
JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2022 1

A Novel Federated Learning Scheme for
Generative Adversarial Networks

Jiaxin Zhang, Liang Zhao, Member, IEEE, Keping Yu, Geyong Min,
Ahmed Y. Al-Dubai, Senior Member, IEEE, and Albert Y. Zomaya, Fellow, IEEE

Abstract—Generative adversarial networks (GANs) have been advancing and gaining tremendous interests from both academia and
industry. With the development of wireless technologies, a huge amount of data generated at the network edge provides an
unprecedented opportunity to develop GANs applications. However, due to the constraints such as bandwidth, privacy, and legal
issues, it is inappropriate to collect and send all data to the cloud or servers for analysis, training, and mining. Thus, deploying and
training GANs at the edge becomes a promising alternative solution. The instability of GANs introduced by non-independent and
identical data (Non-IID) poses significant challenges to training GANs. To address these challenges, this paper presents a novel
federated learning framework for GANs, namely, Collaborated gAme Parallel Learning (CAP). CAP supports parallel training of data
and models for GANs, breaking the isolated training among generators that exists in the previous distributed algorithms, and achieving
collaborative learning among cloud, edge servers, and devices. Then, to further enhance the ability of CAP-GAN for addressing
Non-IID issues, we propose a Mix-Generator module (Mix-G) which divides a generator into the sharing layer and personalizing layer.
The Mix-G module extracts the generic and personalization features and improves the performance of CAP-GAN on extremely
personalizing datasets. Experimental results and analysis substantiate the usefulness and superiority of our proposed CAP-GAN
scheme which can achieve better results in the Non-IID scenarios compared with the state-of-the-art algorithms.

Index Terms—Generative adversarial networks, distributed learning and deployment, collaborative learning, non-independent and
identical data.

F

1 INTRODUCTION

G ENERATIVE Adversarial Networks (GANs), as a gen-
erative architecture model, can generate new data by

learning the probability distribution of a given realistic
dataset. GANs have attracted significant research attentions
since being introduced by Goodfellow et al. [1]. GANs have
been applied to various fields of generative tasks, such
as image generation, video generation, object detection,
and image super-resolution. Furthermore, GANs have the
potential to be applied to support edge applications. For
instance, GANs have been used in vehicle networking to
predict the vehicle trajectories [2] and assist reinforcement
learning networks to optimize transmission scheduling [3].
Studies on GAN-related applications have shown an ex-
plosive growth trend every year, while GANs have gained
cross-domain attention for their great capacity in data gener-
ation, security enhancement, and deep representation learn-
ing.

As a result of the growing amount of data at the edge,
traditional cloud-based machine learning training frame-
works are facing significant challenges. However, deep
learning (for example, GANs) relies on a large amount

Jiaxin Zhang and Liang Zhao are with the School of Computer Sci-
ence, Shenyang Aerospace University, Shenyang 110136, China. (e-mail:
jacazjx@foxmail.com, lzhao@sau.edu.cn).
Keping Yu is with Graduate School of Science and Engineering, Hosei
University, Tokyo 184-8584, Japan. (e-mail: keping.yu@ieee.org).
Geyong Min is with the Department of Computer Science, University of
Exeter, UK. (e-mail: g.min@exeter.ac.uk).
Ahmed Y.Al-Dubai is with the School of Computing, Edinburgh Napier
University, UK. (e-mail: a.al-dubai@napier.ac.uk).
Albert Y. Zomaya is with the School of Computer Science, University of
Sydney, Australia (e-mail: albert.zomaya@sydney.edu.au).
Liang Zhao is the corresponding author.

of data to achieve impressive performance. The data is
distributed across the edge clients and causes privacy is-
sues. Thus, gathering users’ data at the edge for training
is becoming impossible, which creates challenges for GANs
applications. Federated Learning (FL) [4] is a decentralized
learning algorithm for general machine learning. Basically,
FL is a model-agnostic algorithm that enables training
models on devices and transferring model parameters to
the cloud or edge in order to reduce communication and
privacy breaches, such as FedGAN [5] and FeGAN [6].

However, it requires a significant amount of computa-
tion and energy resources in training and inferencing to
complete GANs (including generator and discriminator)
on edge devices. Therefore, Federated Stochastic Gradient
Descend-based GANs are proposed to solve this problem,
and MD-GAN [7] is the most representative algorithm. MD-
GAN divides the GAN into two pieces: the generator that
runs on servers, and the discriminator that is deployed on
devices. This reduces the computational burden required
by a single device. MD-GAN relies on transporting gradi-
ent to train the split GAN and uses a single-server-multi-
device design, which makes large-scale deployment unfea-
sible due to the computational and bandwidth limitations
of a single server. To handle this problem, AC-GAN [8]
scales MD-GAN to a multi-server-multi-device architecture
and deploys GANs at the edge, relieving the strain on a
single server. This architecture disperses the bandwidth and
computation. Even AC-GAN uses a compression algorithm
to further reduce the amount of communication workload,
which makes it possible to deploy GANs on large-scale
devices. Although the contributions of MD-GAN and AC-
GAN on decentralized training of GANs are significant, they

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2022 2

ignore the following multifaceted challenges when being
deployed practically.

• Energy bottleneck. Energy is one of the precious re-
sources for edge devices. Signal search and transmission
are so energy-intensive that mobile users are reluctant
to share data and models with their surroundings. Even
if the devices around these users are often sparse and
uncertain (due to mobility), it is not wise to keep the
signal searching and wait to connect all the time. Thus,
when deploying GANs in a cross-regional scenario, the
methods like MD-GAN and AC-GAN that adopts device-
to-device links to share discriminator will not work.

• Limited coverage. A single edge server (ES) covering
a limited area means that there are not enough de-
vices available for training a feasible GAN. Since geo-
distributed edge users lack effective information ex-
change, each ES forms an Information Island Phe-
nomenon, which leads to inconsistent generation capabil-
ity of generators in each ES. In particular, generators with
less data converge much slower than those with more data
due to insufficient samples.

• Non-independent and identical data (Non-IID). Non-IID
across devices and regions can lead to biased datasets,
resulting in a biased GAN (e.g., mode collapse or over-
fitting). Consequently, it presents a challenge under such
circumstances. In this work, we classify Non-IID in the
generation task into two tiers: Basic Non-IID and Fully
Non-IID. The distribution characteristic of Non-IID is the
difference in data volume and category distribution be-
tween devices. Basic Non-IID permits categories to over-
lap among devices, while Fully Non-IID does not. Despite
this observation, existing work only considers Non-IID in
FeGAN, but this FL-based GAN is not suitable for devices
with energy and computational restrictions. On the other
hand, the state-of-the-art (SOTA) variations of FedSGD-
GAN, such as MD-GAN and AC-GAN, do not address
this issue.

This paper is dedicated to exploring the means of en-
hancing the computational support of GANs at the edge.
Specifically, we investigate training and deploying GANs
on multiple edge servers that have diverse clients. To ad-
dress the aforementioned challenges, a novel distributed
algorithm for training GANs in edge networks is proposed.
The major contributions of this paper are as follows.

1) This paper investigates Federated Learning for Genera-
tive Adversarial Networks in a challenging scenario in-
cluding geographical limitations (i.e., devices are sparsely
distributed in the system), energy constraints (i.e., the
devices have limited computation and communication
ability), and Non-IID issue (i.e., the dataset in the system
is highly personalized).

2) We propose a novel framework, called Collaborative
gAme Parallel Learning (CAP), that contains two
parts, device-to-edge (D2E) and edge-to-cloud (E2C).
These two parts form a closed loop internally and
externally through collaboration and provide a channel
for information exchange between different devices in
different regions. CAP avoids the island information
phenomenon and keeps the iterative state of generators
consistent in different base stations. Thus, a three-tier

architecture of CAP is more scalable at the edge than
other architectures of the SOTA distributed algorithms.

3) To address the basic Non-IID issue, we introduce a syn-
thesis score to obtain the feedback aggregation weight.
This strategy allows for each edge server to obtain
more comprehensive gradient feedback, which takes
into account the size difference in the amount of data
between devices and the game level difference in the
discriminator.

4) To further solve the fully Non-IID problem, Mix-
Generator (Mix-G) is proposed based on CAP, which
only revises the architecture of the generator in edge
servers. With the support of the Mix-G module, the
generator consists of a sharing layer and a personal-
izing layer. By utilizing the weight sharing algorithm,
weight sharing between ESs enhances the performance
of CAP on Non-IID.

The rest of this paper is organized as follows. The related
work is introduced in Section 2. After that, we present the
preliminaries and problem setup in Section 3. The details of
CAP are presented in Section 4, and the Mix-G module is
presented in Section 5. Section 6 presents the experiments
and compares the results with MNIST, Fashion-MNIST,
and 2D mixture-Gaussian datasets. Finally, we provide the
discussion in Section 7 and conclusions in Section 8.

2 RELATED WORK

Training GANs with distributed edge servers is a recent
emerging technique. In this work, we first introduce the
background and related work of training GANs in a tra-
ditional centralized environment. Subsequently, we present
the related work of distributed learning. In the end, we
highlight recent researches on decentralized GAN training.

GAN was first proposed by Goodfellow et al. [1], who
realized the application of game theory to neural networks
and used two neural network games to learn the distri-
bution of datasets to implement generative tasks. GAN
has been widely applied in various fields, such as image
analysis [9], object detection [10], medicine [11, 12], Internet
of vehicle [2] and so on, due to its great performance of
generative data. However, these algorithms are only suitable
for centralized training using a centralized dataset [13–16].

Federated Learning-based GAN: To address the chal-
lenges, decentralized training algorithms have emerged re-
cently. McMahan et al. [4] proposed a general algorithm,
Federated Learning (FL). FedMes [17], proposed by Han et
al., extends FL to Mobile Edge Computing (MEC). With the
popularity of FL, some algorithms were proposed to train
GANs distributively using FL. FedGAN [5] and FeGAN
[6] both extend FL to GAN. FedGAN uses two time-scale
learning rates for two components of GAN, and periodically
aggregates via an intermediary (parameter server). FeGAN,
on the other hand, determines the aggregation weight to ad-
dress Non-IID issues on distributed GAN by calculating the
Kullback-Leibler distance between the local label categories
and the global label categories. Despite the effectiveness of
these FL-based approaches, they ignore the fundamental
challenge of the computational burden of GANs on edge de-
vices. GANs are, on average, twice the size of typical models

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2022 3

TABLE 1
The comparison of major distributed GAN.

