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Abstract 
Crypto-ransomware remains a significant threat to governments and compa-
nies alike, with high-profile cyber security incidents regularly making head-
lines. Many different detection systems have been proposed as solutions to 
the ever-changing dynamic landscape of ransomware detection. In the major-
ity of cases, these described systems propose a method based on the result of a 
single test performed on either the executable code, the process under inves-
tigation, its behaviour, or its output. In a small subset of ransomware detec-
tion systems, the concept of a scorecard is employed where multiple tests are 
performed on various aspects of a process under investigation and their re-
sults are then analysed using machine learning. The purpose of this paper is 
to propose a new majority voting approach to ransomware detection by de-
veloping a method that uses a cumulative score derived from discrete tests 
based on calculations using algorithmic rather than heuristic techniques. The 
paper describes 23 candidate tests, as well as 9 Windows API tests which are 
validated to determine both their accuracy and viability for use within a ran-
somware detection system. Using a cumulative score calculation approach to 
ransomware detection has several benefits, such as the immunity to the occa-
sional inaccuracy of individual tests when making its final classification. The 
system can also leverage multiple tests that can be both comprehensive and 
complimentary in an attempt to achieve a broader, deeper, and more robust 
analysis of the program under investigation. Additionally, the use of multiple 
collaborative tests also significantly hinders ransomware from masking or 
modifying its behaviour in an attempt to bypass detection. The results achieved 
by this research demonstrate that many of the proposed tests achieved a high 
degree of accuracy in differentiating between benign and malicious targets 
and suggestions are offered as to how these tests, and combinations of tests, 
could be adapted to further improve the detection accuracy. 
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1. Introduction 

Crypto-ransomware infections remain a significant threat to governments and 
companies alike with high-profile cyber security incidents regularly making head-
lines [1] [2]. The detection of ransomware is often described as an arms race [3] 
between threat actors and the people responsible for developing effective mal-
ware countermeasures and techniques. 

There are two main approaches used in malware analysis in general and ran-
somware analysis in particular Static Analysis [4], where the evaluation of the 
program is performed without the actual execution of the code. Essentially the 
program contents are examined in an attempt to determine the nature of the 
program and its possible application. This is normally achieved by attempting to 
isolate and identify known patterns or signatures within the code. Static analysis 
scales well and can provide better coverage of a ransomware binary code. How-
ever, static analysis can produce false execution behaviour as code paths may not 
be reachable during actual execution [5] and tell-tale signatures may not be 
known at the time of analysis. Dynamic Analysis, on the other hand, executes 
the program under investigation in an instrumented or monitored manner and 
garners more factual information on the behaviour and effect of the program. 
Dynamic analysis can provide more accurate information on the actual execu-
tion behaviour of the investigated binary, though dynamic analysis can be com-
putationally expensive [6] and contains some element of risk. 

The problem of automatic malware detection is a difficult one, with no full 
solution in sight despite decades of research [7]. The traditional approach, based 
on analysis of static signatures, is increasingly rendered ineffective by polymor-
phism and the widespread availability of program obfuscation tools [8] [9]. Us-
ing such tools, malware creators can quickly generate thousands of binary va-
riants of functionally identical samples, effectively circumventing signature-based 
approaches. As a result, in recent years, the focus of the research community has 
increasingly shifted toward dynamic, behaviour-based analysis techniques. Be-
havioural approaches sidestep the challenges of obfuscated binary analysis. In-
stead, they focus on the run-time behaviour of malware processes, which is dif-
ficult to alter without breaking core functionality and is therefore considered a 
reliable fingerprint for malware presence [7]. 

Over the years many different detection systems have been proposed as solu-
tions to the ever-changing dynamic landscape of ransomware detection. These 
approaches have leveraged many different techniques such as machine learning 
[4] [10] [11] [12] [13] [14], neural networks [15] [16] [17] [18], file entropy [14] 
[19] [20] [21] [22], kernel hooking and process behaviour [23] [24] [25] [26]. In 
the majority of cases, the described systems propose a method based on the re-
sult of a single test performed on either the executable code, the process under 
investigation, its behaviour or its output. Many of the proposed systems claim to 
archive relatively high accuracy. Unfortunately, the researchers rarely publish 
enough detail of their research or the datasets used to allow the reported results 
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to be replicated. Berrueta [27] identifies that there are no common metrics of 
accuracy and performance in ransomware detection. The fragmentation of 
scientific research on ransomware combined with a lack of coherent investiga-
tion methodology is a major challenge in this research [28]. This view is sup-
ported by Maigida [29] who states that the lack of readily available data is also 
hindering the speedy development of detection and prevention solutions. 

In a small subset of ransomware detection systems, the concept of a scorecard 
is employed. In these specific detection systems, multiple tests are performed on 
various aspects of a process under investigation. The results of each test contri-
bute to an overall score for the process. A decision can then be made, based on 
this score, as to whether the process under investigation is benign or malicious. 
The main proponent of this approach was Kharraz [30] in their implementation 
of the Redemption detection system. In this work, they refer to this cumulative 
score as a Malice Score, and for the remainder of this paper, we will use their 
terminology when discussing this combined ranking score. Other detection sys-
tems that have also used this concept of a cumulative malice score are [31] [32] 
[33] [34] [35]. 

None of the described systems used an analytical or algorithmic approach to 
calculating values that could then be combined into a cumulative malice score, 
rather they relied on some form of machine learning to determine the result. 
This paper describes the work performed by the authors in building on the orig-
inal research conducted by Kharraz [30], enhancing and updating their ap-
proach and proposing many new discretely calculated static and dynamic analy-
sis tests that could be incorporated into the final malice score calculation. 

