
1

MESON: A Mobility-aware Dependent Task
Offloading Scheme for Urban Vehicular Edge

Computing
Liang Zhao, Member, IEEE, Enchao Zhang, Shaohua Wan, Ammar Hawbani,

Ahmed Y. Al-Dubai, Senior Member, IEEE, Geyong Min, and Albert Y. Zomaya, Fellow, IEEE

Abstract—Vehicular Edge Computing (VEC) is the transportation version of Mobile Edge Computing (MEC) in road scenarios. One
key technology of VEC is task offloading, which allows vehicles to send their computation tasks to the surrounding Roadside Units
(RSUs) or other vehicles for execution, thereby reducing computation delay and energy consumption. However, the existing task
offloading schemes still have various gaps and face challenges that should be addressed because vehicles with time-varying
trajectories need to process massive data with high complexity and diversity. In this paper, a VEC-based computation offloading model
is developed with consideration of data dependency of tasks. The minimization of the average response time and average energy
consumption of the system is defined as a combinatorial optimization problem. To solve this problem, we propose a Mobility-aware
dependent task offloading (MESON) Scheme for urban VEC and develop a DRL-based algorithm to train the offloading strategy. To
improve the training efficiency, a vehicle mobility detection algorithm is further designed to detect the communication time between
vehicles and RSUs. In this way, MESON can avoid unreasonable decisions by lowering the size of the action space. Moreover, to
improve the system stability and the offloading successful rate, we design a task priority determination scheme to prioritize the tasks in
the waiting queue. The experimental results show that MESON is superior compared to other task offloading schemes in terms of the
average response time, average system energy consumption, and offloading successful rate.

Index Terms—Mobile Edge Computing, Vehicular Edge Computing, Vehicular Networks, Deep Reinforcement Learning, Task
Offloading.

✦

1 INTRODUCTION

IN recent years, Vehicular Edge Computing (VEC) has
been considered as a promising computing paradigm that

migrates Mobile Edge Computing (MEC) to the road and
vehicular scenarios by empowering various computation
services for in-vehicle applications [1]. The ubiquitous edge
servers deployed on Roadside Units (RSUs) can provide
high-Quality of Service (QoS) computing resources for vehi-
cles. In VEC, task offloading allows vehicles to transfer their
computation tasks to surrounding RSUs or vehicles for exe-
cution. Thus, the execution delay and energy consumption
can be reduced [2]. In this way, VEC can improve driving
safety and transportation efficiency to better support au-
tonomous driving. Since the offloading decision should be

• Liang Zhao and Enchao Zhang are with the School of Computer Science,
Shenyang Aerospace University, Shenyang, China. Liang Zhao is also
with the Shenzhen Institute for Advanced Study, University of Electronic
Science and Technology of China, Shenzhen 518110, China. (e-mail:
lzhao@sau.edu.cn, enchaozhang1998@163.com)

• Shaohua Wan is with the Shenzhen Institute for Advanced Study, Uni-
versity of Electronic Science and Technology of China, Shenzhen 518110,
China. (e-mail: shaohua.wan@ieee.org)

• Ammar Hawbani is with University of Science and Technology of China,
China. (e-mail: anmande@ustc.edu.cn).

• Geyong Min is with the Department of Computer Science, University of
Exeter, UK. (e-mail: g.min@exeter.ac.uk).

• Ahmed Y.Al-Dubai is with the School of Computing, Edinburgh Napier
University, UK. (e-mail: a.al-dubai@napier.ac.uk).

• Albert Y. Zomaya is with the School of Computer Science, University of
Sydney, Australia (e-mail: albert.zomaya@sydney.edu.au).

• Ammar Hawbani and Enchao Zhang are the corresponding authors.

made for each task, the efficiency of the offloading scheme
may cause a critical impact on the offloading decision-
making. Nowadays, task offloading has attracted extensive
attention from both academia and industry. Some existing
studies apply heuristic algorithms for task offloading [3–6].
However, they rely heavily on expert knowledge or precise
mathematical analytical models. Due to the dynamic nature
of VEC, these solutions require constant updating of the
existing models, which is time-consuming.

Other existing studies involve Machine Learning (ML)
to operate the task offloading, whereas ML demands prior
knowledge [16, 17]. Nevertheless, benefiting from the de-
velopment of vehicular technologies, the data generated
by vehicles is with variability and diversity. It is diffi-
cult to obtain large amounts of data to train ML models.
Other studies believe that Reinforcement Learning (RL) is
a potential solution to task offloading [18–20]. RL-based
algorithms enable vehicles to learn an optimal offloading
strategy by interacting with the environment. Nonetheless,
such solutions are only feasible for low-dimensional input
decision-making problems, rather than dealing with large-
scale task offloading in urban scenarios with high-density
vehicles.

To better understand the limitations of the existing
studies, we extensively investigate relevant task offloading
schemes. Table 1 shows the objectives, mobility of vehicles,
application properties, and main algorithm for each scheme.
However, the existing task offloading schemes still have
various gaps and face challenges that need to be addressed.

2

TABLE 1
A comparison of related studies.

Reference Objectives Mobility Application Properties SchemeLatency Joint Energy Dependency Task Number Priority
[7] ✓ Single GT
[8] ✓ Multiple ✓ EECO
[9] ✓ Multiple MDRCO
[10] ✓ Multiple DCOR
[11] ✓ ✓ ✓ Multiple TESO
[12] ✓ Single DQN
[13] ✓ Multiple SARSA
[14] ✓ ✓ Multiple PGA
[15] ✓ Multiple CCBL

Our Work ✓ ✓ ✓ Multiple ✓ MESON

First, some studies only consider independent tasks instead
of the tasks with data dependency of applications [7–10]. As
shown in the table, only one study considered offloading
scenarios with task dependency. Although the dependencies
of tasks are studied, the characteristics of dependent tasks
are not fully considered [11, 21, 22]. As presented in [23], an
application is composed of a set of collaborative code units
called modules. In our paper, the task is another expression
of the module. Generally, a programming module can be
executed on various CPUs in a parallel system by applying
interfaces. However, tasks in the application are usually
data-dependent. When processing tasks with data depen-
dencies, the order of execution of tasks is critical, which
has a significant impact on system efficiency. Consequently,
the data dependency and the task execution order are also
important characteristics of task offloading, which need to
be highlighted. The offloading system should consider how
to prioritize tasks to maximize the offloading execution effi-
ciency and maintain the stability of the offloading system.

Second, as shown in the table, some existing studies
ignored the impact of the time-varying trajectories of ve-
hicles in urban scenarios during the process of task of-
floading [12, 13]. Wireless communication between vehi-
cles and RSUs plays an important role in task offload-
ing. Considering the dynamic nature of vehicles, broken
communication links between vehicles and RSUs caused
by vehicles driving away from the coverage of RSUs may
further lead to the incompleteness of offloading tasks. Even
if the offloading computation results can be sent back via the
backbone network, the delay-sensitive service requirement
cannot be met in real-time. Others apply ML or Generative
Adversarial Networks (GAN) to predict vehicle trajectories
by analyzing the movement data of vehicles [24–27]. Para-
doxically, such solutions require computing capability with
excellent performance to ensure the accuracy of the training
model, which ignores the constraints of limited computing
capability available at vehicles themselves [14]. Accordingly,
the schemes with low complexity are lightweight, which is
more appropriate in such scenarios.

Third, the optimization objective of most studies is
mainly focused on the task execution delay or energy con-
sumption [7–9], instead of the joint optimization of the over-
all performance and stability of the system [10, 13, 14, 28]. In
urban scenarios, vehicles need to handle massive amounts
of data with complexity and diversity generated by appli-
cations, and the services need to be provided in real-time to

avoid traffic accidents. Consequently, task offloading must
take the real-time response for applications and the low
energy consumption for vehicles as two crucial optimization
objectives.

To fill the aforementioned gaps, we develop a mobility-
aware dependent task offloading (MESON) scheme for ur-
ban VEC. First, we establish a novel VEC-based compu-
tation offloading model, which considers the data depen-
dency of tasks. Second, we leverage the Deep Reinforce-
ment Learning (DRL) algorithm to realize adaptive task
offloading without any prior knowledge, which is a good
candidate for processing complex applications with data
dependency [29–32]. Third, a vehicle mobility detection
algorithm is proposed to detect the communication time
between vehicles and RSUs for avoiding unreasonable de-
cisions, which decreases the magnitude of the action space.
Fourth, we design a task priority determination algorithm
to determine the processing order of tasks in the waiting
queue, which is aggregated by employing multi-criteria.
The main contributions of this paper can be summarized
as follows.

• A VEC-based computation offloading model is pro-
posed with consideration of the data dependency of
tasks. The minimization of the average response time
and average energy consumption of the system is de-
fined as a combinatorial optimization problem. The
proposed offloading system can effectively provide
computational services in real-time with low energy
consumption.

