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Towards Simple and Accurate Human Pose
Estimation with Stair Network

Chenru Jiang, Kaizhu Huang*, Shufei Zhang, Xinheng Wang, Jimin Xiao, Zhenxing Niu and Amir Hussain

Abstract—In this paper, we focus on tackling the precise key-
point coordinates regression task. Most existing approaches adopt
complicated networks with a large number of parameters, leading
to a heavy model with poor cost-effectiveness in practice. To over-
come this limitation, we develop a small yet discrimicative model
called STair Network, which can be simply stacked towards
an accurate multi-stage pose estimation system. Specifically, to
reduce computational cost, STair Network is composed of novel
basic feature extraction blocks which focus on promoting feature
diversity and obtaining rich local representations with fewer
parameters, enabling a satisfactory balance on efficiency and
performance. To further improve the performance, we introduce
two mechanisms with negligible computational cost, focusing on
feature fusion and replenish. We demonstrate the effectiveness of
the STair Network on two standard datasets, e.g., 1-stage STair
Network achieves a higher accuracy than HRNet by 5.5% on
COCO test dataset with 80% fewer parameters and 68% fewer
GFLOPs. 1

Index Terms—Stair Network, Human Pose Estimation, Feature
Diversity.

I. INTRODUCTION

HUMAN pose estimation is one fundamental yet chal-
lenging task to estimate precise human joint coordinates

(eyes, ears, shoulders, elbows, wrists, knees, etc.). It is one es-
sential component for various high-level visual understanding
tasks such as human action recognition [1]–[4], video surveil-
lance [5], and tracking [6], [7]. In recent years, there have
been significant advances from single pose estimation [8]–
[14] to multiple pose estimation [15]–[20]. These methods can
be categorized into bottom-up [15], [17], [19]–[22] and top-
down [16], [18], [23]–[27] methods. Top-down methods are
gaining more popularity due to their higher accuracy.

In existing top-down methods, multi-stage structures [13],
[28], [29] and knowledge distillation [29], [30] are commonly
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Fig. 1. Performance vs. parameter number of various methods on COCO test
data with 384×288 input size. Method in red is 3-stage STair Network, and
* means the method adopts pre-training.

adopted for pose estimation. However, two main drawbacks
limit both the efficiency and the accuracy. One defect is that
single receptive field for local features is commonly adopted
in existing methods. As such, these local features may not be
sufficient. To compensate this, current models usually prefer
deep and complicated network structures in order to attain
good performance. Figure 1 shows a number of existing
popular methods which commonly adopt a heavy model with
a large number of parameters. Although multi-scale module
structure [12], [31] is commonly designed to aggregate infor-
mation, the feature diversity is still coarse and insufficient for
regression tasks. The top part of Figure 2 illustrates a scenario
that the single receptive field (the smallest red rectangles)
is deficient to distinguish background or different torsos.
For knowledge distillation, complicated teacher networks and
iterative training process are indispensable. The other defect is
that the information loss is inevitable in these structures. We
observe that, for localization tasks, the position error will be
accumulated and enlarged after the iterative down/upsampling
process. In addition, these methods seldom consider the im-
portant high-frequency texture representations [32].

To reduce computational cost and still achieve superior
performance, we design a novel basic feature extraction block,
STair Cell (STC), to simultaneously pursue advantageous
feature diversity and high efficiency. In each block, multiple
receptive fields structure is introduced to promote local feature
diversity and aggregate rich local representations, enabling the
block to obtain stronger discriminative capability on multi-
scale keypoints or background (as illustrated multiple red rect-
angles in the top part of Figure 2). Meanwhile, a lightweight
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Fig. 2. The upper figure part illustrates the local features of multi-scale keypoints, where the four red boxes on local features are the multiple receptive fields
of STair Cell. The lower figure part demonstrates the STair Network structure. The STair Units can be stacked in order to achieve even better accuracy.

context attention is embedded to enlarge the features discrim-
ination. Figure 3 visualizes the correlations within STC where
multiple receptive fields focus on aggregating different local
features and bring rich information difference. For efficiency,
the block channel number is gradually halved and depthwise
separable mechanism is adopted to attain lower computational
cost.

Fig. 3. Branch correlation of STC. Deeper color means stronger correlation.
C1, C2, C3 and C4 are corresponding to the four branches of STC in Figure 4.
Better viewed in color.

We encapsulate STCs to build a simple multi-branch module
termed STair Unit (STU), which is illustrated as triangles in
Figure 2. We propose to tackle the information loss problem
from two aspects. Within each unit, down/upsampling is not
taken in the first branch such that the network can consistently
keep the high resolution feature maps to alleviate information
loss. Outside each unit, we design a lightweight structure to
focus on feature re-usage and re-exploitation among multiple
units. Illustrated as squares in Figure 2, such structure can
be readily attached after each unit for enhancing feature uti-
lization. Meanwhile, we try to reserve high-frequency texture
representations (illustrated as diamonds in Figure 2), to supply

these important features at the last unit for precise localization.
STair Units can be simply stacked to form a multi-stage

network for the coarse-to-fine estimation. Significantly dif-
ferent from knowledge distillation, by enhancing the feature
extraction block while alleviating the information loss prob-
lem, the large teacher network is not needed in our network.
In addition, our model can be readily combined with other
methods to tackle several challenging scenarios. In a nutshell,
our contributions are three-fold:

1) To attain a low computational cost and accuracy frame-
work, we propose a lightweight yet effective basic
feature extraction block to focus on extracting more
diverse local representations, enabling better capability
to localize different keypoints with less parameters.