Algorithms Category MEC Support Aggregate algorithm Label-Irrelevant Non-IID Support Metric

FedGAN[5] Federated Learning-based GAN - Weighted Average X X FID

FeGAN [6] Federated Learning-based GAN - Weighted Average - X FID

MD-GAN [7] Federated SGD-based GAN - Complete average X - MNIST SCORE (IS), FID

AC-GAN [8] Federated SGD-based GAN X Complete average X - IS, FID

CAP-GAN (ours) Federated SGD-based GAN X Weighted Average X X MNIST SCORE, FID, MMD, MODE SCORE

(with both a generator and discriminator). Hence, training
these models requires more energy and computation.

Federated SGD-based GAN: To address the above chal-
lenges, MD-GAN [7], proposed by Hardy et al., adopts a
method different from the previous FL approaches, feder-
ated stochastic gradient descent [4]. It has a single generator
hosted by a parameter server and makes each client host a
single discriminator. As it reduces about half the computa-
tional load of clients, this solution (FedSGD-based GAN)
is eye-catching and has the potential to outperform FL-
based GAN. AC-GAN, a more recent technique proposed
by Zhang et al. [8], is the SOTA algorithm which follows
the MD-GAN architecture and extends it to Mobile Edge
Computing. AC-GAN addresses communication constraints
by deploying multiple generators at the edge and reduc-
ing communication losses through compression algorithms.
However, these two existing algorithms have three issues: 1)
Both use Gossip algorithm [18] to make devices share their
models with others. 2) Both pay no attention to the Non-IID
issue. 3) Although AC-GAN supports MEC, its architecture
is unsuitable for larger-scope deployment.

To further clarify the differences between CAP-GAN and
other major distributed GANs, Table 1 shows the com-
parison in terms of five dimensions, including Category,
MEC Support (i.e., whether the algorithm supports MEC or
not), Aggregate algorithm (complete average or weighted
average), Label-Irrelevant (i.e., whether the algorithm needs
labels or not), Non-IID Support and Metric.

3 PRELIMINARIES

Before presenting our algorithm, in this Section, we intro-
duce the detail of the SOTA algorithms including FL-GAN,
MD-GAN, and AC-GAN, and define the problem setup.

3.1 Generative Adversarial Network

The two components of standard GAN, including a discrim-
inator D and a generator G, play a min-max two-player game,
which is usually implemented by neural networks. During
the game process, they have different goals. The generator G
is a probability distribution generating function that learns
to transform the random noise z to a distribution close to
the real. The discriminator D is a classifier that aims at
categorizing the input data into real or fake. The minimax
game follows the objective function V (G,D):

min
G

max
D

V (G,D) = Ex∼pd [log(Dω(x))]

+ Ez∼pz [log(1−Dω(Gθ(z)))],
(1)

where z is the noise input of the generator and θ and ω
are the parameters of the generator and the discriminator
model.

To enable the algorithm to be used on any generic GAN
model, we formulate the formula in the following general
format:

min
G

max
D

V (G,D) = Ex∼pd [L(D(x))]

+ Ex∼pg [L(1−D(x))],
(2)

where x is a sample from the mixture dataset that consists
of the generated distribution pg and the raw distribution pd
(where pg ∼ G(z), and x is used for unified representation,
thus x ∼ G(z) and x ∼ pg). L(·) is some concave, increasing
function. By replacing the L(·), Eq. (2) can be various GAN
variants. For instance, when L(t) = log(t), it is equal to Eq.
(1). When L(t) = ‖‖2, it changes to LSGAN [19]. Specially,
we use the previous one in our work. As Goodfellow et al.
[1] proved the Nash equilibrium, the optimal D converges
to D(x)∗ = pd(x)

pd(x)+pg(x)
with a fixed G. For a fixed D, the

optimal G satisfies pg = pd. This theory supports many
GAN-based applications. Even when considering the struc-
ture and methods of distributed training of GAN, it should
still follow this base theory.

3.2 Distributed Learning Algorithms for GANs
3.2.1 Federated Learning-based GAN
There are two roles in FL, one is the parameter server (PS)
and the other is the client. Each client is tasked with training
a local model and subsequently sending it to the PS after
L local training rounds. The server then aggregates these
local models through weighted averaging and sends back
the aggregated global model to the clients later. The server-
side aggregation process at step t can be described as:{

ω∗s (t+ 1) =
∑K
k=1

nk

n ωk(t),

θ∗s(t+ 1) =
∑K
k=1

nk

n θk(t),
(3)

where K is the number of devices in the system. The length
of dataset in the device k is nk, which satisfies n =

∑K
k=1 nk.

The client-side training process is the same as the standalone
process (i.e., Eq. (1)).

3.2.2 Federated SGD-based GAN
MD-GAN and AC-GAN use a similar solution, and we take
the MD-GAN as an example. In MD-GAN, the objective
function in Eq. (2) is performed as two parts, including the
generator and the discriminator, as follows.

lg =
1

b

∑
x∈Xg

L(1−D(x)), (4)

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2022 4

∑

 ! " #

∑

$! $"$#

%

F# F! F&

Fig. 1. The overview of CAP.

ld =
1

b

∑
x∈Xr

L(D(x)) +
1

b

∑
x∈Xg

L(1−D(x)), (5)

where Xr and Xg are the batch of data with size b. Based on
the details presented in Section 3.1, the objective of Eq. (4)
is to minimize the loss lg , where G is implemented on the
server. Conversely, the objective of Eq. (5) is to maximize the
loss ld, where D is deployed on the client.

In the beginning of each global iteration, G generates m
batches of data, M = {x(1), ..., x(m)}, m ≤ K , each of size
b. Then, two batches are assigned to each client from M ,
including xg and xd. xd is utilized for training D, while
xg is utilized for training G. The client’s local process for
updating the gradient of D is:

ω∗i (t+ 1) = ωi(t) +O(∇ωi ld(xr, xd)), (6)

where O(·) is an optimization function such as SDG [20]
and Adam [21]. We use Adam as our optimization function
for the entirety of the process. On the i-th client, D sends
the feedback Fi = ∇xg

lg(xg) to the server after L local
iterations. Once the server collects the feedback from all K
devices, the G is updated through,

θ∗(t+ 1) = θ(t)−O(∇θ
1

K

K∑
i

Fi). (7)

MD-GAN and AC-GAN have an extra step after every
J -step, where the parameters of the discriminator are ran-
domly exchanged between the two devices using the Gossip
algorithm. This is done to enhance the generalization ability
of the discriminator in each device and prevent overfitting.
The step can be described as:

ωi = Swap(i, Gossip([K] \ {i})), (8)

where Swap(i, j) is a function to swap the parameters
between discriminator i and j. Gossip(·) is a function that
randomly selects an index from the device set [K].

3.3 Problem Setup
We consider the scenario where there are E ESs, K clients,
and one cloud server (CS) in the system. We regard the
local area covered by each ES as the cell [17]. Let Cj
(j ∈ {1, ..., E}) represent a set of Kj devices in a cell,
satisfying K =

∑E
i Kj . In this paper, we focus on more

closely realistic data distribution where Non-IID exists both
among cells and devices. Based on this consideration, we
define the number of all data samples in the j-th cell devices
as Nj =

∑
k∈Cj

nk, satisfying Ni 6= Nj ,∀i, j ∈ {1, ..., E}. In
addition, let d denote the size of each sample in the dataset,
which could be, for example, the total number of pixels in
one image. Each edge server communicates T times with
clients and Tc times with the cloud server.

4 THE PROPOSED CAP FRAMEWORK

This section describes the CAP framework. We first give
the overview of CAP. Then, we detail the two key modules
including the inner collaboration mechanisms of CAP and
the complexity analysis of CAP-GAN.

4.1 Overview
Collaborative Game Parallel Learning (CAP) follows the
learning architecture of MD-GAN and extends it to MEC. As
shown in Fig. 1, CAP consists of one cloud server (illustrated
as a green-blue cloud), a set of edge servers (shown as a
tower), and numerous clients with the personalized dataset
(shown as a phone or a laptop) distributed around the
system. In this scenario, each client or cell is cut into a
separate part as an information island. CAP utilizes two
collaboration mechanisms to address this problem, includ-
ing device-to-edge (D2E) and edge-to-cloud (E2C). For D2E,
each edge server provides service for scoped clients (in a
cell) through wireless communications, which is presented

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2022 5

as a red dashed line in the figure. Due to the distance and
energy limitation, clients may not be able to communicate
with other clients, i.e., the device-to-device connection is
unavailable, which is indicated by a red cross. Furthermore,
for E2C, the cloud provides service for global edge servers
via the internet, which is shown as a blue dashed arrow. We
detail the two collaboration mechanisms in the following
subsection and Algorithm 1 shows the complete progress.

4.2 Collaboration Mechanisms

4.2.1 Collaboration within D2E

The collaboration within D2E is similar to MD-GAN and
AC-GAN, with the exception of the aggregation algorithm
implemented on each edge server. The aggregation weight
vector in CAP differs from both of them. Specifically, CAP
mitigates the Non-IID issue by a synthesis score consisting
of the size score and game score. Intuitively, the Non-IID issue
can be abstracted as two aspects: size divergence and type
divergence.

Size Divergence performs as the dataset size of any
client is random. CAP uses the size score to address it
[4, 17, 22]. For each client in the j-th cell, the size score of
client k ∈ Cj can be described as:

βk =
nk
Nj

. (9)

Type Divergence in GANs means that the dataset types
of every client are treated as random. FeGAN [6] uses
the Kullback-Leibler distance to calculate the type score to
tackle this issue. However, this method has three disadvan-
tages: 1) In a practical scenario, gathering the types from
clients carries the risk of a privacy breach. 2) Knowing the
label of the data in advance is not easily accessible as GAN is
unsupervised. 3) This method cannot be applied to FedSGD-
based GAN directly.