• A novel mobility-aware task offloading scheme is
proposed by employing DRL, which leverages the
Deep Deterministic Policy Gradient (DDPG) algo-
rithm to train the offloading strategy. To deal with
the time-varying trajectories of vehicles in urban
scenarios, we design a mobility detection algorithm
to combine with the DDPG algorithm, which en-
sures stable communication links between vehicles
and RSUs. The mobility detection algorithm also
decreases the size of the action space, further leading
to the improvement of training efficiency.

• To improve the system stability and success rate of
tasks, a novel priority determination algorithm is
also designed to sort the task queue of RSUs after
the offloading process. The priority of the task is
aggregated by employing multi-criteria, including
the computation capability, the maximum tolerance

3

time durations, and the features of the dependent
task.

The rest of this paper is organized as follows. Section 2
presents the system model and problem formulation. The
details of the MESON task offloading scheme are presented
in Section 3. Experimental evaluations and discussions are
presented in Section 4. Finally, Section 5 concludes this
paper.

2 SYSTEM MODEL AND PROBLEM FORMU-
LATION
In this section, we first describe the VEC-based task offload-
ing model, which considers the data dependency of tasks.
Second, task offloading is defined as a joint optimization
problem of reducing the of average system response time
and average system energy consumption.

���1 ���2 ���3
Offloading Strategy

：MEC Server

：Decision-making Module

：Mobility Detection

：Communication Links

Offloading Strategy Offloading Strategy

Micro Traffic Prediction

Application DecompositionAn Example of Dependent Task Offloading

 Process Locally

Offload

Task A (Module A)

Task Features

Data Collection

Task B (Module B)

Task Features

Data Collection

Task C (Module C)

Task Features

Data Collection

Task D (Module D)

Task Features

Data Collection

Entrance Exit

Result
Result

 ：Task Prioritization

：Tasks in Application

：Future Communication
Links

Fig. 1. The VEC network architecture.

2.1 System Overview
This subsection presents the overall system architecture
of VEC-based task offloading. As shown in Fig. 1, there
are n RSUs and i vehicles. Define K = {k1, . . . , kn} and
V = {v1, . . . , vi} as the sets of RSUs (or the MEC servers)
and vehicles, respectively. Vehicles and RSUs are connected
via V2I communication. All RSUs are installed with an
MEC server to provide computation resource support for
surrounding vehicles, and a decision-making module to
calculate the offloading strategy for each vehicle within
the V2I communication range. In addition, the mobility
detection method in the decision-making module predicts
the future location of each vehicle and assists the task
offloading decision-making, which is proposed in Section
3.2.2. When vehicles offload their tasks to an RSU, vehicles
need to wait for the RSU to return the calculation result. At
the same time, RSUs prioritize the execution order of tasks
and execute them. The detail of task priority determination
is proposed in Section 3.2.3. We assume that the generation
of a new application in vehicles is a Poisson process, and the
application arrival rate is Υ. The application can be divided
into several tasks with data dependencies. As shown, each
task consists of three parts: the task itself (module or code
unit), task features, and data collected by vehicle sensors
(presented in Section 2.2). An example is shown in Fig. 1.

TABLE 2
Main notations.

Notation Description
K set of RSUs
V set of vehicles
A

vi
j application generated by vehicle vi

Bj set of tasks in application A
vi
j

Hj matrix of task dependency of application A
vi
j

Ψi,n communication rate between vehicle vi and RSU kn
pz processing time of task bjz
τz waiting time of task bjz
oz,n,x task offloading indicator
cz communication time of task bjz
T j
res response time of application A

vi
j

Tx average application response time at the time of the x-th slot
Eproc

z processing energy consumption of task bjz
Ecomm

z communication energy consumption of task bjz
Etotal

z total energy consumption of task bjz
EAj total energy consumption of application A

vi
j

Ex average energy consumption at the x-th time slot
P
b
j
z

priority of task bjz
△i,n(x) distance between vehicle vi and RSU kn at the time slot of x
T con
i,n (x) communication time between vehicle vI and RSU kn

GAj (x) connectivity matrix for the application A
vi
j at the x-th time slot

℧ the number of tasks in the task queue
(ltvi , gtvi) the location of vehicle vi

The vehicle has generated a new application, which contains
four tasks. Task A, task B, and task D are the entrance and
exit of the application program, task C requires task A and
task B as the input data and task D requires task C as the
input data. The vehicle can offload these tasks to RSUs or
execute them locally by the decisions of the decision-making
module. The detailed description of the decision-making
module is proposed in Section 3. For instance, task A and
task B are scheduled to execute locally, and task C and task
D are offloaded to an MEC server within the communica-
tion range. If the communication link is interrupted due to
the mobility of the vehicle during the offloading process, the
offloading task is considered incomplete.

2.2 Application Model

Fig. 2. The example of different dependencies between tasks.

This subsection proposes the application model with
task dependency. In order to match the practical environ-
ment, we consider different types of applications by defin-
ing different parameters such as the maximum tolerance
time durations, architecture of applications, and number of
tasks in applications. Then, we define various types of tasks

4

by using different parameters, such as the input/output
data size, local data size, and computation load.

We define Avi
j =

{
vi,m,Hj , dmax

}
as the application

generated by vehicle vi, where m indicates the number
of tasks in application Avi

j , Hj represents the task inter-
dependency of these tasks, and dmax indicates the max-
imum tolerant response time of application Avi

k , respec-
tively. The application Avi

j can be divided into several tasks

Bj =
{
bj1, . . . , b

j
z

}
. Matrices Hj =

(
Hj

l,r

)
m×m

are used to

represent the dependency of tasks in application Avi
j , where

Hj
l,r = {0, 1}, 1 ≤ l < r ≤ m. Hj

l,r = 1 means that task
r needs the result of task l. As shown in Fig. 2 (c), task B
needs to wait for the result of task A, while task D needs
the results of task B and task C . Therefore, the adjacency
matrix for the direct graph in Fig. 2 can be given by

H1 =

0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

 , H2 =

0 1 0 0
0 0 1 0
0 0 0 1
0 0 0 0

 ,

H3 =

0 1 0 0
0 0 0 1
0 0 0 1
0 0 0 0

 , H4 =

0 0 1 0
0 0 1 0
0 0 0 1
0 0 0 0

 .
We define the task bjz of application Avi

j as a tuple
φz = (ωz, λz, γz, δz), where ωz represents the computa-
tional load, λz represents the size of local data collected by
its own sensors of vehicles, γz represents the size of input
data, and δz represents the size of output data of task bjz
in application Avi

j . Thereby, the computation load of the
application is

∑m
1 ωz . If task φz is the entry point of this

application, then λz = γz . The correlation between input
data and output data between tasks is defined as

γr =
r∑

l=1

Hj
l,r+1 · δl (1)

The attributes of each task (ωz, λz, γz, δz) are determined by
the applications generated by vehicles, and different appli-
cations have various task dependencies and attributes. Only
when all tasks in the application are executed successfully
in sequence, the entire application is considered complete.
Therefore, the offloading decision of each task is critical.

2.3 Communication Model
The communication model of the VEC network is presented
in this subsection. The system is divided into X time slots.
During each time slot, the whole system is quasi-static. Dur-
ing each time slot, the positions of vehicles are stable, but
the positions of vehicles may vary along with the changes
of different time slots. Each vehicle in the system has a
communication link with the RSU by adopting V2I commu-
nication. The maximum V2I communication range is R0. In
the proposed VEC network, the achievable communication
rate of V2I communication is defined as:

Ψi,n = ϕ · log2

(
1 +

pi,n · gi,n
σ0 +

∑i
j=1ϱjpj,ngj,n

)
(2)

where gi,n = (△i,n)
−ı

ȷin represents the instantaneous
channel gain from vehicle vi, △i,n is the instantaneous
distance between vehicle vi and RSU kn, ı and ȷ denote
the path loss and the fading factor, respectively. ϱj = {0, 1}
represents the communication indicator of vehicle vj , which
means whether vehicle vj is maintaining a communication
link with the RSU. ϕ denotes the channel bandwidth, and
σ0 refers to the background noise.

According to Eq. 2, critical interference can be incurred
if too many vehicles decide to offload tasks to the RSU,
thus leading to disastrous impact on the communication
efficiency of the VEC network. In addition, the interference
on communication link may cause the changes of the V2I
communication range. The instantaneous V2I communica-
tion range can be formulated as:

R = R0 × ℓ

(
1 +

pi,n · gi,n
σ0 +

∑i
j=1ϱjpj,ngj,n

)
(3)

where ℓ is the adjustment coefficient.
In addition, due to the movement of vehicles, the in-

stantaneous distance between the vehicle and RSU is also
an important factor that affects the communication quality
between vehicles and RSU, which needs to be highlighted.

2.4 Response Time Model
In this section, we propose the response time model in VEC-
based task offloading. The response time of a task can be
defined as a sum of processing time and queuing time.