A majority voting approach was chosen for the ransomware detection system 
proposed in this work. With this type of system, each of the underlying contri-
buting tests generates a binary output. The result of an individual test can be ei-
ther that it is considered malicious or it can be considered benign. These indi-
vidual contributing scores are calculated using algorithmic rather than the heu-
ristic techniques previously proposed in earlier research. Once all the tests have 
been performed, the resulting votes are then collated into two sets, malicious 
votes and benign votes. The final classification decision of the detection system 
is then determined from the set that received the majority of votes. An advan-
tage of this approach is that the system requires no training, as the constituent 
values are calculated using discrete reproducible tests that require no prior 
knowledge or model training. These proposed new additional tests are validated 
using a modern and diverse dataset [36] to determine both their accuracy and 
viability for use within a ransomware detection system. In the initial design, each 
test has an equal weighting and thus an equal contribution to the final result. 
However, this design may be adapted in later iterations by the inclusion of 
weighting and bias to the results of individual tests, allowing their votes to have 
more effect on the final decision. 

There are many benefits associated with using a cumulative score calculation 
approach to ransomware detection. For example, when using such an approach, 
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the detection system does not rely on a single specific attribute to base its deci-
sion on whether the program under investigation is malicious or not. Rather it 
can leverage multiple tests that can be both comprehensive and complimentary 
in an attempt to achieve a broader, deeper and more robust analysis of the pro-
gram under investigation. Also, such a system would be easier to enhance, as 
adding additional tests based on new research would be straightforward. Bias 
from one particular test [4] [7] would also be mitigated, and the weighting of 
each contributing test could be adjusted to improve accuracy. Additionally, the 
use of multiple collaborative tests also significantly hinders ransomware from 
masking or modifying its behaviour in its attempt to bypass detection [7] [37]. 

The remainder of the paper is structured as follows. In Section 2, we discuss 
some of the main techniques used in ransomware detection and discuss in detail 
other techniques that use a collaborative voting approach or a combined scoring 
technique. In Section 3, we provide a description of the candidate tests that 
could potentially be included in the cumulative malice scoring calculation and 
outline the methodology used in the experiments. In Section 4, we present the 
recorded results and discuss the consequences of the findings with regard to the 
development of anti-ransomware techniques, and we provide some recommen-
dations for crypto-ransomware detection approaches moving forward. Finally, 
in Section 5, we discuss the main findings and conclusions gained from this re-
search together with possible limitations in using this approach and suggest fur-
ther research that could be conducted based on the findings from the research 
presented in this paper. 

The main contributions of this paper are:  
− Design, development and detailed description of 23 potential ransomware 

detection tests.  
− Investigation into the amount and frequency of Windows API calls within the 

ransomware executable files and volatile memory of a ransomware process.  
− Validation of the effectiveness of the proposed tests in detecting ransomware.  
− A ransomware detection system based on algorithmic derived ransomware 

indicators.  
− The use of a modern publicly available dataset during the development and 

testing of the system. The majority of the similar systems proposed in the li-
terature use datasets that are up to 14 years old.  

2. Related Work 

Over the last 20 years, a significant number of ransomware detection systems 
have been proposed in the research literature. The approaches used by these de-
tection systems can be loosely divided into two categories. In one approach, a 
single method or test is developed which is then used to determine if the system 
is being attacked by ransomware. The alternative approach is to use machine 
learning to perform the identification. With the machine learning approach, the 
system designers identify key features from the running process and system un-
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der investigation. The machine learning model then attempts to determine pat-
terns within these features on which to base its judgement. A decision, or classifi-
cation, is then made, based on the measured values of these features, as to whether 
the system is under attack or not. 

Examples of single-method approaches are [10] [12] [38] [39] [40] [41]. In 
these cases, the entire effectiveness of the detection technique relies solely on the 
ability of this single criterion to distinguish between benign and malicious pro-
grams [42]. For example, one particular technique used in the identification of 
ransomware execution is to use the calculated entropy value of the files created 
by a process. Encrypted files tend to have a high entropy value whereas the en-
tropy value of plain text files is much lower. Encrypted output files generated 
during the execution of a ransomware program would tend to have higher en-
tropy values, possibly allowing them to be identified as a product of a ransom-
ware infection. Unfortunately, this technique struggles to correctly distinguish 
between encrypted files and benign files that also have high entropy such as 
compressed files. The use of entropy as a detection metric has also been called 
into question [37] [43] as there exist techniques that could be used by ransom-
ware to avoid detection via encoding or, in some other way, manipulating the 
encrypted output file. 

Examples of ransomware detection techniques that have leveraged machine 
learning are [4] [10] [11] [12] [13] [14] or similarly neural networks [15] [16] 
[17] [18]. These systems are trained using extracted features from typical ran-
somware processes or systems that are being attacked by ransomware. Examples 
of features that are used in these systems are: write entropy, file overwrite beha-
viour, directory traversal, directory listing, cross-file type access, read/write/ 
create/close operations, temporary files, file type coverage, file similarity, file 
type change and access frequency [42]. In most cases, with systems that rely on 
machine learning to determine if a system is being attacked, the significance of 
the individual extracted features and their subsequent impact on the final classi-
fication is represented internally by the detection system’s model and is not im-
mediately obvious to an observer. Inadequacies with this approach have been 
investigated in the literature [42] which discusses classifier evasion techniques, 
known as adversarial machine learning that can be leveraged by ransomware 
developers to avoid classification and subsequent detection. 