Based on the characteristics of GAN, CAP adopts a more
private method, which exploits the game between discrimi-
nator and generator to get the game score. In the game phase
of GAN (which is detailed in Section 3.1), the object of the
generator and discriminator is to win the game. When the
discriminator judges whether the input is real or not, the
output of the discriminator reveals the equilibrium level of
this game between G and D [23] (where the Nash equilibrium
is D(xd) = D(xg) = 0.5). Therefore, the feedback in CAP
contains the gradient of xg (i.e., ∇xg lg(xg)) and the loss of
G (i.e., lg), recording as F = {F (g), F (p)}. Given this setup,
we define the game score γ with softmax function as follows.
In the cell j, the game score of client k is described as:

γk =
exp (λF

(p)
k)∑

n exp (λF
(p)
n)

, (10)

where λ ≥ 0 is a trainable-parameter to adjust the mix-
ture strategies [23]. The softmax function (which is recom-
mended in reference [23]) normalizes the game score to make∑
k∈Cj

γk = 1. Based on the aforementioned size score and
game score, synthesis score of the k-th client is sk = βk × γk.

Algorithm 1 Collaborative Game Parallel Learning-based
GAN.

1: procedure Cloud(Tc)
2: for each round t = 0, 1, ..., Tc − 1 do
3: Receive the parameters θ from all ES
4: Aggregate the global parameter θcloud through (13)
5: Send θcloud to all ESs
6: end for
7: end procedure
8:
9: procedure ES(T,H)

10: for each round t = 0, 1, ..., T − 1 do
11: M = {x(1), ..., x(m)} ←− G(GaussianNoise(b))
12: Send ∀(xd, xg) ∈M to all devices in this cell
13: Receive feedback from the clients in its cell
14: Calculate the weight through Eq. (11)
15: Update the generator through Eq. (12)
16: if t mod NH

b = 0 then
17: Send θ to the cloud
18: Receive θcloud from the cloud
19: Update θ through Eq. (14)
20: end if
21: end for
22: end procedure
23:
24: procedure Device(T, L)
25: for each round t = 0, 1, ..., T − 1 do
26: Receive all (xd, xg) from a edge server
27: for l←− 0 to L do
28: Update the discriminator through Eq. (6)
29: end for
30: Generate the feedback (∇xg

lg(xg), D(xg))
31: Send feedback back to the edge server
32: end for
33: end procedure

According to the synthesis score, CAP gives weight to
each client k contributing to the current global iteration by
applying the softmax function, which is described as:

wj =
∑
k∈Cj

exp sk∑
n exp sn

, (11)

The softmax function normalizes the synthesis score to make
the sum of weight as 1, i.e.,

∑
k∈Cj

wk = 1. We also consider
the linear averaging function and we will compare them
in Section 6.2.3. Hence, edge server j updates its generator
with new weights according to the following equation:

θ∗j (t+ 1) = θj(t)−O(∇θj
∑
k∈Cj

wkF
(g)
k). (12)

The existing study [23] shows λ is incremental, and it
can let the generator adjust the performance of the dis-
criminators itself to fight against more accurate adversaries.
Due to the back-propagation separately executing on clients,
updating λ by the recommendation in [23] (it is a centralized
algorithm) needs each client to gather predictions from all
other clients, which has unbearable time cost. Therefore,
CAP simplifies the objective function of λ as maximizing the
sum of predictions, max

λ
V (λ) =

∑
k γkF

(p)
k .

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2022 6

TABLE 2
Communication complexity for four major frameworks. C, E, and D stand for the cloud server, edge server, and clients, respectively.

Communication type FeGAN MD-GAN AC-GAN CAP-GAN

E→ D/(E← D) - - 2bdKj/(bd) 2bdKj/(bd+ 1)

E→ C/(E← C) - - - |θ|/(E |θ|)
C→ D/(C← D) K(|θ|+ |ω|)/(|θ|+ |ω|) 2bdK/(bd) - -

TABLE 3
Calculation complexity for four major frameworks.

FeGAN MD-GAN AC-GAN CAP-GAN

Edge server - - mbGop + dbKj mbGop + dbKj

Cloud server K(|ω|+ |θ|) mbGop + dbK - E |θ|
Client 2bL(Gop +Dop) bDop(2L+ 1) bDop(2L+ 1) bDop(2L+ 1)

To summarize, during each global iteration, each edge
server j sends two batches of data (i.e., {xg, xd}) taken from
the generatedm batches data to clients inCj . Following this,
each client k executes its local training process with Eq. (6).
Subsequently, each edge server j gathers the feedback Fk
and calculates sk from each contributing client k through
Eq. (9) and Eq. (10) and the synthesis score acts on the
aggregation gradient through Eq. (11) for the next step. The
aggregation gradient is used to update the parameter of the
generator in Eq. (12). Finally, each edge server j sends its
generator to the cloud server for the global generator, which
is detailed in the next section.

4.2.2 Collaboration within E2C
CAP applies the FL on the collaboration within E2C as each
cell is isolated in the system (which is called Information
Island Phenomenon). Therefore, in order to break the Infor-
mation Island Phenomenon among cells, the FL algorithm
is utilized to obtain the global generator by aggregating
the local edge generator in order to generalize features.
Therefore, the cloud receives the global parameter θj∈E after
several epochs through,

θ∗cloud(t+ 1) =
E∑
j=1

Nj
N
θj(t), (13)

where N =
∑E
j=1Nj . Each edge server j receives the global

parameters and updates its parameter through:

θ∗j (t+ 1) = σθj(t) + (1− σ)θ∗cloud(t+ 1), (14)

where σ ∈ [0, 1] acts as control parameter of the sharing
rate. When σ = 1, each edge server independently trains
its generator. In this scenario, the collaboration mechanism
does not work. While σ = 0, each edge server completely
participates in the collaboration. Note that there is a tight
connection between the distribution of the data generated
by the generator and the geo-distributed real data. Reduce
learning divergence [24] among edge servers by usually
taking σ = 0. In addition, each edge server j traverses the
dataset in its cell requiring NjH

b rounds, whereH is a hyper-
parameter for controlling the aggregation frequency. Thus
the cloud server has the total round Tc = T |NjH

b , where | is
an integral division operation.

4.3 Complexity Analysis
4.3.1 Communication complexity
In CAP, there are three types of communication:
• Edge server to client communication: In each global

iteration, the edge server sends two-batch generated
data to clients. Hence, the total communication of each
edge server j is 2bdKj (i.e., 2bd per client).

• Each client to its edge server: Different from MD-GAN
or AC-GAN, each client k in CAP-GAN sends feedback
including gradient F (g)

k and prediction F (p)
k , where the

size of gradient equals to raw data x and the prediction
is a float. Thus, the total communication of each client
k is bd+ 1.

• Edge server to cloud server (vice-versa) communica-
tion: Each edge server j regularly sends its generator
with size |θj | to the cloud server. The cloud server
receives parameters with the size of total E |θj | for
aggregating the global generator.

Table 2 summarizes the communication complexity com-
parison of four major frameworks. Note that FeGAN is a
variant of the FL-based GAN and others are the variants of
the FedSDG-based GAN. In terms of the learning types, the
communication size is determined by the GAN parameters
(θ and ω) in the FL-based GAN, whereas it depends on
the batch size in FedSGD-GAN variants. According to the
study in MDGAN [7], using a small batch size can improve
the performance of parallel learning. Therefore, the main
factor determining the communication consumption is thus
the size of the samples. As long as the size of the samples
is much smaller than the number of parameters of the
GAN, the communication load of FedSGD-GAN variants
is smaller than FL-based GANs. In addition, the FedSGD-
GAN variants require to communicate with the server dur-
ing every L local iteration (where L is usually taken as the
value 1), whereas FL-based GANs perform multiple epochs
before the next communication. It causes the FedSGD-GANs
variants to have more frequent communications between
servers and clients with a given number of iterations.

In terms of the framework in FedSGD-GAN variants, the
first observation is that CAP-GAN has similar communica-
tion consumption with AC-GAN and MD-GAN, except for
the different sizes of K in MD-GAN and Kj in CAP-GAN.

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2022 7

It is obvious that most global iterations are dealt with at the
edge with edge servers. This brings two advantages. First,
clients have a shorter interval to receive the result of edge
servers. Second, the core network has less traffic pressure.
On the other hand, the total communication of edge servers
in CAP-GAN is larger than AC-GAN, because CAP-GAN
has the collaboration mechanism in E2C. Additionally, the
communication consumption of clients in all frameworks is
fixed.

4.3.2 Computation complexity
In CAP, there are three types of roles:
• Workload at the client: the computational load on

clients in CAP-GAN equals that in MD-GAN. For per
global iteration, each client receives two batches of
data from its edge server and performs 2bLDop + bDop

floating point of operations (FLOPs) (where Dop is the
number of FLOPs of each feed-forward pass of the
discriminator).

• Workload at the edge server: During each global iter-
ation, every edge server j generates m batches data at
the beginning and calculates the aggregation gradient
of all feedbacks in the end. The FLOPs of generation
operation are mbGop (where Gop is the number of
FLOPs of each feed-forward pass of the generator). The
FLOPs of aggregation gradient are dbKj .

• Workload at the cloud server: During each communi-
cation in E2C, the cloud server gathers the generator
in all edge servers and aggregates to get the global
generator. The FLOPs of each aggregation are thus
E |θ|.