The time duration required by the vehicle or RSU to
process tasks is defined as the processing time, which is
given by

pz =

{
ωz

fvi
, oz,n,x = 0

ωz

fkn
, oz,n,x = 1

(4)

where fvi and fkn represent the processing capability of
vehicle vi and RSU kn, respectively. oz,n,x = {0, 1} is the
task offloading indicator, oz,n,x = 1 represents task bjz is
offloaded to the n-th RSU for processing during the x-th
time slot, and oz,n,x = 0 refers to task bjz is processed locally
during the x-th time slot. The queuing time of a task can
be divided into two parts: waiting time and communication
time. The waiting time represents the time duration of the
maximum processing time for all predecessor tasks. The
communication time represents the time duration of the
maximum transmission time for all input data. To formulate
the communication time and waiting time, we need to
consider whether the task requires the results of other tasks
as input. The waiting time τz and the communication time
cz of task bjz are defined as follows.

τz =

{
0 ,

∑m
l=1 Hl,z = 0

max {plHl,z | 1 ≤ l < m} ,
∑m

l=1 Hl,z ̸= 0
(5)

cz =

λz

Ψi,n
,
∑m

l=1 Hl,z = 0

max
{

γz

Ψi,n
Hl,z | 1 ≤ l < m

}
,
∑m

l=1 Hl,z ̸= 0

(6)
Thereby, the response time of application Aj is defined as

T j
res =

m∑
1

(pz + τz + cz) (7)

5

Consequently, the average application response time at the
time of the x-th slot is defined as

Tx =
1

j

j∑
1

T j
res (8)

2.5 Energy Consumption Model

We divide the energy consumption of a task into commu-
nication energy consumption and processing energy con-
sumption. Processing energy consumption represents the
energy required to complete a single task. Communication
energy consumption represents the energy required for data
transmission of the predecessor task. The processing energy
consumption of task bjz is defined as

Eproc
z =

{
pviz × Elocal , oz,n,x = 0

pkz × Emec , oz,n,x = 1
(9)

where pvn
z and pkz are the time duration required for vehicle

vi and RSU to process task bjz , respectively. Elocal and
Emec are the CPU power of vehicle vi and MEC server,
respectively. To define the communication energy consump-
tion, we need to consider whether this task requires the
results of other tasks as input. Therefore, we can define the
communication energy consumption of a task as

Ecomm
z =

{
λz

Ψi,n
× Etrans ,

∑m
l=1 Hl,z = 0

cz × Etrans ,
∑m

l=1 Hl,z > 0
(10)

where Etrans is the transmission energy consumption of
each time slot. When a task does not have a predecessor
task, λi

Ψi,n
represents the time required for task offloading.

cz represents the communication time of these data, which
is given by Eq. 6. Therefore, the total energy consumption
for completing task bjz is defined as

Etotal
z = Ecomm

z + Eproc
z (11)

Thereby, the energy consumption to complete application
Aj is defined as

EAj =
m∑
1

Etotal
z (12)

Consequently, the average energy consumption at the x-th
time slot is defined as

Ex =
1

j

j∑
1

Ej (13)

2.6 Problem Definition

In this subsection, we propose the optimization objective
of the system, which is the maximization of the utility
function. The utility function reflects the QoS of the system.
Given that we employ a DRL-based approach to train the
offloading decisions, which requires continuous training
to achieve relatively optimal results. The reward function
in the MDP model of the DRL-based approach must be
relatively correlated with the utility function. We define
the utility of each time slot as the sum of the average
energy consumption difference and the average response

time difference between this time slot and the previous time
slot. Accordingly, the utility function U(x) is defined as

U(x) = α
Tx−1 − Tx

Tx−1
+ β

Ex−1 − Ex

Ex−1
(14)

where α and β ∈ [0, 1] are relative weighs of optimization
objectives of the system. In practical scenarios, we can set
the value of the tuning parameter based on the preferences
of users and the network state.

Given that we apply DRL-based methods as a potential
solution to the offloading problem, system utility is also
defined as part of the environment state. DRL-based meth-
ods need to decide actions based on the current state of the
system. The specific principle of MESON will be introduced
in the next section.

3 PROPOSED SOLUTION
This section presents the MESON task offloading scheme in
detail. We introduce the preliminaries of our scheme at the
beginning of this section. Next, the MESON task offloading
scheme is proposed in four aspects. Finally, we present the
complexity analysis of MESON.

3.1 Preliminaries
DRL: The current mainstream DRL algorithms mainly have
two categories, policy-based algorithms, and value-based al-
gorithms. The former defines the value function of a state or
action to represent the expected reward that can be obtained
after reaching a certain state or performing a certain action.
These algorithms tend to select the state or action with the
greatest value. A typical algorithm of value-based DRL is
Deep Q-learning (DQN), which approximates the optimal
value function through DNN. However, DQN uses one-
step rewards to indirectly update the deep Q-networks to
further obtain deterministic policies. This one-step update
rule leads to a slow learning process and is not suitable
for models with continuous action spaces. Moreover, when
describing a certain state in the state space, possibly due
to the limitation of the size of observations, different states
have the same feature description, further failing to reach
the optimal solution. The latter directly use DNN to update
the policy by performing a gradient descent method on the
total reward. Therefore, it converges faster than value-based
DRL algorithms and is suitable for solving problems with
continuous action spaces. However, when solving combi-
natorial optimization problems like task offloading, it still
has two shortcomings. First, the method of policy search
is more likely to converge to the local extrema instead of
the optimum. Second, variance tends to be too large when
evaluating strategies.
DDPG: DDPG is a DRL-based algorithm that combines
Actor-Critic (AC) and DNN. AC is a hybrid of policy-
based and value-based algorithms, in which it has two
modules, actor and critic. The actor selects an action based
on probability. Then, the critic judges the action’s value, and
the actor modifies selection behavior according to the critic’s
evaluation. DDPG improves the AC method through the
powerful training ability of DNN, and it uses experience
replay and the target network to perform gradient descent
on the main network. In addition, it uses the policy network

6

to output deterministic actions directly. DDPG combines the
advantages of two categories of algorithms and utilizes the
powerful training capabilities of DL, which has more advan-
tages in solving task offloading decision-making problems
with multi-dimensional input and continuous action space
than traditional DRL.

3.2 The proposed MESON task offloading scheme
In this subsection, first, the DRL-based task offloading
model is presented in 3.2.1. Second, the mobility detection
algorithm is proposed to avoid unreasonable offloading
decisions in 3.2.2, which improves the training efficiency
of MESON. Third, we present the priority determination
scheme in 3.2.3, which adjusts the processing order of tasks
in RSUs. Finally, we describe the overall training process of
the MESON task offloading scheme in 3.2.4.

3.2.1 The DRL-based Task Offloading Model Design
Here, the task offloading model is defined as an MDP, which
includes the following aspects.

System state S(x) ∈ S : the system state S(X) repre-
sents the environmental information at the x-th time slot. It
mainly includes the instantaneous utility of the system and
the instantaneous location of the vehicles. Hence, the system
state S(X) can be formulated as S(x) = {U(x), L(x)}. U(x)
represents the average energy consumption of the system,
which is given by Eq. 14. L(x) is a set of location information
of all vehicles, which is defined as

L(x) = {(ltvi , gtvi)} (vi ∈ V) (15)

where {(ltvi , gtvi)} represents the location of vehicle vi,
ltvi and gtvi are the latitude and longitude of vehicle vi,
respectively.

Action space A(x) ∈ A: in the x-th time slot, each
vehicle in the system will make several offloading decisions.
A(x) is a set of task offloading decisions of all vehicles,
which can be represented by A(x) = {avi(x)} (vi ∈ V),
where avi(x) represents the offloading decision of vehicle
vi in the x-th time slot. avi(x) contains the task offload-
ing decisions of vehicle vi for each task, represented by
oz,n,x = {0, 1}, which is mentioned above.

Reward function r(x): since the system objective is the
long-term maximization of the utility function, our reward
function must be relatively correlated with the utility func-
tion. Each time slot is defined as an episode. The reward of
each episode is the utility difference between this episode
and the previous one. As presented in [33, 34], this is the
commonly used reward definition mechanism in DRL-based
algorithms. The reward function r(x) is defined as

r(x) = Ux − Ux−1 (16)

3.2.2 Mobility Detection
As shown in Fig. 3, considering the dynamic nature of
vehicles, broken links between vehicles and RSUs caused by
vehicles driving away from the coverage of RSUs may fur-
ther lead to the incompleteness of the offloading tasks. Even
if the offloading computation results can be sent back via the
backbone network, the delay-sensitive service requirement
cannot be met in real-time. As shown in Fig. 4, we assume

Fig. 3. Description of mobility detection.

that RSUs are evenly distributed in each road section. If the
vehicle moves to another road section at the time slot of x1

before receiving the computation result, the total response
time of the computation task is T = T1+T2+T3+T4, where
T1 represents the transmission time of the task, T2 represents
the execution time, T3 represents the communication time
between RSUs, and T4 represents the transmission time of
the result respectively. Under this circumstance, although
the computation result can be sent to the vehicle, the service
delay is too high. Therefore, processing this task locally
may be a better choice than offloading, which eliminates
the transmission delay. In general, trajectory prediction is
an effective assistant for task offloading in the vehicular
network.

Fig. 4. Description of the impact of vehicle mobility on response time.