However, in a few proposed ransomware detection systems, the designers do 
try to provide insight into the machine-learning techniques used and how the 
tested features affect the overall decision-making process. The developers of the 
detection system UNVEIL [34] and its successor Redemption [30], introduce the 
concept of a malice score which is a combined weighted score derived from the 
outcome of individual feature tests. The system detects suspicious activity using 
dynamic analysis and generates a malice score using a heuristic function. Inputs 
to this function are various behavioural features such as file entropy changes, 
writes that cover extended portions of a file, file deletion, processes writing to a 
large number of user files, processes writing to files of different types and back- 
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to-back writes. CryptoLock [44] propose a similar approach summing the results 
of various tests into a cumulative scoring they refer to as a Reputation Score. 
This score is derived from measurements of file type changes, the similarity be-
tween original and written content and output file entropy values. Another de-
tection system, RWGuard [35], does mention the specific features that are in-
spected and include file IO, decoy files, file change monitoring and crypto API 
monitoring. However, very little detail on how the specific calculations are per-
formed is provided. DNA-Droid [45], was the only detection system found that, 
leveraged a combination of static and dynamic analysis as the inputs to their 
neural network model. In all cases if this cumulative score is above a certain 
threshold, then the process is deemed to be malicious, otherwise, the process is 
considered benign. 

However, in all these cases, the individual test results and thresholds are still 
determined heuristically via the machine-learning model. The model itself de-
cides the significance and weighting given to each extracted feature and the in-
fluence that each feature has on the final classification. Reducing the entire deci-
sion-making process to effectively a black box function. A consequence of this is 
that it is difficult for the designers to directly affect the final decision, thus pre-
venting them from being easily able to tune and influence the decision-making 
process and final classification produced by the model. The resulting quality 
and accuracy of the decisions made by these systems are essentially reliant on 
the quality of the training data used to develop the models in the first place. 

No ransomware detection systems have been identified in the literature that 
uses a malice scoring type approach where the constituent scores contributing 
to the final malice score are determined using analytical or algorithmic calcu-
lation methods as opposed to the heuristics used in machine learning ap-
proaches. 

3. Methodology 

This section introduces a collection of potential tests that could be used in col-
laboration to determine if a process is malicious or benign. There is a binary 
outcome for each of these tests with a test failure indicating that the subject of 
the test is more likely to be malicious and passing the test indicating that it is 
more likely to be benign. The resulting votes from each test are then recorded. 
Each of these proposed test results would then contribute to the final overall ma-
lice score of the process under investigation. Each contributing test has the same 
weighting and thus the same impact on the final scoring. After all the tests have 
been conducted the classification decision is made, based on an aggregation of 
received votes, malicious or benign. A conceptual overview of how the proposed 
system would be configured is shown in Figure 1. 

3.1. File Content Analysis 

This collection of tests is performed on any output produced by the process. In 
the majority of cases, this would manifest itself as files being written to disk. This  
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Figure 1. Overview of proposed system. 
 
behaviour is common for processes such as editors, web downloads, email 
clients, system logging, compression programs, as well as the output from cryp-
to-ransomware programs. These tests will use both the content of the file being 
written as well as metrics derived from the file’s metadata such as file name and 
extension. 

The NapierOne [46] data set was leveraged in many of the tests that rely on 
file analysis. This data set is ideally suited for this task as it contains many exam-
ples of the most commonly used file types. The data set contains 5000 example 
files for each of the prevalent file types shown in Table 1. 

Apart from the normal file types found in typical use, the NapierOne data set 
also contains example files that have been encrypted by the ransomware strains 
shown in Table 2. The data set contains 5000 example encrypted files for each of 
these ransomware strains. (The SHA256 hash values for these ransomware 
strains are provided in Table B1 which appears in the Appendix). According to 
previous work [14] [47] the use of diverse families of ransomware strains is more 
important than the number of ransomware samples from a few families for eva-
luating the performance of ransomware detectors. It is because the core beha-
vioural traits shown by crypto-ransomware in encrypting data attack do not 
change from one variant to the other within a family [14]. 

The entire dataset used during this research contains 365,000 files covering 73 
separate and distinct file types and is publicly accessible at www.napierone.com. 
The dataset contains 210,000 benign files from the 42 different file types shown 
in Table 1 and 155,000 encrypted files from the 31 ransomware strains shown in 
Table 2. 

File Magic Number Test. Magic numbers are usually the first few bytes of a 
file. These are normally unique to a file format and can be used to identify many 
common types of files [48]. While not all files contain this signature, for exam-
ple, plain text files such as CSS, CSV, JSON, SVG, TXT and XLST, file types such 
as DOCX, PDF, XLSX and many others do contain this unique value. An exten-
sive search was performed in an attempt to generate a comprehensive list of 
commonly used file types [36] [48]-[53] and where possible the corresponding 
magic number and typical file extension for that type. This research resulted in  
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Table 1. NapierOne file types. 

Type Type Type Type 

7ZIP EPS MP3 SVG 

APK EPUB MP3 RAR 

BIN EXE MP4 TIF 

BMP GIF ODS TXT 

CSS GZIP OXPS WEBP 

CSV HTML PDF XLS 

DLL ICS PNG XLSX 

DOC JS PS XML 

DOCX JPG PPT ZIP 

DWG JSON PPTX  

ELF MKV RAND  

 
Table 2. NapierOne ransomware strains. 

Strain Strain Strain 

AVOSLOCKER DARKSIDE PHOBOS 

BADRABBIT DHARMA RAGNAR 

BLACKBASTA GANDCRAB RANSOMEX 

BLACKCAT HELLOKITTY RYUK 

BLACKMATTER JIGSAW SODINOKIBI 

CERBER LOCKBIT SUNCRYPT 

CHIMERA LORENZ TESLACRYPT 

CLOP MAZE WANNACRY 

CONTI MEDUSALOCKER WASTEDLOCKER 

CRYPTOLOCKER NETWALKER  

CUBA NOTPETYA  

 
the creation of a reference list of more than 600 entries of documented magic 
numbers and corresponding file extensions. 