Table 3 presents a summary of the computational com-
plexity of four major frameworks. The GAN is a kind
of computation-intensive task. Especially, FeGAN requires
clients to execute the full process of GAN per global it-
eration. This means that its workload is doubled when
compared to FedSGD-GANs, totaling 2bL(Gop +Dop). In
comparison, MD-GAN, AC-GAN, and CAP-GAN have
around half of the workload of FeGAN on clients. On the
other hand, the edge servers in CAP-GAN have the same
workload as those in AC-GAN, but less than MD-GAN
and FeGAN. The reason is that both CAP-GAN and AC-
GAN utilize edge servers to offload the learning tasks from
clients, which balances the workload for each edge server.
However, it should be emphasized that CAP-GAN pays
more attention to addressing the Non-IID scenarios than
AC-GAN. Furthermore, because CAP-GAN incorporates
more devices (i.e., clients, edge servers, and a cloud server),
the total computational consumption of the global system is
inevitably higher than other algorithms.

4.4 Comprehensive analysis
The energy consumption of clients is majorly caused by
calculation and wireless communication. According to the
above analysis, the computation consumption on the client
in CAP-GAN is the same as those in other FedSGD-GAN
variants, whereas it is double in FL-GANs, given an equal
number of communications. Furthermore, Under an equal
number of local iterations, the FedSGD-GANs variants re-
quire more frequent communication between clients and

(a) Basic Non-IID

(b) Fully Non-IID

Fig. 2. The difference between Basic Non-IID and Fully Non-IID.

servers than FL-GANs. The experimental results in Section
6.2.1 demonstrate that CAP-GAN has better performance
than FeGAN with an equal number of interactions between
the client and server (edge server).

5 THE MIX-GENERATOR MODULE

Non-Identically and Independently Distributed (Non-IID)
is an open issue in the domain of Federated Learning.
However, the issue of Non-IID is primarily discussed in the
context of classification tasks, while it is not well studied
in generation tasks, especially in GANs. After summarizing
the Non-IID problems in previous FL works [4–6, 25], we
divide the Non-IID problems into two main types - Basic
Non-IID and Fully Non-IID.

In an IID scenario, each client is assigned an equal num-
ber and class of samples. However, the number and class of
samples in clients are randomly assigned under both Basic
and Fully Non-IID scenarios. The key difference between
Basic and Fully Non-IID is that the former allows for the
overlap of sample classes across different clients, while the
latter ensures that every client receives a unique set of
classes without duplication among clients. An example is
shown in Fig 2(a), there are overlap classes among clients
in a scenario of Basic Non-IID, for example, client 0 and
client 4 both have class 2. Conversely, a Fully Non-IID
scenario is shown in Fig. 2(b) where each client has a unique
class, thus Fully Non-IID datasets represent the highest level
of personalization in a system. Although Algorithm 1 can
handle a certain degree of the Non-IID scenarios, using a

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2022 8

single model to gather all global features in such scenarios
can be challenging [26].

Sharing Layer

Personalizing Layer

Block

Generator

...

D1 Dk
...

Discriminator

Block

Noise

…

Fig. 3. Architecture of the Mix-Generator.

In order to address the challenge of Non-IID scenarios,
we design the Mix-Generator (Mix-G) module, drawing
inspiration from the CoupleGAN [27] model. CoupleGAN
has shown that although data for the same task may be
non-independent and non-identical, they still share similar
representations. Because a single global model hardly covers
all personalized participants, the generator is split into two
layers by regarding the participants as identical tasks with
different representations, including the sharing layer and
the personalizing layer. Specifically, the personalizing layer
has the same number of Neural Network blocks as the
clients in a cell, where these blocks are called personalizing
blocks. As shown in Fig. 3, these personalizing blocks use
the common mid-feature output from the sharing layer,
which can be described as:

Xshare
j = θsharej (z), (15)

Xk
j = θkj (X

share
j), (16)

where k presents the index of devices in the cell j. The
mid-output θsharej is the global feature representation. Then,
the personalizing block transforms the intermediate fea-
ture graph into a data representation with personalization
characteristics. Therefore, the Mix-G module updates the
generator in two steps.

The first step updates the personalizing blocks. For each
feedback from client k, the personalizing block θkj updates
the parameter with personalization feedback gradient F (g)

k ,
as follows:

θkj (t+ 1) = θkj (t)−O(∇θkj F
(g)
k). (17)

The second step updates the sharing layer. To aggregate the
global feature representation, the sharing layer updates the
parameter with weighted aggregation feedback gradients,
as follows:

θsharej (t+ 1) = θsharej (t)−O(∇θshare
j

∑
k

wkF
(g)
k). (18)

Algorithm 2 The CAP-GAN enabling Mix-G.
1: procedure ES(T,H)
2: for each round t = 0, 1, ..., T − 1 do
3: M = {x(1), ..., x(m)} ←− G(GaussianNoise(b))
4: Send ∀(xd, xg) ∈M to all devices in this cell
5: Receive feedback from the clients in its cell
6: Calculate weight through Eq. (11)
7: Update personalizing layer through Eq. (17)
8: Update sharing layer through Eq. (18)
9: if t mod NH

b = 0 then
10: Send θshare to the cloud
11: Receive θcloud from the cloud
12: θshare ←− θcloud
13: end if
14: end for
15: end procedure

Algorithm 2 shows the complete process of CAP-GAN
enabling the Mix-G module. The sharing layer in Mix-G
ensures aggregating the global feature representation into
the same hidden space [27], and the personalizing blocks
can further transform the features in the hidden space into
personalization features. This approach only expands the
last layer of the original generator as opposed to configuring
a full generator for each client. Thus, the communication of
Mix-G has no change compared with the previous, while
the computation of Mix-G has more consumption than
pure CAP-GAN. In addition, the size of generator with
enabling Mix-G is |θj | =

∣∣∣θsharej

∣∣∣ + ∑
k∈Cj

∣∣∣θkj ∣∣∣, and the
FLOPs of θkj and θsharej are θkopj and θshareopj . The compu-
tation load of the edge server using the Mix-G module is
(mb(θshareopj +Kjθ

k
opj) + dbKj).

Similarly, the FL algorithm is modified in the part be-
tween ES and the cloud. The parameters in Eq. (14) are
replaced by the sharing block. Thus, the communication
and computation of the cloud server are both E

∣∣θshare∣∣.
In addition, as each generator sends the sharing layer to the
cloud server, this module can be regarded as soft sharing
which is similar to hard sharing1 in [27, 28].

Note that, the Mix-G module can address all Non-IID
scenarios and well-perform on even the highest personal-
ized scenarios. In addition, when using CAP-GAN in re-
alistic scenarios and the additional computational burden
brought by Mix-G is tolerable, Mix-G can be enabled to cope
with unknown data distributions.

6 EXPERIMENTAL EVALUATION

We compare our approach to three state-of-the-art bench-
mark algorithms (FL-GAN, MD-GAN, and AC-GAN) that
used mixture-Gaussian, MNIST, and Fashion-MNIST in this
section. We start by going over the setup needed for the
experiments. To highlight the differences between these
algorithms, we create three data distribution scenarios and
then compare and analyze the data generated by them in
each scenario. Then, using a set of preset noise production
data, we observe how each algorithm performs over a range

1. Hard sharing is a restricted parameter sharing, which two models
use the same parameter. Soft sharing is a loose parameter sharing,
which allows the parameters of two models to be similar.

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2022 9

TABLE 4
The Generated Data Evaluation of FL-GAN, MD-GAN, AC-GAN, CAP-GAN.

Dataset Model Metric IID Basic Non-IID Fully Non-IID

MNIST Score ↑ 6.5244 (± 0.0994) 7.9712 (± 0.1296) 6.6093 (± 0.0972)
AC-GAN

FID ↓ 279.4811 (± 2.1697) 76.2112 (± 0.9904) 74.2777 (± 1.2370)

MNIST Score ↑ 6.7094 (± 0.1371) 4.8378 (± 0.1281) 3.7940 (± 0.0694)
FL-GAN

FID ↓ 59.8908 (± 1.9911) 145.4118 (± 1.0244) 211.1123 (± 1.6114)
MNIST

MNIST Score ↑ 7.3549 (± 0.1096) 4.9577 (± 0.0577) 3.1687 (± 0.0388)
MD-GAN

FID ↓ 77.5787 (± 1.3256) 89.7187 (± 2.0857) 81.6724 (± 1.8405)

MNIST Score ↑ 6.7285 (± 0.1171) 8.3826 (± 0.0879) 9.1990 (± 0.1022)
CAP-GAN

FID ↓ 96.3913 (± 1.2728) 65.5164 (± 1.5935) 38.3307 (± 1.4022)

Mode Score ↑ 8.2757 (± 0.0644) 8.3668 (± 0.0811) 7.6341 (± 0.0656)
AC-GAN

MMD (100×) ↓ 4.52 (± 0.77) 3.30 (± 0.65) 12.1488 (± 1.0498)

Mode Score ↑ 8.2234 (± 0.0790) 6.1999 (± 0.0722) 5.8465 (± 0.0873)
FL-GAN

MMD (100×) ↓ 6.16 (± 0.47) 19.97 (± 0.88) 28.91 (± 0.42)
Fashion-MNIST

Mode Score ↑ 8.2654 (± 0.0767) 8.2676 (± 0.0785) 6.1616 (± 0.0766)
MD-GAN

MMD (100×) ↓ 3.86 (± 0.50) 4.19 (± 0.39) 21.19 (± 2.16)

Mode Score ↑ 8.2274 (± 0.0410) 8.5013 (± 0.0899) 8.6185 (± 0.0513)
CAP-GAN

MMD (100×) ↓ 1.97 (± 0.37) 1.12 (± 0.20) 0.88 (± 0.09)

of iterations. We test the impact of different weights of ag-
gregating feedback. In the end, we discuss the performance
of whether enable the Mix-G or not on Non-IID.

6.1 Experimental setup

Our experiments are all based on the PyTorch library. We
create a simulation experiment platform on a GPU-based
server outfitted with an Inter Xeon Gold 6226R processor,
128 GB of RAM, and an NVIDIA RTX 3090 GPU. Threads
are used in this platform to simulate task execution in
various nodes such as devices, ESs, and cloud servers in
order to simulate overheads in a real-world environment
2. Note that, the calculation of Federated SGD-based GAN
is complex, we use multi-thread and Pytorch to build the
auto-gradient chart. Inter-thread communication is used to
simulate network communication, allowing GANs to be
trained in the same order as a real distributed deployment.
It is important to emphasize that we do not use gradient
penalties [29] or other optimization techniques [30] to en-
hance the performance of our GAN. Our object is not to
obtain a better performance than other GAN but to focus on
minimizing the impact of the decentralized data distribution
on the GAN.