2) To reduce information loss during the training, the
first branch within each STC consistently keeps high
resolution feature maps. Meanwhile, two efficient mech-
anisms are proposed to connect STCs to enhance feature
utilization and replenish.

3) STNet attains new SOTA performance with lower com-
putational cost on standard benchmarks. Specifically,
even 1-stage network can boost the accuracy by 5.5%
over previous SOTA network [18] with only 20% pa-
rameters when evaluated on COCO test datasets.

II. RELATED WORK

A. Feature Extraction Unit

Residual block is a popular basic feature extraction unit and
commonly adopted in existing pose estimation methods [12],
[16], [18], [26], [33], [34]. By the efficient bottleneck design
with the skip connection, the residual block can be utilized to
form much deeper and more complicated structures. Mean-
while, some novel methods can also assist to improve the
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residual block capability. For instance, SENet [35] embeds
channel attention after each block to reweight each feature
map. SKNet [36] increases a convolution with the different
kernel size in the block, and adopts soft attention to select
useful channels. ResNeXt [37] applies group convolution [38]
in order to obtain rich features from different subspace.
Currently, RSN [39] proposes to equally split channels into
4 branches in one block, and increases the convolutions and
inner connections to fuse features gradually. However, RSN
relies heavily on complicated and advanced platforms MegDL,
and the performance RSN 18 drops significantly (3.2%) when
Pytorch is adopted. As demonstrated in section III-A, the basic
feature extraction blocks of this paper consist of four sequen-
tial convolutions, where the channel dimension is halved and
receptive field is doubled gradually to capture rich diverse
local features while maintaining high efficiency.

B. Multi-stage Learning Structure

Multi-stage structure proves suitable to attain accurate lo-
calization, which has been widely used in various recent
approaches [13], [18], [28], [40] for refining predictions
gradually. Hourglass [12] and fast pose [29] take the same
sub-module to form multi-stage networks. MSPN [40] fol-
lows the hourglass design yet doubles the channel dimension
gradually after each downsampling. Among multiple stages,
existing methods [29], [41], [42] focus on feature attention,
and intermediate supervision [10] to adjust and supervise
the sub-module learning process. Differently, as shown in
section III-C, we propose a multi-stage dual branch structure
which mainly focus on feature re-usage and re-exploitation
among stages.

C. Low-frequency Structure Feature Fusion

In the traditional methods [16], [18], [39], multi-scale
feature fusion is adopted commonly to extract low-frequency
semantic information. Hourglass network [12] proposes a U-
shape structure to attain multi-scale feature fusion within each
stage. Later works such as cascaded pyramid network [16]
execute a multi-scale fusion process between high-to-low
and low-to-high structures. HRNet [18] sets up four parallel
branches and aggregates branch features iteratively. Based on
the HRNet structure, LitePose [43] focuses on simplifying
the multi-branch fusion while adopting a larger kernel size
to achieve a light-weight model on mobile platforms. Dite-
HRNet [44] improves the original structure to extract multi-
scale contextual information and long-range spatial depen-
dency of different joints. HigherHRNet [22] utilizes the HRNet
structure in the bottom-up learning mechanism for better scale-
aware representation learning. Intuitively, current methods all
work on low-frequency structure feature fusion. However,
high-frequency information is another critical factor [32]
for the precise localization tasks as it provides rich texture
representations. Unfortunately, high-frequency information is
hardly reserved when networks go deeper. Contrary to the
conventional approaches, in Section III-D we develop an
effective method to directly replenish abundant multi-scale
high-frequency representations to the model. On the other

hand, our method can be served as a basic model to obtain
2D joints for other high-level applications. For instance, [45]
directly utilizes 2D joint locations to regress joints location
in 3D space, [46] combine long-wavelength infrared modality
and image information to handle in-bed occlusion problem
for human behavioral monitoring, [47] explores an effective
method which applies the pre-trained 2D pose estimation
method on 3D field, and [48] combines Inertial Measurement
Unit sensor and video information to handle full-body motion
capture.

III. OUR APPROACH

In this section, we first detail our basic component STair
Cell. After that, we introduce the multi-scale STair Unit
structure consisting of a number of STCs that maintains
high resolution feature maps from end to end. Next, we will
describe the Multi-stage Dual Branch Structure and STair
Fusion mechanism to further enhance the network.

A. STair Cell

a) STair Convolution: For each STair Cell, we propose a
sequential stair-shape atrous convolution structure to aggregate
significant diverse local features for different scale keypoints
through multiple receptive field sizes. In contrast to traditional
convolutions, atrous convolution [49] helps to attain larger
receptive fields without increasing the computational cost. The
kernel sizes of atrous convolution layers are calculated by
K = k+(k− 1)× (R− 1), where K is the equivalent kernel
size, k is the practical kernel size, and R is the dilation rate.

Fig. 4. STair Cell structure. Purple rectangles indicate atrous convolution
processes with multiple dilation rates, gray rectangles describe the embedded
context attentions.

As shown in Figure 4, one stair shape convolution structure
contains four atrous convolution layers with the different
dilation rates (R = 1, 2, 3, 4). We notice that the atrous
convolution has an inherent gridding effect which leads to
information inconsistency [50]. To alleviate such gridding
effect, we keep the dilation rate as 1 in the top base convolution
layer, make it as the same as the normal convolution. In STC,
as the receptive field size is increased, the channel number
is reduced in half for the efficiency purpose. Concretely,
the total computational cost of four-branch structure are:
4T (T = k×k×Cin×Cout×H×W ), where the computational
cost depends multiplication on the number of input channels
Cin, the number of output channels Cout, the kernel size
k, and the feature map size H × W . The channel halving
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strategy factorizes conventional mechanism into four parts and
the amount of parameters are:

1

2
T +

1

8
T +

1

32
T +

1

64
T =

43

64
T (1)

Thus, the channel halving strategy attains 4/( 4364 ) ≈ 6 times
computation reduction than the conventional structure. Table I
demonstrates the computational cost comparison of channel
halving strategy. More channels might provide richer diverse
features but hinder structure efficiency, which is not pursued
in this work. Particularly, we have investigated various struc-
tures for STC which are shown in ablation parts. However,
the current structure demonstrates the best performance for
aggregating diverse local features with high efficiency.