Therefore, we propose a mobility detection algorithm
to estimate the communication time between vehicles and
RSUs and further reduce the action space of the task of-
floading system. The main idea of this algorithm is to
construct a connectivity matrix for each application gener-
ated by vehicles. The connectivity matrix indicates whether
each task in the application can be successfully completed
before the communication link is interrupted. The mobility
detection algorithm can be regarded as the pre-processing
of the overall scheme. It aims to effectively avoid the DRL-
based algorithm to explore unnecessary decision space and
improve the training efficiency.

We use a parameter tuple ϖi(x) = {lti(x), gti(x),
−−−→
∂i(x)}

to represent the mobility of vehicle vi at the x-th time slot,
where lti(x) and gti(x) represent the latitude and longitude
and
−−−→
∂i(x) represents the modulo of the vector speeds of the

vehicle vi at the time of x slot. The distance between vehicle

7

vi and RSU kn at the x-th time slot is defined as

△i,n(x) =

√
(ltvi (x)− ltrn(x))

2
+ (gtvi (x)− gtrn(x))

2 (17)

To better measure the impact of the mobility of the
vehicle on the system, we consider the direction and speed
of the vehicle stable within a small time duration. To ensure
that the vehicle receives the results from the RSU when it
is within the coverage of the RSU, we must estimate the
time duration of the vehicle being within the coverage of
the RSU. We suppose the coverage of the RSU is R, which
is mentioned before. Based on the above definitions, the
communication time between vehicle vi and RSU kn is
defined as

T con
i,n (x) =

R−△i,n(x)
−−−→
∂i(x)

(18)

To maintain a stable communication link while offload-
ing, the communication time between two devices must be
greater than or equal to the task response time. Therefore,
the matrix of connectivity for application Aj at the x-th time
slot is defined as

GAj (x) = [gz,n(x)]M×N , bjz ∈ Bj , n ∈ K (19)

where gz,n(x) = 1, if T con
i,n (x) ≥ (pz + τz + cz); otherwise,

it is 0. This inequality means that the communication time
needs to be greater than the response time of the task. The
connectivity matrix describes the offloading feasibility of
task bjz in application Ak based on the mobility of vehicle
vi, where M is the number of tasks in application Ak, N is
the number of RSUs within the communication range at the
x-th time slot. gz,n(x) = 1 means that task bjz in application
Avi

j can be offloaded to RSU kn.

3.2.3 Priority Determination
Here, a priority determination algorithm is introduced by
fully considering the impact of task priority on the system
efficiency and sorting the task queue in RSUs. The priority
determination algorithm is mainly aggregated by the fol-
lowing criteria.

• Tasks with the higher computing capability differ-
ence between local computing and MEC computing
have the higher priority.

• Tasks with strict response constraints have the higher
priority.

• Tasks with more successor tasks have the higher
priority.

Accordingly, the priority of task bjz is defined as

Pbjz
= ξ(ι

fkn

fvi
+ χ

djmax

Dj
max

) (20)

where Pbjz
represents the priority of task bjz . Vehicles will

process the tasks with the higher priority earlier. ξ repre-
sents the number of successor tasks of task bjz . It means
that the tasks with more successor tasks have the higher
priority. ι and χ are weighting coefficients and ι + χ = 1.
fkn and fvi represent the computation capability of vehicle
vi and RSU kn, respectively. It means that the tasks with
the higher computing capability differences between local

computing and MEC computing have the higher priority.
djmax represents the maximum tolerant response time of
application Aj which is mentioned before. Dj

max is the total
maximum tolerant time of all applications in the task queue
of the RSU, which is defined as

Dj
max =

℧∑
0

djmax (21)

where ℧ is the number of tasks in the task queue. It denotes
that tasks with strict response constraints have the higher
priority.

Fig. 5. Framework of MESON task offloading Scheme.

3.2.4 The Training process of MESON Task Offloading
Scheme

As shown in Fig. 5, the DDPG algorithm is adopted for
task offloading, we define the whole VEC-based task of-
floading system as an MDP, which includes an agent, a
reward function r(x), an environment, states S(x) ∈ S ,
and actions A(x) ∈ A. The overall training system includes
four networks, i.e., the main actor-network, the target actor-
network, the main critic-network, and the target critic-
network. The agent continuously interacts with the environ-
ment and makes offloading decisions. The agent observes
the current environment S(X) ∈ S and chooses an action
in A according to the strategy π. The strategy π is the
probability distribution of the action based on the current
state. Then, the agent will receive the reward r(x) and get
into the next state. Our objective is to train an offloading
strategy to realize the maximization of the expected reward,
which is defined as

J = Esx∼E,ax∼π [R1] (22)

The critic-network evaluates the action ax according
to the reward function r(x), it calculates the expected
discounted reward of the action ax from state S(x). The
expected evaluation Qπ (sx, ax) of action ax is defined as

Qπ (sx, ax) = Esx∼E,ax∼π [Rx | sx, ax)] (23)

The agent tries to learn the best offloading strategy
from its interactions with the environment and adjusts its

8

Algorithm 1: MESON task offloading scheme
Input: VEC network
Output: offloading decisions

1 Initialize the weights of actor’s main network θµ

and critic’s main network θQ;
2 Initialize actor’s target network θµ

′
and critic’s

target network θQ
′

by: θµ
′ ← θµ, θQ

′ ← θQ;
3 Initialize B;
4 for each episode do
5 Initialize the agent and the environment;
6 Initialize state S(0) and the reward r(0) = 0;
7 Set the noise vector by µ′(s) = µ (s | θµ) + ∆µ;
8 for ∀vi ∈ V do
9 Generate different applications Avi

j by
application arrival rate Υ and decompose
them into several tasks Bj ;

10 Calculate the relative distance △i,j(x);
11 Calculate the communication time T con

i,n (x) by
Eq. (20) and establish the connectivity
matrix GAj (x) by Eq. (21);

12 According to the policy π, select offloading
decisions in the GAk(x) matrix by
avix = µ (sx | θµ) + ∆µ;

13 Execute offloading decisions a(x) from the
simulation environment;

14 end
15 for ∀kn ∈ K do
16 Calculate the priority of tasks Pbjz

by Eq. (17);
17 Sort the task queue by Pbjz

;
18 end
19 Receive reward r(x) and transmit to s(x+ 1);
20 Store {sx, ax, rx, sx+1} to replay buffer B;
21 Sample a mini-batch of experience

{sx, ax, rx, sx+1} from B;
22 Update the critic network by minimizing the loss

L
(
θQ
)

with the samples;
23 Use policy gradient to update actor network

∇θµJ ;
24 Update the target networks by

θQ
′ ← τθQ + (1− τ)θQ

′
and

θµ
′ ← τθµ + (1− τ)θµ

′
;

25 end

behavior. According to the strategy π∗, the Bellman optimal
equation is defined as follows.

Q∗ (sx, ax) = Esx+1∼E

[
r (sx, ax) + γmax

ax+1

Q∗ (sx+1, ax+1)

]
(24)

According to the definition of Q∗ (sx, ax), the optimal
policy π∗ is defined as

π∗(s) = argmax
a∈A

Q∗(s, a) (25)

We can update the Q value by using the Time Difference
(TD), which is defined as

Q (sx, ax)← Q (sx, ax)+

µ

[
r (sx, ax) + σmax

ax+1

Q (sx+1, ax+1)−Q (sx, ax)

]
(26)

where µ is the learning rate, and σ is the discount factor,
respectively. DDPG uses the experience buffer B to store
the experience tuple ex = {sx, ax, rx, sx+1} of the agent,
and randomly selects a batch of samples from B to calculate
the loss function, which is used to update the critic-network,
Y (B) represents the sampled mini-batch. The update pro-
cess of critic-network is defined as

L
(
θQ
)
= E(s,a,r,s′)∼

Y (B)

[(
r + γQ

(
s′, µ

(
s | θµ

′
)
| θQ

′
)
−Q

(
s, a | θQ

))2]
(27)

The actor-network deterministically maps state s to specific
actions and uses policy gradient to optimize actions. The
policy gradient process for updating the actor-network is
defined as

∇θµJ ≈ E(s,a,r,s′)∼

Y (B)

[
∇aQ

(
s, a | θQ

)∣∣∣
a=µ(s|θµ)

· ∇θµµ (s | θµ)
]

(28)

The MESON task offloading scheme is shown in Algo-
rithm 1. We deploy MESON distributively in the decision-
making module on each RSU, in which the RSUs can
provide offloading services for vehicles within the V2I
communication range. The system initializes the weights
of the neural network and replay buffer (Lines 1-3). At the
beginning of each episode, the VEC network is initialized
(Lines 5-6). To fully explore the state space, we need to
consider both exploration and exploitation. Thereby, at each
episode, we initialize the noise vector (Line 7). All vehicles
in the system generate applications by arrival rate Υ (Line
9). The connectivity matrix GAj (x) is established by RSUs
to ensure the stable link while offloading (Lines 10-11).
The decision-making module in RSUs will make offloading
decisions for each vehicle within the V2I communication
range according to the policy π (Line 12). After executing
the task offloading of each vehicle, RSUs sort the task queue
by the priority of tasks (Lines 16-17). At the end of each
episode, the experience tuple {sx, ax, rx, sx+1} is stored in
replay buffer B (Line 20). Finally, the policy gradient is used
to update the agent’s actor and critic network (Lines 21-24).