6.1.1 Datasets
Two standard picture datasets (MNIST, and Fashion-
MNIST), and a two-dimensional random Gaussian dataset,
are used in this study. MNIST is made up of a training
dataset of 60,000 gray-scale handwritten digit images (28
× 28 pixels) and a test dataset of 10,000 images, with 10
classes ranging from 0 to 9. The Fashion-MNIST dataset
contains 60,000 training samples (28 × 28 pixels) and 10,000
test samples. T-shirt, trouser, pullover, dress, coat, sandal,

2. The code of this platform and four algorithms is available at
https://github.com/NetworkCommunication/CGL-GAN

shirt, sneaker, bag, and boot are among the ten sample
classes of Fashion-MNIST, which images are similar to
MNIST. These datasets are frequently used to evaluate the
generative power of GAN. We utilize the same normalized
prepossessing operation on each image of these datasets
before training any GAN. Furthermore, mixture-Gaussian
is a common way for evaluating GAN performance, as it
can visually analyze the change in the generative effect
of GANs. Same as the other graph datasets, we create
10 two-dimensional Gaussian distributions with different
means and variances, then combine them to create a two-
dimensional (2D) mixture-Gaussian dataset. Since our work
is concerned with the distribution of data among devices,
we designed three scenarios, IID, Basic Non-IID, and Fully
Non-IID. In different scenarios, the data contained in each
device differs in the type of samples, the number of samples,
and the specific settings as follows:
• IID: Each device has the same number of samples (i.e.,
n1 = n2 =, ..., nk) and all classes of the global dataset
(which the global dataset consists of all datasets in
devices).

• Basic Non-IID: Each device has a random number of
samples and part of classes of the global dataset, which
allow existing overlapping classes between devices.

• Fully Non-IID: Each device has a subset of the global
dataset and each subset only carries one class of data.
Furthermore, the subsets have no overlap of class.

6.1.2 GAN model architecture

Different model architectures and parameters are employed
on different datasets. For the 2DGM dataset, the generator
uses three fully-connected networks with a size of 100 ×
128, 128 × 256, and 256 × 2, and the discriminator consists
of three fully-connected networks with a size of 2 × 128,
128 × 256, and 256 × 1. For MNIST and Fashion-MNIST
datasets, the generator consists of five-layer fully-connected

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2022 10

A
C

G
A

N
FL

G
A

N
M

D
G

A
N

C
A

PG
A

N

(a) IID (b) Basic Non-IID (c) Fully Non-IID (a) IID (b) Basic Non-IID (c) Fully Non-IID

Fig. 4. The sample images are generated under three data distributions
on MNIST.

Fig. 5. The sample images are generated under three data distributions
on Fashion-MNIST.

networks with sizes of 100 × 128, 128 × 256, 256 × 512,
512 × 1024, and 1024 × 784. The discriminator consists of a
three-layer fully-connected network with sizes of 784 × 512,
512 × 256, and 256 × 1.

6.1.3 Metrics
Evaluating the performance of GAN may be a challenging
task because the use of a single metric assessment some-
times does not prove the merit of the model. Therefore,
we use different metrics for different datasets in order to
better represent the performance differences of different
algorithms.
• 2D Mixture-Gaussian dataset: we design a method to

calculate the difference in performance. We divide the
2D data into equal-length grids and count the number
of real and generated data in these grids separately.
To facilitate the subsequent calculations, we take out
those grids for which data exist and the corresponding
grids for which data are generated. The evaluation of
the generated data using the following approach.

KL Score = KL(Ng ‖ Nr). (19)

Ng and Nr are the distribution of those grids from real
data and generated data. KL Score (KLS) shows the gap
between the distribution of the data generated by the
model and the distribution of the real data, the smaller,
the better.

• MNIST dataset: Compared with 2D datasets, high-
dimensional datasets, such as images, present a chal-
lenge in measuring distribution differences. Fortu-
nately, Inception Score [31] (IS) presents a mechanism for
resolving it. IS is carried out on the generated data by
a pre-trained classification model (Inception) in order
to assess the quality and diversity of the data. Due
to the original IS model being trained on CelebA, its
ability to accurately classify the MNIST dataset is not
entirely convincing. As a result, we employ MNIST
Score 3, similar to IS, but using a classifier network
adapted to MNIST. Another metric is Fréchet Inception
Distance (FID) [32] 4 which is to measure the distance
between pg and pd. It runs the Inception network on
a sample of produced data and another sample of real
data, assuming Gaussian distributions as outputs. The
FID calculates the Fréchet Distance between a Gaussian
distribution created from generated data and a Gaus-
sian distribution generated from real data. Please note
that the value of the MNIST Score increases as it gets
better, while the FID decreases as it improves.

• Fashion-MNIST: Since Fashion-MNIST is an MNIST-
like dataset, Mode score [33], which is an improved
version of MNIST Score, is applied to this dataset for

3. Code available at https://github.com/ChunyuanLI/
MNIST Inception Score

4. Code available at https://github.com/mseitzer/pytorch-fid

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2022 11

0 2500 5000 7500 10000 12500 15000 17500 20000
Communication

1

2

3

4

5

6

7

8

M
NI

ST
 S

co
re

The Changes of Generated Data in IID Situation

AC-GAN
FL-GAN
MD-GAN
CAP-GAN

(a) IID

0 2500 5000 7500 10000 12500 15000 17500 20000
Communication

1

2

3

4

5

6

7

8

9

M
NI

ST
 S

co
re

The Changes of Generated Data in Basic Non-IID Situation
AC-GAN
FL-GAN
MD-GAN
CAP-GAN

(b) Basic Non-IID

0 2500 5000 7500 10000 12500 15000 17500 20000
Communication

1

2

3

4

5

6

7

8

9

M
NI

ST
 S

co
re

The Changes of Generated Data in Fully Non-IID Situation
AC-GAN
FL-GAN
MD-GAN
CAP-GAN

(c) Fully Non-IID

Fig. 6. The changes of MNIST Score of AC-GAN, FL-GAN, MD-GAN, and CAP-GAN under three scenarios.

evaluating the diversity of the generated models. Un-
like the MNIST Score, the Mode Score adds a measure
of the real dataset, and the Mode Score is maximized
only when the class distribution of the generated data
is equal to the class distribution of the real data. As for
the clarity of the generated images, unlike the previ-
ous dataset, we use Kernel Maximum Mean Discrepancy
(MMD) to calculate it. The MMD is calculated as fol-
lows:

MMD2(Pr,Pg) =

E
xr,x

′
r∼Pr,

xg,x
′
g∼Pg

[k(xr, x
′

r)− 2k(xr, x
′

g) + k(xg, x
′

g)]. (20)

where k is a kernel function that generally adopts
Gaussian Kernel k(x, y) = exp−‖x−y‖

2

2σ2 . Similar to FID,
the MMD is based on converting high-dimensional data
into Hilbert space and calculating the distance between
two data. As a result, the lower the value of MMD, the
better the model.

6.1.4 Configurations
Three benchmark algorithms chosen in this paper are FL-
GAN, MD-GAN, and AC-GAN. In order to unify the met-
rics, we use the same values for the parameters that are
common to all algorithms. These hyper-parameters can be
determined randomly and there is no optimal selection in
this paper. The following values are chosen based on the
works on AC-GAN and MD-GAN. For the total number
of devices, we let it be the same number of classes as the
sample of all datasets, i.e., k = 10. For the number of ESs,
we choose 5 in our algorithm and AC-GAN, and there is no
ES in FL-GAN and MD-GAN which only have 1 parameter
server in all experiments. Then, we define the batch size
b = 100 and the local training iteration L = 1 (Especially
for FL-GAN, L = 5). The loss function O(·) is log and
the optimal function L(·) is Adam, with a learning rate of
0.0002, a first-order gradient momentum decay of 0.5, and
a second-order gradient momentum decay of 0.999. These
models in ESs and devices communicate 20,000 iterations
in the whole algorithm for graph datasets and 10,000 for the
2D mixture-Gaussian dataset. In addition, we let the sharing
rate controlling parameter σ = 0 share the model with other
ESs fully, and with each 1 epoch (i.e., H = 1), the ES shares
its model to the cloud and receives the global model. In

addition to experiment parameters, we also configure the
set of devices being served by each ES. As our dataset is de-
signed to be adequately representative of the geographical
distribution of real-world data, we evenly distribute devices
to all ESs to simplify calculations and experiments.

6.1.5 Comparison

We choose four SOTA algorithms to compare the perfor-
mance of CAP-GAN. we describe these algorithms as fol-
lows:

CAP-GAN: We employ pure CAP-GAN in the IID ex-
periment without enabling the Mix-G module. Because the
datasets in all clients have the same size and type in IID
scenarios, enabling Mix-G is useless and redundant (as Mix-
G has higher computation on edge servers). And we enable
the Mix-G module on CAP-GAN in all Non-IID scenarios. A
more detailed discussion will be presented in Section 6.2.4.

FL-GAN [7]: FL-GAN is an artificially created baseline
of the FL-based GAN algorithm [7]. FL-GAN contains a
cloud server (parameter server) and a set of devices with
a complete GAN. Each client sends its local model (includes
G and D) to the cloud server every 10 local iterations. The
cloud server aggregates the global modes through Eq. (3).
Compared with CAP-GAN, FL-GAN has a double compu-
tation workload on clients and it does not support Non-IID
scenarios.

FeGAN [6]: FeGAN is a FL-based GAN for Non-IID
issue. In order to customize the weight and list of entry
clients of all rounds, FeGAN needs to collect the number
of each class in each client. Clearly, this approach defeats
the original intent and purpose of Federated Learning and
Federated SGD. Due to it being the SOTA algorithm of
FL-based GAN, we compare the algorithm of aggregation
with FeGAN. We will discuss it in Section 6.2.3. Compared
with CAP-GAN, FeGAN has a double computation load on
clients.

