below
six bytes then the test passed and the file was considered benign, otherwise, the
test failed and the file was considered malicious.

3.3. Executable Analysis

The collection of tests described in this section relates to tests performed on the
executable code files used to launch the process as well as tests performed on a
process’s memory captured during its execution. Benign programs were selected
that would normally generate files of a specific type. Specific details of the be-
nign programs analysed are provided in Table B1. For example, files of type
DOCX would usually be created using the Microsoft Word application, so the
executable for this application was analysed as well as its memory during its ex-
ecution.

Strings in Executable Test. Often ransomware executables contain an-

https://doi.org/10.4236/jis.2023.144016

S. R. Davies et al.

DOI: 10.4236/jis.2023.144016 275 Journal of Information Security

ti-analysis techniques in an attempt to prevent researchers from inspecting the
content of the code. These techniques can include obfuscation, polymorphism
and encryption of the content of the executable. A consequence of this is that the
number of humanly readable strings found within such a file could be signifi-
cantly lower than would normally be expected. This static analysis technique was
applied to both benign as well as ransomware executable files and took the form
of extracting strings from the executable and then counting the number and
frequency of Windows Application Programming Interface (API) strings that
could be identified. This technique has also been leveraged in other ransomware
detection systems such as R-PackDroid [66].

No specific metrics, such as the expected number of API strings per KB, are
currently available in the literature. So these tests are more exploratory to dis-
cover if the type and frequency of API calls differ significantly between ransom-
ware and benign executables and if this measurement would be a useful contri-
butor to a malice score calculation in a ransomware detection system.

Creation and Modification Dates Test. Executable files normally have a sig-
nificant time interval between when they were placed on the file system and the
current execution time. A small interval between the creation date and time and
the current date and time could also be used as an indicator of a recently placed
malicious program.

This static analysis test was applied to all the executable files shown in the ap-
pendix in Table A1 and Table B1. For an executable file under test, if the file’s
creation or modification date is greater than one day then the test passed and the
executable file was considered benign, otherwise, the test failed and the file was
considered malicious.

Process Analysis
The following tests could be performed on running processes to determine if any
indicators could be identified, that would suggest that the process was malicious.
The memory contents of the process under investigation are analysed for indi-
cators of malicious behaviour.

File-less Execution Test. Running processes that do not have an underlying
executable on the file system could be considered suspicious as some forms of
ransomware execute by being directly injected into memory. These injected pro-
grams would then have no underlying executable file present on the file system.
This is unusual behaviour for a process and can be used to flag irregular beha-
viour [67].

This test was applied to the running process. If the process is associated with a
file on the file system then the test passed and the process file was considered
benign, otherwise, the test failed and the process was considered malicious.

Cryptographic Key Identification Test. The memory and underlying ex-
ecutable file used to launch the process under investigation will be examined for
traces of cryptographic keys, as these could indicate that the process is, or will
shortly begin, encrypting files. The memory will be searched for keys for the fol-

https://doi.org/10.4236/jis.2023.144016

S. R. Davies et al.

DOI: 10.4236/jis.2023.144016 276 Journal of Information Security

lowing three cryptographic algorithms: AES [68] [69] [70] [71] [72], Salsa20 [73]
and RSA [74] [75]. The AES key testing included checking for the presence of
keys of length 128, 192 and 256 bits.

Initially, the executable file that will be used to launch the process with be
examined. Subsequently, the memory of the running process will be checked on
two occasions, firstly, directly after the process has launched and then subse-
quently checked again 30 seconds after launch. If no keys are found in each of
these tests, then the test passed and the process was considered benign, other-
wise, if keys are discovered, the test failed and the process was considered mali-
cious.

Ransom Note Identification Test. The memory of the process under inves-
tigation will be examined for traces of typical strings that often appear within
ransom notes. These are files normally generated by ransomware programs and
are used to inform the user that they have been the victim of a ransomware at-
tack. These files usually contain information on how the user may recover their
data. The presence of many keywords close together within the process’s mem-
ory would be an indicator that the process could be malicious. This test is similar
to the previous Ransom Note Creation Test, using the same keywords, however,
in this case, it will be performed on the process’s memory and not on its output.

This test was applied to the running process. If the process’s memory does not
contain several examples of the keywords, then the test passed and the process
was considered benign, otherwise, the test failed and the process was considered
malicious.

Windows API Analysis Test. The memory of the process under investigation
will be examined and a review of the number and frequency of all the found
window’s application programming interface (API) calls will be performed. Ex-
ecutables use these API calls to interact with the operating system and the num-
ber and type of calls used together with their frequency will be investigated to
determine if this could be used as an indicator that the process under investiga-
tion is malicious. This test is similar to the previous Strings in Executable Test,
however, in this case, it will be performed on the process’s memory and not on
the executable file used to launch the process.

No specific metrics, such as the expected number of API strings per KB, are
currently available in the literature. So these tests are more exploratory to dis-
cover if the type and frequency of API calls differ significantly between ransom-
ware and benign executables and if this measurement would be a useful contri-
butor to a malice score calculation in a ransomware detection system.

3.4. Behaviour Analysis

The actions and behaviour exhibited by the ransomware can also be monitored
to identify suspicious behaviour. These tests are outlined below.

Modification of System Restore Points. System restore points are used to
recover a system’s state or file system files. There are very few occasions where a

https://doi.org/10.4236/jis.2023.144016

S. R. Davies et al.

DOI: 10.4236/jis.2023.144016 277 Journal of Information Security

process needs to issue commands relating to system restore points, especially
concerning their deletion. The state of the system’s restore points will be moni-
tored, during the execution of the process under investigation, to determine if
they are modified.

This test was applied to the running process. If the systems restore points re-
mained intact two minutes after the launch of the process, then the test passed
and the process was considered benign, otherwise, if the restore points had been
altered or deleted, the test failed and the process was considered malicious.

Process escalation Some ransomware processes attempt to gain elevated
access to resources that are normally protected from an application or user. This
is attempted so that the process can gain deeper and broader control of the sys-
tem and allow them to perform more destructive actions. Identification of such
behaviour would prove to be a useful indicator of malicious activity.

This test was applied to the running process. If the running process achieves
elevated access or spawns a child process with elevated access then the test fails
and the process is considered malicious, otherwise, if the access remains un-
changed then the test passed and the process was considered benign.

4. Evaluation and Discussion

The majority of the recorded results for the tests described in Section 3 are pro-
vided in Figure 2. The cell colours represent the success of the test and are
graded from green to red. 100% pass rate results are represented as a dark green
colour, the colour changes depending on the success rate to red which indicates
0% pass rate, or alternatively 100% failure rate. Where the colour does not clear-
ly show the result, then the percentage number is also displayed. Grey indicates
that the specific test was not executed on that particular file type. For example, as
mentioned above, if the file type should contain a magic number, then this test
was performed and the printable character test was ignored.