This test focuses on determining the magic number of the file under investi-
gation and then comparing it with the file name’s extension to confirm that they 
correlate. As plain text files do not have a magic number, then these were ex-
cluded from this test. The test was then applied to all the remaining files within 
the test dataset. For a file under test, if its magic number matched the correspond-
ing expected file extension, the test passed and the file was considered benign, 
otherwise, the test failed and the file was considered a possible consequence of ma-
licious activity. 

Printable Characters Test. This is a complimentary test and is only run on 
files that do not usually contain a magic number. As these are plain text files, 
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then the majority of their contents should contain printable ASCII characters. 
Examples of files of this type are markup files such as HTML or plain text doc-
uments such as TXT. The definition of printable characters are characters that 
have an ASCII value between 32 and 126 as well as the format control characters 
which have ASCII values between nine and 13. From analysing the nearly 50,000 
plain text files in the NapierOne dataset, it was found that on average plain text 
files contain at least 98% printable ASCII content. 

The test was then applied to all the plain text files within the test dataset. For a 
file under test, if its printable ASCII content was above 98%, then the test passed 
and the file was considered benign, otherwise, the test failed and the file was con-
sidered a product of malicious activity. 

File Entropy Test. A reoccurring theme within many crypto-ransomware 
detection techniques is the concept of randomness and file entropy. Researchers 
assert that a good indicator [37] [54] [55] [56] of crypto-ransomware activity is 
the generation of files whose contents appears to be random and contain no dis-
tinguishable structure. It is agreed that Well-encrypted data should be indistin-
guishable from random data [57]. Traditionally researchers in crypto-ransomware 
detection have chosen to use the value known as Shannon entropy [58] when 
calculating this metric, however, in this research, it was decided to use the 
chi-square [59] method of calculating this metric based on the findings of Davies 
[60]. 

The test was then applied to all the files within the test dataset. For a file under 
test, if its Chi-Square entropy probability value was less than 0.01 [61], then the 
test passed and the file was considered benign. Otherwise, the test failed and the 
file was considered the product of malicious activity. 

BitByte Value Test. This test is based on the method described by Davies [62] 
which successfully distinguished between encrypted files and all other file types. 
This method is particularly effective at differentiating between encrypted and 
compressed files. A separation which previously has been proven in the past to 
be problematic to achieve with a reasonable level of accuracy. Essentially this test 
is performed by profiling the entropy distribution of the first few hundred bytes 
of the file under examination and comparing this profile with the entropy dis-
tribution of a control file. The difference in entropy profiles is then calculated 
and a value known as a BitByte value is determined. Files that produce lower 
BitByte values have a higher probability that their contents are encrypted. The 
research [62] identified that any BitByte value below 56, indicates with high 
probability, that the file is encrypted and thus possibly a consequence of a ran-
somware infection. 

The test was then applied to all the files within the test dataset. For a file under 
test, if its BitByte value was greater than 56, then the test passed and the file was 
considered benign. Otherwise, the test failed and the file was considered a prod-
uct of malicious activity. 

Ransom Note Creation Test. During a crypto ransomware attack, one action 
often performed by the malicious process is to generate a Ransom note file. The 
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purpose of this file generation is two-fold. Firstly, to inform the user that their 
files have been encrypted and that they are the victim of a ransomware attack. 
Secondly, the file’s contents will usually provide the victim with instructions on 
how they can recover from the attack and retrieve their files. The Ransom note 
normally explains how the victim should transfer a specific amount of cryp-
to-currency to the perpetrator of the attack in exchange for help in recovering 
the affected files. There are normally several characteristics of this Ransom note 
file that can be used to distinguish it from other files. The file is normally below 
one KB in size, is plain text and usually contains some specific keywords such as: 
encrypted, ransom, tor, onion, recover, wallet, bitcoin [63]. In this test, the ac-
tual file name is also analysed for typical ransom note file name strings such 
as:decrypt, readme, restore and helpme. It has been identified that often these 
ransom note files are created prior to the actual encryption of the target files, so 
the identification of the creation of ransom notes would thus prove to be a good 
predictor of impending file encryption. This approach was leveraged in the Hel-
Droid [64] ransomware detection system and utilised a text classifier that applies 
linguistic features to detect threatening text. 

The test was then applied to all the files within the test dataset. For a file under 
test, if it is of limited size and its contents contain one or more of the trigger 
keywords, then the test failed and the file is considered malicious. Otherwise, the 
test passed and the file was considered benign. 

3.2. File Name Analysis 

This collection of tests is performed on the actual string value of the name of the 
file being written. It has been a well-known phenomenon from crypto-ransomware 
attacks that as well as encrypting the file contents, in the majority of cases, the 
affected file names will also be modified. For example by adding an extra exten-
sion or changing the original file’s name. This set of tests focuses on attempting 
to identify this change and will again leverage the content of the NapierOne data 
set. 

File Name Entropy Test. This test calculates the Shannon [58] entropy value 
of the entire file name including any extensions that it may have. In normal op-
eration, users tend to use lower entropy strings when naming their files. An 
analysis of the original file names used to populate the NapierOne dataset shows 
that the average Shannon entropy of a file name is below six bits. This calculated 
value proves to be also language-independent [65]. In many cases, when ran-
somware alters the contents of a file, it also alters the name of the file. Common 
ransomware file name manipulations are the addition of random strings to the 
name or its extension. This action would then increase the entropy of the affected 
file’s name. 