MD-GAN [7]: MD-GAN has the same components as
FL-GAN, a cloud server, and a set of devices. The cloud
server holds a generator and each device holds a discrimina-
tor. The generator in the cloud sends generated fake data to
devices and receives feedback to aggregate gradient through
Eq. (7). Each device mixes the real local data and receives
fake data to train its discriminator through Eq. (6) and sends
the feedback which is calculated by Eq. (4). Compared with

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2022 12

� �������������
������	���
�������
���

���

���

���

���

���

���

���

���

���

���

���

��������������������������������������		�����������

�
�
�
�
�
�
�

�
�
	
�
�

�������������

�������
�������
�������
��
����

(a) IID

� �������������
������	���
�������
���

���

���

���

���

���

���

���

���

���

���

���������������	������������	���������������

�����������

�
�
�
�
�
�
�

�
�
	
�
�

�������������

����	�
�����	�
����	�
����	�

(b) Basic Non-IID

� �������������
������	���
�������
���

���

���

���

���

���

���

���

���

���

���

�� �		�����������

�
�
�
�
�
�
�

�
�
	
�
�

�������������

�������
�������
�������
��
����

(c) Fully Non-IID

Fig. 7. The changes of KL-divergence of AC-GAN, FL-GAN, MD-GAN, and CAP-GAN under three scenarios.

A
C

G
A

N

FL
G

A
N

M
D

G
A

N

(a) IID (b) Basic Non-IID (c) Fully Non-IID

C
A

PG
A

N

(d) IID (e) Basic Non-IID (f) Fully Non-IID

Fig. 8. The images presented were produced using three distinct data distributions within 2DMG.

CAP-GAN, MD-GAN provides poor support on Non-IID
scenarios and edge scenarios.

AC-GAN [8]: AC-GAN has similar components as CAP-
GAN, which contains a set of ESs and each ES covers a
set of devices. Each ES holds a generator, and each device
holds a discriminator. The generator in each ES sends gen-
erated fake data to devices within its coverage and receives
feedback to aggregate gradient through Eq. (7). Each device
mixes the real local data and receives fake data to train
its discriminator through Eq. (6) and sends the feedback
to its ES which is calculated by Eq. (4). Compared with
CAP-GAN, AC-GAN provides poor support in Non-IID
scenarios.

Note that, in order to align with the scenario outlined in
this paper, we have canceled the communication (as shown
in Eq. (8)) between devices in the algorithms including MD-
GAN, and AC-GAN.

6.2 Experimental results
The performance differences of AC-GAN, FL-GAN, MD-
GAN, and CAP-GAN are compared in Table 4. All the
results are compared with models built after 20,000 com-
munications using the same collection of 10,000 Gaussian
noises.

6.2.1 Convergence
Fig. 4 and Fig. 5 show the image result of four algorithms,
and Table 4 shows the metric results of four algorithms. In
the IID setting, AC-GAN, MD-GAN, FL-GAN, and CAP-
GAN perform almost equally well. Since all clients share

the same sample distribution, FL-GAN and MD-GAN can
directly aggregate global information, resulting in high
performance in terms of FID and MNIST Score metrics.
However, as the distribution becomes more Non-IID, CAP-
GAN outperforms the other methods.

The results show that FL-based GANs suffer from a sig-
nificant amount of information loss, even generating blurry
data when faced with unbalanced samples in the Fully Non-
IID scenarios. However, CAP-GAN stands out by retaining
features and patterns from all data, resulting in clear data
with FID and MMD metrics that are significantly better than
other state-of-the-art algorithms. This is because, in highly
dispersed data, the feedback from each discriminator can
become biased and lead to overfitting, making it difficult for
generators to learn the accurate distribution characteristics
of the data. The other three algorithms use the uniform
aggregation of features to generate data, which makes it
impossible for the generator to choose which class to favor,
so it often ends up generating only one class.

In contrast, realistic scenarios often exhibit extremely
discrete characteristics, which means that the first three al-
gorithms cannot be adapted to practical application scenar-
ios. CAP-GAN uses a separate personality layer for binding
the data features of individual devices, which allows the
personality layer to select from the output of the feature by
the shared layer the parts that are useful for the devices it
binds and generates more realistic data. Moreover, Fig. 6
shows this scheme can accelerate the convergence of GAN
when the data distribution becomes more non-independent
and identical. Since the features of a single type of dataset
are also single, the personality layer converges quickly. Note

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2022 13

that, we set Algorithm 1 on the IID setting and Algorithm 2
on both Non-IID settings.

6.2.2 Diversity
The results shown in Fig. 4 and Fig. 5 are generated by using
fixed noise after 20,000 rounds of communication.

First, CAP-GAN has the ability to generate all types
of samples across various datasets and scenarios, whereas
the other three algorithms are limited to generating a more
comprehensive range of data types in IID cases, and only
a few classes of samples are generated in the other two
Non-IID cases. The most obvious one is MD-GAN, which
generates only 3, 6, and a small amount of 5 on the MNIST
dataset in Fully Non-IID scenarios. AC-GAN is a little better,
but it does not generate all the numbers, which miss the
numbers 6 and 9. This is because when the sample class
is single for each device in this case, the feedback from
the discriminator becomes significantly biased and could be
particularly sensitive to other classes of data generated by
the generator.

Second, due to the uneven amount of data, the discrim-
inators do not have equal classification power, making it
challenging for AC-GAN and MD-GAN, which are based
on average feedback, to handle all categories. In Fig. 8, we
depict their performance on the 2DMG dataset, which pro-
vides a more intuitive result. In this figure, the blue dots rep-
resent the distribution of the dataset, while the other colored
dots represent the distribution of data generated by the algo-
rithm. The results indicate that only CAP-GAN can generate
all types of data samples in all instances, demonstrating its
superior performance in terms of diversity. Moreover, the
outcomes of AC-GAN and MD-GAN reveal that their algo-
rithms cannot ensure the generation of all classes of samples.
And FL-GAN fails to adapt to the Non-IID scenario and
generates bad samples.

In the Basic Non-IID example, there is a noteworthy
result. In terms of the generated data, there is not much dif-
ference between AC-GAN and CAP-GAN outcomes, with
AC-GAN falling short on just one type. However, this
outcome supports our earlier findings that data imbalance
leads to biased feedback from the AC-GAN generator. Such
bias can cause the gradient to decrease in an uneven manner,
resulting in a biased outcome. In contrast, the aggregation
algorithm and the personality layer of CAP-GAN ensure
that no characteristic is overlooked, thereby contributing
to its excellent performance in generating diverse samples.
In addition, although the difference between AC-GAN and
CAP-GAN cannot be seen in Fig. 8, the results in Fig. 7 prove
that the distribution of the data generated by CAP-GAN is
more comprehensive.

TABLE 5
The FID result of different weights of aggregating feedback.

Weight IID Basic Non-IID

only size score 68.90 134.88

only game score 88.62 270.66

averaging score 67.63 225.56

linear average of synthesis score 94.46 238.97

softmax of synthesis score 74.82 119.46

(a) ACGAN (b) pure CAP-GAN

Fig. 9. The performance in the Basic Non-IID scenario.

6.2.3 The Effects of β and γ

Compared with MD-GAN and AC-GAN, we use a more
complex scheme in aggregating the feedback. In general,
the relationship between clients should be equal. This is
one reason why they opted to use the mean (called the
averaging score) gradient descent model. But in fact, this
is an unfairness issue here as this completely ignores the
impact of the number and class of data samples. Thus, we
use synthesis score consisting of size score and game score.

To figure out the role of these weights, we design a set
of experiments to test their performance under different
distributions, and the results are summarized in Table 5.
The experimental setup involves one server and the MNIST
dataset, without the E2C and Mix-G modules. The FID is
calculated based on the last 1000 results from the generator.
Moreover, we show the results of two kinds of normaliza-
tion on synthesis score. The first one is linear averaging as
wk = sk∑

n sn
. The second one is softmax as wk = exp sk∑

n exp sn
.

Note that, in the IID setting, the size score is equal to the
average (e.g., MD-GAN). The results show that calculating
the weights according to the number of samples can obtain
better results than the average and game score under Non-
IID.

We notice that using only the weight of game score does
not work well by itself, while the weight of synthesis score
obtains a significant result. We consider it is because GMAN
[23] uses game score work in a centralized dataset rather
than distributed dataset. For Non-IID, size score provides
information about the data distribution, so that synthesis
score can obtain better results. For diversity, Fig. 9 shows the
weighted average can gain more diversity than the complete
average. For devices with few samples, average weights
can cause harmful updates to the global model due to the
imbalance of data sizes between devices. Thus, combining
the amount of data and the state of the discriminator can
make the generator of each server take more account in an
integrated manner.

To highlight the variances in the aggregation algorithm
of FeGAN, we perform a separate comparison, employing
the model configuration from FeGAN. Specifically, we re-
place the MLP model with LSGAN [19], which consists of
multiple convolution layers. The remaining configuration of
CAP-GAN is identical to the previous study. We compare
the performance differences between the two aggregations
in Basic Non-IID conditions. As shown in Fig. 10, the CAP-
GAN algorithm exhibits superior convergence speed and
convergence effect compared to FeGAN. It suggests that
utilizing weight information obtained from the interaction

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2022 14

between the generator and discriminator can achieve better
results than simply balancing the number of sample types.

Fig. 10. Convergence of FeGAN and CAP-GAN on MNIST

6.2.4 The Effects of Mix-G Module
The Mix-Generator (Mix-G) module is the most significant
module to address Non-IID. For any Non-IID distribution,
the main feature of each client is non-uniform. The Mix-G
module uses a personalizing layer to match the distinctive
feature of a client. We design a similar experiment to figure
out the impact of the personalizing layer. Except for adding
the personalizing module, other settings are as same as that
in the last experiments. Fig. 11 shows the result, where the
lower FID represents the more clarity of the picture. The
experiments reveal that Mix-G can enhance performance
when the dataset exhibits greater Non-IID characteristics.
The personalizing layer of Mix-G ensures that the unique
features of the user are not discarded, and thus the Mix-
G module generates all possible samples. For privacy, the
biggest advantage of the Mix-G module is that the user’s
features are held by their dedicated module, and the sharing
layer only contains the representation features of global
datasets, which further enhances privacy.

