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Abstract. The proliferation of metamorphic malware has recently gained
a lot of research interest. This is because of their ability to transform their
program codes stochastically. Several detectors are unable to detect this
malware family because of how quickly they obfuscate their code.It has
also been shown that Machine learning (ML) models are not robust to
these attacks due to the insufficient data to train these models result-
ing from the constant code mutation of metamorphic malware. Although
recent studies have shown how to generate samples of metamorphic mal-
ware to serve as training data, this process can be computationally ex-
pensive. One way to improve the performance of these ML models is to
transfer learning from other fields which have robust models such as what
has been done with the transfer of learning from computer vision and im-
age processing to improve malware detection. In this work, we introduce
an evolutionary based transfer learning approach that uses evolved mu-
tants of malware generated using a traditional Evolutionary Algorithm
(EA) as well as models from Natural Language Processing (NLP) text
classification to improve the classification of metamorphic malware. Our
preliminary results demonstrate that using NLP models can improve the
classification of metamorphic malware in some instances.

Keywords: Metamorphic Malware, Machine Learning, Evolutionary Algorithm,
Transfer Learning, Natural Language Processing, Text Classification

1 Introduction

Detecting metamorphic malware have posed a serious challenge for antivirus en-
gines among other detectors. This is because metamorphic malware comprise
of a group of complex malware that transform their codes between generations.
They do this using various obfuscation techniques to evade detection by malware
detectors. Some of the mutation techniques they employ include but are not lim-
ited to junk code insertion (this inserts garbage code to the malware’s program
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code which do not affect the behavior of the malware), instruction replacement
(this substitutes valid instruction code with its equivalent without distorting the
functionality of the program code), and instruction re-ordering (which distorts
the flow of control of program by reordering its instruction code).

A few techniques have been employed in detecting this class of malware. The
authors in [2] summarise the detection approaches to include Opcode-Based
Analysis (OBA), Control Flow Analysis (CFA) and Information Flow Analysis
(IFA). The various detection approaches depend on the kind of information
employed when carrying out the analysis. Several other detection techniques
have been suggested that involve the use of ML methods e.g Decision Trees
(DT) in [10], Hidden Markov Models (HMM) in [37], Support Vector Machines
(SVM) in [36] as well as a hybrid of both feature based and sequential ML models
in [9].

However, ML techniques often involve using training data consisting of sam-
ples of known malware. Since metamorphic malware keep changing their code,
there is usually insufficient training data, hence impeding ML model generality.
Although previous work such as [6], [7] and [8] have provided methods for gener-
ating mutant samples of malware, this task involves several iterations to generate
sufficient executable samples which can be very computationally expensive.

A good approach to tackle this problem would be to use transfer learning,
a machine learning technique wherein the knowledge generated from a task is
stored and reused in another task, often a related task [30]. Specifically, evolu-
tionary based transfer learning where the training data are generated using an
Evolutionary Algorithm (EA) [16]. EAs are population-based meta-heuristics
that draws inspiration from processes occurring in biological evolution which
guides a population to adapt towards a desired goal. Transfer learning is par-
ticularly useful in situations where there is lack of sufficient training data. This
technique has been used in several domain such as NLP [34] and computer
vision [20]. It has also been used in malware analysis, particularly, in image pro-
cessing applications [33] among others. However, this has not been used in text
classification within the context of malware analysis. Furthermore, in metamor-
phic malware detection, it has not been used to the best of our knowledge.

In [7] and [8], two EAs were used to generate training data which are used
for the generation of the evolved malware mutants used in this work. These
methods led to improved metamorphic malware detection within the context of
feature based and sequential classifier [9]. The problem of limited training data
was however noted. In this work, we use an evolutionary based transfer learn-
ing designed specifically for cases with limited data as a way of improving the
classification and detection of metamorphic malware. Also, we seek to compare
classification performance of NLP models.

In this work, we address the following research questions:

1. Can NLP language models be used in an evolutionary based transfer learning
context to improve the classification of metamorphic malware?

2. Which of these NLP models provide the best classification performance for
metamorphic malware?
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We answer these questions by carrying out experiments that first compare
the performance of ML models without the use of language models from NLP.
Then, we test for performance improvement of the ML models using the NLP
language models. We then analyse the NLP models to determine which one leads
to the best improvement in classification scores of the ML models.