The test was then applied to all the files within the test dataset, using their orig-
inal file names. With regards to the files generated from the execution of ransom-
ware, then the filename generated by the ransomware was used. For a file under 

https://doi.org/10.4236/jis.2023.144016


S. R. Davies et al. 
 

 

DOI: 10.4236/jis.2023.144016 274 Journal of Information Security 
 

test, if the calculated entropy value of the entire filename string is under six bits 
then the test passed and the file was considered benign, otherwise, the test failed 
and the file was considered malicious. 

Known File Name Extension Test. As mentioned above, when ransomware 
encrypts a file it often also tends to change or append an extra extension to the 
affected file. Sometimes the text of this new extension relates to the name of the 
ransomware but often the extension is a random string of between three and 50 
characters in length. In normal operation, it is very rare that a file’s extension is 
not a well-known value, as typically well-known applications generate files with 
well-known extensions. This test is aimed at checking and confirming that the 
extension of the file being written is one of the common extensions [36] [49] 
[50] [52]. This test uses the collated list, created by the authors, of known exten-
sions which are also used in the Magic Number Test described in Section 3.1. If 
the file extension is present in the list, then it is considered to be well-known. If 
the file name contains multiple extensions, then this test is applied to the last ex-
tension. 

The test was then applied to all the files within the test dataset. For a file under 
test, if the file’s extension is well-known then the test passed and the file was 
considered benign, otherwise, the test failed and the file was considered mali-
cious. 

File Name Extension Entropy Test. This test calculates the Shannon [58] 
entropy value of the file name’s extension. If the file has multiple extensions, 
then the entropy of the entire extension chain is calculated. Often crypto-ransom- 
ware will append an extra extension to a file that it has encrypted. This extension 
can be a text string relating to the ransomware strain, but more recently it has 
been a random string of between three and 50 characters. When analysing the 
entropy value of all the extensions in the list of well-known extensions it was 
found that they all had a Shannon entropy value of below six bits. 

The test was then applied to all the files within the test dataset. For a file under 
test, if the calculated entropy value of the file’s extension, or extensions, is below 
six bytes then the test passed and the file was considered benign, otherwise, the 
test failed and the file was considered malicious. 

3.3. Executable Analysis 

The collection of tests described in this section relates to tests performed on the 
executable code files used to launch the process as well as tests performed on a 
process’s memory captured during its execution. Benign programs were selected 
that would normally generate files of a specific type. Specific details of the be-
nign programs analysed are provided in Table B1. For example, files of type 
DOCX would usually be created using the Microsoft Word application, so the 
executable for this application was analysed as well as its memory during its ex-
ecution. 

Strings in Executable Test. Often ransomware executables contain an-
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ti-analysis techniques in an attempt to prevent researchers from inspecting the 
content of the code. These techniques can include obfuscation, polymorphism 
and encryption of the content of the executable. A consequence of this is that the 
number of humanly readable strings found within such a file could be signifi-
cantly lower than would normally be expected. This static analysis technique was 
applied to both benign as well as ransomware executable files and took the form 
of extracting strings from the executable and then counting the number and 
frequency of Windows Application Programming Interface (API) strings that 
could be identified. This technique has also been leveraged in other ransomware 
detection systems such as R-PackDroid [66]. 

No specific metrics, such as the expected number of API strings per KB, are 
currently available in the literature. So these tests are more exploratory to dis-
cover if the type and frequency of API calls differ significantly between ransom-
ware and benign executables and if this measurement would be a useful contri-
butor to a malice score calculation in a ransomware detection system. 

Creation and Modification Dates Test. Executable files normally have a sig-
nificant time interval between when they were placed on the file system and the 
current execution time. A small interval between the creation date and time and 
the current date and time could also be used as an indicator of a recently placed 
malicious program. 

This static analysis test was applied to all the executable files shown in the ap-
pendix in Table A1 and Table B1. For an executable file under test, if the file’s 
creation or modification date is greater than one day then the test passed and the 
executable file was considered benign, otherwise, the test failed and the file was 
considered malicious. 

Process Analysis 
The following tests could be performed on running processes to determine if any 
indicators could be identified, that would suggest that the process was malicious. 
The memory contents of the process under investigation are analysed for indi-
cators of malicious behaviour. 

File-less Execution Test. Running processes that do not have an underlying 
executable on the file system could be considered suspicious as some forms of 
ransomware execute by being directly injected into memory. These injected pro-
grams would then have no underlying executable file present on the file system. 
This is unusual behaviour for a process and can be used to flag irregular beha-
viour [67]. 

This test was applied to the running process. If the process is associated with a 
file on the file system then the test passed and the process file was considered 
benign, otherwise, the test failed and the process was considered malicious. 

Cryptographic Key Identification Test. The memory and underlying ex-
ecutable file used to launch the process under investigation will be examined for 
traces of cryptographic keys, as these could indicate that the process is, or will 
shortly begin, encrypting files. The memory will be searched for keys for the fol-
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lowing three cryptographic algorithms: AES [68] [69] [70] [71] [72], Salsa20 [73] 
and RSA [74] [75]. The AES key testing included checking for the presence of 
keys of length 128, 192 and 256 bits. 

Initially, the executable file that will be used to launch the process with be 
examined. Subsequently, the memory of the running process will be checked on 
two occasions, firstly, directly after the process has launched and then subse-
quently checked again 30 seconds after launch. If no keys are found in each of 
these tests, then the test passed and the process was considered benign, other-
wise, if keys are discovered, the test failed and the process was considered mali-
cious. 