TABLE I
RESULTS OF STC WITH/WITHOUT CHANNEL HALVING STRATEGY.

Method pretrain Input Size Halve #Params GFLOPs AP

1-stage N 256 × 192 ✓ 5.7M 2.3 72.1
1-stage N 256 × 192 × 8.7M 3.0 73.0

Table II lists the detail parameter configurations of STC
and STU. Since the inputs of each atrous convolution are
based on the previous layers, the receptive fields are gradually
superimposed. Thus, the fourth branch of the STC contains
four receptive fields equivalently. In this regard, STC enables
to extract rich diverse local representations for the network.
As demonstrated in Figure 3, the correlations between dif-
ferent STC branches (Ci and Cj, i ̸= j) are low, meaning
that multiple branches with various receptive fields focus on
aggregating different local features. Consequently, four-branch
STair Units can obtain more dense diverse features with STCs,
as shown in the second part of Table II.

TABLE II
PARAMETER CONFIGURATION OF STAIR CELLS AND STAIR UNITS. M

MEANS THAT THE FEATURE MAP SIZE IS MAINTAINED, AND H MEANS THE
FEATURE MAP SIZE IS HALVED BY DOWNSAMPLING.

STC Branch Index Feature Map Size Channel Number Kernel Size

c = 1 M 16 3
c = 2 M 8 3, 5
c = 3 M 4 3, 5, 7
c = 4 M 4 3, 5, 7, 9

STU Branch Index Feature Map Size Channel Number Kernel Size

b = 1 M 32 3, 5, 7, 9
b = 2 H 64 5, 7, 9, 11
b = 3 H 128 7, 9, 11, 13
b = 4 H 256 9, 11, 13, 15

To further reduce the parameters, we adapt the depthwise
separable convolution [51] to our STC, which factorizes
a standard convolution into a depthwise operation and a
pointwise operation. First, each atrous convolution of STC
exploits depthwise operation to apply a single filter for each
input channel. Then, the pointwise operation applies a 1 × 1
convolution to combine the depthwise outputs. There is a

significant difference on the amounts of network parame-
ters between traditional convolution and depthwise separable
convolution. Specifically, the total computational cost of a
standard convolution are: T , The depthwise separable con-
volution splits standard convolution operation into two parts:
T/k2 + T/Cout. After decomposing convolution as a two-
step process of filtering and combining, we can achieve the
parameter reduction as below:

T/k2 + T/Cout

T
=

1

k2
+

1

Cout
(2)

After the stair-shape convolution, we concatenate four level
features and pass them to the lightweight context attention
part.

b) Mix Attention: For the postprocessing of STC, we
consider separately for different local features so that the block
attains a stronger feature diversity and fine-grained recalibra-
tion. The proposed mix attention strategy is shown in the right
part of Figure 4 which aims to reinforce the extracted diverse
features through both channel and spatial dimensions. For
calculation efficiency, we introduce soft reduction rate to the
channel dimension attention, which is dynamically enlarged
as the channels of STU is increased. For spatial dimension
attention, STC applies average and max pooling methods
to generate only two masks for keeping low computational
cost. Table III demonstrates that the mechanism is effective
to enhance feature diversity with negligible computational
cost. In addition, we maintain skip connection to support
gradients propagation of the network. In summary, we invent
a lightweight yet effective basic feature extraction block to
construct our model. The multiple receptive field design of
STC leads to extract more diverse local features which are vital
for accurate regression. Meanwhile, we develop the channel
halving strategy and mix attention mechanism to attain good
balance on effectiveness and efficiency.

TABLE III
COMPARISON OF STC WITH/WITHOUT MIX ATTENTION.

Method pretrain Input Size #Params GFLOPs Mix Attention AP

1-stage N 256 × 192 5.6M 2.3 × 71.5
1-stage N 256 × 192 5.7M 2.3 ✓ 72.1

B. STair Unit

STU can be stacked to compose a multi-stage learning
mechanism as demonstrated in Figure 2. Inspired by HR-
Net [18], each STU adopts a multi-branch structure to attain
multi-scale feature fusion. Differently, with the superior STCs,
the basic extraction block number of four branches in each
STU is: (4,3,2,1), whilst that of the HRNet is: 4x(4,3,2,1).
Thus, the computational cost is much less than HRNet. Mean-
while, as seen in the bottom part of Table II, we list the detail
kernel size range of the units. More receptive field of STU
(3-15) can obtain rich representations than HRNet (3-9). The
inner structure of the units is illustrated in Figure 5 where the
purple rectangles describe STCs and the gray rectangles are
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the multi-scale feature fusion process. To reduce information
loss, the sizes of feature maps are reduced in half but branch
channels are doubled gradually from top to bottom, and the
top branch consistently maintains high resolution featrue map
size from end to end. To make the network to obtain rich
multi-scale features for precise predictions, we design the four-
stage feature fusion in one unit. In feature fusion process,
each sub-branch iteratively aggregates the features which are
downsampled or upsampled from other parallel sub-branches.

