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Impacts of Alternative Energy Production Innovation on 

Reducing CO2 Emissions: Evidence from China 
 

ABSTRACT: Although environmental economics research explores the impacts of 

green innovation on reducing CO2 emissions, most studies ignore these effects in 

emerging economies. This paper examines how alternative energy production 

innovation (AEPI) reduces CO2 emissions. Using a sample of 30 provinces in China 

during the 1997–2017 period, we find AEPI is negatively related to CO2 emissions. 

Specifically, the results show that innovations in raw coal and crude oil are negatively 

related to CO2 emissions, while innovations in natural gas are positively related to CO2 

emissions. This study contributes to research on technological innovation and 

environmental economics. First, we find AEPI as the main driver of all types of green 

innovation in reducing CO2 emissions. Second, we explore the heterogeneous effects 

of different energy sources and deepen our understanding of different reduction 

mechanisms. Third, this study makes a methodological contribution to research using a 

series of quantitative analyses. 
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1. Introduction 

Energy plays a crucial role in global economic development and growth. However, 

CO2 caused by the use of fossil energy lead to global warming, posing a serious 

challenge to the sustainable development of the global economy [1, 2]. Although 

COVID-19 has slowed economic growth and reduced energy consumption, researchers 

argue that energy consumption could increase sharply in the post-COVID-19 period, 

leading to a sharp increase in CO2 [3].  

Many studies show that technological innovation in energy products is an effective 

measure to reduce CO2 [4]. Most of the literature focuses on the impacts of renewable 

energy technology innovation [5-7], while the effects of alternative energy production 

innovation (AEPI) are neglected. As a branch of green innovation, AEPI refers to 

innovation in alternative energy production (AEP) [8]. In addition to renewable energy, 

AEPI includes new technologies that improve the efficiency of traditional energy 

sources, which alleviates the environmental hype in terms of economic growth [9]. 
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However, traditional fossil energy sources remain essential for economic growth, 

particularly in emerging economies. Therefore, it is important to examine the effects of 

AEPI on reducing CO2.  

In addition, few studies examine the effects of heterogeneity in energy structure. 

As the substitution is incremental, traditional fossil energy is often used in combination 

with cleaner alternative energy [10, 11]. Furthermore, the substitution costs for fossil 

fuels like coal, crude oil and natural gas may differ due to the need to balance 

commercial costs and environmental protection [12, 13]. Therefore, it remains unclear 

how the technological improvement of different energy sources affects the reduction of 

CO2. 

Based on the literature, this study examines the following two research questions: 

(1) Does AEPI reduce CO2? (2) Does the energy structure affect the effects of AEPI on 

CO2? 

To answer the above two questions, we choose China as the research context. As an 

emerging economy, China has been the world's largest energy consumer for several 

consecutive years [14-16]. Faced with pressure from the public to reduce CO2 and 

economic growth, China has accelerated its development of alternative energy sources 

[17-19]. However, considering the conflicts between economic growth and sustainable 

development, China may face an incremental transition process with a heterogeneous 

energy consumption structure [2, 4]. More importantly, innovations in China would 

lead to a further spill-over effect since most developing economies employ Chinese 

technological know-how. For example, Deng et al. (2020) found that China has 
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technology spillover effects from trade and investment with other emerging countries 

[20]. Therefore, we conduct our study in the context of China.  

This study contributes to research on technological innovation and environmental 

economics in several aspects. First, AEPI is based on the general definition of green 

innovation, and its effects on reducing CO2 are confirmed by our results, proving that 

AEPI is the main driver of all types of green innovation. Second, this study explores 

the heterogeneous effects of different energy sources, deepening our understanding of 

different reduction mechanisms. Third, this study makes a methodological contribution 

to research. Specifically, a series of quantitative analyses are conducted, including 

GMM models, cross-sectional and spatial dynamic analyses to verify the robustness of 

our main regression results. 

The rest of the paper is structured as follows. Section 2 introduces the theoretical 

framework of the study and develops the hypotheses. Section 3 presents the research 

method. Section 4 reports the main results and those of the robustness checks. Section 

4 discusses the results. Finally, Section 5 concludes the study and offers policy 

implications. 

 

2. Theoretical framework and hypothesis development 

2.1. Alternative energy production innovation (AEPI) 

AEPI refers to innovation in AEP derived from green innovation [8]. As an 

important subcategory of Green Inventory in International Patent Classification (IPC), 

AEP patents are defined as innovations aimed at developing or promoting the utility 
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efficiency of alternative energy sources. AEPI includes new energy technology 

inventions and improvements in the use of traditional energy sources [21]. Figure 1 

shows the composition of green patents, with specific numbers and percentages for each 

type of green innovation, in the years of 1997 and 2017, respectively. AEPI was ranked 

fourth among all innovations in the green invention patent system in terms of weight in 

China in 2017, behind waste management invention patents, energy conservation 

invention patents and administrative, regulatory or design invention patents (Fig. 1). 

Compared with waste management patents, which ranked first in the Green Innovation 

Index and focus on reducing polluting emissions, AEPI has a greater effect on inputs 

that produce CO2 emissions, thereby reducing emissions. 

 

Fig. 1a. Composition of green invention patents, 1997 

 

Fig. 1b. Composition of green utility model patents, 1997 



6 
 

 
Fig. 1c. Composition of green invention patents, 2017       

 
Fig. 1d. Composition of green utility model patents, 2017 

 
Fig. 1. Composition of green patents  

Although no studies examine the effects of AEPI on CO2 emissions separately from 

its important role in green innovation, the impacts of green innovation on CO2 

emissions are widely explored [22-24]. Most studies examine the direct effects of green 

innovation on CO2 emissions and confirm the role of green innovation in reducing CO2 

emissions [25-27]. However, the conclusions are far from consistent [28]. In addition, 

scholars argue that green innovation acts as a means of low-carbon energy 

transformation and thus exerts intermediate effects on reducing CO2 emissions [29-31]. 