Ransom Note Identification Test. The memory of the process under inves-
tigation will be examined for traces of typical strings that often appear within 
ransom notes. These are files normally generated by ransomware programs and 
are used to inform the user that they have been the victim of a ransomware at-
tack. These files usually contain information on how the user may recover their 
data. The presence of many keywords close together within the process’s mem-
ory would be an indicator that the process could be malicious. This test is similar 
to the previous Ransom Note Creation Test, using the same keywords, however, 
in this case, it will be performed on the process’s memory and not on its output. 

This test was applied to the running process. If the process’s memory does not 
contain several examples of the keywords, then the test passed and the process 
was considered benign, otherwise, the test failed and the process was considered 
malicious. 

Windows API Analysis Test. The memory of the process under investigation 
will be examined and a review of the number and frequency of all the found 
window’s application programming interface (API) calls will be performed. Ex-
ecutables use these API calls to interact with the operating system and the num-
ber and type of calls used together with their frequency will be investigated to 
determine if this could be used as an indicator that the process under investiga-
tion is malicious. This test is similar to the previous Strings in Executable Test, 
however, in this case, it will be performed on the process’s memory and not on 
the executable file used to launch the process. 

No specific metrics, such as the expected number of API strings per KB, are 
currently available in the literature. So these tests are more exploratory to dis-
cover if the type and frequency of API calls differ significantly between ransom-
ware and benign executables and if this measurement would be a useful contri-
butor to a malice score calculation in a ransomware detection system. 

3.4. Behaviour Analysis 

The actions and behaviour exhibited by the ransomware can also be monitored 
to identify suspicious behaviour. These tests are outlined below. 

Modification of System Restore Points. System restore points are used to 
recover a system’s state or file system files. There are very few occasions where a 
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process needs to issue commands relating to system restore points, especially 
concerning their deletion. The state of the system’s restore points will be moni-
tored, during the execution of the process under investigation, to determine if 
they are modified. 

This test was applied to the running process. If the systems restore points re-
mained intact two minutes after the launch of the process, then the test passed 
and the process was considered benign, otherwise, if the restore points had been 
altered or deleted, the test failed and the process was considered malicious. 

Process escalation Some ransomware processes attempt to gain elevated 
access to resources that are normally protected from an application or user. This 
is attempted so that the process can gain deeper and broader control of the sys-
tem and allow them to perform more destructive actions. Identification of such 
behaviour would prove to be a useful indicator of malicious activity. 

This test was applied to the running process. If the running process achieves 
elevated access or spawns a child process with elevated access then the test fails 
and the process is considered malicious, otherwise, if the access remains un-
changed then the test passed and the process was considered benign. 

4. Evaluation and Discussion 

The majority of the recorded results for the tests described in Section 3 are pro-
vided in Figure 2. The cell colours represent the success of the test and are 
graded from green to red. 100% pass rate results are represented as a dark green 
colour, the colour changes depending on the success rate to red which indicates 
0% pass rate, or alternatively 100% failure rate. Where the colour does not clear-
ly show the result, then the percentage number is also displayed. Grey indicates 
that the specific test was not executed on that particular file type. For example, as 
mentioned above, if the file type should contain a magic number, then this test 
was performed and the printable character test was ignored.  

Some of the tests were exploratory in nature in an attempt to discover if the 
gathered metrics could be used to identify malicious code. Examples of these ex-
ploratory tests were in the cataloguing of API calls distinguishable in the ex-
ecutable as well as the process memory directly after launch and then again 30 
seconds after launch. The results of these tests are presented in Figure 3, Figure 
4. The remainder of this section reviews the results gathered during the testing 
and provides some context, discussion and background into the tests and the 
recorded results. A clarification of a test’s success is provided in Table 3. 

File content analysis. These tests were performed on the files generated by a 
process. These tests included the analysis of the created file’s magic number val-
ue, or for plain text files, the percentage of humanly readable characters within 
the file was analysed. Other tests included the Chi-Square entropy of the content 
of the file as well as the BitByte value test. Of all the tests performed these were 
some of the most successful in differentiating between output generated from 
benign and malicious processes, a summary of the results is provided in Table 4.  
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Figure 2. Results overview. 
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Figure 3. Total API calls in executable. 

 

 
Figure 4. Total API calls in memory. 
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Table 4. File test performance metrics. 

 Accuracy Recall Precision F1 

Magic number 0.961 0.998 0.923 0.959 

Printable Char. 0.999 0.999 0.999 0.999 

File Entropy 0.865 0.831 0.958 0.890 

BitByte 0.919 0.914 0.946 0.930 

Filename Ent. 0.999 0.999 0.999 0.999 

Extension 0.999 0.999 0.999 0.999 

Extension Ent. 0.999 0.999 0.999 0.999 

 
No individual test achieved 100% accuracy but the BitByte test is worth hig-
hlighting as its results were more accurate than the plain entropy tests when 
working on files with unknown content. The magic number test combined with 
known file extension tests also achieved high accuracy, but these rely on the 
created files having a known extension. These tests could be bypassed, by ran-
somware using well-known extensions on their output, as highlighted by the re-
sults recorded when analysing the files generated by the NotPetya ransomware 
strain which does not modify the extension of the files it attacks [76].  

Generated file name analysis. These tests were performed on the names of 
the files generated by the process. These tests included the analysis of the entro-
py of the entire filename, the entropy of the file name’s extension as well as vali-
dating if the file name’s extension was a known value. These tests also achieved 
high accuracy, a summary of the results is provided in Table 4. Contributing 
factors to this high accuracy was that the benign files used all had well-known 
file extensions and almost all the tested ransomware strains modified the files 
name and/or extension in a way that increased the overall entropy of the file-
name. While the testing did cover more than 30 different ransomware strains, it 
may not be sufficiently broad enough to generalise this phenomenon. As with 
some of the file content tests, the exception being the files generated by the Not-
Petya ransomware strain, which was able to successfully evade this group of 
tests. This leads us to think that these tests should be applied to a larger test da-
taset, before generalising the findings.  