Fig. 5. Structure of each STair Unit. Purple and gray rectangles describe
respectively STair Cells and multi-scale feature fusion process.

C. Multi-stage Dual Branch Structure

For feature re-usage, skip connections are widely applied
between network stages [16], [34]. However, existing meth-
ods pay little attention to feature re-exploration, since the
parameters grow quadratically as the densely connected path
width increases linearly. In this section, we will explain the
limitations of ResNet [33] which focus on feature re-usage,
and DenseNet [52] which focus on feature re-exploitation
first. We then present the Multi-stage Dual Branch Structure
(MDBS), which enjoys the benefits from both path topologies
for learning good representations.

a) Revisiting ResNet and DenseNet: Traditional convo-
lution feed-forward networks utilize the output of Lth layer
as the input for (L+ 1)th layer, which can be summarized
as: XL = HL(XL − 1). (XL is the output of Lth layer, and
HL are the composite operations such as batch normalization,
rectified linear unit, or convolution). ResNet proposes a skip
connection which bypasses the non-linear transformations with
an identity function:

XL = HL(XL−1) +XL−1. (3)

The main contribution of ResNet is that the gradients can
propagate directly through the identity function to relieve
gradient attenuation and reinforce the feature re-usage in
deeper layers. However, ResNet neglects the features re-
exploration and the summation process in Equation (3) may
impede the information flow in the network. After that, Huang
et al. [52] propose DenseNet, where the skip connections are
used to concatenate the inputs to the outputs instead of adding
operation in order to improve the information flow between

layers. Consequently, the Lth layer will receive the feature
maps of all preceding layers as inputs:

XL = HL(X0||X1||...||XL−1). (4)

X0||X1||...||XL−1 refers to the feature maps concatenation
(||) of layer 0, . . . , (L − 1)th. Since the width of the densely
connected path and the cost of GPU memory linearly increase
as the network goes deeper, building a deeper and wider
densenet is substantially restricted.

b) Multi-stage Dual Branch Structure: MDBS combines
advantages of both path learning [33], [52], [53], able to rein-
force information re-usage and re-exploration among multiple
STair Units. In each stage of MDBS, we feed the unit outputs
into a simple 1×1 conv to generate two branches: consoli-
dation branch and excavation branch. Similar to DenseNet,
we set a constant n as the growth rate in excavation branch,
which is half of the unit first branch channel number. The
small number of n helps slow the increase on width of branch
excavation and the GPU memory occupation. The stage inputs,
consolidation branch and excavation branch of MDBS can be
expressed as follows:

Ci = Hi(X
out
i )[0 : n] +Hi−1(X

out
i−1)[0 : n], (5)

Ei = Hi(X
out
i )[n : end]||...||H0(X

out
0 )[n : end], (6)

Xin
i+1 = Ci||Ei (7)

Xout
i are the MDBS outputs of stage i and Xin

i+1 are the
STU inputs of the stage i + 1. Hi is the shared composite
operations that the outputs are equally separated into two parts
([0 : n], [n : end]) for consolidation and excavation branches.
As exhibited in Equation (5) and Equation (6), element-wise
summation is applied on consolidation branch for features re-
usage, and concatenation operation is applied on excavation
branch for the features re-exploration. After that, as listed in
Equation (7), two branch features are concatenated together
as the inputs for the next STU. As shown in in Figure 2, the
method can be readily attached after each unit for enhancing
feature utilization. Based on the consolidation and excavation
branches design, MDBS can alleviate the position error ac-
cumulation problem without incurring obvious computational
cost. As shown in Figure 2, MDBS can be readily attached
after each unit for performance improvement.

D. STair Fusion
In the existing methods [16], [18], [39], multi-scale struc-

tures are adopted to focus on low-frequency semantic feature
fusion. However, the quantity of high-frequency features is
another critical factor for precise localization tasks [32] as
the features contain rich texture representations and better
discrimination ability. To this end, we present a STair Fu-
sion (STF) mechanism to replenish multi-scale high-frequency
features to the network. As shown in Figure 6, STF adopts
downsampling to generate multi-scale images. After that,
we apply lightweight transformation blocks at each scale to
change channels for matching multiple STU branches. The
transformation blocks contain just four layers which help to re-
serve more high-frequency texture features. The reserved high-
frequency representations are then concatenated with multi-
scale low-frequency features of STU respectively. For the
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TABLE IV
COMPARISON RESULTS ON THE COCO TEST-DEV DATASET. #PARAMS ARE TOTAL PARAMETERS OF THE NETWORKS, AND GFLOPS ARE TOTAL

COMPUTATIONAL COST OF THE METHODS. * MEANS STC WITHOUT CHANNEL HALVING STRATEGY.