Some of the tests were exploratory in nature in an attempt to discover if the
gathered metrics could be used to identify malicious code. Examples of these ex-
ploratory tests were in the cataloguing of API calls distinguishable in the ex-
ecutable as well as the process memory directly after launch and then again 30
seconds after launch. The results of these tests are presented in Figure 3, Figure
4. The remainder of this section reviews the results gathered during the testing
and provides some context, discussion and background into the tests and the
recorded results. A clarification of a test’s success is provided in Table 3.

File content analysis. These tests were performed on the files generated by a
process. These tests included the analysis of the created file’s magic number val-
ue, or for plain text files, the percentage of humanly readable characters within
the file was analysed. Other tests included the Chi-Square entropy of the content
of the file as well as the BitByte value test. Of all the tests performed these were
some of the most successful in differentiating between output generated from
benign and malicious processes, a summary of the results is provided in Table 4.

https://doi.org/10.4236/jis.2023.144016

S. R. Davies et al.

DOI: 10.4236/jis.2023.144016 278 Journal of Information Security

Figure 2. Results overview.

https://doi.org/10.4236/jis.2023.144016

S. R. Davies et al.

DOI: 10.4236/jis.2023.144016 279 Journal of Information Security

Figure 3. Total API calls in executable.

Figure 4. Total API calls in memory.

Table 3. Possible classification outcomes.

Classification Description

True Positive (TP) Test passes on benign file

True Negative (TN) Test fails on ransomware file

False Positive (FP) Test passes on ransomware file

False Negative (FN) Test fails on benign file

1

10

100

1,000

10,000

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41

Total Number Of API Strings In EXE File
Benign Ransomware

888

118

Sample Number

N
um

be
r o

f A
PI

 C
al

ls

1,000

10,000

100,000

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41

Total Number of API strings In Memory
Begnign Ransomware

60,598

25,688

Sample Number

N
um

be
r o

f A
PI

 C
al

ls

https://doi.org/10.4236/jis.2023.144016

S. R. Davies et al.

DOI: 10.4236/jis.2023.144016 280 Journal of Information Security

Table 4. File test performance metrics.

 Accuracy Recall Precision F1

Magic number 0.961 0.998 0.923 0.959

Printable Char. 0.999 0.999 0.999 0.999

File Entropy 0.865 0.831 0.958 0.890

BitByte 0.919 0.914 0.946 0.930

Filename Ent. 0.999 0.999 0.999 0.999

Extension 0.999 0.999 0.999 0.999

Extension Ent. 0.999 0.999 0.999 0.999

No individual test achieved 100% accuracy but the BitByte test is worth hig-
hlighting as its results were more accurate than the plain entropy tests when
working on files with unknown content. The magic number test combined with
known file extension tests also achieved high accuracy, but these rely on the
created files having a known extension. These tests could be bypassed, by ran-
somware using well-known extensions on their output, as highlighted by the re-
sults recorded when analysing the files generated by the NotPetya ransomware
strain which does not modify the extension of the files it attacks [76].

Generated file name analysis. These tests were performed on the names of
the files generated by the process. These tests included the analysis of the entro-
py of the entire filename, the entropy of the file name’s extension as well as vali-
dating if the file name’s extension was a known value. These tests also achieved
high accuracy, a summary of the results is provided in Table 4. Contributing
factors to this high accuracy was that the benign files used all had well-known
file extensions and almost all the tested ransomware strains modified the files
name and/or extension in a way that increased the overall entropy of the file-
name. While the testing did cover more than 30 different ransomware strains, it
may not be sufficiently broad enough to generalise this phenomenon. As with
some of the file content tests, the exception being the files generated by the Not-
Petya ransomware strain, which was able to successfully evade this group of
tests. This leads us to think that these tests should be applied to a larger test da-
taset, before generalising the findings.

Ransomnote tests. These tests can also be divided into static and dynamic
analysis tests. The static portion of the tests involved examining the executable
file used to launch the process and trying to identify several occurrences of typi-
cal strings used in ransom notes. This analysis could be performed prior to the
launching of the process. In one of the dynamic analysis tests, the running
process’s volatile memory was examined for the existence of these same ransom
note strings. In the other dynamic analysis test, the files generated by the process
were examined to determine if the file being created could possibly be a ransom
note. No ransom note strings were found in either the begin or ransomware ex-
ecutable binaries. The success rate when looking for ransom note strings within

https://doi.org/10.4236/jis.2023.144016

S. R. Davies et al.

DOI: 10.4236/jis.2023.144016 281 Journal of Information Security

the memory was very low with positive matches only 20% of the time. These
matches were relatively evenly distributed between benign and malicious pro-
grams. A consequence of this is that it seems that these metrics would not be
suitable for use within a ransomware detection program. The accuracy may be
improved for these tests by possibly applying some additional logic to the search,
for example, by increasing the dictionary of keywords being searched for, apply-
ing natural language processing on the found strings, or analysing the distance
between where these words appear and applying a ranking or weighting to the
found strings.

The results regarding the dynamic test of analysing the contents of files being
created by the process were much more encouraging. No files generated by the
benign programs were marked as ransomware, and 80% of the ransom notes
generated by the ransomware were successfully identified. Some reasons why
this rate was not even higher were that some ransomware strains do not create
ransom notes, some ransom notes were actual graphics and some ransomware
strains changed the desktop background to display the ransom message. This is a
promising finding as many ransomware strains create the ransom note prior to
the encryption [63] of the data and a successful interception at this point in the
attack would be beneficial.

Identification of cryptographic artefacts. These tests involved attempting to
identify cryptographic algorithm artefacts using both static and dynamic analysis
methods. The static portion of the tests involved looking for these artefacts in
the executable binary files used to launch the process. This analysis could be
performed prior to the launching of the process. The dynamic aspect of these
tests involved looking for these artefacts in the process’s volatile memory, pre-
cisely after the process has been launched and then again 30 seconds after the
process’s launch. The artefacts that were being searched for were AES encryption
algorithm keys of length 128 bits, 192 bits and 256 bits, as well as RSA asymme-
tric and Salsa20 encryption algorithm keys. This resulted in 15 distinct tests per
file type resulting in a total of more than 1000 tests being conducted for this
group of tests. When reviewing the results it can be seen that no cryptographic
artefacts were identifiable in any of the test binaries. Regarding the AES key dis-
covery, then no real pattern could be identified. For benign programs, these keys
were identified in 44% of the samples and with ransomware programs, these
keys were identified in 35% of the samples. These findings indicate that this me-
tric in its current format is not particularly suited for indicating ransomware ac-
tivity. It is a known behaviour, that ransomware does use cryptography during
its execution, so some explanation for the lack of successful key identification
could be that these algorithms are not used in these ransomware samples or that
the encryption has either not commenced or has completed when the analysis
was performed. The presence of these artefacts in memory of benign programs is
not ideal as it complicates the metric.