These inconsistent results may be due to a lack of consideration of the heterogeneity 

of green innovation patents and their possible impacts on CO2 emissions. Green 

innovation is a concept with rich connotations and includes various innovations related 

to environmental improvement. The objectives, characteristics and functions of 

different types of green innovation vary widely [32, 33]. The patents in the IPC Green 
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Inventory are divided into seven categories, covering alternative energy production, 

transportation, energy conservation, waste management, agriculture/forestry, 

administrative, regulatory or design aspects, and nuclear power generation (see Table 

1). As Table 1 shows, different types of innovation have different mechanisms and 

pathways of impact on reducing CO2 emissions [9, 34]. 

Table 1 

Seven categories of the IPC Green Inventory 

Abbreviation Category Name Subclasses 

AEPP 
Alternative energy 

production patents 

Biofuels; integrated gasification combined cycle (IGCC); fuel cells; pyrolysis 

or gasification of biomass; harnessing energy from man-made waste; hydro 

energy; ocean thermal energy conversion (OTEC); wind energy; solar energy; 

geothermal energy; other production or use of heat not derived from 

combustion, e.g., natural heat; use of waste heat; devices for producing 

mechanical power from muscle energy 

TSP Transportation patents 
Vehicles in general; vehicles other than rail vehicles; rail vehicles; marine 

vessel propulsion; cosmonautic vehicles using solar energy 

ECP 
Energy conservation 

patents 

Storage of electrical energy; power supply circuitry; measurement of 

electricity consumption; storage of thermal energy; low energy lighting; 

recovery of mechanical energy 

WMP 
Waste management 

patents 

Waste disposal; waste treatment; consumption of waste by combustion; reuse 

of waste materials; pollution control 

A/FP 
Agriculture/forestry 

patents 

Forestry techniques; alternative irrigation techniques; pesticide alternatives; 

soil improvement 

ARDP 

Administrative, 

regulatory or design 

patents 

Commuting, e.g., teleworking; CO2 emissions trading, e.g., pollution credits; 

static structural design 

NPGP 
Nuclear power 

generation patents 
Nuclear engineering 
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Source: https://www.wipo.int/classifications/ipc/green-inventory 

 

Although research results may be affected by factors such as research time, purpose 

and level of economic development [35], we believe that these inconsistent findings are 

due to a lack of attention to the heterogeneity among the types of green innovation [36]. 

For example, energy substitution innovations may effectively reduce CO2 emissions by 

promoting the low-carbon transformation of energy. In contrast, waste treatment 

innovations focus on reducing other types of pollution and thus have little effect on CO2 

emissions [37, 38]. Therefore, it is crucial to separate AEPI from green innovation to 

investigate its impacts on reducing CO2 emissions. 

 

2.2. Hypothesis development 

2.2.1. AEPI and its reduction effect on CO2 emissions  

The development of alternative energy innovation is not only driven by the demand 

for environmental protection but, more importantly, by concern over the depletion of 

natural resources. Although new energy sources are being actively promoted and 

developed by all countries, 80–95% of the world's energy still comes from fossil fuels. 

Moreover, as fossil energy is not renewable in the short term, it is likely to run out soon 

[39]. Therefore, AEPI may contribute to reducing CO2 emissions by finding alternative 

energy sources or improving the efficiency of current energy use [40]. 

AEPI may also contribute to reducing CO2 emissions by improving the efficiency of 

widely used new energy sources [41]. The emergence of alternative energy sources can 
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increase the overall energy supply and provide more choices to the market [42]. 

Increasing the efficiency of alternative energy sources can directly reduce their cost of 

use [6, 7], which may reduce the cost of AEP in the market. Reducing the cost of AEP 

may lead to an increase in consumer demand for AEP. This demand comes from several 

aspects, as shown in Fig. 3. First is the power generation link. Indeed, the main demand 

for alternative energy sources comes from electricity production [43]. According to the 

2020 China Renewable Energy Development Report, renewable energy generated more 

than 2.2 trillion kilowatt hours, accounting for about 30% of China's total power 

generation. Alternative energy sources account for less than 5% of total energy 

consumption (Fig. 2). Lowering the cost of AEP may facilitate its wider use for power 

generation. Second, some alternative energy sources can be directly used in industrial 

production [44]. For example, geothermal energy can be used directly in industrial 

boilers without being converted into electricity. Third, the reduction in the cost of AEP 

has increased Chinese residents' demand for AEP for daily use [45]. Geothermal energy 

mining technology has been widely used for heating systems[46-48]. Recently, rooftop 

solar equipment providing residents with hot water and lighting has become popular in 

China[49-51]. In addition, due to the increase in the proportion of low-cost AEP in 

electricity, electricity is likely to gain popularity in the context of environmental 

regulations to reduce CO2 emissions. Innovation may contribute to electric heating [52], 

thereby increasing the demand for AEP, which may indirectly reduce CO2 emissions. 
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Proportion of alternative 
energy consumption

Proportion of alternative energy 
power generation (right axis)  

Fig. 2. Alternative energy consumption in China, 2000–2020 

It is widely acknowledged that using new energy sources to replace fossil fuels is a 

way to reduce CO2 emissions while facilitating economic growth [53-55]. Alternative 

energy sources include solar, hydropower, wind, biomass, wave, tidal, ocean 

temperature difference and geothermal energy [56]. Compared with traditional fossil 

energy sources, alternative energy sources generate less CO2 emissions in the 

power/thermal generation process. They can also be technologically recycled, leading 

to their description as inexhaustible 'green power' [57]. While AEPI can improve 

production efficiency, diversifying AEP can facilitate the reduction of CO2 emissions. 