3.3 Complexity Analysis

In this section, we propose the theoretical complexity analy-
sis of the MESON task offloading scheme. According to the
analyzing model described in [35], it can be concluded that
the time complexity and the space complexity of DDPG can
be described as follows:

O

(
J−1∑
j=0

uactor, juactor, j+1+
K−1∑
k=0

ucritic, kucritic, k+1

)
+O(N(s)).

(29)

O

(
J−1∑
j=0

uactor, juactor, j+1+
K−1∑
k=0

ucritic, kucritic, k+1

)
+O(N(s)) +O(N).

(30)

9

The comparison between Algorithm 1 and the original
DDPG algorithm reveals that MESON is different from it
in Lines 10-12 and Lines 16-17. In Lines 10-12, we filter the
offloading decisions, which decreases the action space, fur-
ther leading to the decrement of space complexity and the
improvement of learning efficiency. In Lines 16-17, we sort
the task queue by Pbjz

, which increases the time complexity.
The time complexity in these lines is O (NlogN). These
comparisons show that our MESON scheme can effectively
improve the learning efficiency of the network with a little
additional time complexity.

4 RESULTS AND DISCUSSION
This section presents the performance evaluation of ME-
SON. First, we introduce the evaluation metrics and sce-
narios. Second, we present the approaches for comparison.
Third, we analyze the objective performance evaluation of
MESON by comparing it with the existing schemes. Fourth,
we present a summary of our evaluation results.

4.1 Evaluation metrics and scenarios

Our simulation experiments were conducted on a Win10
64-bit operating system with an AMD Ryzen 7 4800H
CPU with 2.90GHz processor and 16GB RAM. Our sim-
ulation platform is conducted with Python 3.6 and Ten-
sorFlow 1.15.0 to implement the MESON task offloading
scheme, in which we have made the platform open-source at
https://github.com/NetworkCommunication/meson. Two
simulation maps were downloaded from OpenStreetMap
and generated traffic data flows by Simulation of Urban
Mobility (SUMO). These maps are real urban scenes in
Liaoning Province, China. The sizes of these two areas are
1500m×1500m and 3000m×3000m, respectively. The gen-
eral descriptions of these two maps are shown in Fig. 6. The
first map has 9 main roads and 27 RSUs, and the second
map has 13 main roads and 78 RSUs. RSUs are evenly
distributed along each main road. More detailed simulation
environment parameters are presented in Table 3. Then, we
introduce the following performance metrics to evaluate the
simulation results.

(a) (b)

Fig. 6. (a) The simulation map of 1500m×1500m and (b) The simulation
map of 3000m×3000m.

• Total Reward (TR) indicates the performance of the
optimization objective of the system. The conver-
gence speed of the total reward for each episode re-
flects the training efficiency of intelligent algorithms.

TABLE 3
Simulation parameters.

Parameter Value
Network Size 1500m×1500m, 3000m×3000m
Number of RSUs 27, 78
Maximum Communication Range 600m
Number of Vehicles 500, 1000, 1500, 2000
Average Speed 0∼23m/s
Learning Rate 0.004
Discount Factor 0.99
Batch Size 64
Episode 2000
Application Arrival Rate 0.35
Number of Tasks in Applications 1∼4
Data Size of Tasks 0.8Mb∼1.2Mb
Length of Unit Time Slot 0.1s
Unit of Energy Consumption 1J
Maximum Tolerance Time Durations 1.5s, 1.8s, 2.1s, 2.4s, 2.7s, 3.0s
Processing Capability of RSUs 2.8G cycles/s∼3.2G cycles/s
Processing Capability of Vehicles 0.6G cycles/s∼0.8G cycles/s

• Average Application Response time (ART) is the key
metric that can directly reflect network efficiency and
communication quality in VEC. Further details on
this metric are described in Section 2.4.

• Average Energy Consumption (AEC) is defined as the
sum of the communication energy consumption and
the processing energy consumption. Further details
on this metric are described in Section 2.5.

• Success Rate (SR) is expressed as the number of ap-
plications completed within its deadline divided by
the total number of applications. SR acts as a vital
performance metric to evaluate the reliability and
stability of the offloading system.

To comprehensively evaluate the performance of MESON,
extensive experimental simulations are done with different
parameter constraints.

• Number of vehicles: to demonstrate the impact of
different vehicle densities on MESON, we set up
comparative experiments with a different number of
vehicles.

• Maximum tolerance time durations: to evaluate the per-
formance of MESON in a delay-sensitive system, we
compare the SR of various schemes under different
maximum tolerance time durations.

• Number of tasks in applications: this constraint rep-
resents the complexity of applications. The perfor-
mance of all schemes when dealing with applications
with high complexity can better reflect their stability.

4.2 Approaches for comparison
We evaluate the superiority of the proposed scheme by com-
paring the basic algorithms and the intelligent algorithms.
The specific introduction of each algorithm is listed below.

• Local: it is an offloading scheme without computation
support from MEC [36]. Each vehicle in this scheme

10

1 4 7 10 13

100

200

300

400

500

R
ew

ar
d

Episodes×100

 Q-Learing
 DQN
 MESON

(a)

1 4 7 10 13

10

15

20

25

30

Av
er

ag
e

re
po

ns
e

tim
e

(0
.1

s)

Episodes×100

 Local
 Greedy
 MGA
 DQN
 MESON

(b)

1 4 7 10 13
40

60

80

100

120

Av
er

ag
e

en
er

gy
 c

on
su

m
pt

io
n

(J
)

Episodes×100

 Local
 Greedy
 Q-Learning
 DQN
 MESON

(c)

Fig. 7. (a) TR, (b) ART, and (c) AEC under various number of episodes.

needs to execute applications by its computing capa-
bility and cannot offload its tasks to any RSUs.

• Greedy: in this scheme, each vehicle in the system
selects the current most suitable offloading decision
by choosing an RSU or processing locally according
to a certain optimization objective [37]. This scheme
does not consider the long-term impact of the of-
floading decision on the system, but only selects the
local optimum.

• Q-Learning: it is an offloading scheme based on RL
[38]. The main idea of this scheme is to construct
a Q-table with the current state of the system and
the offloading decision and then select the offloading
decision according to the Q value.

• SA-DQN: SA-DQN is an offloading scheme based
on DQN [39]. It comprehensively considers task de-
pendencies and different computing resources. DQN
is a reinforcement learning algorithm based on Q-
learning. The main idea of this scheme is to approxi-
mate the optimal value function through DNN.

• MGA: MGA is an improved scheduling scheme
based on a genetic algorithm [40]. A genetic al-
gorithm is an iterative process. At each iteration,
the objective of the optimization problem of each
individual is evaluated. According to the evaluation,
the newly generated solution is used in the next
iteration. Typically, the iterative process terminates
when the maximum number of iterations is reached
or a satisfactory level of evaluation is reached. This
scheme takes into account the instability, heterogene-
ity, and inter-dependences of computing tasks.

It is also worth mentioning that MESON adopts a hybrid
intelligent technique including AC and DNN. DNN uses
the output features of the previous layer as the input of the
next layer for feature learning. After feature mapping, the
features of the existing space samples are mapped to another
feature space, to learn a better feature representation of the
existing input. DNN is a multi-layer unsupervised neural
network, which is the fundamental idea of DL. DQN inte-
grates DNN’s powerful training capabilities. In this paper,
we verify the superiority of MESON by taking DQN as a
comparative counterpart. AC is a general architecture in
RL. It provides a feasible solution for solving continuous
decision-making problems in the field of RL. However,
nowadays researchers are not inclined to use the AC method
alone, but regard it as an inherent mode to solve dynamic

problems and combine it with other cutting-edge methods.
AC architecture is generally recognized as a valuable idea in
the AI field, but its performance cannot be compared with
some new training methods nowadays. Therefore, we did
not take them as counterparts.

4.3 Evaluation of TR

Fig. 7(a) illustrates the TR for a different number of episodes.
It is worth mentioning that to improve the validity of the
data, we average the rewards generated by every hundred
episodes. As shown, with an increasing number of episodes,
the TR of all three schemes shows an upward trend. This
tendency occurs because these three schemes are all intelli-
gent algorithms based on reinforcement learning. The rein-
forcement learning system needs to accumulate experience
to obtain strategies. With the continuous optimization of
the strategy, the rewards in each episode will also increase.
Therefore, with an ascending number of episodes, the TR
is continuously improved. In our proposed MESON, we
consider vehicle mobility as a critical metric to avoid many
unreasonable decisions and improve the completion rate of
tasks. MESON has smaller action space and state space than
traditional reinforcement learning methods. Thus, MESON
shows outstanding performance in the early episodes and
keeps a high-speed increasing trend. When the number
of episodes exceeds 900, MESON tends to converge. Q-
learning and DQN tend to converge when the number of
episodes exceeds 1000. As shown, MESON has the best
training performance and convergence speed than other
traditional reinforcement learning methods. The key reason
is that MESON pays attention to the whole network perfor-
mance and aims to provide reliable computation support in
diversified environments rather than a certain metric. More-
over, MESON has a smaller action space than other schemes
through mobility detection. Therefore, the improvement of
the comprehensive performance of the offloading system
enables MESON to obtain the highest TR.