Behavioural analysis. These tests are aimed at analysing the behaviour of the
process under investigation. The idea behind the first test, normal process, was

https://doi.org/10.4236/jis.2023.144016

S. R. Davies et al.

DOI: 10.4236/jis.2023.144016 282 Journal of Information Security

to try and identify if a running process attempts to alter its execution privileges
and try and run as an elevated user. None of the benign processes did this, how-
ever, many of the ransomware samples used, would not execute correctly with-
out them being started as the administrator user, which negated the usefulness
of this test. No identifying trend could be used to differentiate benign and mali-
cious binary files using the file creation date. With regards to file-less execution,
four ransomware samples did spawn a malicious process that had no underlying
binary file on disk and approximately 45% of ransomware programs removed
system restore points soon after they started executing. Both these last two beha-
viours were only observed with ransomware programs and could be used as a
contributing factor when trying to determine if the process is malicious or not.

Analysis Tests. Some exploratory investigation was also performed in cata-
loguing and analysing the number and frequency of standard Windows API calls
within both the binary executable file (static analysis) as well as the process’s vo-
latile memory (dynamic analysis) directly after launch and then again 30 seconds
after launch. Note that the Y-axis on the following figures has a logarithmic
scale. From Figure 3, it can be seen that the number of API calls present in the
executables of benign programs differ by a factor of eight when compared to the
number of API calls identified within ransomware programs One possible ex-
planation for this could be that ransomware programs often try and obfuscate
their structure prior to execution in an attempt to hinder analysis and a conse-
quence of this being that the API calls are hidden.

To normalise these results, the values were then plotted as a ratio of the num-
ber of API calls present divided by the analysed executable file size. These nor-
malised results are shown in Figure 4. The programs were then launched and
the volatile memory used by each of these programs was then captured and ana-
lysed for Windows API calls. A comparison of the API calls present within each
process’s memory is presented in Figure 5. Again to aid comparison, the graphs
have been normalised by dividing the total number of calls by the size of the to-
tal memory being used. Finally, the launched program’s memory was captured
again 30 seconds after launch and analysed for Windows API calls. A compari-
son of the API calls present within each process’s memory is presented in Figure
6 with the results being normalised.

When reviewing the captured results, it can be seen that the identified API
calls within the binary files show signs of possibly being a useful indicator of
Windows API obfuscation and thus an indicator of a possibly malicious pro-
gram. The measurements show that there is an obvious difference between the
number of API calls found within the benign and malicious executables. The
difference between these two types of executables is not so prominent when
analysing the process’s volatile memory. However, it is felt by the researchers
that these findings merit further investigation. As they stand, using the current
metrics, these results would not prove useful as a contributor to the suite of tests
used in the malice score calculation. Some refinement of the measurement, such

https://doi.org/10.4236/jis.2023.144016

S. R. Davies et al.

DOI: 10.4236/jis.2023.144016 283 Journal of Information Security

Figure 5. Average API calls in memory per KB at launch.

Figure 6. Average API Calls in memory per KB at 30 seconds.

as targeting specific API calls or call frequency analysis may enhance the accu-
racy of this type of measurement and further investigation into this would be
beneficial.

Majority Voting

When reviewing the results from the separate tests mentioned above, it can be
seen that several tests achieved a high degree of accuracy in differentiating be-
tween benign and malicious programs, using both static and dynamic tests. The
results from some tests such as attempting to identify cryptographic artefacts,

0.00

0.05

0.10

0.15

0.20

0.25

1 6 11 16 21 26 31 36 41

API Calls per Kb in exe
Benign Ransomware

0.048

0.030

Sample Number

N
um

be
r o

f A
PI

 C
al

ls

0.00000

0.01000

0.02000

0.03000

0.04000

0.05000

0.06000

0.07000

0.08000

0.09000

0.10000

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41

API Calls per Kb in memory
Benign Ransomware

0.039

0,023

Sample Number

N
um

be
r o

f A
PI

 C
al

ls

https://doi.org/10.4236/jis.2023.144016

S. R. Davies et al.

DOI: 10.4236/jis.2023.144016 284 Journal of Information Security

ransom note identification within the process and executable or Windows API
enumeration, delivered inconclusive results and these tests would require some
more investigation, analysis and modification.

It is proposed that a system could be developed that uses a combination of the
tests that have been found to be accurate in identifying ransomware. Each test’s
vote would contribute to an overall malice score for the target file or process,
and based on the maximum number of votes the system would classify the target
as either malicious or benign. For example, a system could be developed that
used the following tests: created file name and extension entropy, well-known
extensions, file magic number and printable characters, file content BitByte and
entropy values, ransom note creation detection and system restore point remov-
al detection. Based on the findings from this research, a system configured with
these tests would have an accuracy of 0.9989 on the dataset used. Some of the
interesting test results are highlighted in Figure 7.

When reviewing the results for benign programs shown in Figure 7, it can be
seen that the majority of tests consider the processes/files to be benign. Even in
cases where some of the individual tests do occasionally give false positives, in all

Figure 7. Interesting results.

https://doi.org/10.4236/jis.2023.144016

S. R. Davies et al.

DOI: 10.4236/jis.2023.144016 285 Journal of Information Security

cases, the majority of the tests vote correctly resulting in a correct overall classi-
fication. For example, when looking at the classification for WEBP file types, it
can be seen that the individual file entropy and BitByte tests, result in a classifi-
cation accuracy of around 55%, and 45% of the samples are incorrectly classified
as malicious. However, as the remaining six tests correctly vote that the file is
benign, these files are ultimately classified as benign. Likewise, when reviewing
the result for the ransomware files, in most cases the majority of tests classify the
file/process as malicious. The only exception would be on the very rare occasion,
the files generated by the Jigsaw ransomware strain, may theoretically receive a
false positive classification if the majority of the tests vote that the file/process is
benign.

A major strength of the majority voting approach to ransomware detection is
that not every test needs to correctly classify a malicious program every time.
With equal weighting on the result of each test, it would be sufficient for just a
majority of tests to correctly classify the target, for the system to work success-
fully. Some work could also be performed to investigate whether a weighting or
bias could also be applied to the test results meaning that some tests would then
have a greater influence on the overall outcome of the classification, than others.

As the detection technique relies on well-known discrete tests, it is also easier
for the detection model to be modified, updated and tuned as opposed to a ma-
chine learning model where the weightings and strengths of the learned model
can be unknown or difficult to influence.