Summarily, the major contributions of this paper are as follows: Our exper-
iments show that the use of NLP language models in an evolutionary based
transfer learning context improves the classification of metamorphic malware in
some instances. Also, we show that BERT language model has the best classifi-
cation performance compared to the other language models tested.

The rest of the paper is structured as follows. Section 2 provides a review
of related works. In Section 3, we describe the methodology of our research.
Then we present and discuss our experimental settings in Section 4. Results are
presented in Section 5. Section 6 summarises and concludes the paper, it also
provides direction for future research.

2 Background

As earlier established, several approaches have been designed for metamorphic
malware analysis and detection. These include statistical analysis of their bina-
ries as in the work of [27] that used Linear Discriminant Analysis (LDA) and [39]
that used Longest Common Subsequence (LCS). Other techniques include the
use of control-flow graph matching [1], subroutine depermutation [19], code nor-
malization [4] and similarity based approaches like structural entropy [11] as well
as compression based classification [28] among others.

Machine learning techniques have also been used in classifying and detecting
metamorphic malware. As earlier mentioned techniques such as HMM have been
used by the authors in [5]. They analysed the performance of the HMM using
4 distinct compilers as well as handwritten assembly code with results show-
ing the effectiveness of HMMs in the detection of metamorphic malware. The
work in [10] employed decisions trees in metamorphic malware detection with
classification results indicative of the reliability of decision trees in metamorphic
malware classification. In [35], the authors used a single class SVM for detect-
ing metamorphic malware with success. Furthermore, a combination of machine
learning techniques have also been used for detecting metamorphic malware
in [3]. Some authors [6], [7] and [8] have also generated metamorphic malware to
serve as training data to improve the classification of machine learning models.

Transfer learning as a technique for use in instances of small training set or
small labelled data has received a lot of research attention. There are application
in a number of domains such as in medical application as seen in the work
of [29] that modified the AlexNet [26] in order to detect Alzheimer’s disease. It
has also been used in bionformatics such as in [32] that used it for the study
and prediction of associations in genotype-phenotype using Label Propagation
Algorithm (LPA) [21]. In the transportation domain, it was applied in [15] to



4 Kehinde O. Babaagba and Mayowa Ayodele

process similar images derived during varying conditions. It has also gained
attention in NLP as seen in the work of [34].

Transfer learning has increasingly been used in malware detection. It has
been used in computer vision for instance as in [13] where a computer vision
based deep transfer learning was proposed for classifying static malware us-
ing knowledge from objects appearing in nature. Also, [33] used Deep Neural
Network (DNN) built from the ResNet-50 architecture in classifying malicious
software. The malware were converted to grayscale images. Then the DNN that
had been trained previously on the ImageNet dataset is used in classifying the
malicious samples. Similarly, the work of [12] built a deep learning model pre-
trained on a large set of image data to improve the classification of malware.
Transfer learning has also been employed in Generative Adversarial Network
(GAN) settings as seen in the works of [23] and [24]. As in [24], their model
comprised of a generator that created adversarial samples. The detector learns
the characteristics of the malicious samples using a deep autoencoder (DAE).
Prior to training the GAN, the DAE uses the learned features of malware to
create data and transfers the learned information to improve the training of the
GAN generator. Their method was shown to outperform other models designed
for the same application. However, after exhaustive literature review, a study
that employed evolutionary based transfer learning for metamorphic malware
analysis and detection could not be found.

In this work, we use evolutionary based transfer learning of language models
in NLP to improve the classification of metamorphic malware. We use evasive
and diverse mutant variants of malware previously created in [7] and [8]. The
effects of using these samples to improve current ML detection models including
both feature based and sequential based models were analysed [9]. In this paper,
we study if using these mutants in a model that employs transfer learning from
NLP can improve their classification accuracy.

3 Methodology

In this section, we explain briefly the two EAs employed in the creation of the
training set (details can be found in [7,8]). thereafter, we explain how we collect
and process the data collected. We then explain the transfer learning models
employed in our experimentation.