Some types of AEPI aim to reduce the efficiency and level of CO2 emissions in the 

process of AEP factory construction, equipment production and equipment processing. 

Therefore, although the relationship between AEP consumption and CO2 emissions 

may be positive [58], the effects of AEPI on CO2 emissions are still believed to be 

generally negative. Thus, the following hypothesis is proposed: 

Hypothesis 1. AEPI is negatively related to CO2 emissions. 
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Fig. 3. Impact of AEP cost reduction on AEP consumer demand 

2.2.2. Heterogeneous effects of AEPI on CO2 emissions based on different energy 
sources 

There is also heterogeneity in the mechanism of AEPI on CO2 emissions based on 

different energy resources. AEPI includes not only innovation for AEP but also 

improvements in the efficiency of existing energy sources, which can reduce CO2 

emissions. Governments generally restrict the total volume of CO2 emissions without 

regulating the specific source/type of energy used [59]. Thus, firms may prefer to adopt 

strategies to meet these regulations at the lowest cost, considering both the cost of 

energy and CO2 emissions. Therefore, developing technologies to improve the 

efficiency of traditional energy sources and reduce CO2 emissions could be a rational 

strategy for firms in practice. 

Regarding the positive relationship between energy use and economic growth, it is 

undesirable to reduce energy consumption to achieve the CO2 emissions reduction 
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targets set by governments [60]. Adopting AEP may be one of the best solutions for 

firms to meet environmental regulations. Due to the great differences between energy 

sources, there is an order of priority in the process of energy substitution that meets 

environmental regulations. In general, low-cost alternative fossil energy sources are the 

first to replace low-carbon energy sources [61]. Among the three most commonly used 

fossil energy sources in China (i.e., coal, crude oil and natural gas), the replacement 

cost of coal is the lowest, followed by crude oil and natural gas [42].  

The Chinese government has set its targets for CO2 emissions reduction by 2030 

and carbon neutrality by 2060, which has imposed strict environmental regulations on 

the market and thus shaped the behaviour of firms. As mentioned, the cost of energy 

substitution varies. When the supply of new energy products cannot fully satisfy the 

demand for traditional fossil energy substitution, the market may first choose fossil 

energy products with a comparatively low substitution cost, which may increase CO2 

emissions from that type of energy source [62]. Compared with natural gas, coal and 

crude oil are the first to be replaced by AEP due to their low cost of substitution and 

high CO2 emissions. Although AEP has developed rapidly in recent decades, there is 

still a large gap between demand and supply in the market, with the supply of AEP 

falling short of its demand. Therefore, as an equivalent of AEP, natural gas remains one 

of the most important energy sources with low CO2 emissions on the market. AEPI 

aimed at lowering the cost of using natural gas may lead to an increase in the total 

consumption of natural gas, which will increase CO2 emissions. Thus, CO2 emissions 

may increase as natural gas consumption increases due to the development of AEPI. 
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In addition, under institutional pressure to reduce CO2 emissions quickly, firms may 

prioritise improving technologies on energies which generate high CO2 emissions but 

are more cost-effective in economics. The investment in AEPI may flow to coal and 

crude oil rather than natural gas. Thus the quantity, depth and quality of innovations in 

coal and crude oil may significantly exceed those in natural gas. As a result, the 

innovation for reducing CO2 emissions in coal and oil could be far more effective than 

that in natural gas. In other words, if the constraints on reducing CO2 emissions reach 

a certain threshold, the AEPI in coal and crude oil may exert a crowding-out effect, 

leading to a decrease in innovation in natural gas, which may have a negative impact 

on CO2 emission reduction from natural gas. Thus, the following hypotheses are 

proposed: 

Hypothesis 2a. AEPI is negatively related to CO2 emissions from raw coal. 

Hypothesis 2b. AEPI is negatively related to CO2 emissions from crude oil. 

Hypothesis 2c. AEPI is positively related to CO2 emissions from natural gas. 
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Energy 

Production 
Innovation

Total CO2 
Emissions

CO2 Emissions 
from Raw Coal

CO2 Emissions 
from Crude 

Oil 

H2a(-)

H2c(+)

H1(+)

CO2 Emissions 
from Natural 

Gas

H2b(-)

 

Fig. 4. The theoretical framework of the effects of AEPI on CO2 emissions 
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3. Research methods  

3.1. Sample and data 

Table 2 presents the description of the sample. The panel data come from 30 

Chinese provinces from 1997 to 2017 (Tibet, Hong Kong, Macao and Taiwan are 

excluded due to limited data availability). For our data analysis, the final sample 

includes 584 observations. 