4.4 Evaluation of ART

(1)Varying number of episodes. Fig. 7(b) shows the comparison
of five schemes for evaluating the ART with a different
number of episodes. Among all the comparisons, Local
has the longest delay because when each task is calculated
locally in vehicles, MEC servers cannot provide computing
support for vehicles, and the computation capability of

11

500 600 700 800 900
0

10

20

30

40
Av

er
ag

e
re

po
ns

e
tim

e
(0

.1
s)

Number of vehicles

 Local
 Greedy
 MGA
 DQN
 MESON

(a)

1100 1200 1300 1400 1500
0

20

40

60

80

Av
er

ag
e

re
po

ns
e

tim
e

(0
.1

s)

Number of vehicles

 Local
 Greedy
 MGA
 DQN
 MESON

(b)

1100 1200 1300 1400 1500
0

10

20

30

40

Av
er

ag
e

re
po

ns
e

tim
e

(0
.1

s)

Number of vehicles

 Local
 Greedy
 MGA
 DQN
 MESON

(c)

2100 2200 2300 2400 2500
10

30

50

70

90

Av
er

ag
e

re
po

ns
e

tim
e

(0
.1

s)

Number of vehicles

 Local
 Greedy
 MGA
 DQN
 MESON

(d)

Fig. 8. (a) and (b) ART under different density of vehicles in an area of 1.5km×1.5km; (c) and (d) ART under different density of vehicles in an area
of 3km×3km.

3 4 5 6 7
30

60

90

120

150

Av
er

ag
e

re
po

ns
e

tim
e

(0
.1

s)

Number of tasks in applications

 Local
 Greedy
 MGA
 DQN
 MESON

(a)

3 4 5 6 7

40

80

120

160

200

Av
er

ag
e

en
er

gy
 c

on
su

m
pt

io
n

(J
)

Number of tasks in applications

 Local
 Greedy
 Q-Learning
 DQN
 MESON

(b)

30 33 36 39 42 45
0.2

0.4

0.6

0.8

1.0

Su
cc

es
sf

ul
 ra

te
 (%

)

Maximum tolerance time durations (0.1s)

 Local
 Greedy
 Q-Learning
 DQN
 MESON

(c)

Fig. 9. (a) ART under various number of tasks in applications, (b) AEC under various number of tasks in applications, and (c) SR with different
maximum tolerance time durations.

vehicles is insufficient. This situation results in the highest
ART in comparison. Among all the comparisons, Greedy
achieves the best performance when the number of episodes
is less than 200. The main reason is that the greedy algorithm
only considers current optimal solutions instead of long-
term system rewards. Therefore, Greedy can show better
performance than other intelligent algorithms in the early
episodes. With an increasing number of episodes, the ART
of other schemes shows a downward trend. This is because
these four schemes need to achieve their best performance
through training or iteration. Compared to other intelligent
schemes, MESON achieves the best performance in ART
when the number of episodes exceeds 700. This can be
explained in three aspects: First, MESON uses DDPG based
on DRL to support complex tasks with large state spaces and
continuous action spaces. Therefore, MESON can achieve
better performance when solving computational offloading
problems with high-dimensional inputs and continuous
action spaces. Second, MESON uses mobility detection to
avoid many wrong decisions, which makes MESON have a
higher convergence speed than other intelligent algorithms.
Third, MESON considers the priority of tasks, which re-
duces the queuing time of each task. Thus, the efficiency
of the offloading system is improved. Therefore, the results
show that MESON has an excellent performance in ART.
(2)Varying density of vehicles. To evaluate the effect of differ-
ent vehicle densities on the performance of ART and verify
the scalability of our experiments, we use two simulation
maps downloaded from OpenStreetMap and generated traf-
fic data flows by SUMO. These maps are real urban scenes
in Liaoning Province, China. The sizes of these two areas
are 1500m×1500m and 3000m×3000m, respectively. Fig. 8

show the vehicle density on the ART. As the number of
vehicles expands, the ART of all schemes increases because
the number of vehicles reflects the traffic situation. To prove
the scalability of our scheme, we conduct two sets of ex-
periments to evaluate the performance of all schemes. As
shown, Fig. 8(a) and Fig. 8(c) show the changes of ART
with low-density of vehicles, and 8(b) and Fig. 8(d) show
that with high-density of vehicles, respectively. The ART
difference between MESON and other schemes increases
as the vehicle density increases. For instance, when the
number of vehicles is 500, the ART difference between
MESON and Local is about 5 slots; and when the number
of vehicles reaches 900, the difference between MESON and
Local is about 9 slots. The performance of schemes under
high vehicle density reflects their scalability and robustness.
Compared to other schemes, MESON achieves the best
performance in ART under all vehicle densities for the fol-
lowing reasons. First, the ART of the offloading system can
be affected by a variety of factors. Our proposed MESON
comprehensively considers various factors of computation
offloading of vehicles in urban traffic scenarios, rather than
a certain metric. Second, our proposed MESON leverages a
priority determination algorithm to sort the task queue. In
the congested section of the road, the number of tasks also
increases, and the processing order of tasks will be critical.
Therefore, MESON has excellent scalability and robustness.
(2)Varying number of tasks in applications. Fig. 9(a) shows
the relationship between the ART and the task number in
applications. The number of tasks in applications represents
the complexity of applications. The ART of completing an
application is the sum of the queuing time and processing
time of all tasks in this application. With the increasing num-

12

ber of tasks in applications, MESON has greater advantages
than other schemes. The main reason for this tendency is
that MESON determines the processing order according to
the characteristics of the dependent tasks. MESON enables
the queuing time of tasks to become smaller through the
priority determination algorithm. This advantage becomes
more pronounced when the number of tasks in the applica-
tion is high.

4.5 Evaluation of AEC
(1)Varying number of episodes. Fig. 7(c) shows the comparison
of five schemes for evaluating the AEC under a varying
number of episodes. Among all the comparisons, Greedy
achieves the best performance when the number of episodes
is less than 200 because the greedy algorithm only consid-
ers current optimal solutions instead of long-term system
rewards. When the number of episodes exceeds 1000, the
AEC of all schemes tends to be stable. As shown, MESON is
superior to other schemes in terms of convergence speed
and performance on AEC. This can be explained in two
aspects: first, MESON reduces the action space and state
space through mobility detection, which ensures the train-
ing efficiency of the system and reduces the complexity of
the system. Second, MESON will weigh a variety of factors
to make offloading decisions to ensure that the AEC of the
system is minimized to the greatest extent.
(2)Varying number of tasks in applications. Fig. 9(b) shows the
relationship between the AEC and the task number in appli-
cations. The number of tasks in applications represents the
complexity of applications. As shown, for all schemes, the
AEC increases as the task number in applications increases
because more power is required when the system handles
applications of high complexity. With an increasing number
of tasks in applications, the AEC difference between all
schemes also increases. Especially, when the number of tasks
in applications is 3, the AEC difference between MESON
and Local is about 24 J; and when the number of tasks
in applications reaches 7, the difference between MESON
and Local is about 82 J. The performance of all schemes
when dealing with applications of high complexity can
better reflect their energy-saving effect. MESON achieves
the lowest AEC under all number of tasks in applications.
When processing task offloading with data dependency,
MESON will determine the processing order according to
the computing capability difference and the structure of
applications, thereby reducing the queuing time of tasks
and further leading to the decrement of transmission energy
consumption.

4.6 Evaluation of SR
Fig. 9(c) shows the relationships between the SR and the
maximum tolerance time durations duration of applications.
For all schemes, the SR difference between all schemes de-
creases as the maximum tolerance time durations increase.
For instance, when the maximum tolerance time duration
is 45 slots, the SR difference between MESON and Local is
about 0.15; and when the maximum tolerance time duration
is 30 slots, the difference between MESON and Local is
about 0.36. The maximum tolerance time duration reflects
the urgency of applications. We can evaluate the reliability

of all schemes in processing delay-sensitive applications
by observing SR. Compared to other schemes, MESON
achieves the best performance in SR, especially when the
maximum tolerance time duration is relatively low. This is
mainly beneficial for the following reasons. First, MESON
will process tasks with strict response constraints. Second,
MESON will determine the processing order of tasks ac-
cording to the computation capability difference between
vehicles and RSUs. Third, MESON uses mobility detection
to ensure communication quality. Therefore, MESON has
the highest SR among all schemes.