5. Conclusions

This paper proposes a ransomware detection system using a majority vot-
ing-based approach. A final malice score is derived from the combination of the
results from many discrete tests that are conducted on the target process, its ex-
ecutable file or the output that the process generates. These distinct results are
then aggregated and used as input for the malice score generation. Based on this
score the target is classified as benign or malicious. The paper proposes 23 main
tests that could potentially be used in a ransomware detection system with their
outcomes, contributing to the overall malice score. The paper also investigates
additional potential metrics that could be used in ransomware detection, for ex-
ample, the presence of Windows API calls in the binary and executing processes’
volatile memory.

This research demonstrates that many of the proposed tests achieved a high
degree of accuracy in differentiating between benign and malicious targets. The
accuracy was then enhanced when a selection of these tests was then combined
into a majority voting model. One proposed majority voting model achieves an
accuracy of 0.9989. The collaborative approach in generating the final result has
many advantages, for example, some individual tests on some occasions may
produce incorrect classifications, but the overall accuracy of the detection system
as a whole will be unaffected if the majority of the tests produce the correct re-

https://doi.org/10.4236/jis.2023.144016

S. R. Davies et al.

DOI: 10.4236/jis.2023.144016 286 Journal of Information Security

sults.
As this majority voting detection technique relies on well-known and easily

understandable discrete tests, then it is easier for the model to be modified, up-
dated and tuned as opposed to a machine learning approach where the weight-
ings and strengths of the learned model can be unknown or difficult to influ-
ence. An additional advantage is that while machine learning models require
training, the majority voting approach, proposed in this paper, does not.

5.1. Limitations

While the majority voting approach to identifying malicious processes has a high
level of accuracy, as always the situation exists where once a ransomware devel-
oper is aware of the techniques being used to identify malicious behaviour, they
have the possibility of modifying or adapting the ransomware’s behaviour to
avoid the tests in newer releases of their programs. The advantage of the majori-
ty voting approach is that the system does not rely on a single catch-all test, ra-
ther detection is a combination of many accurate tests. A consequence of this is
that the ransomware developer may have to significantly modify the behaviour
of their programs, and possibly disregard some aspects of their original beha-
viour to avoid detection.

5.2. Future Work

The results achieved during the Windows API call analysis could possibly be
improved by further investigation and modifications to the types of API calls
present, their frequency and their position within the file or process memory.
One area of further work would be a deeper analysis of this aspect of the binaries
and volatile memory. Another area of work would be to introduce a weighting
element to the measurements, allowing some tests to have a greater influence on
the final classification results.

Analyses of other types of tests could also be performed. Examples of which
could be: multiple-file read and write operations, high entropy differences be-
tween read and write operations, file tree traversal, privilege escalation, accessing
crypto API functionality, accessing unusual domain names, generation of large
amounts of traffic, DGA detection [13] [77] and the termination of a large
number of processes.

Conflicts of Interest

The authors declare no conflicts of interest regarding the publication of this
paper.

References
[1] MalwareBytes (2023) ION Starts Bringing Customers Back Online after LockBit

Ransomware Attack.
https://www.malwarebytes.com/blog/news/2023/02/ion-starts-bringing-customers-

https://doi.org/10.4236/jis.2023.144016
https://www.malwarebytes.com/blog/news/2023/02/ion-starts-bringing-customers-back-online-after-lockbit-ransomware-attack

S. R. Davies et al.

DOI: 10.4236/jis.2023.144016 287 Journal of Information Security

back-online-after-lockbit-ransomware-attack

[2] The Telegraph Media Group (2023) Royal Mail Turned down £66m Ransom De-
mand from Lockbit Hackers.
https://www.telegraph.co.uk/business/2023/02/14/royal-mail-turned-66m-ransom-
demand-lockbit-hackers/

[3] Oz, H., Aris, A., Levi, A. and Uluagac, A.S. (2021) A Survey on Ransomware: Evolu-
tion, Taxonomy, and Defense Solutions. ArXiv: 2102.06249.
http://arxiv.org/abs/2102.06249

[4] Yamany, B., Elsayed, M.S., Jurcut, A.D., Abdelbaki, N. and Azer, M.A. (2022) A
New Scheme for Ransomware Classification and Clustering Using Static Features.
Electronics, 11, Article No. 3307. https://doi.org/10.3390/electronics11203307

[5] Dutta, N., Jadav, N., Tanwar, S., Sarma, H.K.D. and Pricop, E. (2022) Introduction to
Malware Analysis. In: Cyber Security: Issues and Current Trends. Studies in Compu-
tational Intelligence, Vol. 995, Springer, Singapore, 129-141.
https://doi.org/10.1007/978-981-16-6597-4_7

[6] Lebbie, M., Prabhu, S.R. and Agrawal, A.K. (2022) Comparative Analysis of Dynamic
Malware Analysis Tools. In: Dua, M., Jain, A.K., Yadav, A., Kumar, N. and Siarry, P.,
Eds., Proceedings of the International Conference on Paradigms of Communication,
Computing and Data Sciences, Springer, Singapore, 359-368.
https://doi.org/10.1007/978-981-16-5747-4_31

[7] De Gaspari, F., Hitaj, D., Pagnotta, G., De Carli, L. and Mancini, L.V. (2020) THE
NAKED SUN: Malicious Cooperation between Benign-Looking Processes. In: Con-
ti, M., Zhou, J., Casalicchio, E. and Spognardi, A., Eds., Applied Cryptography and
Network Security. ACNS 2020. Lecture Notes in Computer Science, Vol. 12147, Sprin-
ger, Cham, 254-274. https://doi.org/10.1007/978-3-030-57878-7_13

[8] Moser, A., Kruegel, C. and Kirda, E. (2007) Limits of Static Analysis for Malware De-
tection. 23rd Annual Computer Security Applications Conference (ACSAC 2007),
Miami Beach, 10-14 December 2007, 421-430.
https://doi.org/10.1109/ACSAC.2007.21

[9] O’Kane, P., Sezer, S. and McLaughlin, K. (2011) Obfuscation: The Hidden Malware.
IEEE Security & Privacy, 9, 41-47. https://doi.org/10.1109/MSP.2011.98

[10] Ahmed, M.E., Kim, H., Camtepe, S., Nepal, S. (2021) Peeler: Profiling Kernel-Level
Events to Detect Ransomware. In: Bertino, E., Shulman, H. and Waidner, M., Eds.,
Computer Security—ESORICS 2021. ESORICS 2021. Lecture Notes in Computer
Science, Vol. 12972, Springer, Cham, 240-260.
https://doi.org/10.1007/978-3-030-88418-5_12

[11] Ahmed, Y.A., Koçer, B. and Al-Rimy, B.A.S. (2020) Automated Analysis Approach
for the Detection of High Survivable Ransomware. KSII Transactions on Internet
and Information Systems, 14, 2236-2257. https://doi.org/10.3837/tiis.2020.05.021