Table 2 

Descriptive statistics of the sample 

 (1) (2) (3) (4) (5) (6) (7) (8) 

VARIABLE N Mean SD min p25 p50 p75 max 

ERC 584 187.4 199.7 0 61.11 130.1 235.2 1,527 

ECO 584 37.43 46.73 0 4.792 24.50 48.06 353.0 

ENG 584 6.088 7.497 0 0.643 3.750 8.552 49.69 

TCE 584 245.2 229.8 0.814 92.12 176.4 317.5 1,552 

IS 584 46.01 7.887 19.01 42.10 47.40 51.60 61.50 

EC 584 1,164 1,082 34.60 449.1 812.2 1,460 5,959 

PGDP 584 26,328 22,717 2,048 8,610 19,636 37,312 118,198 

POP 584 42.40 26.13 4.960 24.09 37.82 58.08 111.7 

FE 584 217.9 227.2 3.363 44.46 128.5 334.6 1,504 

ES 584 0.963 0.374 0 0.728 0.902 1.119 2.345 

AEPI 584 528.3 1,005 0 37.50 147 551.5 9,170 

URB 584 0.489 0.154 0.196 0.381 0.472 0.566 0.896 

IER 584 203.9 167.9 28.36 132.0 170.2 235.6 2,368 

We set the sample period as 1997–2017 due to data availability. Specifically, 

the data for the main explanatory variable (i.e., green innovation) were first 

published in 1997, while the latest provincial data for the dependent variable (i.e., 

CO2 emissions) were updated in 2017.  

The data on CO2 emissions are obtained from the Carbon Emission Accounts 
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and Datasets (CEADs, https://www.ceads.net/). The data provided by CEADS are 

based on the results of research funded by the National Natural Science Foundation 

of China, the Ministry of Science and Technology of China and the British 

Research Council. This is an official website that provides the public with accurate 

and up-to-date data on CO2 emissions and socio-economic trade in China. CEADs 

is also one of the most authoritative and reliable databases for research on climate 

change and carbon neutrality issues in emerging economies [63]. Patent data are 

obtained from the database of the State Intellectual Property Office of China. We 

also use other sources, including China Statistical Yearbooks, Energy Statistics 

Yearbooks and Financial Statistics Yearbooks. Table 3 presents descriptions of the 

measures and data sources. 

Table 3 

Measures and data sources 

 Variable  Measure Unit Data source 

Dependent 

variables 

TCE Total CO2 emissions 
Metric tons 

(t) 

CEADs, 

https://www.ceads.net/ 

ERC CO2 emissions from raw coal 
Metric tons 

(t) 

ECO CO2 emissions from crude oil 
Metric tons 

(t) 

ENG CO2 emissions from nature gas 
Metric tons 

(t) 

Independent 

variable 
AEPI 

Alternative energy production 

innovation 
 

IPC Green Inventory, 

https://www.wipo.int/cl

assifications/ipc/en/gree

n_inventory/index.html 

Incopat, 

https://www.incopat.co

m 
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Control 

variables 

ED Economic development level  

China Statistical 

Yearbooks 
IS Industry structure Percentage 

POP Population Million 

UR Urbanisation rate Percentage 

EC Electricity consumption Billion kwh China Energy 

Statistical Yearbooks ES Energy structure Percentage 

FE Fiscal expenditure Billion yuan 
Almanac of China's 

Finance and Banking 

IER 
Intensity of environmental 

regulations 
10,000 per t 

China Statistical 

Yearbooks on 

Environment 

3.2. Variables and measures 

(1) Dependent variables 

In this study, we use four dependent variables, namely total CO2 emissions (TCE), 

CO2 emissions from raw coal (ERC), CO2 emissions from crude oil (ECO) and CO2 

emissions from natural gas (ENG).  

(2) Independent variable 

The independent variable is AEPI, which is measured by the total number of patent 

applications related to AEP. 

(3) Control variables 

Eight control variables are included in the study: level of economic development 

(ED), industry structure (IS), population (POP), urbanisation rate (URB), 

electricity consumption (EC), energy structure (ES), government fiscal 

expenditure (FE) and intensity of environmental regulations (IER). ED is 
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measured by the gross domestic product (GDP) per capita (PGDP). According to 

the Kuznets curve, environmental pollution has an inverse relationship with per 

capita income and regional development [64, 65]. IS is measured by the proportion 

of manufacturing industries in GDP. Industry structure is shown to have a 

significant impact on CO2 emissions [66], though the results of previous studies 

remain inconsistent [1, 57, 67]. POP is measured by the population of a province 

[68]. The size of a population is generally positively correlated with CO2 emissions 

[69]. UR is measured by the ratio of the urban population to the total population 

of an area. Studies show that CO2 emissions are positively related to the 

urbanisation rate [70]. EC is measured by the volume of electricity consumption. 

EC is chosen to replace energy consumption as a control variable, as is commonly 

done in previous studies [71, 72]. ES is measured by the proportion of coal 

consumption in total energy consumption. Studies show that the energy structure 

is positively related to CO2 emissions [73]. FE is measured by a provincial 

government's fiscal expenditure in a year. This measure reflects the intensity of 

government environmental regulations [74], which is negatively related to CO2 

emissions. Finally, IER is measured by the cost of polluting discharges per unit of 

emissions. Scholars generally argue that environmental regulations and CO2 

emissions are negatively correlated [75]. 

3.3. Empirical models 
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Multiple regressions are adopted to analyse the panel data at the provincial level 

in China for the 1997–2017 period. The regressions are run using STATA MP 

version 17.0.  