Method Backbone Input Size Pretrain #Params GFLOPs AP AP50 AP75 APM APL AR

ShuffleNetV2 1× [54] ShuffleNetV2 384×288 Y 7.6M 2.87 62.9 88.5 69.4 58.9 69.3 68.9
Mask-RCNN [23] ResNet 50 FPN - Y - - 63.1 87.3 68.7 57.8 71.4 -
G-RMI [25] ResNet 101 353×257 Y 42.6M 57.0 64.9 85.5 71.3 62.3 70.0 69.7
HRNet HRNet w32 384×288 N 28.5M 16.0 67.0 85.4 74.3 64.8 73.4 78.1
IPR [55] ResNet 101 256×256 Y 45.0M 11.0 67.8 88.2 74.8 63.9 74.0 -
MobileNetV2 1× [56] MobileNetV2 384×288 Y 9.8M 3.33 66.8 90.0 74.0 62.6 73.3 72.3
G-RMI + extra data [25] ResNet 101 353×257 Y 42.6M 57.0 68.5 87.1 75.5 65.8 73.3 73.3
SimpleBaseline [26] ResNet 152 384×288 N 68.6M 35.5 69.5 90.1 77.0 66.4 75.3 75.5
Lite-HRNet [43] Lite-HRNet-30 384×288 N 1.8M 0.7 69.7 90.7 77.5 66.9 75.0 75.4
SimpleBaseline ResNet 50 384×288 N 34.0M 20.2 70.4 90.7 77.5 66.7 76.9 75.8
Dite-HRNet [44] Dite-HRNet-30 384×288 N 1.8 0.7 70.6 90.8 78.2 67.4 76.1 76.4
SimpleBaseline ResNet 101 384×288 N 53.0M 27.9 71.9 91.1 79.8 68.7 78.0 77.4
CPN [16] Resnet Inception 384×288 Y - - 72.1 91.4 80.0 68.7 77.2 78.5
RMPE [57] PyraNet [13] 320×256 - 28.1M 26.7 72.3 89.2 79.1 68.0 78.6 -
CFN [58] - - Y - - 72.6 86.1 69.7 78.3 64.1 -
CPN (ensemble) ResNet Inception 384×288 Y - - 73.0 91.7 80.9 69.5 78.1 79.0
SimpleBaseline ResNet 152 384×288 Y 68.6M 35.6 73.7 91.9 81.1 70.3 80.0 79.0
HRNet HRNet w32 384×288 Y 28.5M 16.0 74.9 92.5 82.8 71.3 80.9 80.1
HRNet HRNet w48 384×288 Y 63.6M 32.9 75.5 92.5 83.3 71.9 81.5 80.5
TokenPose [59] L/D24 384×288 Y 29.8M 22.1 75.9 92.3 83.4 72.2 82.1 80.8

1-stage STNet 256×192 N 5.7M 2.3 71.4 91.0 79.0 68.1 77.2 76.8
1-stage STNet 384×288 N 5.7M 5.2 72.5 91.0 79.7 68.9 78.5 77.8
2-stage STNet 256×192 N 8.5M 2.9 73.4 91.7 81.1 70.2 78.9 78.7
2-stage STNet 384×288 N 8.5M 6.5 74.8 92.0 82.1 71.4 80.7 80.0
3-stage STNet 256×192 N 11.3M 3.5 74.1 91.8 81.8 71.0 79.7 79.4
3-stage STNet 384×288 N 11.3M 7.8 75.3 92.1 82.7 71.8 81.2 80.4
3-stage* STNet 384×288 N 20.3M 12.6 75.9 92.3 83.4 72.5 81.8 81.1

fusion stage, we take upsampling and deconvolution methods
to gradually enlarge small-scale concatenated feature maps.
We then sum four-scale feature maps to attain multi-scale
fusion. For efficiency purpose, we apply a reduction factors
on the transformation blocks, which is similar to STC context
attention. Significantly, we attempt to modify this mechanism
into a multi-stage design. The multi-stage design combines
high-frequency features with low-frequency features after each
STU, where the high-frequency information may still be lost in
the next unit, and the results of single STF is better. Therefore,
we adopt the single fusion at the end of the network. In a
nut shell, STF helps to preserve and replenish essential high-
frequency features in the last stage of STNet to tackle the
information loss dilemma and refine prediction results further.
More experiments are shown in Section IV-C for effectiveness
verification.

IV. EXPERIMENTS

STair Network is evaluated on two standard human pose
estimation datasets, i.e. the COCO keypoint-2017 dataset [60]
and MPII keypoint [61] dataset. We follow the process of [24]
to decode the predicted heatmaps. The Adam optimizer [62]
is used in training, and we develop STNet on 4 NVIDIA 2080
Ti GPUs.

A. Results on COCO

This dataset contains over 200,000 images and 250,000
human instances labeled with 17 keypoints. The evaluation

Fig. 6. STair Fusion structure. Purple rectangles are multi-scale original
images, and gray rectangles are transformation blocks for matching channel
with STU multiple branches.

metric of the dataset is based on Object Keypoint Similarity
(OKS). Standard Average Precision (AP) and Average Recall
(AR) are used as the metric. AP and AR denotes the mean
value of 10 OKS numbers (OKS = 0.50, 0.55, . . . , 0.95),
AP50 denotes AP at OKS = 0.5, APM denotes the AP for
medium objects. For this dataset, we follow HRNet and adopt
the same human instance detector to provide human bounding
boxes for both the validation and test sets. Table IV lists the
results of STNet and other competitive methods on the COCO
test-dev dataset.The trunk branch channel number of STNet is
32.

As observed, without pre-training, our proposed method
achieves very encouraging 75.3% AP score on the 3-stage
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TABLE V
COMPARISON RESULTS ON THE COCO VALIDATION SET. OHKM MEANS ONLINE HARD KEYPOINTS MINING [16]. PRETAIN MEANS THE METHOD

IS/ISN’T PRETRAINED ON THE IMAGENET CLASSIFICATION TASK. * MEANS STC WITHOUT CHANNEL HALVING STRATEGY.