[12] Kim, G.Y., Paik, J.-Y., Kim, Y. and Cho, E.S. (2022) Byte Frequency Based Indica-
tors for Crypto-Ransomware Detection from Empirical Analysis. Journal of Com-
puter Science and Technology, 37, 423-442.
https://doi.org/10.1007/s11390-021-0263-x

[13] Salehi, S., Shahriari, H., Ahmadian, M.M. and Tazik, L. (2018) A Novel Approach
for Detecting DGA-Based Ransomwares. 2018 15th International ISC (Iranian So-
ciety of Cryptology) Conference on Information Security and Cryptology (ISCISC),
Tehran, 28-29 August 2018, 1-7. https://doi.org/10.1109/ISCISC.2018.8546941

[14] Scaife, N., Carter, H., Traynor, P. and Butler, K.R. (2016) CryptoLock (and Drop It):
Stopping Ransomware Attacks on User Data. 2016 IEEE 36th International Confe-

https://doi.org/10.4236/jis.2023.144016
https://www.telegraph.co.uk/business/2023/02/14/royal-mail-turned-66m-ransom-demand-lockbit-hackers/
https://www.telegraph.co.uk/business/2023/02/14/royal-mail-turned-66m-ransom-demand-lockbit-hackers/
http://arxiv.org/abs/2102.06249
https://doi.org/10.3390/electronics11203307
https://doi.org/10.1007/978-981-16-6597-4_7
https://doi.org/10.1007/978-981-16-5747-4_31
https://doi.org/10.1007/978-3-030-57878-7_13
https://doi.org/10.1109/ACSAC.2007.21
https://doi.org/10.1109/MSP.2011.98
https://doi.org/10.1007/978-3-030-88418-5_12
https://doi.org/10.3837/tiis.2020.05.021
https://doi.org/10.1007/s11390-021-0263-x
https://doi.org/10.1109/ISCISC.2018.8546941

S. R. Davies et al.

DOI: 10.4236/jis.2023.144016 288 Journal of Information Security

rence on Distributed Computing Systems (ICDCS), Nara, 27-30 June 2016, 303-312.
https://doi.org/10.1109/ICDCS.2016.46

[15] Alam, M., Sinha, S., Bhattacharya, S., Dutta, S., Mukhopadhyay, D. and Chattopad-
hyay, A. (2020) RAPPER: Ransomware Prevention via Performance Counters. Ar-
Xiv: 2004.01712. http://arxiv.org/abs/2004.01712

[16] Homayoun, S., Dehghantanha, A., Ahmadzadeh, M., Hashemi, S. and Khayami, R.
(2020) Know Abnormal, Find Evil: Frequent Pattern Mining for Ransomware Threat
Hunting and Intelligence. IEEE Transactions on Emerging Topics in Computting, 8,
341-351. https://doi.org/10.1109/TETC.2017.2756908

[17] Lokuketagoda, B., Weerakoon, M.P., Kuruppu, U.M., Senarathne, A.N., Yapa Ab-
eywardena, K. (2018) R-Killer: An Email Based Ransomware Protection Tool. 2018
13th International Conference on Computer Science and Education, Colombo, 8-11
August 2018, 1-7. https://doi.org/10.1109/ICCSE.2018.8468807

[18] McDonald, G., Papadopoulos, P., Pitropakis, N., Ahmad, J. and Buchanan, W.J.
(2022) Ransomware: Analysing the Impact on Windows Active Directory Domain
Services. Sensors, 22, Article No. 953. https://doi.org/10.3390/s22030953

[19] Hall, G.A., Hall, G.A. and Davis, W. (2007) Sliding Window Measurement for File
Type Identification. https://api.semanticscholar.org/CorpusID:14149550

[20] Lee, K., Lee, S.-Y. and Yim, K. (2019) Effective Ransomware Detection Using En-
tropy Estimation of Files for Cloud Services. In: Esposito, C., Hong, J. and Choo,
K.-K., Eds., Pervasive Systems, Algorithms and Networks. I-SPAN 2019. Communica-
tions in Computer and Information Science, Vol. 1080, Springer, Cham, 133-139.
https://doi.org/10.1007/978-3-030-30143-9_11

[21] Lee, K., Lee, S.-Y. and Yim, K. (2019) Machine Learning Based File Entropy Analy-
sis for Ransomware Detection in Backup Systems. IEEE Access, 7, 110205-110215.
https://doi.org/10.1109/ACCESS.2019.2931136

[22] VandenBrink, R. (2016) Using File Entropy to Identify “Ransomwared” Files.
https://isc.sans.edu/forums/diary/Using+FileEn-tropy+to+Identify+Ransomwared+
Files/21351/

[23] Al-Rimy, B.A.S., Maarof, M.A. and Shaid, S.Z.M. (2019) Crypto-Ransomware Early
Detection Model Using Novel Incremental Bagging with Enhanced Semi-Random
Subspace Selection. Future Generation Computer Systems, 101, 476-491.
https://doi.org/10.1016/j.future.2019.06.005

[24] Bottazzi, G., Italiano, G.F. and Spera, D. (2018) Preventing Ransomware Attacks
through File System Filter Drivers. Proceedings of the 2nd Italian Conference on
Cyber Security (ITASEC18), Milan, 6-9 February 2018.
https://www.researchgate.net/publication/323125541_Preventing_Ransomware_Att
acks_Through_File_System_Filter_Drivers

[25] Ki, Y., Kim, E. and Kim, H.K. (2015) A Novel Approach to Detect Malware Based
on API Call Sequence Analysis. International Journal of Distributed Sensor Net-
works, 11. https://doi.org/10.1155/2015/659101

[26] Song, S., Kim, B. and Lee, S. (2016) The Effective Ransomware Prevention Tech-
nique Using Process Monitoring on Android Platform. Mobile Information Sys-
tems, 2016, Article ID: 2946735. https://doi.org/10.1155/2016/2946735

[27] Berrueta, E., Morato, D., Magana, E. and Izal, M. (2019) A Survey on Detection
Techniques for Cryptographic Ransomware. IEEE Access, 7, 144925-144944.
https://doi.org/10.1109/ACCESS.2019.2945839

[28] Dargahi, T., Dehghantanha, A., Bahrami, P.N., Conti, M., Bianchi, G. and Benedet-
to, L. (2019) A Cyber-Kill-Chain Based Taxonomy of Crypto-Ransomware Features.