According to the results of Hausman test for the models (p=0.6761), we adopt 

fixed-effects models for the regressions. Because of the serious problem of 

sequential collinearity, time fixed effects are not included in the models. Model 1 

is used to test Hypothesis 1. Models 2, 3 and 4 are used to test Hypotheses 2a, 2b 

and 2c, respectively. The specific models are as follows: 

𝑇𝑇𝑇𝑇𝑇𝑇𝑖𝑖𝑖𝑖 = 𝛽𝛽1𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝑖𝑖𝑖𝑖 + 𝛽𝛽2I. S.𝑖𝑖𝑖𝑖+ 𝛽𝛽3E. C.𝑖𝑖𝑖𝑖+ 𝛽𝛽4PGDP𝑖𝑖𝑖𝑖 + 𝛽𝛽5F. E.𝑖𝑖𝑖𝑖+ 𝛽𝛽6POP𝑖𝑖𝑖𝑖 +
𝛽𝛽7E. S.𝑖𝑖𝑖𝑖+ 𝛽𝛽8IER𝑖𝑖𝑖𝑖 + 𝛽𝛽9URB𝑖𝑖𝑖𝑖                                                

(1) 

𝐸𝐸𝐸𝐸𝐸𝐸𝑖𝑖𝑖𝑖 = 𝛽𝛽1𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝑖𝑖𝑖𝑖 + 𝛽𝛽2I. S.𝑖𝑖𝑖𝑖+ 𝛽𝛽3E. C.𝑖𝑖𝑖𝑖+ 𝛽𝛽4PGDP𝑖𝑖𝑖𝑖 + 𝛽𝛽5F. E.𝑖𝑖𝑖𝑖+ 𝛽𝛽6POP𝑖𝑖𝑖𝑖 +
𝛽𝛽7E. S.𝑖𝑖𝑖𝑖+ 𝛽𝛽8IER𝑖𝑖𝑖𝑖 + 𝛽𝛽9URB𝑖𝑖𝑖𝑖                                                

(2) 

𝐸𝐸𝐸𝐸𝐸𝐸𝑖𝑖𝑖𝑖 = 𝛽𝛽1𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝑖𝑖𝑖𝑖 + 𝛽𝛽2I. S.𝑖𝑖𝑖𝑖+ 𝛽𝛽3E. C.𝑖𝑖𝑖𝑖+ 𝛽𝛽4PGDP𝑖𝑖𝑖𝑖 + 𝛽𝛽5F. E.𝑖𝑖𝑖𝑖+ 𝛽𝛽6POP𝑖𝑖𝑖𝑖 +
𝛽𝛽7E. S.𝑖𝑖𝑖𝑖+ 𝛽𝛽8IER𝑖𝑖𝑖𝑖 + 𝛽𝛽9URB𝑖𝑖𝑖𝑖                                                 

(3) 

𝐸𝐸𝐸𝐸𝐸𝐸𝑖𝑖𝑖𝑖 = 𝛽𝛽1𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝑖𝑖𝑖𝑖 + 𝛽𝛽2I. S.𝑖𝑖𝑖𝑖+ 𝛽𝛽3E. C.𝑖𝑖𝑖𝑖+ 𝛽𝛽4PGDP𝑖𝑖𝑖𝑖 + 𝛽𝛽5F. E.𝑖𝑖𝑖𝑖+ 𝛽𝛽6POP𝑖𝑖𝑖𝑖 +
𝛽𝛽7E. S.𝑖𝑖𝑖𝑖+ 𝛽𝛽8IER𝑖𝑖𝑖𝑖 + 𝛽𝛽9URB𝑖𝑖𝑖𝑖                                                  

(4) 

Note: i signifies the year; j signifies the province/region. 

 

4. Results 

4.1. Descriptive statistics 

As we adopt fixed-effects models with cross-sectional data, we conduct a 

variance inflation factor (VIF) test to test for multicollinearity before performing 
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the regression analysis. As shown in Table 4, the result of the VIF test is 3.47, 

which is less than 10, indicating that there is no multicollinearity issue. All of the 

models are tested for potential heteroscedasticity issues, which are corrected 

using robust standard errors where appropriate. 

Table 4 

Tests for model selection 

 Model (1) Model (2) Model (3) Model (4) 

VIF test 3.47 3.47 3.47 3.47 

Heteroscedasticity test 196.71*** 9,353.70*** 130.78*** 1,614.62*** 

Robust SD Yes Yes Yes Yes 

Model choice Fixed effects Fixed effects Fixed effects Fixed effects 

Notes: Standard errors in parentheses, *** p < 0.01, ** p < 0.05, * p < 0.1. 

Table 5 reports the regression results. In Model (1), the coefficient of AEPI is -0.0653, 

which is significant at the 1% level, indicating that AEPI is negatively related to total 

CO2 emissions. Therefore, Hypothesis 1 is supported. 

The results of model (2) show that the coefficient of AEPI for ERC (coal) is negative 

and significant (β = -0.0607, p < 0.01), indicating that AEPI has a positive impact on 

reducing CO2 emissions from coal. Therefore, Hypothesis 2a is supported. 

The results of model (3) show that the coefficient of AEPI for ECO (crude oil) is 

negative and significant (β = -0.00797, p < 0.01) indicating that AEPI has a positive 

impact on reducing CO2 emissions from crude oil. Therefore, Hypothesis 2b is 

supported. 

The results of model (4) show that the coefficient of AEPI for ENG (natural gas) is 
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positive and significant (β = 0.00235, p < 0.01), indicating that AEPI increases CO2 

emissions from natural gas. Therefore, Hypothesis 2c is supported. 