Method Backbone Input Size Pretrain #Params GFLOPs AP AP50 AP75 APM APL AR

ShuffleNetV2 1× [54] ShuffleNetV2 384×288 Y 7.6M 2.87 63.6 86.5 70.5 59.5 70.7 69.7
MobileNetV2 1× [56] MobileNetV2 384×288 Y 9.8M 3.33 67.3 87.9 74.3 62.8 74.7 72.9
Hourglass [12] 8 Hourglass 256×192 N 25.1M 14.3 66.9 - - - - -
CPN [16] ResNet 50 256×192 Y 27.0M 6.2 68.6 - - - - -
HRNet HRNet w32 384×288 N 28.5M 16.0 69.0 84.7 75.8 66.2 77.4 79.0
CPN+OHKM ResNet 50 256×192 Y 27.0M 6.2 69.4 - - - - -
SimpleBaseline [26] ResNet 152 384×288 N 68.6M 35.5 70.2 88.2 77.3 66.8 77.1 76.1
Lite-HRNet [43] Lite-HRNet-30 384×288 N 1.8M 0.7 70.4 88.7 77.7 67.5 76.3 76.2
SimpleBaseline ResNet 50 256×192 Y 34.0M 8.9 70.4 88.6 78.3 67.1 77.2 76.3
SimpleBaseline ResNet 101 256×192 Y 53.0M 27.9 71.4 89.3 79.3 68.1 78.1 77.1
Dite-HRNet [44] Dite-HRNet-30 384×288 N 1.8M 0.7 71.5 88.9 78.2 68.2 77.7 77.2
HRNet HRNet w32 256×192 N 28.5M 7.1 72.1 89.5 78.6 69.5 78.0 78.6
SimpleBaseline ResNet 152 256×192 Y 68.6M 15.7 72.0 89.3 79.8 68.7 78.9 77.8
HRNet [18] HRNet w32 256×192 Y 28.5M 7.1 74.4 90.5 81.9 70.8 81.0 79.8
HRNet HRNet w32 384×288 Y 28.5M 16.0 75.8 90.6 82.7 71.9 82.8 81.0
HRNet HRNet w48 384×288 Y 63.6M 32.9 76.3 90.8 82.9 72.3 83.4 81.2

1-stage STNet 256×192 N 5.7M 2.3 72.1 89.1 79.2 68.7 78.7 77.6
1-stage STNet 384×288 N 5.7M 5.2 73.2 89.1 80.0 69.4 80.1 78.6
2-stage STNet 256×192 N 8.5M 2.9 73.9 89.7 80.8 70.4 80.6 79.1
2-stage STNet 384×288 N 8.5M 6.5 75.6 90.0 81.8 71.8 82.5 80.6
3-stage STNet 256×192 N 11.3M 3.5 74.8 89.8 81.5 71.5 81.3 79.9
3-stage STNet 384×288 N 11.3M 7.8 76.2 90.4 82.4 72.5 82.9 81.2
3-stage* STNet 384×288 N 20.3M 12.6 76.8 90.7 83.3 73.3 83.4 81.8

backbone with the 384×288 input size. This result is higher
than all the comparison models that are even pre-trained.
Specifically, the parameter number of STNet is reduced by
over 60% (11.3M) and the GFLOPs are reduced by over
50% (7.8) than those of HRNet 32. Compared with the
SimpleBaseline (with ResNet 152 as the backbone), the gain
of 3-stage network is 1.6% with the 384×288 input size;
moreover, the parameters of STNet are reduced by over 83%,
and the reduction on GFLOPs is nearly 80%. It is also noted
that, the computational cost of STNet is the least among these
popular methods. In contrast to the existing methods, the least
reduction on parameters and GFLOPs achieved by 3-stage also
attains 60% and 30% respectively. Significantly, with the same
384×288 input size, 1-stage STNet obtains 5.5% improvement
with a 80% drop on parameters and 68% drop on GFLOPs
when compared with no-pretrained HRNet 32. Furthermore,
STNet can achieve higher accuracy (75.9%) once the channel
halving strategy is abandoned. Compared with several current
small models [43], [44], [54], [56], even 1-stage STNet can
lead to the best performance, with a very slight GFLOPs
increase. In addition, the performance of STNet can be flexibly
enhanced by the stage extension, enabling STNet to obtain a
good balance on effectiveness and efficiency on different chal-
lenging scenarios. We further report the comparisons results
on the COCO validation set in Table V, which also validates
the advantages of our proposed model.

B. Results on MPII

This dataset contains 25,000 images with 40,000 human
instances labeled with 16 keypoints. The evaluation metric
of the dataset is the Head-normalized Probability of Correct
Keypoint (PCKh) score. For MPII evaluation, we adopt the

official testing strategy to use the provided human bounding
boxes to estimate joints. We follow the six-scale testing
procedure in [13], [41], [63], and the PCKh@0.5 results are
reported in Table VI. As the parameters and layer numbers
of three SimpleBaseline structures (ResNet 50,101,152) in-
crease gradually, their network capability becomes stronger.
The results however show that stacking single receptive field
layers tends overfitting without time-consuming pre-training.
Table VI shows the comparison results on MPII validation
dataset with PCKh@0.5. As observed, STNet outperforms
HRNet and SimpleBaseline with much fewer parameters and
GFLOPs. Compared to SimpleBaseline (ResNet 152), the
gains of three different STNet structures are 3.4%, 4.3% and
4.9% with 92%, 88% and 84% parameters drop. Additionally,
we report the comparison results on MPII test set in Table VII.
Again, our STNet shows the best performance, which also
verifies the superiority of our model.

C. Ablation Analysis

a) STC Structure Exploration: For the STC design, we
explore a number of structures as illustrated in Figure 7.
For efficiency comparison, we separately list the computa-
tional cost of the different STC structures in Equation (8).
Apparently, structure E (the final version of STC) attains
the minimal computational cost, which is one of the critical
factors we pursue in this work. Meanwhile, based on the
results of Table VII, we find that the conventional branch
separation manner (structure A, B, C, and D) independently
extracts features from different receptive fields, which tends to
cause semantic features incoherence. Meanwhile, we observe
that channel number average separation manner (structure
B, C, and D) is not preferable to extract local features.
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TABLE VI
COMPARISON RESULTS ON THE MPII VALIDATION SET.