https://doi.org/10.4236/jis.2023.144016
https://doi.org/10.1109/ICDCS.2016.46
http://arxiv.org/abs/2004.01712
https://doi.org/10.1109/TETC.2017.2756908
https://doi.org/10.1109/ICCSE.2018.8468807
https://doi.org/10.3390/s22030953
https://api.semanticscholar.org/CorpusID:14149550
https://doi.org/10.1007/978-3-030-30143-9_11
https://doi.org/10.1109/ACCESS.2019.2931136
https://isc.sans.edu/forums/diary/Using+FileEn-tropy+to+Identify+Ransomwared+Files/21351/
https://isc.sans.edu/forums/diary/Using+FileEn-tropy+to+Identify+Ransomwared+Files/21351/
https://doi.org/10.1016/j.future.2019.06.005
https://www.researchgate.net/publication/323125541_Preventing_Ransomware_Attacks_Through_File_System_Filter_Drivers
https://www.researchgate.net/publication/323125541_Preventing_Ransomware_Attacks_Through_File_System_Filter_Drivers
https://doi.org/10.1155/2015/659101
https://doi.org/10.1155/2016/2946735
https://doi.org/10.1109/ACCESS.2019.2945839

S. R. Davies et al.

DOI: 10.4236/jis.2023.144016 289 Journal of Information Security

Journal of Computer Virology and Hacking Techniques, 15, 277-305.
https://doi.org/10.1007/s11416-019-00338-7

[29] Maigida, A.M., Abdulhamid, S.M., Olalere, M., Alhassan, J.K., Chiroma, H. and
Dada, E.G. (2019) Systematic Literature Review and Metadata Analysis of Ransom-
ware Attacks and Detection Mechanisms. Journal of Reliable Intelligent Environ-
ments, 5, 67-89. https://doi.org/10.1007/s40860-019-00080-3

[30] Kharraz, A. and Kirda, E. (2017) Redemption: Real-Time Protection against Ran-
somware at End-Hosts. In: Dacier, M., Bailey, M., Polychronakis, M. and Antona-
kakis, M., Eds., Research in Attacks, Intrusions, and Defenses. RAID 2017. Lecture
Notes in Computer Science, Vol. 10453, Springer, Cham, 98-119.
https://doi.org/10.1007/978-3-319-66332-6_5

[31] Abbasi, M.S., Al-Sahaf, H. and Welch, I. (2021) Automated Behavior-Based Malice
Scoring of Ransomware Using Genetic Programming. 2021 IEEE Symposium Series
on Computational Intelligence, Orlando, 5-7 December 2021.
https://doi.org/10.1109/SSCI50451.2021.9660009

[32] Continella, A., Guagnelli, A., Zingaro, G., De Pasquale, G., Barenghi, A., Zanero, S.
and Maggi, F. (2016) ShieldFS: A Self-Healing, Ransomware-Aware Filesystem.
Proceedings of the 32nd Annual Conference on Computer Security Applications,
Los Angeles, 5-8 December2016, 336-347. https://doi.org/10.1145/2991079.2991110

[33] John, T.C., Abbasi, M.S., Al-Sahaf, H. and Welch, I. (2022) Automatically Evolving
Malice Scoring Models through Utilisation of Genetic Programming: A Cooperative
Coevolution Approach. Proceedings of the Genetic and Evolutionary Computation
Conference Companion, Boston, 9-13 July 2022, 562-565.
https://doi.org/10.1145/3520304.3529063

[34] Kharaz, A., Arshad, S., Mulliner, C., Robertson, W. and Mulliner, C. (2016) UNVEIL:
A Large-Scale, Automated Approach to Detecting Ransomware. 25th USENIX Secu-
rity Symposium (USENIX Security 16), Austin, 10-12 August 2016, 757-772.
https://www.usenix.org/conference/usenixsecurity16/technical-sessions/presentatio
n/kharaz

[35] Mehnaz, S., Mudgerikar, A. and Bertino, E. (2018) RWGuard: A Real-Time Detec-
tion System against Cryptographic Ransomware. In: Bailey, M., Holz, T., Stamato-
giannakis, M. and Ioannidis, S., Eds., Research in Attacks, Intrusions, and Defenses.
RAID 2018. Lecture Notes in Computer Science, Vol. 11050, Springer, Cham,
114-136. https://doi.org/10.1007/978-3-030-00470-5_6

[36] Davies, S.R., Macfarlane, R. and Buchanan, W.J. (2022) NapierOne: A Modern
Mixed File Data Set Alternative to Govdocs1. Forensic Science International: Digital
Investigation, 40, Article ID: 301330. https://doi.org/10.1016/j.fsidi.2021.301330

[37] McIntosh, T., Jang-Jaccard, J., Watters, P. and Susnjak, T. (2019) The Inadequacy of
Entropy-Based Ransomware Detection. In: Gedeon, T., Wong, K. and Lee, M., Eds.,
Neural Information Processing. ICONIP 2019. Communications in Computer and
Information Science, Vol. 1143, Springer, Cham, 181-189.
https://doi.org/10.1007/978-3-030-36802-9_20

[38] Ganfure, G.O., Wu, C.-F., Chang, Y.-H. and Shih, W.-K. (2020) DeepGuard: Deep
Generative User-Behavior Analytics for Ransomware Detection. 2020 IEEE Interna-
tional Conference on Intelligence and Security Informatics, Arlington, 9-10 No-
vember 2020, 181-189. https://doi.org/10.1109/ISI49825.2020.9280508

[39] Manavi, F. and Hamzeh, A. (2022) A Novel Approach for Ransomware Detection
Based on PE Header Using Graph Embedding. Journal of Computer Virology and
Hacking Techniques, 18, 285-296. https://doi.org/10.1007/s11416-021-00414-x

https://doi.org/10.4236/jis.2023.144016
https://doi.org/10.1007/s11416-019-00338-7
https://doi.org/10.1007/s40860-019-00080-3
https://doi.org/10.1007/978-3-319-66332-6_5
https://doi.org/10.1109/SSCI50451.2021.9660009
https://doi.org/10.1145/2991079.2991110
https://doi.org/10.1145/3520304.3529063
https://www.usenix.org/conference/usenixsecurity16/technical-sessions/presentation/kharaz
https://www.usenix.org/conference/usenixsecurity16/technical-sessions/presentation/kharaz
https://doi.org/10.1007/978-3-030-00470-5_6
https://doi.org/10.1016/j.fsidi.2021.301330
https://doi.org/10.1007/978-3-030-36802-9_20
https://doi.org/10.1109/ISI49825.2020.9280508
https://doi.org/10.1007/s11416-021-00414-x

S. R. Davies et al.

DOI: 10.4236/jis.2023.144016 290 Journal of Information Security

[40] Prachi and Kumar, S. (2022) An Effective Ransomware Detection Approach in a
Cloud Environment Using Volatile Memory Features. Journal of Computer Virolo-
gy and Hacking Techniques, 18, 407-424.
https://doi.org/10.1007/s11416-022-00425-2