Fig. 11. The convergence of enabling the Mix-G module on MNIST in
the Non-IID scenarios

It is worth noting that the Mix-G module can be plugged
into all scenarios, including both IID and Non-IID, even
in the unknown scenarios. However, we do not advise
enabling the Mix-G module in known IID scenarios be-
cause the IID datasets in all clients have the same feature.
Enabling the Mix-G module to cope with these repetitive
features violates the objective of Mix-G. In this way, the

Mix-G becomes a redundant module and does not provide
improvement while requiring more calculations, which is
shown in Fig. 12(a). The Mix-G module is designed to
handle the distinctive features of the client and enhance the
quality and diversity of generated samples in Fully Non-
IID scenarios. As illustrated in Fig. 12(b), enabling the Mix-
G module slightly improves the performance even in the
Basic Non-IID scenarios. In contrast, Fig. 12(c) shows that
the convergence speed and the diversity of the generated
data are substantially improved in the Fully Non-IID case.

0 2500 5000 7500 10000 12500 15000 17500 20000
Communication

1

2

3

4

5

6

7

MN
IS

T
Sc

or
e

The Changes of Generated Data in IID Situation

AC-GAN

CAP-GAN with Mix-G

CAP-GAN without Mix-G

(a) IID

0 2500 5000 7500 10000 12500 15000 17500 20000
Communication

1

2

3

4

5

6

7

8

9

M
NI

ST
 S

co
re

The Changes of Generated Data in Basic Non-IID Situation

AC-GAN
CAP-GAN with Mix-G
CAP-GAN without Mix-G

(b) Basic Non-IID

0 2500 5000 7500 10000 12500 15000 17500 20000
Communication

1

2

3

4

5

6

7

8

9

M
NI

ST
 S

co
re

The Changes of Generated Data in Fully Non-IID Situation

AC-GAN
CAP-GAN with Mix-G
CAP-GAN without Mix-G

(c) Fully Non-IID

Fig. 12. Convergence comparison in the Non-IID scenarios with or with-
out Mix-G.

6.2.5 The effects of other hyper-parameter

An obvious conclusion is that algorithms with edge scal-
ability can reduce the load on servers and thus speed up
the response time of applications. Hence, the systematic
structure of CAP outperformed other models. For the cloud
module, the effect of the cloud module is as same as the
parameter server in FL. Without the cloud module, the IIP
issue in edge also emerges between edge servers. We finish
a set of experiments to show the impact of the cloud module
and sharing rates. We set the cloud epoch as c and sharing
rate as s. For instance, c = 0 and s = 0 mean the cloud
server does not collect sharing layers from the edge server.

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2022 15

(a) FID scores on each edge server

(b) The number of generated sample class

Fig. 13. The result of 5 edge servers and 50 clients

Fig. 13(a) shows that E2C is limited in its ability to
enhance clarity, whereas Fig. 13(b) demonstrates that it is
capable of balancing the number of categories generated by
each edge server. In the algorithm with E2C, the number
of sample types generated by the server is almost the
same. In addition, we find the sharing rate seems to be a
benefit for some devices and a detriment for others. In our
setting, the sharing rate is larger, the edge server adopts
less of the global model. We argue that this is because some
regions have significantly better sample quality and model
state than others, and therefore using only the number of
samples to define the aggregation weights of the model
would subject these well-trained models to poor models.
Consequently, using different sharing rates based on differ-
ent generators on edge servers should be a good solution,
but unlike defining the state of a discriminator, how to
define the state of a generator in FedSGD-based GAN is
an unknown problem.

7 DISCUSSION

In this section, we discuss the limitations of CAP-GAN and
the problems of distributed training of GANs that need to
be addressed in the future.

(1) Asynchronous Mechanism: our approach consists of
two parts, the D2E part is a synchronous mechanism, while
the E2C part is asynchronous. A synchronous mechanism
in D2E can ensure convergence of the model while sacri-
ficing efficiency, which exists in all Federated SGD-based
algorithms (MD-GAN and AC-GAN). Therefore, improving

the structure of distributed algorithms for asynchronous
training of GANs is a feasible study point in the future.

(2) Privacy Security: different from FL transmitting
weights over the network, the servers in MD-GAN, AC-
GAN, and CAP-GAN need to transmit the data generated
by the generator to the user. During the later stages of
training, even though the generated data is known as fake
by discriminators, it already carries information about the
user’s data, making it a vulnerable target for attacks. There-
fore, as a decentralized encryption and authentication algo-
rithm, Blockchain is intuitively suitable for combining with
CAP-GAN. Blockchain can provide security for generated
data. These data are traceable in Blockchain due to they are
generated in regular steps [34]. This is a meaningful research
direction for the future.

(3) Load Balancing: the results of our experiment are
based on only 10 devices and simulated on one computer.
In practice, however, there are thousands of devices such as
smartphones and IoTs in an area, which may cause pressure
for one edge server. It is a challenge to consider how to share
the pressure with the surrounding idle edge servers, which
necessitates vitalizing the resources on the edge servers and
taking into account the model consistency in these edge
servers.

(4) Failure Tolerance: Li et al. [35] have pointed out that
the failure rate of a task is higher when train models in more
devices, which has a failure rate of 24% on 10,000 devices. It
should also be considered fault-tolerant when trained GANs
in a distributed manner, but since our focus in this paper is
on the distribution of the dataset, we consider improving
the fault tolerance of GANs trained in a distributed manner
in the future.

(5) Mobility: these algorithms (including MD-GAN, AC-
GAN, and CAP-GAN) only consider the problem in the
case where the user does not move out the coverage. It is
estimated that the number of mobile users at the edge is
growing rapidly [36]. These studies [2, 3] have shown that
GANs have the potential ability to assist vehicle trajectory
predictions. Thus, considering a switch in models from one
edge server to another presents a future challenge as well as
an opportunity.

8 CONCLUSION

This work focuses on addressing the data distribution chal-
lenges when training GANs at the edge in order to make
GANs usable in Non-IID scenarios. We propose a novel dis-
tributed algorithm called CAP-GAN that considers energy
limits and geographical constraints. CAP-GAN employs
a new aggregation scheme that allows the generators to
obtain more accurate gradient update directions at each
base station, avoiding falling into mode collapse. Moreover,
federal learning is used in CAP-GAN to break down the
information island phenomenon between base stations and
aggregate global models and features. In addition, we in-
troduce the Mix-G module to optimize its performance for
addressing extremely dispersed data distributions. Mix-G
adopts a novel structure, where the generator consists of
shared and personality layers. Utilizing this structure can
accelerate model convergence and enhance diversity, result-
ing in generated samples that better align with personalized

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2022 16

data. Through simulation experiments, the results have been
demonstrated that CAP-GAN (combined with Mixed-G) is
capable of generating all types of data and significantly
improving data fitting in cases of non-independent identical
distribution data, when compared to SOTA algorithms like
AC-GAN, MD-GAN, and FL-GAN.

ACKNOWLEDGMENT

This work is supported in part by the Liaoning
Province Applied Basic Research Program under Grant
2023JH2/101300194, and in part by the LiaoNing Revitaliza-
tion Talents Program. Al-Dubai would like to acknowledge
the support of the UK Engineering and Physical Sciences
Research Council (EPSRC) programme grant: COG-MHEAR
(Grant Reference: EP/T024917/1)

REFERENCES

[1] I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu,
D. Warde-Farley, S. Ozair, A. Courville, and Y. Bengio,
“Generative adversarial nets,” Advances in Neural Infor-
mation Processing Systems, vol. 27, 2014.

[2] L. Zhao, Y. Liu, A. Y. Al-Dubai, A. Y. Zomaya, G. Min,
and A. Hawbani, “A novel generation-adversarial-
network-based vehicle trajectory prediction method for
intelligent vehicular networks,” IEEE Internet of Things
Journal, vol. 8, no. 3, pp. 2066–2077, 2020.

[3] F. Naeem, S. Seifollahi, Z. Zhou, and M. Tariq, “A
generative adversarial network enabled deep distribu-
tional reinforcement learning for transmission schedul-
ing in internet of vehicles,” IEEE Transactions on Intelli-
gent Transportation Systems, vol. 22, no. 7, pp. 4550–4559,
2021.

[4] B. McMahan, E. Moore, D. Ramage, S. Hampson, and
B. A. y Arcas, “Communication-efficient learning of
deep networks from decentralized data,” in Artificial
Intelligence and Statistics. PMLR, 2017, pp. 1273–1282.

[5] M. Rasouli, T. Sun, and R. Rajagopal, “Fedgan: Fed-
erated generative adversarial networks for distributed
data,” arXiv preprint arXiv:2006.07228, 2020.

[6] R. Guerraoui, A. Guirguis, A.-M. Kermarrec, and E. L.
Merrer, “Fegan: Scaling distributed gans,” in Proceed-
ings of the 21st International Middleware Conference, 2020,
pp. 193–206.

[7] C. Hardy, E. Le Merrer, and B. Sericola, “Md-gan:
Multi-discriminator generative adversarial networks
for distributed datasets,” in 2019 IEEE international par-
allel and distributed processing symposium (IPDPS). IEEE,
2019, pp. 866–877.

[8] X. Zhang, X. Zhu, J. Wang, W. Bao, and L. T. Yang,
“Dance: Distributed generative adversarial networks
with communication compression,” ACM Transactions
on Internet Technology (TOIT), vol. 22, no. 2, pp. 1–32,
2021.

[9] B.-C. Chen and A. Kae, “Toward realistic image com-
positing with adversarial learning,” in Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, 2019, pp. 8415–8424.