Table 5 

Regression results for CO2 emissions 

 Model (1) Model (2) Model (3) Model (4) 

VARIABLE TCE ERC ECO ENG 

AEPI -0.0653*** -0.0607*** -0.00797*** 0.00235*** 

 (0.0122) (0.0120) (0.00115) (0.000317) 

IS -1.575 -2.238** 0.465** 0.00741 

 (0.984) (0.810) (0.215) (0.0270) 

EC 0.166*** 0.129*** 0.0324*** 0.000306 

 (0.00859) (0.00886) (0.00371) (0.000457) 

PGDP 0.00121*** 0.000949*** 0.000417*** 4.79e-05*** 

 (0.000321) (0.000318) (0.000102) (1.12e-05) 

FE -0.0599 -0.0874** 0.00651 0.0152*** 

 (0.0609) (0.0419) (0.0193) (0.00396) 

POP 0.806** 0.726** -0.0813** -0.0279*** 

 (0.328) (0.299) (0.0372) (0.00826) 

ES 255.6*** 282.6*** -23.85*** -0.434 

 (44.53) (43.65) (1.405) (0.641) 

IER -0.0329 -0.000327 -0.0328*** -0.00168* 

 (0.0537) (0.0499) (0.00924) (0.000827) 

URB 115.7** 88.66* 30.51*** -3.732*** 

 (54.54) (48.96) (9.615) (1.217) 

Constant -190.0*** -179.6*** -11.74 3.352*** 

 (41.33) (43.50) (7.558) (0.793) 

Observations 584 584 584 584 

R-squared 0.672 0.638 0.443 0.424 

Notes: Standard errors in parentheses, *** p < 0.01, ** p < 0.05, * p < 0.1 

4.2. Robustness checks and additional tests 

4.2.1. Robustness checks 

A series of robustness tests are conducted to test the robustness of our main 

results. To begin with, GMM estimation is adopted to check for possible endogeneity 
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in the original analysis. This study may be affected by potential endogeneity caused by 

bidirectional causality between CO2 and AEPI. The increase in CO2 emissions may 

generate additional costs for firms. Therefore, firms may increase AEPI to achieve the 

energy transition, thereby reducing CO2 emissions to reduce costs.  

To determine whether there is a bidirectional causal relationship between CO2 

emissions and AEPI, GMM analysis is conducted. The results show that there is indeed 

a problem of endogeneity between the dependent and independent variables.  

Following previous studies [76-78], we find that a region's unit sunshine 

temperature is related to its CO2 emissions (greenhouse gases are well known to 

increase the temperature). At the same time, it has no direct impact on AEPI. Therefore, 

the unit sunshine temperature is adopted as the main instrumental variable for the study. 

Through a series of tests on the instrumental variable, we find that the unit sunshine 

temperature with 1-2 lags [L(1/2).T_S], AEPI with 1–3 lags [L(1/3). AEPI] and the 

fiscal expenditure with 1–2 lags [L(1/2). FE] are the most appropriate ones. 

The system GMM method takes the estimation as an equation system that integrates 

difference GMM with horizontal GMM. It solves the issue brought by the missing 

errors in difference GMM and has the advantage of improving estimation efficiency 

[79]. Therefore, we use the system GMM method for model re-estimation on the sample 

based on the above instrumental variables [80-83]. A fixed-effect model with two-step 

estimation is adopted as the analysis is based on panel data. We use nonrobust and 

cluster-robust methods for the two sets of regressions, respectively. The results are 

consistent with our main results (see Table 6). 
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We conduct several post-estimation tests for the validity of GMM estimation 

results. First, an under identification test is conducted to check whether the number of 

independent variables is less than the number of endogenous explanatory variables. The 

results show that the p-values of Anderson LM statistic (0.0000) and Kleibergen-Paaprk 

LM statistic (0.0001) are both significant, which reject the null hypothesis of 

"insufficient identification of instrumental variables" at the 1% level, indicating that 

there is no issue of under identification. Second, an over identification test of all 

instruments is conducted to exclude endogenous problems of instrumental variables. 

The results show that the p-value of the Sargan statistic is 0.1665 and the Hansen J's is 

0.1660, indicating that the null hypothesis that all instrumental variables were 

exogenous could not be rejected at the 10% level. Therefore, it could be concluded that 

there is no over identification problem. Third, a weak identification test is conducted 

based on the correlation between instrumental and endogenous variables. The results 

show that the F value of the Cragg-Donald Wald statistic is 15.134, which is larger than 

the 10% maximal IV relative bias of Stock-Yogo weak ID test critical values (11.29). 

Thus, it rejects the null hypothesis as an instrumental variable is weak, indicating that 

the model does not have a weak instrumental variable issue. In summary, it is concluded 

that the instrumental variables of the model are reasonable (Due to space limitation, the 

process of these tests is available upon request). 

In addition, to avoid the cross-sectional dependence problem caused by the choice 

of sample, we conduct a cross-sectional dependence test on the benchmark models [84]. 

The results show cross-sectional dependence; however, the coefficient obtained with 
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the corrected regression is -0.0780208 (p = 0.002), which is close to the benchmark 

model and significant at the 1% level. This indicates that the results of the benchmark 

regression are still robust in the presence of cross-sectional dependence (see Table 7). 

Furthermore, we remove all extreme values using 1% bilateral tailing for all 

variables and rerun the regression. This method is a common robustness test, 

which can eliminate the influence of extreme values on the regression [85, 86] (see 

Table 7). The results are consistent with the original measurement. 

Besides, the sample period is changed to the 2000–2017 period, as 2000 is the 

year that Chinese government adjusted statistics criteria in environmental 

regulations and thus widely used to analyse CO2 emissions in China [87, 88]. This 

method is also a commonly used robustness test [85, 89] (see Table 7). The results 

are also consistent with the original measurement. 