[41] Sheen, S., Asmitha, K.A. and Venkatesan, S. (2022) R-Sentry: Deception Based
Ransomware Detection Using File Access Patterns. Computers and Electrical Engi-
neering, 103, Article ID: 108346.
https://doi.org/10.1016/j.compeleceng.2022.108346

[42] De Gaspari, F., Hitaj, D., Pagnotta, G., De Carli, L. and Mancini, L.V. (2022) Evad-
ing Behavioral Classifiers: A Comprehensive Analysis on Evading Ransomware De-
tection Techniques. Neural Computing and Applications, 34, 12077-12096.
https://doi.org/10.1007/s00521-022-07096-6

[43] Lee, J. and Lee, K. (2022)A Method for Neutralizing Entropy Measurement-Based
Ransomware Detection Technologies Using Encoding Algorithms. Entropy, 24, Ar-
ticle No. 239. https://doi.org/10.3390/e24020239

[44] Scaife, N., Carter, H., Traynor, P. and Butler, K.R. (2016)CryptoLock (and Drop It):
Stopping Ransomware Attacks on User Data. 2016 IEEE 36th International Confe-
rence on Distributed Computing Systems, Nara, 27-30 June 2016.
https://doi.org/10.1109/ICDCS.2016.46

[45] Gharib, A. and Ghorbani, A. (2017) DNA-Droid: A Real-Time Android Ransom-
ware Detection Framework. In: Yan, Z., Molva, R., Mazurczyk, W. and Kantola, R.,
Eds., Network and System Security. NSS 2017. Lecture Notes in Computer Science,
Vol. 10394, Springer, Cham, 184-198.
https://doi.org/10.1007/978-3-319-64701-2_14

[46] Davies, S.R., Macfarlane, R. and Buchanan, W.J. (2021) NapierOne.
http://napierone.com/Website/index.html

[47] Nieuwenhuizen, D. (2017) A Behavioural-Based Approach to Ransomware Detec-
tion. https://api.semanticscholar.org/CorpusID:20947416

[48] Wikipedia. List of File Formats. https://en.wikipedia.org/wiki/Listoffilefor-mats

[49] Buchanan. Digital Forensics Magic Numbers.
https://asecuritysite.com/forensics/magic

[50] Google (2015) File Types Indexable by Google.
https://support.google.com/webmasters/answer/35287?hl=en

[51] Kessler, G. GCK’S File Signature Table.
https://www.garykessler.net/library/file_sigs.html

[52] Leommoore. File Magic Numbers. GitHub.
https://gist.github.com/leommoore/f9e57ba2aa4bf197ebc5

[53] Wikipedia. List of File Signatures.
https://en.wikipedia.org/wiki/List_of_file_signatures

[54] Genç, Z.A., Lenzini, G. and Ryan, P.Y.A. (2018) No Random, No Ransom: A Key to
Stop Cryptographic Ransomware. In: Giuffrida, C., Bardin, S. and Blanc, G., Eds.,
Detection of Intrusions and Malware, and Vulnerability Assessment. DIMVA 2018.
Lecture Notes in Computer Science, Vol. 10885, Springer, Cham, 234-255.
https://doi.org/10.1007/978-3-319-93411-2_11

[55] Genç, Z.A., Lenzini, G. and Ryan, P.Y.A. (2020) NOCRY: No More Secure Encryp-
tion Keys for Cryptographic Ransomware. In: Saracino, A. and Mori, P., Eds.,
Emerging Technologies for Authorization and Authentication. ETAA 2019. Lecture
Notes in Computer Science, Vol. 11967, Springer, Cham, 69-85.

https://doi.org/10.4236/jis.2023.144016
https://doi.org/10.1007/s11416-022-00425-2
https://doi.org/10.1016/j.compeleceng.2022.108346
https://doi.org/10.1007/s00521-022-07096-6
https://doi.org/10.3390/e24020239
https://doi.org/10.1109/ICDCS.2016.46
https://doi.org/10.1007/978-3-319-64701-2_14
http://napierone.com/Website/index.html
https://api.semanticscholar.org/CorpusID:20947416
https://en.wikipedia.org/wiki/Listoffilefor-mats
https://asecuritysite.com/forensics/magic
https://support.google.com/webmasters/answer/35287?hl=en
https://www.garykessler.net/library/file_sigs.html
https://gist.github.com/leommoore/f9e57ba2aa4bf197ebc5
https://en.wikipedia.org/wiki/List_of_file_signatures
https://doi.org/10.1007/978-3-319-93411-2_11

S. R. Davies et al.

DOI: 10.4236/jis.2023.144016 291 Journal of Information Security

https://doi.org/10.1007/978-3-030-39749-4_5

[56] Kharraz, A. and Kirda, E. (2017) Redemption: Real-Time Protection against Ran-
somware at End-Hosts. In: Dacier, M., Bailey, M., Polychronakis, M. and Antona-
kakis, M., Eds., Research in Attacks, Intrusions, and Defenses. RAID 2017. Lecture
Notes in Computer Science, Vol. 10453, Springer, Cham, 98-119.
https://doi.org/10.1007/978-3-319-66332-6_5

[57] Choudhury, P., Kumar, K.R.P., Nandi, S. and Athithan, G. (2019) An Empirical
Approach towards Characterization of Encrypted and Unencrypted VoIP Traffic.
Multimedia Tools and Applications, 79, 603-631.
https://doi.org/10.1007/s11042-019-08088-w

[58] Shannon, C.E. (1948) A Mathematical Theory of Communication. The Bell System
Technical Journal, 27, 379-423. https://doi.org/10.1002/j.1538-7305.1948.tb01338.x

[59] Karl Pearson, F.R.S. (2009) X. On the Criterion That a Given System of Deviations
From the Probable in the Case of a Correlated System of Variables is Such That It
Can Be Reasonably Supposed to Have Arisen From Random Sampling. The Lon-
don, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, 50,
157-175. https://www.tandfonline.com/doi/abs/10.1080/14786440009463897
https://doi.org/10.1080/14786440009463897

[60] Davies, S.R., Macfarlane, R. and Buchanan, W.J. (2022) Comparison of Entropy
Calculation Methods for Ransomware Encrypted File Identification. Entropy, 24,
Article No. 1503. https://doi.org/10.3390/e24101503

[61] Walker, J. (2008) A Pseudorandom Number Sequence Test Program. Pseudoran-
dom Number Sequence Test Program. https://www.fourmilab.ch/random/

[62] Davies, S.R., Macfarlane, R. and Buchanan, W.J. (2021) Differential Area Analysis
for Ransomware Attack Detection within Mixed File Datasets. Computers and Se-
curity, 108, Article ID: 102377. https://doi.org/10.1016/j.cose.2021.102377

[63] Lemmou, Y., Lanet, J.-L. and Souidi, E.M. (2021) In-Depth Analysis of Ransom
Note Files. Computers, 10, Article No. 145.
https://doi.org/10.3390/computers10110145