Ransomnote tests. These tests can also be divided into static and dynamic 
analysis tests. The static portion of the tests involved examining the executable 
file used to launch the process and trying to identify several occurrences of typi-
cal strings used in ransom notes. This analysis could be performed prior to the 
launching of the process. In one of the dynamic analysis tests, the running 
process’s volatile memory was examined for the existence of these same ransom 
note strings. In the other dynamic analysis test, the files generated by the process 
were examined to determine if the file being created could possibly be a ransom 
note. No ransom note strings were found in either the begin or ransomware ex-
ecutable binaries. The success rate when looking for ransom note strings within 
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the memory was very low with positive matches only 20% of the time. These 
matches were relatively evenly distributed between benign and malicious pro-
grams. A consequence of this is that it seems that these metrics would not be 
suitable for use within a ransomware detection program. The accuracy may be 
improved for these tests by possibly applying some additional logic to the search, 
for example, by increasing the dictionary of keywords being searched for, apply-
ing natural language processing on the found strings, or analysing the distance 
between where these words appear and applying a ranking or weighting to the 
found strings. 

The results regarding the dynamic test of analysing the contents of files being 
created by the process were much more encouraging. No files generated by the 
benign programs were marked as ransomware, and 80% of the ransom notes 
generated by the ransomware were successfully identified. Some reasons why 
this rate was not even higher were that some ransomware strains do not create 
ransom notes, some ransom notes were actual graphics and some ransomware 
strains changed the desktop background to display the ransom message. This is a 
promising finding as many ransomware strains create the ransom note prior to 
the encryption [63] of the data and a successful interception at this point in the 
attack would be beneficial.  

Identification of cryptographic artefacts. These tests involved attempting to 
identify cryptographic algorithm artefacts using both static and dynamic analysis 
methods. The static portion of the tests involved looking for these artefacts in 
the executable binary files used to launch the process. This analysis could be 
performed prior to the launching of the process. The dynamic aspect of these 
tests involved looking for these artefacts in the process’s volatile memory, pre-
cisely after the process has been launched and then again 30 seconds after the 
process’s launch. The artefacts that were being searched for were AES encryption 
algorithm keys of length 128 bits, 192 bits and 256 bits, as well as RSA asymme-
tric and Salsa20 encryption algorithm keys. This resulted in 15 distinct tests per 
file type resulting in a total of more than 1000 tests being conducted for this 
group of tests. When reviewing the results it can be seen that no cryptographic 
artefacts were identifiable in any of the test binaries. Regarding the AES key dis-
covery, then no real pattern could be identified. For benign programs, these keys 
were identified in 44% of the samples and with ransomware programs, these 
keys were identified in 35% of the samples. These findings indicate that this me-
tric in its current format is not particularly suited for indicating ransomware ac-
tivity. It is a known behaviour, that ransomware does use cryptography during 
its execution, so some explanation for the lack of successful key identification 
could be that these algorithms are not used in these ransomware samples or that 
the encryption has either not commenced or has completed when the analysis 
was performed. The presence of these artefacts in memory of benign programs is 
not ideal as it complicates the metric. 

Behavioural analysis. These tests are aimed at analysing the behaviour of the 
process under investigation. The idea behind the first test, normal process, was 
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to try and identify if a running process attempts to alter its execution privileges 
and try and run as an elevated user. None of the benign processes did this, how-
ever, many of the ransomware samples used, would not execute correctly with-
out them being started as the administrator user, which negated the usefulness 
of this test. No identifying trend could be used to differentiate benign and mali-
cious binary files using the file creation date. With regards to file-less execution, 
four ransomware samples did spawn a malicious process that had no underlying 
binary file on disk and approximately 45% of ransomware programs removed 
system restore points soon after they started executing. Both these last two beha-
viours were only observed with ransomware programs and could be used as a 
contributing factor when trying to determine if the process is malicious or not.  

Analysis Tests. Some exploratory investigation was also performed in cata-
loguing and analysing the number and frequency of standard Windows API calls 
within both the binary executable file (static analysis) as well as the process’s vo-
latile memory (dynamic analysis) directly after launch and then again 30 seconds 
after launch. Note that the Y-axis on the following figures has a logarithmic 
scale. From Figure 3, it can be seen that the number of API calls present in the 
executables of benign programs differ by a factor of eight when compared to the 
number of API calls identified within ransomware programs One possible ex-
planation for this could be that ransomware programs often try and obfuscate 
their structure prior to execution in an attempt to hinder analysis and a conse-
quence of this being that the API calls are hidden. 

To normalise these results, the values were then plotted as a ratio of the num-
ber of API calls present divided by the analysed executable file size. These nor-
malised results are shown in Figure 4. The programs were then launched and 
the volatile memory used by each of these programs was then captured and ana-
lysed for Windows API calls. A comparison of the API calls present within each 
process’s memory is presented in Figure 5. Again to aid comparison, the graphs 
have been normalised by dividing the total number of calls by the size of the to-
tal memory being used. Finally, the launched program’s memory was captured 
again 30 seconds after launch and analysed for Windows API calls. A compari-
son of the API calls present within each process’s memory is presented in Figure 
6 with the results being normalised.  

When reviewing the captured results, it can be seen that the identified API 
calls within the binary files show signs of possibly being a useful indicator of 
Windows API obfuscation and thus an indicator of a possibly malicious pro-
gram. The measurements show that there is an obvious difference between the 
number of API calls found within the benign and malicious executables. The 
difference between these two types of executables is not so prominent when 
analysing the process’s volatile memory. However, it is felt by the researchers 
that these findings merit further investigation. As they stand, using the current 
metrics, these results would not prove useful as a contributor to the suite of tests 
used in the malice score calculation. Some refinement of the measurement, such  
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Figure 5. Average API calls in memory per KB at launch. 
 