3.1 Creation of the Evolved Malware Mutants

Alg. 1 presents an EA originally proposed in [7]. The EA is a mutation only pop-
ulation based algorithm used in creating the evolved malware mutants. In Line
1, an initial population P consisting of n randomly generated mutants is created.
These mutants are optimised for either the behavioral similarity between a vari-
ant and the original malware; the structural similarity between a variant and the
original malware; the detection rate with respect to 63 detection-engines. Fur-
thermore, we use the EA in [8] which employs MAP-Elites, a Quality Diversity
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(QD) algorithm, to generate mutants that are structurally s and behaviorally
b diverse to the original malware. Given each feature < s, b >, the algorithm
seeks to find mutants associated to that feature that are as evasive as possible
with results leading to the generation of more diverse mutants that retain their
evasive ability. We ensure that the mutants created using both methods are still
malicious by testing them against Droidbox1. This is a sandbox designed for
the monitoring and dynamic analysis of mobile software. The sandbox works by
executing the samples and then studying their behaviors by logging useful data
relating to the sample such as its registry calls, process related operations among
others.

To generate the final population of mutants, max iterations generations of
mutation steps are performed. During each generation, a new population R is
created by randomly selecting k mutants from the initial population P (Line 4).
In Line 6, one of three mutation types, which are, Garbage Code Insertion (GCI)
(inserts a piece of junk code, e.g. a line number into the original program code),
Instructional Reordering (IR) (adds a goto statement in the original program
code that jumps to a label that does nothing) and Variable Renaming (VR)
(renames a variable with another valid variable name in the original program
code), is selected. In Line 7, a new mutant solution xnew is generated by per-
forming mutation (using a randomly selected mutation type (mut type) on the
best solution in R (xbest). If the fitness of this new solution xnew is better than
the worst solution in P , it replaces such solution, otherwise, xnew is discarded.
At the end of max iterations generations, the final population P is returned.

Algorithm 1 Evolutionary Algorithm [7]

1: initialize population P of size n.
2: assign fitness f(x) to each mutant x ∈ P
3: while max iterations not reached do
4: R← randomly select k variants from P
5: xbest ← argmin {f(x), x ∈ R}
6: mut type← select a mutation operator at random with uniform probability
7: xnew ← mutate(mut type, xbest)
8: fitnew ← f(xnew)
9: xworst ← argmax {f(x), x ∈ P},

10: fitworst ← f(xworst)
11: if fitnew < fitworst then
12: replace xworst in P with xnew

13: end if
14: end while
15: return P

1 Droidbox - https://www.honeynet.org/taxonomy/term/191
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3.2 Data Collection and Processing

The samples used in this work comprise of Android malware which are archived
as APK files. The main aim is to analyse metamorphic malware. However, due to
the difficulty associated with the collection of these malware, we create mutant
samples of existing popular malicious family as proxy which define prospective
mutants. The samples comprise of both benign and malicious data.

The APK files comprise of 60 benign samples. These samples were collected
from three categories namely; communication, entertainment and security. Equal
number of samples were collected from each category resulting in 20 samples from
each category. We chose these groups because they represent the behaviour of
most Android clean files. The benign samples were collected from Google play
store1 (the samples were downloaded using Apkdownloader2) and Wondoujia
play store3.

The parent malware of the mutant variants of malware described in 3.1 were
collected from Contagio Minidump4 and Malgenome5. These comprise of three
malware families and they are Dougalek6, Droidkungfu7 and GGtracker8. The
three families were chosen based on their malicious payload and they belong to
four groups described below:

1. Privilege Escalation: The complexity of the Android platform, owing to the
fact that it comprises both Linux kernel and Android framework which have
over 90 libraries, makes it prone to attacks in the form of privilege escalation.
Droidkungfu [17], an Android malware family first discovered in May 2011,
is an example of a malware family that uses privilege escalation. It is one of
the families gotten from the MalGenome dump. It uses encryption to obfus-
cate its code in order to go undetected by detectors. It includes encrypted
root exploits and malicious payloads that are in touch with C&C servers,
from which they get instructions to be executed. This family of malware is
considered in our analysis.

2. Remote control: This feature allows mobile malicious attackers gain remote
control of the phone. Malware families that have this functionality are in
communication with remote C&C servers. Droidkungfu is also an example
of a malware family that uses remote control malicious payload and is con-
sidered in our analysis.