Method Backbone Input Size Pretrain #Param GFLOPs Head Shoulder Elbow Wrist Hip Knee Ankle Mean

SimpleBaseline [26] ResNet 50 256×256 N 34.0M 12.0 96.5 94.8 87.7 82.2 87.9 82.3 77.1 87.6
SimpleBaseline ResNet 101 256×256 N 53.0M 16.5 96.1 94.3 86.1 80.3 87.2 81.4 76.2 86.6
SimpleBaseline ResNet 152 256×256 N 68.6M 21.0 95.7 93.7 84.9 77.9 85.5 79.2 74.3 85.2
HRNet [18] HRNet w32 256×256 N 28.5M 9.5 95.6 94.2 88.1 83.7 88.1 83.7 79.3 88.1
HRNet HRNet w48 256×256 N 63.6M 19.5 96.0 94.6 88.8 84.1 87.4 83.6 80.4 88.4
TokenPose [59] L/D24 256×256 Y 28.1M - 97.1 95.9 90.4 86.0 89.3 87.1 82.5 90.2

1-stage STNet 256×256 N 5.7M 3.1 96.7 94.9 89.0 83.6 88.4 84.4 79.7 88.6
2-stage STNet 256×256 N 8.5M 3.9 96.9 95.6 89.8 84.8 89.2 84.7 81.6 89.5
3-stage STNet 256×256 N 11.3M 4.6 97.0 95.9 90.2 85.2 89.6 86.4 83.1 90.1

TABLE VII
COMPARISON RESULTS ON THE MPII TEST SET.

Method Backbone Input Size Pretrain #Param GFLOPs Head Shoulder Elbow Wrist Hip Knee Ankle Mean

SimpleBaseline ResNet 152 256×256 Y 68.6M 21.0 98.5 96.6 91.9 87.6 91.1 88.1 84.1 91.5
HRNet HRNet w32 256×256 Y 28.5M 9.5 98.6 96.9 92.8 89.0 91.5 89.0 85.7 92.3
[3] - 256×256 - - - 99.4 94.8 90.1 85.3 94.7 93.0 91.7 92.7

1-stage STNet 256×256 N 5.7M 3.1 98.3 95.3 90.9 87.5 92.1 89.1 85.3 91.2
2-stage STNet 256×256 N 8.5M 3.9 98.9 96.0 91.0 88.9 92.8 90.2 88.6 92.3
3-stage STNet 256×256 N 11.3M 4.6 99.3 96.8 91.5 89.2 93.9 91.2 90.1 93.1

Fig. 7. Different structures investigated in our paper. Structure E is adopted
in this work.

The goal of the bigger receptive field branch is to enhance
model discriminative capability on local areas. Thus, more
channel numbers (bigger weights) should be assigned to the
smaller receptive field branches, which is beneficial for the
precise regression process. In addition, the branch separation

TABLE VIII
COMPARISON RESULTS OF MULTIPLE STC STRUCTURES WITH 1-STAGE

NETWORK. STRUCTURE E IS ADOPTED IN THIS WORK.

Structure pretrain Input Size AP AP50 AP75 APM APL AR

(A) N 256 × 192 71.5 88.9 78.5 68.0 78.3 77.0
(B) N 256 × 192 70.6 88.7 77.9 67.0 77.5 76.3
(C) N 256 × 192 69.7 88.3 76.8 66.4 76.3 75.4
(D) N 256 × 192 71.5 88.7 78.8 67.8 78.4 77.0
(E) N 256 × 192 72.1 89.1 79.2 68.7 78.7 77.6

manner with the sum operation (structure C and D) may
cause undesired neutralization on semantic features, which is
harmful to final regression precision. By contrast, the stair
design of this work (Figure 7 (E)) tackles these problems to
coherently aggregate rich local features and attain the best
performance with limited parameters and GFLOPs
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b) Ablation Analysis of STC: STC is proposed to focus
on extracting multi-scale local representations through aggre-
gating the outputs from four atrous convolution layers with
different receptive fields. In this section, we take a closer
comparison on STC to evaluate network performance with
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the different branch numbers. Table IX shows the results on
COCO validation dataset with the 256 × 192 input size. As
demonstrated in Table IX, the performance gain is obviously
in different stage networks, and the gain of accuracy becomes
slight as we increase branch number more than 4. For 6-
branch design, the channel number of the largest kernel
size convolution is only 1 which brings a marginal increase.
Figure 8 shows the 1-stage STNet inference speed of the
network with different branches on COCO validation dataset
where the inference speed gradually decreases without obvious
accuracy improvement. As such, 4-branch design is adopted
in this work.

TABLE IX
ABLATION ANALYSIS OF STC WITH DIFFERENT BRANCH NUMBERS. K

MEANS THE KERNEL SIZE.