Finally, we examine the impact of spatial correlations as provincial data are used in 

this study. The existence of spatial correlations is common in data at the sub-regional 

level of a country [90-92]. We first test the panel data using the Moran's I index (general 

and partial) based on the regional neighbour weight matrix. The results show that the 

Moran's I index is not significant, whether general or partial, indicating that there is no 

spatial correlation between the independent and dependent variables in terms of 

geographical proximity. Then, we test the sample based on the weight of economic 

distance and obtain similar results. That is, there is no spatial correlation between the 

independent and dependent variables in terms of economic distance. Finally, we 

construct an economic and social weight matrix to analyse the data. The results show 
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that the Moran's I index is negative and significant in this test, indicating that there is a 

correlation (see Fig. 6). 

 

Fig. 6a. Moran’s I (1997)                          Fig. 6b. Moran’s I (2017) 

Fig. 6. Local Moran tests based on the economic and social weight matrix 

 

To further examine the impact of spatial correlations, we use the spatial Durbin model 

(SDM) to test the robustness of the sample [93-95]. The results remain consistent with 

the original results. Furthermore, the coefficient of AEPI on CO2 emissions is negative 

(-0.0564) and significant at the 1% level, indicating that the benchmark model is robust 

in terms of spatial correlations (see Table 8). 

Table 6 

Robustness test (R1: System-GMM) 

 

R1：GMM-nonrobust 

Model (5) 

R1：GMM-cluster-robust 

Model (6) 

VARIABLES TCE TCE 

AEPI -0.146*** -0.146*** 

(AEPI = l (1/2). RT_S L (1/3) . AEPI L(1/2).FE) (0.0243) (0.0309) 

IS -0.655 -0.655 

 (0.619) (0.556) 

EC 0.0980*** 0.0980*** 

 (0.0134) (0.0161) 

PGDP 0.00475*** 0.00475*** 

 (0.00118) (0.000987) 

FE 0.523*** 0.523*** 
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 (0.0920) (0.109) 

POP -0.560* -0.560 

 (0.319) (0.363) 

ES 260.4*** 260.4*** 

 (21.75) (30.51) 

IER -0.0458 -0.0458 

 (0.0422) (0.0807) 

URB 50.02 50.02 

 (44.93) (43.88) 

Observations 253 253 

R-squared 0.792 0.792 

Number of year 21 21 

Notes: Standard errors in parentheses, *** p < 0.01, ** p < 0.05, * p < 0.1. 
  

Table 7 

Robustness tests (R2: Cross-sectional dependence/R3:Tailing/R4:Years) 

VARIABLES 

R2: Cross-sectional dependence R3: Tailing R4: Years 

Model (7) Model (8) Model (9) 

TCE TCE TCE 

AEPI -0.0780*** -0.0832*** -0.0607*** 

 (0.0235) -0.0108 -0.0126 

IS -1.456 -0.925 -1.723 

 (2.041) -0.713 -1.044 

EC 0.165*** 0.153*** 0.159*** 

 (0.0259) -0.0075 -0.00916 

PGDP 0.00181 0.00164*** 0.00104** 

 (0.00113) -0.000308 -0.000428 

FE 0.0587 0.116*** -0.0567 

 (0.0759) -0.0339 -0.0654 

POP 0.559 0.697*** 0.988** 

 (0.577) -0.231 -0.435 

ES 257.1*** 226.3*** 282.5*** 

 (58.20) -34.42 -46.29 

IER -0.0316 -0.0486 -0.033 

 (0.0542) -0.043 -0.0613 

URB 79.42 74.02* 160.4* 

 (83.88) -37.37 -82.49 

Constant -203.3** -193.1*** -223.6*** 

 (79.90) -30.81 -50.88 

Observations 584 584 516 

R-squared 0.741 0.734 0.684 
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Number of years 21 21 18 

Notes: Standard errors in parentheses, *** p < 0.01, ** p < 0.05, * p < 0.1. 
 
Table 8 
Robustness test (R5:SDM) 

 

Model 

(10) 

Model 

(11) 

Model 

(12) 

Model 

(13) 

Model 

(14) Model (15) 

Model 

(16) 

VARIABL

E Main Wx Spatial Variance LR_Direct 

LR_Indirec

t LR_Total 

AEPI 

-

0.0564*** -0.216***   

-

0.0637*** -0.0238 

-

0.0876*** 

 (0.0161) (0.0574)   (0.0117) (0.0196) (0.0154) 

IS -4.437*** 3.287   -3.448*** 3.101* -0.347 

 (1.378) (5.129)   (0.941) (1.689) (1.454) 

EC 0.184*** 0.550***   0.199*** 0.0383 0.237*** 

 (0.0222) (0.125)   (0.0147) (0.0320) (0.0289) 

PGDP 0.000492 -0.000373   0.000339 -0.000369 -3.00e-05 

 (0.00100) (0.00372)   (0.000693) (0.00132) (0.00105) 

FE -0.106 0.774*   -0.0316 0.252* 0.221* 

 (0.113) (0.400)   (0.0728) (0.141) (0.120) 

POP -5.217* -22.69   -6.255*** -3.069 -9.324* 

 (2.806) (18.27)   (1.856) (5.419) (5.439) 

ES 186.6*** 26.53   156.4*** -88.99 67.39 

 (48.51) (235.5)   (32.34) (74.51) (66.98) 

URB -13.62 -308.1   -36.60 -61.18 -97.78* 

 (52.08) (198.0)   (37.46) (63.31) (56.21) 

IER 0.0429 -0.0528   0.0325 -0.0377 -0.00521 

 (0.0327) (0.153)   (0.0232) (0.0486) (0.0455) 

rho   -2.089***     

   (0.340)     

sigma2_e    10,606***    

    (843.4)    

R-squared 0.275 0.275 0.275 0.275 0.275 0.275 0.275 

Notes: Standard errors in parentheses, *** p < 0.01, ** p < 0.05, * p < 0.1. 