1 Google Play - https://play.google.com/store?hl=en
2 Apkdownloader -https://apps.evozi.com/apk-downloader/
3 Wondoujia Play - www.wandoujia.com
4 Contagio Minidump - http://contagiominidump.blogspot.com/2015/01/

android-hideicon-malware-samples.html
5 Malgenome - http://www.malgenomeproject.org/
6 Dougalek - https://www.trendmicro.com/vinfo/us/threat-encyclopedia/

malware/androidosdougalek.a
7 Droidkungfu - https://www.f-secure.com/v-descs/trojan_android_

droidkungfu_c.shtml
8 GGtracker - https://www.f-secure.com/v-descs/trojan_android_ggtracker.

shtml
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3. Financial charges: Some malicious attacks are launched to deliberately extort
money from the users infected in form of financial charges. They subscribe
users to premium services without proper authorisation, and in most cases
the infected parties are unaware of such services. GGtracker [18] is an exam-
ple of such a family of malware. It is one of the families in the MalGenome
dump, and subscribes the infected users to various US premium services
without their consent. It is also one of the families of malware studied.

4. Personal information stealing: There are also other malware families whose
major goal is to collect information. This information could be on the infected
user’s account, contact list, text messages, among others. Malware families
such as Dougalek [38] from the Contagio minidump and GGtracker, fall into
this category and are analysed in our study.

The malicious samples also comprise of malware gotten from the web that
belong to the aforementioned families collected from Contagio Minidump.

In order to get the features of the samples collected we carryout dynamic
analysis of the samples using tools such as Strace9 and MonkeyRunner10. Strace
runs the samples in order to study its behavior and keeps track of each system
call the samples make. It uses MonkeyRunner to execute the sample’s main
activity and MonkeyRunner is employed in simulating user interaction with the
sample. This is then used to generate sequential features of the samples.

We use the log stored by Strace to derive each sample’s sequential features.
Thereafter, we generate a time-ordered system-calls list and this forms the fea-
ture vector of the samples.

3.3 NLP Language Models

In this section we describe the language models employed in this work. The
language models selected comprise of some of the most recent and commonly
used models in NLP. They are briefly explained below:

BERT [14] is an acronym for Bidirectional Encoder Representations from Trans-
formers. It was created for the pretraining of deep representations that are bidi-
rectional, from text that are not labelled by taking into consideration the con-
textual information of the text that is, by working out both the left and right
context of the token. Consequently, the pre-trained BERT models can be easy
adjusted and tuned with only an extra output layer to produce advanced mod-
els for a large number of NLP tasks. This model is pre-trained on a massive
unlabelled text corpus which includes the whole of Wikipedia (this has about
2.5 billion words) and Book Corpus (this comprises of about 800 million words).
After being tested on about 11 NLP tasks, it produces novel state-of-the-art
results such as improving the GLUE score by 7.7%, the MultiNLI accuracy by
4.6%, the SQuAD v2.0 Test F1 by 5.1%, among others.

9 Strace - https://linux.die.net/man/1/strace
10 Monkeyrunner - https://developer.android.com/studio/test/monkey
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As illustrated in Fig. 1, BERT model comprises both pre-training and fine-
tuning steps. The pre-training task occurs with the training of the model on
instances that are unlabelled for various distinct pre-training tasks. The fine-
tuning process on the other hand, begins with the initialization of the model
with pre-trained parameters. Then, using the labelled data derived from the
downstream tasks, the parameters are fine-tuned. BERT uses O(n2) time and
space with regard to the length of the sequence.

Fig. 1. A BERT model illustrating its pre-training and fine-tuning tasks [14]

GloVE [31] A number of models that use unsupervised techniques to under-
stand word representations often rely on and use word occurrences statistics
in a corpus to learn from word representations. However, a number of unan-
swered questions exist regarding how meaningful these statistics are as well as
if the word vectors generated from them provide meaningful representations.
The GloVe (Global Vectors) model was presented as an unsupervised learning
algorithm used to represent words which directly captures the global corpus
statistics in the model. It generates vector representations for words and trains
on a composite of global word-word co-occurrence statistics from a corpus. It
has been shown to produce representations with striking and meaningful linear
substructures of the word vector space.