[64] Andronio, N., Zanero, S. and Maggi, F. (2015) HELDROID: Dissecting and Detect-
ing Mobile Ransomware. In: Bos, H., Monrose, F. and Blanc, G., Eds., Research in
Attacks, Intrusions, and Defenses. RAID 2015. Lecture Notes in Computer Science,
Vol. 9404, Springer, Cham, 382-404 https://doi.org/10.1007/978-3-319-26362-5_18

[65] Li, W.-J., Wang, K., Stolfo, S.J. and Herzog, B. (2005) Fileprints: Identifying File
Types by N-Gram Analysis. Proceedings from the 6th Annual IEEE SMC Informa-
tion Assurance Workshop, West Point, 15-17 June 2005, 64-71.
https://doi.org/10.1109/IAW.2005.1495935

[66] Scalas, M., Maiorca, D., Mercaldo, F., Visaggio, C.A., Martinelli, F. and Giacinto, G.
(2018) R-PackDroid: Practical on-Device Detection of Android Ransomware.
https://www.researchgate.net/publication/325358530_R-PackDroid_Practical_On-
Device_Detection_of_Android_Ransomware

[67] Kara, I. (2023) Fileless Malware Threats: Recent Advances, Analysis Approach
through Memory Forensics and Research Challenges. Expert Systems with Applica-
tions, 214, Article ID: 119133. https://doi.org/10.1016/j.eswa.2022.119133
https://www.sciencedirect.com/science/article/pii/S0957417422021510

[68] Balogh, Š. and Pondelik, M. (2011) Capturing Encryption Keys for Digital Analysis.
Proceedings of the 6th IEEE International Conference on Intelligent Data Acquisi-
tion and Advanced Computing Systems, Prague, 15-17 September 2011, 759-763.
https://doi.org/10.1109/IDAACS.2011.6072872

https://doi.org/10.4236/jis.2023.144016
https://doi.org/10.1007/978-3-030-39749-4_5
https://doi.org/10.1007/978-3-319-66332-6_5
https://doi.org/10.1007/s11042-019-08088-w
https://doi.org/10.1002/j.1538-7305.1948.tb01338.x
https://www.tandfonline.com/doi/abs/10.1080/14786440009463897
https://doi.org/10.1080/14786440009463897
https://doi.org/10.3390/e24101503
https://www.fourmilab.ch/random/
https://doi.org/10.1016/j.cose.2021.102377
https://doi.org/10.3390/computers10110145
https://doi.org/10.1007/978-3-319-26362-5_18
https://doi.org/10.1109/IAW.2005.1495935
https://www.researchgate.net/publication/325358530_R-PackDroid_Practical_On-Device_Detection_of_Android_Ransomware
https://www.researchgate.net/publication/325358530_R-PackDroid_Practical_On-Device_Detection_of_Android_Ransomware
https://doi.org/10.1016/j.eswa.2022.119133
https://www.sciencedirect.com/science/article/pii/S0957417422021510
https://doi.org/10.1109/IDAACS.2011.6072872

S. R. Davies et al.

DOI: 10.4236/jis.2023.144016 292 Journal of Information Security

[69] Halderman, J.A., Schoen, S.D., Heninger, N., Clarkson, W., Paul, W., Calandrino,
J.A., Feldman, A.J., Appelbaum, J. and Felten, E.W. (2009) Lest We Remember:
Cold-Boot Attacks on Encryption Keys. Communications of the ACM, 52, 91-98.
https://doi.org/10.1145/1506409.1506429

[70] Maartmann-Moe, C., Thorkildsen, S.E. and Årnes, A. (2009) The Persistence of
Memory: Forensic Identification and Extraction of Cryptographic Keys. Digital Inves-
tigation, 6, S132-S140. https://doi.org/10.1016/j.diin.2009.06.002

[71] Heninger, N. and Feldman, A. (2008) AESKeyFind.
https://github.com/makomk/aeskeyfind

[72] Kornblum, J. (2017) Findaes. https://sourceforge.net/u/jessekornblum/profile/

[73] de Loaysa Babiano, L.F., Macfarlane, R. and Davies, S.R. (2023) Evaluation of live
forensic techniques, towards Salsa20-Based cryptographic ransomware mitigation.
Forensic Science International: Digital Investigation, 46, Article ID: 301572.
https://doi.org/10.1016/j.fsidi.2023.301572

[74] Joseph, P. and Norman, J. (2020) Systematic Memory Forensic Analysis of Ran-
somware Using Digital Forensic Tools. International Journal of Natural Computing
Research, 9, 61-81. https://doi.org/10.4018/IJNCR.2020040105

[75] Klein, T. (2006) All Your Private Keys Are Belong to Us.
https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=cf85042cca0da1
25b860db7c2fefb38012396cbc

[76] Sai, R.L.P. and Kumar, T.P. (2019) Reverse Engineering the Behaviour of NotPetya
Ransomware. International Journal of Recent Technology and Engineering, 7, 574-578.
https://www.ijrte.org/wp-content/uploads/papers/v7i6s/F03120376S19.pdf

[77] Chadha, S. and Kumar, U. (2017) Ransomware: Let’s Fight Back! 2017 International
Conference on Computing, Communication and Automation (ICCCA), Greater
Noida, 5-6 May 2017, 925-930. https://doi.org/10.1109/CCAA.2017.8229926

https://doi.org/10.4236/jis.2023.144016
https://doi.org/10.1145/1506409.1506429
https://doi.org/10.1016/j.diin.2009.06.002
https://github.com/makomk/aeskeyfind
https://sourceforge.net/u/jessekornblum/profile/
https://doi.org/10.1016/j.fsidi.2023.301572
https://doi.org/10.4018/IJNCR.2020040105
https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=cf85042cca0da125b860db7c2fefb38012396cbc
https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=cf85042cca0da125b860db7c2fefb38012396cbc
https://www.ijrte.org/wp-content/uploads/papers/v7i6s/F03120376S19.pdf
https://doi.org/10.1109/CCAA.2017.8229926

S. R. Davies et al.

DOI: 10.4236/jis.2023.144016 293 Journal of Information Security

Appendix

Table A1. SHA256 hashes of ransomware strains used.

Table B1. Details of benign programs used.

https://doi.org/10.4236/jis.2023.144016

	Majority Voting Ransomware Detection System
	Abstract
	Keywords
	1. Introduction
	2. Related Work
	3. Methodology
	3.1. File Content Analysis
	3.2. File Name Analysis
	3.3. Executable Analysis
	Process Analysis

	3.4. Behaviour Analysis

	4. Evaluation and Discussion
	Majority Voting

	5. Conclusions
	5.1. Limitations
	5.2. Future Work

	Conflicts of Interest
	References
	Appendix