4.7 Summary of results
We evaluate the superiority of the proposed scheme by com-
paring the basic algorithm and the intelligent algorithms. In
terms of basic algorithms, we first consider scheduling all
computation tasks in local computing. The necessity of the
offloading scheme can be demonstrated by comparing the
differences between the proposed algorithm and Local. This
is also a common way to measure the performance of an of-
floading system. Second, we compare the proposed scheme
with Greedy. We can consider Greedy as an enumeration
algorithm. The main idea of this type of algorithm is to use
an enumeration method to find the optimal solution in the
current state. However, such algorithms do not take into
account future system reward expectations. The optimal
solution in the current state does not guarantee long-term
system benefits. Greedy can achieve better results in the
early stage of training. However, with the increase in the
number of iterations, the intelligent algorithm gradually
tends to converge. In the end, the intelligent algorithm
outperforms the Greedy algorithm.

To further verify the superiority of MESON, we com-
pared other intelligent algorithms. In terms of intelligent
algorithms, we compare Q-Learning and DQN based on
reinforcement learning, and MGA based on genetic algo-
rithms. These types of algorithms are relatively common
and advanced algorithms in the field of task offloading.
We verify the training effect and convergence speed of the
proposed algorithm by comparing the system reward under
different iterations. Additionally, to verify the practicability
and comprehensive performance of MESON, we evaluate
multiple optimization objectives with different experimental
parameters. The simulation results demonstrate that ME-
SON is superior compared to other task offloading schemes
in terms of the average response time, average system
energy consumption, and offloading successful rate.

5 CONCLUSION

In this paper, a novel VEC-based computation offloading
model is proposed with the consideration of the data de-
pendency of tasks. The reduction of the average response
time and the average energy consumption of the system
are defined as a combinatorial optimization problem. The
proposed offloading system can effectively provide a com-
putation service in real-time with little energy consumption.
A mobility-aware task offloading scheme based on DRL
that leverages the DDPG algorithm to train the offloading
strategy is proposed to solve the combinatorial optimiza-
tion problem. To deal with the time-varying trajectories of

13

vehicles in urban scenarios, we design a mobility detection
algorithm to combine with the DDPG algorithm, which
ensures stable communication links between vehicles and
RSUs. The mobility detection algorithm also realizes the
decrement of the size of the action space, further leading
to the improvement of training efficiency. We also design
a novel priority determination algorithm to prioritize the
task queue of RSUs after the offloading process for im-
proving the system stability and the success rate of tasks.
The priority of the task is aggregated by employing multi-
criteria, including the computation capability, the maximum
tolerance time durations, and the features of the dependent
task. The simulation results demonstrate that MESON is
superior compared to other task offloading schemes in
terms of the average response time, average system energy
consumption, and offloading successful rate.

ACKNOWLEDGMENT

This paper is supported in part by the Natural Science Foun-
dation of Liaoning Province under Grant 2020-MS-237, and
in part by the Liaoning Provincial Department of Education
Science Foundation under Grant JYT19052. Al-Dubai would
like to acknowledge the support of the UK Engineering and
Physical Sciences Research Council (EPSRC) programme
Grant: COG-MHEAR (Grant Reference: EP/T024917/1).

REFERENCES

[1] L. Liu, C. Chen, Q. Pei, S. Maharjan, and Y. Zhang, “Ve-
hicular edge computing and networking: A survey,”
Mobile Networks and Applications, vol. 26, pp. 1145–1168,
jul 2020.

[2] L. Liu, C. Chen, Q. Pei, S. Maharjan, and Y. Zhang,
“Vehicular edge computing and networking: A sur-
vey,” Mobile Networks and Applications, vol. 26, no. 3,
pp. 1145–1168, 2021.

[3] T. Q. Dinh, J. Tang, Q. D. La, and T. Q. S. Quek, “Of-
floading in mobile edge computing: Task allocation and
computational frequency scaling,” IEEE Transactions on
Communications, vol. 65, no. 8, pp. 3571–3584, 2017.

[4] M. Chen and Y. Hao, “Task offloading for mobile edge
computing in software defined ultra-dense network,”
IEEE Journal on Selected Areas in Communications, vol. 36,
no. 3, pp. 587–597, 2018.

[5] M. Du, Y. Wang, K. Ye, and C. Xu, “Algorithmics of
cost-driven computation offloading in the edge-cloud
environment,” IEEE Transactions on Computers, vol. 69,
no. 10, pp. 1519–1532, 2020.

[6] M. Song, Y. Lee, and K. Kim, “Reward-oriented task
offloading under limited edge server power for multi-
access edge computing,” IEEE Internet of Things Journal,
vol. 8, no. 17, pp. 13425–13438, 2021.

[7] Y. Wang, P. Lang, D. Tian, J. Zhou, and D. Zhao,
“A game-based computation offloading method in ve-
hicular multiaccess edge computing networks,” IEEE
Internet of Things Journal, vol. PP, no. 99, pp. 1–1, 2020.

[8] K. Zhang, Y. Mao, S. Leng, Q. Zhao, L. Li, X. Peng,
L. Pan, S. Maharjan, and Y. Zhang, “Energy-efficient
offloading for mobile edge computing in 5g hetero-
geneous networks,” IEEE access, vol. 4, pp. 5896–5907,
2016.

[9] X. Zhu, Y. Luo, A. Liu, M. Z. A. Bhuiyan, and S. Zhang,
“Multiagent deep reinforcement learning for vehicular
computation offloading in iot,” IEEE Internet of Things
Journal, vol. 8, no. 12, pp. 9763–9773, 2020.

[10] J. Zhao, Q. Li, Y. Gong, and K. Zhang, “Computa-
tion offloading and resource allocation for cloud as-
sisted mobile edge computing in vehicular networks,”
IEEE Transactions on Vehicular Technology, vol. 68, no. 8,
pp. 7944–7956, 2019.

[11] J. Li, X. Cao, D. Guo, J. Xie, and H. Chen, “Task
scheduling with uav-assisted vehicular cloud for road
detection in highway scenario,” IEEE Internet of Things
Journal, vol. 7, no. 8, pp. 7702–7713, 2020.

[12] J. Zhang, H. Guo, and J. Liu, “Adaptive task offloading
in vehicular edge computing networks: a reinforcement
learning based scheme,” Mobile Networks and Applica-
tions, vol. 25, no. 5, pp. 1736–1745, 2020.

[13] T. Alfakih, M. M. Hassan, A. Gumaei, C. Savaglio, and
G. Fortino, “Task offloading and resource allocation for
mobile edge computing by deep reinforcement learn-
ing based on sarsa,” IEEE Access, vol. 8, pp. 54074–
54084, 2020.

[14] J. Sun, Q. Gu, T. Zheng, P. Dong, A. Valera, and Y. Qin,
“Joint optimization of computation offloading and task
scheduling in vehicular edge computing networks,”
IEEE Access, vol. 8, pp. 10466–10477, 2020.

[15] R. Zhang, P. Cheng, Z. Chen, S. Liu, B. Vucetic, and
Y. Li, “Calibrated bandit learning for decentralized task
offloading in ultra-dense networks,” IEEE Transactions
on Communications, vol. 70, no. 4, pp. 2547–2560, 2022.

[16] H. Guo, J. Liu, and J. Lv, “Toward intelligent task
offloading at the edge,” IEEE Network, vol. 34, no. 2,
pp. 128–134, 2020.

[17] G. Manogaran, G. Srivastava, B. A. Muthu, S. Baskar,
P. Mohamed Shakeel, C.-H. Hsu, A. K. Bashir, and
P. M. Kumar, “A response-aware traffic offloading
scheme using regression machine learning for user-
centric large-scale internet of things,” IEEE Internet of
Things Journal, vol. 8, no. 5, pp. 3360–3368, 2021.

[18] B. Dab, N. Aitsaadi, and R. Langar, “Q-learning algo-
rithm for joint computation offloading and resource
allocation in edge cloud,” in 2019 IFIP/IEEE Sympo-
sium on Integrated Network and Service Management (IM),
pp. 45–52, 2019.

[19] K. Jiang, H. Zhou, D. Li, X. Liu, and S. Xu, “A q-
learning based method for energy-efficient computa-
tion offloading in mobile edge computing,” in 2020 29th
International Conference on Computer Communications and
Networks (ICCCN), pp. 1–7, 2020.

[20] B. Tian, L. Wang, Y. Ai, and A. Fei, “Reinforcement
learning based matching for computation offloading in
d2d communications,” in 2019 IEEE/CIC International
Conference on Communications in China (ICCC), pp. 984–
988, 2019.

[21] Z. Tang, J. Lou, F. Zhang, and W. Jia, “Dependent task
offloading for multiple jobs in edge computing,” in
2020 29th International Conference on Computer Commu-
nications and Networks (ICCCN), pp. 1–9, 2020.

[22] G. Zhao, H. Xu, Y. Zhao, C. Qiao, and L. Huang, “Of-
floading dependent tasks in mobile edge computing
with service caching,” in IEEE INFOCOM 2020 - IEEE

14

Conference on Computer Communications, pp. 1997–2006,
2020.

[23] A. Akbar and P. R. Lewis, “The importance of gran-
ularity in multiobjective optimization of mobile cloud
hybrid applications,” Transactions on Emerging Telecom-
munications Technologies, vol. 30, oct 2018.