An example can be seen in making a quantitative distinction between man
and woman as seen in Fig. 2. To do that, an association has to be built beyond
one number to the pair of words by a model, for instance through the vector
difference between their word vectors. In such an example, GloVe is well suited
for computing such vector differences such that the meaning derived from the
collocation of the two words is maximally represented.

FastText [22] This model was generated by researchers at Facebook AI Re-
search (FAIR) lab to serve as a library for learning word representations as
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Fig. 2. Linear substructure for quantitatively distinguishing between man and woman
using GloVe model [31]

well as sentence classification more effectively. Unlike other word vectors that
consider each word as the lowest unit in which we are seeking to find its repre-
sentation, FastText considers each word as a n-grams of character, in which n
can take values from 1 to the word length. It is beneficial in that it can discover
the vector representation for uncommon words as these words can be split into
character n-grams. It incorporates pre-trained language models learned in over
157 different languages and including the whole of Wikipedia.

For complex and rare words that would have been difficult to represent, other
than return a zero vector or a random vector with low magnitude, FastText will
split those words into character n-grams and use the vectors of the generated
character n-grams to produce the final word vector. This kind of embedding has
been shown to outperform other embeddings particularly on smaller data-sets
and its architecture is given in Fig. 3.

4 Experimental Settings

The parameters used by the EA is the same as one in [7] and [8] and presented
in Table 1.

Our experiments were implemented using Scikit-learn libraries for Python,
including the use of the Keras library11. The models (explained in Section 3.3 of
the paper) and their hyper-parameters were empirically tuned. As a result of its
documented success in terms of its accuracy and computational power, “Adam”

11 Keras - https://github.com/fchollet/keras
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Fig. 3. FastText Architecture [22]

Table 1. Evolutionary based Parameter Settings

EA
Settings

EA MAP-Elites

Bootstrap NA 20
Selection Tournament Random

Population Size 20 NA
Iterations 120 120

Mutation Rate 1 1
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optimiser [25] was employed. The binary cross entropy function was used as the
loss function (this function was chosen as our classification is binary). Moreover,
as our problem is a classification problem, we employ a Dense output layer
comprising of one neuron with a sigmoid activation function. We employed a
batch size of 6 so as to space out the updates of weight. The model was fitted
using just four epochs as it speedily over-fitted the problem.

The training set comprises of 60 benign and 60 malicious samples. The 60 be-
nign samples comprise of 20 entertainment applications, 20 security applications
and 20 communication applications. The 60 malicious samples comprise of 20
malware from the Dougalek family, 20 malware from the Droidkungfy family and
20 malware from the GGtracker family. We will refer to the data combination
as 6020combo from here on.

Also we consider increasing the malicious samples for training by considering
60 benign samples and 157 malicious samples (50 from Dougalek family, 55 from
the Droidkunfu family and 52 from the GGTracker family). We will refer to this
increased data combination as 6050combo from here on.

For testing, we use dataset comprising of 27 benign samples, 23 malicious
samples (10 dougalek family, 5 droidkunfu family and 8 ggtracker family) for
the 6050combo. For the 6020combo, we use a dataset consisting of 27 benign
samples, 16 malicious samples (10 dougalek family, 3 droidkunfu family and 3
ggtracker family).

The approach proposed in this paper, provides a robust solution for detecting
novel mutants of malware which represent the type of malware found in real
environments.

5 Results

In this section, we analyse results based on the experimental settings described in
the previous section. We particularly provide answers to our research questions
in the subsections below.

5.1 Can NLP language models be used in a evolutionary based
transfer learning context to improve the classification of
metamorphic malware?

To answer our first research question, we conduct experiments with and without
the use of the NLP language models and observe if there was an improvement in
the classification accuracy and F1 score by reason of using the language models.
This was done for the 6020combo and the 6050combo as shown in Tables 2 and
3.

We see that when we do not use a language model, we get an accuracy of
0.63 for the 6020combo and an accuracy of 0.54 for the 6050combo. Although
the same results are obtained when we use the GloVe and FastText models,
we see that for both the 6020combo and 6050combo data, we get an improved
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Table 2. Comparing Accuracy obtained on the test sets for the 6020combo and
6050combo models using No language Model, BERT, FastText and GloVE language
models

Test Sets

Accuracy

No
Language

Model
BERT FastText GloVE

6020combo 0.63 0.93 0.63 0.63
6050combo 0.54 0.90 0.54 0.54

classification score of 0.93 and 0.9 respectively using the BERT model. There is
at least one model — BERT that results in an improved classification accuracy.