#Branch Method K AP AP50 AP75 APM APL AR

c = 1 1-stage 3 70.6 88.4 77.5 67.3 77.2 76.4
c = 2 1-stage 3,5 71.6 89.1 78.8 68.0 78.4 77.1
c = 3 1-stage 3,5,7 71.9 88.9 78.9 68.2 78.7 77.4
c = 4 1-stage 3,5,7,9 72.1 1.5 ↑ 89.1 79.2 68.7 78.7 77.6
c = 5 1-stage 3,5,7,9,11 72.1 89.1 79.1 68.7 78.7 77.5
c = 6 1-stage 3,5,7,9,11,13 72.2 89.3 78.8 68.9 78.6 77.6

c = 1 2-stage 3 71.8 88.8 79.2 68.4 78.5 77.3
c = 4 2-stage 3,5,7,9 73.9 2.1 ↑ 89.7 80.8 70.4 80.6 79.1

c = 1 3-stage 3 73.2 89.3 80.3 70.0 79.8 78.6
c = 4 3-stage 3,5,7,9 74.8 1.6 ↑ 89.8 81.5 71.5 81.3 79.9

Fig. 8. Accuracy and Speed of STC vs. branch numbers.

c) Ablation Analysis of MDBS and STF: We now exam-
ine Multi-stage Dual Branch Structure, and STair Fusion on the
COCO validation dataset. For simplicity, we take 1-stage and
2-stage STNets with the 256×192 input size as the illustrative
examples. Table X reports the performance when we gradually
apply MDBS and STF on the networks. As observed, MDBS
can lead to 0.6% improvement than the baseline model on
the 1-stage network. On the other hand, when STF is applied,
compensation of the high-frequency information can further
increase AP by 1.4%. Similarly, MDBS attains 1.7% improve-
ment and STF further achieves 0.6% accuracy increase on the
2-stage network.

d) Ablation Analysis of STU Number: As the basic block
of the multi-stage structure, STU can be simply stacked for
adjusting the network capability. We perform comparison
experiments on multiple architectures from one to three stages
with two kinds of input sizes (256×192 and 384×288). We

TABLE X
ABLATION ANALYSIS OF STNET WITH DIFFERENT COMPONENTS.

Method pretrain Input Size #Params GFLOPs MDBS STF AP

1-stage N 256×192 3.35M 1.74 × × 70.1
1-stage N 256×192 3.37M 1.79 ✓ × 70.7
1-stage N 256×192 5.74M 2.32 ✓ ✓ 72.1

2-stage N 256×192 6.11M 2.24 × × 71.6
2-stage N 256×192 6.17M 2.36 ✓ × 73.3
2-stage N 256×192 8.53M 2.89 ✓ ✓ 73.9

demonstrate the comparison results in Table XI where both
the MDBS and STF mechanisms are applied in this section,
but pre-training process is not adopted. Table XI demonstrates
that the network performance is consistently improved with
the increase of unit number.

TABLE XI
PERFORMANCE OF STU WITH DIFFERENT UNIT NUMBERS.

Input Size Pretrain 1-stage 2-stage 3-stage

256×192 N 72.1 73.9 74.8
384×288 N 73.2 75.6 76.2

V. VISUALIZATION ANALYSIS

In this part, we provide more typical comparison images
to intuitively demonstrate the superiority of STNet. With the
multiple receptive fields structure, STC enables to obtain
stronger discriminative capability on multi-scale keypoints or
background. As shown in Figure 3, different branches of
STC focus on capturing rich feature diversity which is vital
to cope with several challenging scenes, such as occlusion,
ambiguous pose, and unusual viewpoint. In this comparison,
the 3-stage STNet is applied to compare with HRNet w48
with 384×288 input size. The first and the second columns of
Figure 9 show original images and the ground truth location
of different human joints. The third column displays the
prediction results of HRNet w48. For clarity, we adopt dotted
red circles to denote the failure of HRNet in the third column,
and use red circles to highlight the improvements of our
method in the fourth column. As illustrated in row (a) and (g),
STNet shows robust performance to handle serious occlusions.
For some unusual viewpoint scenes like row (c), (d), and
(e), there are obvious errors or even no results in HRNet
predictions. In contrast, STNet obtains accurate results in these
challenging scenarios. In addition, STNet demonstrates finer
adjustment on some easy scenes, e.g. row (f), which benefits
further accuracy improvements. Without pretraining, HRNet is
unstable and tends to generate some serious errors as shown
in row (b), where some prediction locations are aggregated
together outside the image. However, our method enables to
obtain reasonable prediction even without pretraining.

Figure 10 visualizes some successful prediction cases, and
the red dotted circles demonstrate some challenging scenes.
The small and vague person subjects (5th case of 1st row),
serious self-occlusion (3rd and 5th cases of 2nd row), serious
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Fig. 9. Visual comparison between HRNet and STNet. The first column
contains the original images and the second column details the corresponding
groundtruth. The third column shows the results of HRNet and the fourth
column shows the results of STNet. The dotted red circles and the red circles
denote the failure predictions of HRNet and the improvements of STNet
respectively.

occlusion (5th case of 3rd row) and ambiguous post (1st and
2nd cases of 4th row) can be predicted successfully due to
the powerful local feature aggregation capability of STNet. In
addition, Figure 11 illustrates some failure cases of our method
where the red circles point out the error predictions. The
ambiguous occlusion and dark illumination are still challenges
which we will focus in the future works.

VI. CONCLUSION

In this work, we present a small yet effective multi-stage
network for precise keypoint localization. To reduce the com-
putational cost while maintaining superior performance, we
propose a basic feature extraction block to focus on aggre-
gating more diverse local representations through adopting
multiple kernel sizes with fewer parameters. We alleviate the
information loss problem from two aspects. Within each STair
Unit, we keep high resolution feature maps to relieve feature
loss. Outside the units, we develop a dual path structure
to enhance feature re-usage and re-exploitation with low
computational cost. Meanwhile, we design another mechanism
to extract high-frequency texture representations. We test the

effectiveness of our method through evaluations on standard
pose estimation datasets, and the results demonstrate that the
STNet’s superiority with remarkable efficiency on parameters
and GFLOPs.
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