 
Figure 6. Average API Calls in memory per KB at 30 seconds. 
 
as targeting specific API calls or call frequency analysis may enhance the accu-
racy of this type of measurement and further investigation into this would be 
beneficial. 
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ransom note identification within the process and executable or Windows API 
enumeration, delivered inconclusive results and these tests would require some 
more investigation, analysis and modification. 

It is proposed that a system could be developed that uses a combination of the 
tests that have been found to be accurate in identifying ransomware. Each test’s 
vote would contribute to an overall malice score for the target file or process, 
and based on the maximum number of votes the system would classify the target 
as either malicious or benign. For example, a system could be developed that 
used the following tests: created file name and extension entropy, well-known 
extensions, file magic number and printable characters, file content BitByte and 
entropy values, ransom note creation detection and system restore point remov-
al detection. Based on the findings from this research, a system configured with 
these tests would have an accuracy of 0.9989 on the dataset used. Some of the 
interesting test results are highlighted in Figure 7. 

When reviewing the results for benign programs shown in Figure 7, it can be 
seen that the majority of tests consider the processes/files to be benign. Even in 
cases where some of the individual tests do occasionally give false positives, in all  
 

 
Figure 7. Interesting results. 
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cases, the majority of the tests vote correctly resulting in a correct overall classi-
fication. For example, when looking at the classification for WEBP file types, it 
can be seen that the individual file entropy and BitByte tests, result in a classifi-
cation accuracy of around 55%, and 45% of the samples are incorrectly classified 
as malicious. However, as the remaining six tests correctly vote that the file is 
benign, these files are ultimately classified as benign. Likewise, when reviewing 
the result for the ransomware files, in most cases the majority of tests classify the 
file/process as malicious. The only exception would be on the very rare occasion, 
the files generated by the Jigsaw ransomware strain, may theoretically receive a 
false positive classification if the majority of the tests vote that the file/process is 
benign. 

A major strength of the majority voting approach to ransomware detection is 
that not every test needs to correctly classify a malicious program every time. 
With equal weighting on the result of each test, it would be sufficient for just a 
majority of tests to correctly classify the target, for the system to work success-
fully. Some work could also be performed to investigate whether a weighting or 
bias could also be applied to the test results meaning that some tests would then 
have a greater influence on the overall outcome of the classification, than others. 

As the detection technique relies on well-known discrete tests, it is also easier 
for the detection model to be modified, updated and tuned as opposed to a ma-
chine learning model where the weightings and strengths of the learned model 
can be unknown or difficult to influence.  

5. Conclusions 

This paper proposes a ransomware detection system using a majority vot-
ing-based approach. A final malice score is derived from the combination of the 
results from many discrete tests that are conducted on the target process, its ex-
ecutable file or the output that the process generates. These distinct results are 
then aggregated and used as input for the malice score generation. Based on this 
score the target is classified as benign or malicious. The paper proposes 23 main 
tests that could potentially be used in a ransomware detection system with their 
outcomes, contributing to the overall malice score. The paper also investigates 
additional potential metrics that could be used in ransomware detection, for ex-
ample, the presence of Windows API calls in the binary and executing processes’ 
volatile memory. 

This research demonstrates that many of the proposed tests achieved a high 
degree of accuracy in differentiating between benign and malicious targets. The 
accuracy was then enhanced when a selection of these tests was then combined 
into a majority voting model. One proposed majority voting model achieves an 
accuracy of 0.9989. The collaborative approach in generating the final result has 
many advantages, for example, some individual tests on some occasions may 
produce incorrect classifications, but the overall accuracy of the detection system 
as a whole will be unaffected if the majority of the tests produce the correct re-
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sults. 
As this majority voting detection technique relies on well-known and easily 

understandable discrete tests, then it is easier for the model to be modified, up-
dated and tuned as opposed to a machine learning approach where the weight-
ings and strengths of the learned model can be unknown or difficult to influ-
ence. An additional advantage is that while machine learning models require 
training, the majority voting approach, proposed in this paper, does not. 

5.1. Limitations 

While the majority voting approach to identifying malicious processes has a high 
level of accuracy, as always the situation exists where once a ransomware devel-
oper is aware of the techniques being used to identify malicious behaviour, they 
have the possibility of modifying or adapting the ransomware’s behaviour to 
avoid the tests in newer releases of their programs. The advantage of the majori-
ty voting approach is that the system does not rely on a single catch-all test, ra-
ther detection is a combination of many accurate tests. A consequence of this is 
that the ransomware developer may have to significantly modify the behaviour 
of their programs, and possibly disregard some aspects of their original beha-
viour to avoid detection. 

5.2. Future Work 

The results achieved during the Windows API call analysis could possibly be 
improved by further investigation and modifications to the types of API calls 
present, their frequency and their position within the file or process memory. 
One area of further work would be a deeper analysis of this aspect of the binaries 
and volatile memory. Another area of work would be to introduce a weighting 
element to the measurements, allowing some tests to have a greater influence on 
the final classification results. 

Analyses of other types of tests could also be performed. Examples of which 
could be: multiple-file read and write operations, high entropy differences be-
tween read and write operations, file tree traversal, privilege escalation, accessing 
crypto API functionality, accessing unusual domain names, generation of large 
amounts of traffic, DGA detection [13] [77] and the termination of a large 
number of processes. 
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Appendix 

Table A1. SHA256 hashes of ransomware strains used. 

 
 

Table B1. Details of benign programs used. 
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