[24] Z. Yu, J. Hu, G. Min, Z. Zhao, W. Miao, and M. S.
Hossain, “Mobility-aware proactive edge caching for
connected vehicles using federated learning,” IEEE
Transactions on Intelligent Transportation Systems, vol. 22,
pp. 5341–5351, aug 2021.

[25] L. Zhao, Y. Liu, A. Y. Al-Dubai, A. Y. Zomaya, G. Min,
and A. Hawbani, “A novel generation-adversarial-
network-based vehicle trajectory prediction method for
intelligent vehicular networks,” IEEE Internet of Things
Journal, vol. 8, no. 3, pp. 2066–2077, 2021.

[26] D. Jeong, M. Baek, and S.-S. Lee, “Long-term prediction
of vehicle trajectory based on a deep neural network,”
in 2017 International Conference on Information and Com-
munication Technology Convergence (ICTC), pp. 725–727,
2017.

[27] Y. Xing, C. Lv, and D. Cao, “Personalized vehicle tra-
jectory prediction based on joint time-series modeling
for connected vehicles,” IEEE Transactions on Vehicular
Technology, vol. 69, no. 2, pp. 1341–1352, 2020.

[28] Y. Hui, Z. Su, T. H. Luan, C. Li, G. Mao, and W. Wu, “A
game theoretic scheme for collaborative vehicular task
offloading in 5g hetnets,” IEEE Transactions on Vehicular
Technology, vol. 69, no. 12, pp. 16044–16056, 2020.

[29] J. Wang, J. Hu, G. Min, W. Zhan, Q. Ni, and N. Geor-
galas, “Computation offloading in multi-access edge
computing using a deep sequential model based on re-
inforcement learning,” IEEE Communications Magazine,
vol. 57, no. 5, pp. 64–69, 2019.

[30] S. Pan, Z. Zhang, Z. Zhang, and D. Zeng,
“Dependency-aware computation offloading in mobile
edge computing: A reinforcement learning approach,”
IEEE Access, vol. 7, pp. 134742–134753, 2019.

[31] J. Shi, J. Du, J. Wang, J. Wang, and J. Yuan, “Priority-
aware task offloading in vehicular fog computing
based on deep reinforcement learning,” IEEE Transac-
tions on Vehicular Technology, vol. 69, no. 12, pp. 16067–
16081, 2020.

[32] J. Wang, J. Hu, G. Min, A. Y. Zomaya, and N. Geor-
galas, “Fast adaptive task offloading in edge com-
puting based on meta reinforcement learning,” IEEE
Transactions on Parallel and Distributed Systems, vol. 32,
pp. 242–253, jan 2021.

[33] J. Wang, J. Hu, G. Min, W. Zhan, A. Y. Zomaya,
and N. Georgalas, “Dependent task offloading for
edge computing based on deep reinforcement learn-
ing,” IEEE Transactions on Computers, vol. 71, no. 10,
pp. 2449–2461, 2022.

[34] X. Zhu, Y. Luo, A. Liu, M. Z. A. Bhuiyan, and S. Zhang,
“Multiagent deep reinforcement learning for vehicular
computation offloading in iot,” IEEE Internet of Things
Journal, vol. 8, no. 12, pp. 9763–9773, 2021.

[35] C. Qiu, Y. Hu, Y. Chen, and B. Zeng, “Deep determin-
istic policy gradient (ddpg)-based energy harvesting
wireless communications,” IEEE Internet of Things Jour-
nal, vol. 6, no. 5, pp. 8577–8588, 2019.

[36] J. Lu, Q. Li, B. Guo, J. Li, Y. Shen, G. Li, and H. Su,
“A multi-task oriented framework for mobile computa-
tion offloading,” IEEE Transactions on Cloud Computing,
vol. 10, no. 1, pp. 187–201, 2022.

[37] F. Wei, S. Chen, and W. Zou, “A greedy algorithm
for task offloading in mobile edge computing system,”
China Communications, vol. 15, no. 11, pp. 149–157, 2018.

[38] F. Jiang, W. Liu, J. Wang, and X. Liu, “Q-learning
based task offloading and resource allocation scheme
for internet of vehicles,” in 2020 IEEE/CIC International
Conference on Communications in China (ICCC), pp. 460–
465, 2020.

[39] B. Lin, K. Lin, C. Lin, Y. Lu, Z. Huang, and X. Chen,
“Computation offloading strategy based on deep re-
inforcement learning for connected and autonomous
vehicle in vehicular edge computing,” Journal of Cloud
Computing, vol. 10, no. 1, pp. 1–17, 2021.

[40] F. Sun, F. Hou, N. Cheng, M. Wang, H. Zhou, L. Gui,
and X. Shen, “Cooperative task scheduling for compu-
tation offloading in vehicular cloud,” IEEE Transactions
on Vehicular Technology, vol. 67, no. 11, pp. 11049–11061,
2018.

Liang Zhao (Member, IEEE) is a Professor at
Shenyang Aerospace University, China. He re-
ceived his Ph.D. degree from the School of Com-
puting at Edinburgh Napier University in 2011.
Before joining Shenyang Aerospace University,
he worked as associate senior researcher in
Hitachi (China) Research and Development Cor-
poration from 2012 to 2014. He is also a JSPS
Invitational Fellow (2023). He was listed as Top
2 % of scientists in the world by Standford Uni-
versity (2022). His research interests include

ITS, VANET, WMN and SDN. He has published more than 150 arti-
cles. He served as the Chair of several international conferences and
workshops, including 2022 IEEE BigDataSE (Steering Co-Chair), 2021
IEEE TrustCom (Program Co-Chair), 2019 IEEE IUCC (Program Co-
Chair), and 2018-2022 NGDN workshop (founder). He is Associate
Editor of Frontiers in Communications and Networking and Journal of
Circuits Systems and Computers. He is/has been a guest editor of IEEE
Transactions on Network Science and Engineering, Springer Journal of
Computing, etc. He was the recipient of the Best/Outstanding Paper
Awards at 2015 IEEE IUCC, 2020 IEEE ISPA, 2022 IEEE EUC and 2013
ACM MoMM.

Enchao Zhang is a student at Shenyang
Aerospace University, China. He is currently
studying for his M.S. degree in Shenyang
Aerospace University. His research interests in-
clude mobile edge computing, computation of-
floading, digital-twins, content caching and re-
source allocation.

Shaohua Wan (Senior Member, IEEE) received
Ph.D. degree from School of Computer, Wuhan
University in 2010. He is currently a Professor
with the Shenzhen Institute for Advanced Study,
University of Electronic Science and Technology
of China. From 2016 to 2017, he was a visiting
professor at with the Department of Electrical
and Computer Engineering, Technical University
of Munich, Germany. His main research interests
include deep learning for Internet of Things. He
is an author of over 150 peer-reviewed research

papers and books, including over 40 IEEE/ACM Transactions papers
such as TII, TITS, TOIT, TNSE, TMM, TCSS, TOMM, TETCI, PR, etc.,
and many top conference papers in the fields of edge intelligence.

15

Ammar Hawbani is an associate professor of
networking and communication algorithms in the
School of Computer Science and Technology at
USTC. He received the B.S., M.S. and Ph.D.
degrees in Computer Software and Theory from
USTC, in 2009, 2012 and 2016, respectively.
From 2016 to 2019, he worked as Postdoctoral
Researcher in the School of Computer Science
and Technology at USTC. His research interests
include IoT, WSNs, WBANs, WMNs, VANETs,
and SDN. Letters.

Ahmed Y. Al-Dubai is Professor of Networking
and Communication Algorithms in the School
of Computing at Edinburgh Napier University,
UK. He received the PhD degree in Comput-
ing from the University of Glasgow in 2004.
His research interests include Communication
Algorithms, Mobile Communication, Internet of
Things, and Future Internet. He received several
international awards.

Geyong Min is a Professor of High Performance
Computing and Networking in the Department
of Computer Science within the College of En-
gineering, Mathematics and Physical Sciences
at the University of Exeter, United Kingdom. He
received the PhD degree in Computing Science
from the University of Glasgow, United King-
dom, in 2003, and the B.Sc. degree in Computer
Science from Huazhong University of Science
and Technology, China, in 1995. His research
interests include Computer Networks, Wireless

Communications, Parallel and Distributed Computing, Ubiquitous Com-
puting, Multimedia Systems, MPeter Nicol Russell Chair Professor of
Computer Science

Albert Y. ZOMAYA is the Peter Nicol Russell
Chair Professor of Computer Science and Di-
rector of the Centre for Distributed and High-
Performance Computing at the University of
Sydney. To date, he has published > 700 scien-
tific papers and articles and is (co-)author/editor
of>30 books. A sought-after speaker, he has de-
livered > 250 keynote addresses, invited semi-
nars, and media briefings. His research interests
span several areas in parallel and distributed
computing and complex systems. He is currently

the Editor in Chief of the ACM Computing Surveys and served in the past
as Editor in Chief of the IEEE Transactions on Computers (2010-2014)
and the IEEE Transactions on Sustainable Computing (2016-2020).