Similarly, when F1 Score - which computes the harmonic mean of precision
and recall is employed as an evaluation metric, we notice a similar trend show-
ing that in two instances i.e., BERT (0.91 for the 6020combo and 0.9 for the
6050combo) and GloVE (0.8 for the 6020combo and 0.7 for the 6050combo) the
F1 Score is higher when an NLP language model is employed than when no
language model is used which results in an F1 Score of 0.5 for the 6020combo
and 0.4 for the 6050combo. It is important to note that the BERT model has
been shown to be significantly better than other language models when smaller
data-sets are involved [14].

Table 3. Comparing F1 Score obtained on the test sets for the 6020combo and
6050combo models using No language Model, BERT, FastText and GloVE language
models

Test Sets

F1 Score

No
Language

Model
BERT FastText GloVE

6020combo 0.5 0.91 0.5 0.8
6050combo 0.4 0.9 0.4 0.7

5.2 Which of these NLP models provide the best classification
performance for metamorphic malware?

In this section, we compare the performance of the three language models to see
which one produces the best classification accuracy and F1 Score. From Table
2, we see that the classification accuracy of both FastText and GloVe models
are the same for both the 6020combo and 6050combo models. However, we see
that the BERT model performs significantly better than the other two models
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producing an accuracy of 0.93 and 0.9 for the 6020combo and 6050combo data
respectively.

Table 3 also shows that compared to the other models BERT has a better F1
Score of 0.91 for the 6020combo and 0.9 for the 6050combo. It is interesting to
note that when we use the F1 Score, GloVE (0.8 for the 6020combo and 0.7 for
the 6050combo) outperforms FastText (0.5 for the 6020combo and 0.4 for the
6050combo) for both the 6020combo and 6050combo.

6 Conclusion

We have established that metamorphic malware represent a difficult class of
malware to detect due to the way they change their codes stochastically. Another
problem with detecting these malware class particularly using ML models is that
there is insufficient training data for ML models to learn from. Generating these
data is very time consuming and computationally expensive.

In this paper, we have presented an approach to address the aforementioned
problem that employs an evolutionary based transfer learning method to improve
the classification of metamorphic malware. The results show that the use of
BERT model leads to better classification accuracy and F1 Score compared to
when a language model is not used. Furthermore, we demonstrate that the use
of BERT model also yields the best accuracy and F1 Score on both data tested
as compared to the other two language models employed.

Future work could compare more NLP models as well as use transfer learning
from other application areas for improved classification and detection of meta-
morphic malware.
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19. Fiñones, R.G., Fernandez, R.: Solving the metamorphic puzzle. Virus Bul-

letin pp. 14–19 (2006), https://www.virusbulletin.com/virusbulletin/2006/

03/solving-metamorphic-puzzle/
20. Gao, J., Ling, H., Hu, W., Xing, J.: Transfer learning based visual tracking with

gaussian processes regression. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars,
T. (eds.) Computer Vision – ECCV 2014. pp. 188–203. Springer International
Publishing, Cham (2014)

21. Hwang, T., Kuang, R.: A heterogeneous label propagation algorithm for disease
gene discovery. In: Proceedings of the 2010 SIAM International Conference on Data
Mining. pp. 583–594. SIAM (2010)



Title Suppressed Due to Excessive Length 15

22. Joulin, A., Grave, E., Bojanowski, P., Mikolov, T.: Bag of tricks for efficient text
classification. In: Proceedings of the 15th Conference of the European Chapter
of the Association for Computational Linguistics: Volume 2, Short Papers. pp.
427–431. Association for Computational Linguistics, Valencia, Spain (Apr 2017),
https://aclanthology.org/E17-2068

23. Kim, J.Y., Bu, S.J., Cho, S.B.: Malware detection using deep transferred generative
adversarial networks. In: Liu, D., Xie, S., Li, Y., Zhao, D., El-Alfy, E.S.M. (eds.)
Neural Information Processing. pp. 556–564. Springer International Publishing,
Cham (2017)