[10] K. Ehsani, R. Mottaghi, and A. Farhadi, “Segan: Seg-
menting and generating the invisible,” in Proceedings

of the IEEE Conference on Computer Vision and Pattern
Recognition, 2018, pp. 6144–6153.

[11] K. Armanious, C. Jiang, M. Fischer, T. Küstner, T. Hepp,
K. Nikolaou, S. Gatidis, and B. Yang, “Medgan: Medical
image translation using gans,” Computerized Medical
Imaging and Graphics, vol. 79, p. 101684, 2020.

[12] Y. Xue, T. Xu, H. Zhang, L. R. Long, and X. Huang,
“Segan: adversarial network with multi-scale l1 loss for
medical image segmentation,” Neuroinformatics, vol. 16,
no. 3, pp. 383–392, 2018.

[13] A. Radford, L. Metz, and S. Chintala, “Unsuper-
vised representation learning with deep convolu-
tional generative adversarial networks,” arXiv preprint
arXiv:1511.06434, 2015.

[14] Y. Jiang, S. Chang, and Z. Wang, “Transgan: Two
transformers can make one strong gan,” arXiv preprint
arXiv:2102.07074, 2021.

[15] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit,
L. Jones, A. N. Gomez, Ł. Kaiser, and I. Polosukhin,
“Attention is all you need,” Advances in Neural Informa-
tion Processing Systems, vol. 30, 2017.

[16] M. Arjovsky, S. Chintala, and L. Bottou, “Wasserstein
generative adversarial networks,” in International con-
ference on machine learning. PMLR, 2017, pp. 214–223.

[17] D.-J. Han, M. Choi, J. Park, and J. Moon, “Fedmes:
Speeding up federated learning with multiple edge
servers,” IEEE Journal on Selected Areas in Communica-
tions, vol. 39, no. 12, pp. 3870–3885, 2021.

[18] M. Blot, D. Picard, M. Cord, and N. Thome, “Gossip
training for deep learning,” arXiv: Computer Vision and
Pattern Recognition, 2016.

[19] X. Mao, Q. Li, H. Xie, R. Y. Lau, Z. Wang, and
S. Paul Smolley, “Least squares generative adversarial
networks,” in Proceedings of the IEEE international con-
ference on computer vision, 2017, pp. 2794–2802.

[20] H. Robbins and S. Monro, “A stochastic approximation
method,” The annals of mathematical statistics, pp. 400–
407, 1951.

[21] D. P. Kingma and J. Ba, “Adam: A method for stochastic
optimization,” arXiv preprint arXiv:1412.6980, 2014.

[22] Y. Liu, X. Yuan, Z. Xiong, J. Kang, X. Wang, and
D. Niyato, “Federated learning for 6g communications:
Challenges, methods, and future directions,” China
Communications, vol. 17, no. 9, pp. 105–118, 2020.

[23] I. Durugkar, I. Gemp, and S. Mahadevan, “Gen-
erative multi-adversarial networks,” arXiv preprint
arXiv:1611.01673, 2016.

[24] W. Y. B. Lim, N. C. Luong, D. T. Hoang, Y. Jiao, Y.-
C. Liang, Q. Yang, D. Niyato, and C. Miao, “Feder-
ated learning in mobile edge networks: A comprehen-
sive survey,” IEEE Communications Surveys & Tutorials,
vol. 22, no. 3, pp. 2031–2063, 2020.

[25] T. Li, A. K. Sahu, M. Zaheer, M. Sanjabi, A. Talwalkar,
and V. Smith, “Federated optimization in heteroge-
neous networks,” Proceedings of Machine Learning and
Systems, vol. 2, pp. 429–450, 2020.

[26] L. Collins, H. Hassani, A. Mokhtari, and S. Shakkot-
tai, “Exploiting shared representations for personalized
federated learning,” in International Conference on Ma-
chine Learning. PMLR, 2021, pp. 2089–2099.

[27] M.-Y. Liu and O. Tuzel, “Coupled generative adversar-

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2022 17

ial networks,” Advances in Neural Information Processing
Systems, vol. 29, 2016.

[28] A. Ghosh, V. Kulharia, V. P. Namboodiri, P. H. Torr, and
P. K. Dokania, “Multi-agent diverse generative adver-
sarial networks,” in Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, 2018, pp. 8513–
8521.

[29] I. Gulrajani, F. Ahmed, M. Arjovsky, V. Dumoulin,
and A. C. Courville, “Improved training of wasser-
stein gans,” Advances in Neural Information Processing
Systems, vol. 30, 2017.

[30] S. Nowozin, B. Cseke, and R. Tomioka, “f-gan: Train-
ing generative neural samplers using variational di-
vergence minimization,” Advances in Neural Information
Processing Systems, vol. 29, 2016.

[31] T. Salimans, I. Goodfellow, W. Zaremba, V. Cheung,
A. Radford, and X. Chen, “Improved techniques for
training gans,” Advances in Neural Information Processing
Systems, vol. 29, 2016.

[32] M. Heusel, H. Ramsauer, T. Unterthiner, B. Nessler, and
S. Hochreiter, “Gans trained by a two time-scale update
rule converge to a local nash equilibrium,” Advances in
Neural Information Processing Systems, vol. 30, 2017.

[33] T. Che, Y. Li, A. P. Jacob, Y. Bengio, and W. Li, “Mode
regularized generative adversarial networks,” arXiv
preprint arXiv:1612.02136, 2016.

[34] M. Ali, H. Karimipour, and M. Tariq, “Integration
of blockchain and federated learning for internet of
things: Recent advances and future challenges,” Com-
puters Security, vol. 108, p. 102355, 2021.

[35] M. Li, D. G. Andersen, J. W. Park, A. J. Smola,
A. Ahmed, V. Josifovski, J. Long, E. J. Shekita, and
B.-Y. Su, “Scaling distributed machine learning with
the parameter server,” in 11th USENIX Symposium on
Operating Systems Design and Implementation (OSDI 14),
2014, pp. 583–598.

[36] Z. Zhou, X. Chen, E. Li, L. Zeng, K. Luo, and J. Zhang,
“Edge intelligence: Paving the last mile of artificial
intelligence with edge computing,” Proceedings of the
IEEE, vol. 107, no. 8, pp. 1738–1762, 2019.

Jiaxin Zhang received the B.S. degree in In-
ternet of Things Engineering from Shenyang
Aerospace University, China. He is currently pur-
suing the master’s degree with the School of
Computer Science, Shenyang Aerospace Uni-
versity, China. His research interests mainly in-
clude GAN, federated learning, knowledge distil-
lation, edge intelligence, and MEC.

Liang Zhao (Member, IEEE) is a Professor at
Shenyang Aerospace University, China. He re-
ceived his Ph.D. degree from the School of Com-
puting at Edinburgh Napier University in 2011.
Before joining Shenyang Aerospace University,
he worked as associate senior researcher in Hi-
tachi (China) Research and Development Cor-
poration from 2012 to 2014. He is also a
JSPS Fellow. His research interests include ITS,
VANET, WMN and SDN. He has published more
than 150 articles. He served as the Chair of sev-

eral international conferences and workshops, including 2022 IEEE Big-
DataSE (Steering Co-Chair), 2021 IEEE TrustCom (Program Co-Chair),
2019 IEEE IUCC (Program Co-Chair), and 2018-2022 NGDN workshop
(founder). He is Associate Editor of Frontiers in Communications and
Networking and Journal of Circuits Systems and Computers. He is/has
been a guest editor of IEEE Transactions on Network Science and
Engineering, Springer Journal of Computing, etc. He was the recipient
of the Best/Outstanding Paper Awards at 2015 IEEE IUCC, 2020 IEEE
ISPA, 2022 IEEE EUC and 2013 ACM MoMM.

Keping Yu received the M.E. and Ph.D. degrees
from the Graduate School of Global Information
and Telecommunication Studies, Waseda Uni-
versity, Tokyo, Japan, in 2012 and 2016, respec-
tively. He was a Research Associate, Junior Re-
searcher, Researcher with the Global Informa-
tion and Telecommunication Institute, Waseda
University, from 2015 to 2019, 2019 to 2020,
2020 to 2022, respectively. He is currently an As-
sociate Professor of the Graduate School of Sci-
ence and Engineering, Hosei University, Tokyo,

Japan. His research interests include smart grids, information-centric
networking, the Internet of Things, artificial intelligence, blockchain, and
information security.

Geyong Min is a Professor of High Performance
Computing and Networking in the Department
of Computer Science within the College of En-
gineering, Mathematics and Physical Sciences
at the University of Exeter, United Kingdom. He
received the PhD degree in Computing Science
from the University of Glasgow, United King-
dom, in 2003, and the B.Sc. degree in Computer
Science from Huazhong University of Science
and Technology, China, in 1995. His research
interests include Computer Networks, Wireless

Communications, Parallel and Distributed Computing, Ubiquitous Com-
puting, Multimedia Systems, Modelling and Performance Engineering.

Ahmed Y. Al-Dubai is Professor of Networking
and Communication Algorithms in the School
of Computing at Edinburgh Napier University,
UK. He received the PhD degree in Comput-
ing from the University of Glasgow in 2004.
His research interests include Communication
Algorithms, Mobile Communication, Internet of
Things, and Future Internet. He received several
international awards.

Albert Y. ZOMAYA is the Peter Nicol Russell
Chair Professor of Computer Science and Di-
rector of the Centre for Distributed and High-
Performance Computing at the University of
Sydney. To date, he has published > 700 scien-
tific papers and articles and is (co-)author/editor
of>30 books. A sought-after speaker, he has de-
livered > 250 keynote addresses, invited semi-
nars, and media briefings. His research interests
span several areas in parallel and distributed
computing and complex systems. He is currently

the Editor in Chief of the ACM Computing Surveys and served in the past
as Editor in Chief of the IEEE Transactions on Computers (2010-2014)
and the IEEE Transactions on Sustainable Computing (2016-2020). He
is a Fellow of the IEEE, the American Association for the Advancement
of Science, the Australian Academy of Science, Royal Society of New
South Wales, and a Foreign Member of Academia Europaea.