24. Kim, J.Y., Bu, S.J., Cho, S.B.: Zero-day malware detection using transferred gener-
ative adversarial networks based on deep autoencoders. Information Sciences 460-
461, 83 – 102 (2018). https://doi.org/https://doi.org/10.1016/j.ins.2018.04.092

25. Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. CoRR
abs/1412.6980 (2014)

26. Krizhevsky, A., Sutskever, I., Hinton, G.E.: Imagenet classification with deep con-
volutional neural networks. In: Pereira, F., Burges, C.J.C., Bottou, L., Weinberger,
K.Q. (eds.) Advances in Neural Information Processing Systems 25, pp. 1097–1105.
Curran Associates, Inc. (2012)

27. Kuriakose, J., Vinod, P.: Ranked linear discriminant analysis fea-
tures for metamorphic malware detection. In: 2014 IEEE Interna-
tional Advance Computing Conference (IACC). pp. 112–117 (Feb 2014).
https://doi.org/10.1109/IAdCC.2014.6779304

28. Lee, J., Austin, T.H., Stamp, M.: Compression-based analysis of meta-
morphic malware. Int. J. Secur. Netw. 10(2), 124–136 (Jul 2015).
https://doi.org/10.1504/IJSN.2015.070426

29. Maqsood, M., Nazir, F., Khan, U., Aadil, F., Jamal, H., Mehmood, I., Song, O.Y.:
Transfer Learning Assisted Classification and Detection of Alzheimer’s Disease
Stages Using 3D MRI Scans. Sensors (Basel, Switzerland) 19(11), 2645 (jun 2019).
https://doi.org/10.3390/s19112645

30. Pan, S.J., Yang, Q.: A survey on transfer learning. IEEE Transactions on Knowl-
edge and Data Engineering 22(10), 1345–1359 (2010)

31. Pennington, J., Socher, R., Manning, C.D.: Glove: Global vectors for word repre-
sentation. In: Proceedings of the 2014 conference on empirical methods in natural
language processing (EMNLP). pp. 1532–1543 (2014)

32. Petegrosso, R., Park, S., Hwang, T.H., Kuang, R.: Transfer learning across ontolo-
gies for phenome–genome association prediction. Bioinformatics 33(4), 529–536
(nov 2016). https://doi.org/10.1093/bioinformatics/btw649

33. Rezende, E., Ruppert, G., Carvalho, T., Ramos, F., de Geus, P.: Malicious software
classification using transfer learning of resnet-50 deep neural network. In: 2017 16th
IEEE International Conference on Machine Learning and Applications (ICMLA).
pp. 1011–1014 (2017)

34. Ruder, S., Peters, M.E., Swayamdipta, S., Wolf, T.: Transfer learning in natural
language processing. In: Proceedings of the 2019 Conference of the North American
Chapter of the Association for Computational Linguistics: Tutorials. pp. 15–18.
Association for Computational Linguistics, Minneapolis, Minnesota (Jun 2019).
https://doi.org/10.18653/v1/N19-5004

35. Sahs, J., Khan, L.: A machine learning approach to android malware detection.
In: 2012 European Intelligence and Security Informatics Conference. pp. 141–147
(Aug 2012). https://doi.org/10.1109/EISIC.2012.34

36. Sahs, J., Khan, L.: A Machine Learning Approach to Android Malware Detection.
In: 2012 European Intelligence and Security Informatics Conference (2012)



16 Kehinde O. Babaagba and Mayowa Ayodele

37. Toderici, A.H., Stamp, M.: Chi-squared Distance and Metamorphic Virus Detec-
tion. J. Comput. Virol. 9(1), 1–14 (feb 2013)

38. TRENDMICRO: ANDROIDOS DOUGALEK.A (2012), https://www.

trendmicro.com/vinfo/us/threat-encyclopedia/malware/androidos_

dougalek.a

39. Vinod, P., Vijay, L., Singh, G.M., Phani, K.G., S., C.Y.: Static cfg analyzer for
metamorphic malware code. In: Proceedings of the 2Nd International Conference
on Security of Information and Networks. pp. 225–228. SIN ’09, ACM, New York,
NY, USA (2009). https://doi.org/10.1145/1626195.1626251