4.2.2. Additional tests 

In accordance with the standards of the Patent Office of China, general patents can 

be further divided into three subcategories, namely invention patents (i.e., the most 

original innovation in terms of method/technology), utility patents (i.e., application 
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innovation or improvement of technology based on the original innovation) and design 

patents (i.e., improvement of the outlook and appearance of a product). Compared with 

design patents, invention and utility patents represent an essential innovation in terms 

of improving technology and functionality. Therefore, we further test the impacts of 

invention patents (IP) and utility patents (UP) on CO2 emissions. The standards 

for invention patents are higher than those for utility patents, indicating greater 

innovation efficiency [96, 97]. The results show that the coefficients of IP and UP 

are negative and significant. However, the negative effects of UP on CO2 emissions are 

greater than those of IP. Specifically, the coefficient of IP is -0.0822 (p < 0.01), while 

the coefficient of UP is -0.151 (p < 0.01) (See Table 9). 

Table 9 

Additional tests 

VARIABLES TCE TCE TCE TCE 

AEPI -0.0653***    
 (0.0122)    
IS -1.575 -1.497 -1.223 -1.452 

 (0.984) (1.004) (0.994) (1.033) 
EC 0.166*** 0.155*** 0.178*** 0.160*** 

 (0.00859) (0.00835) (0.00970) (0.00817) 
PGDP 0.00121*** 0.000864** 0.00111*** 0.00115*** 

 (0.000321) (0.000320) (0.000253) (0.000301) 
FE -0.0599 -0.134** -0.0498 0.0374 

 (0.0609) (0.0562) (0.0539) (0.0642) 
POP 0.806** 1.015*** 0.638* 0.693** 

 (0.328) (0.348) (0.306) (0.306) 
ES 255.6*** 259.6*** 250.6*** 254.6*** 

 (44.53) (45.50) (43.85) (44.16) 
IER -0.0329 -0.0355 -0.0311 -0.0331 

 (0.0537) (0.0551) (0.0527) (0.0528) 
URB 115.7** 141.9** 93.86* 100.1* 

 (54.54) (58.27) (51.12) (53.81) 
GCP     
     
IP  -0.0822***   
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  (0.0143)   
UP   -0.151***  
   (0.0295)  
GI    -0.0145*** 

    (0.00284) 
Constant -190.0*** -192.2*** -194.3*** -195.4*** 

 (41.33) (43.47) (41.67) (39.61) 
Observations 584 584 584 584 
R-squared 0.672 0.664 0.679 0.676 
Number of year 21 21 21 21 

Notes: Standard errors in parentheses, *** p < 0.01, ** p < 0.05, * p < 0.1. 

5. Discussion  

Hypothesis 1 is supported, indicating the significant reduction effects of AEPI 

on CO2 emissions. First, our results confirm that AEPI, as a branch of green innovation, 

contributes to reducing CO2 emissions, which echoes the results of previous studies 

[4, 27]. Second, our research supports the argument that green innovation can improve 

the efficiency of using traditional energy sources by promoting energy substitution [30]. 

We further compare the effects of general green innovation and AEPI on CO2 emissions. 

The results indicate that the reduction effects of AEPI on CO2 emissions are stronger 

than those of general green innovation without classification. The coefficients of GI and 

AEPI are -0.0145 and -0.0653 (both significant at the 1% level), respectively (see Table 

9). Third, our study provides empirical evidence that different types of green innovation 

have different effects on CO2 emissions [36]. This explains why some studies find that 

the effects of green innovation on CO2 emissions are unstable [28].  

The results also show that the reduction effects of utility patents on CO2 

emissions are stronger than those of invention patents. According to innovation 

theory, a high level of technological innovation leads to a strong impact on CO2 
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emissions [98]. Invention patents are generally considered to be more innovative 

than utility patents; however, our empirical results show the opposite regarding 

their impact on CO2 emissions. One possible reason for this finding is that utility 

patents are more directly related to practical application, which reduces CO2 

emissions more directly. In contrast, applying a new technology associated with 

an invention patent may take much longer. 

Hypotheses 2a, 2b and 2c are supported and demonstrate the different effects of 

AEPI on reducing CO2 emissions through different energy sources. The results 

further imply that AEPI can lead to a low-carbon energy transition. This indicates 

that AEPI can respond better to environmental regulations than other types of 

innovation. Furthermore, the results for Hypothesis 2 imply that the current supply 

of new energy sources cannot fully support the task of energy substitution in China. 

Theoretically, with the development of AEPI, CO2 emissions from traditional 

petrochemical energy sources should be reduced. Although the impacts of AEPI 

on CO2 emissions from various traditional petrochemical energy sources may be 

heterogeneous, AEPI is still expected to reduce CO2 emissions. However, our 

empirical results show that AEPI is positively related to CO2 emissions from 

natural gas. This implies that new energy sources have not yet filled the shortage 

caused by the reduced use of coal and crude oil. There is still a demand for 

traditional low-carbon petrochemical energy represented by natural gas in the 

market. Furthermore, AEPI may include some innovations related to improving 

the efficiency of the use of natural gas. As a result, although AEPI reduces the CO2 
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intensity of natural gas, it may increase the demand for natural gas, which 

ultimately leads to a positive correlation between AEPI and CO2 emissions from 

natural gas. 

6. Conclusions, policy implications and future research 

This paper examines the relationship between AEPI and CO2 emissions using multiple 

regression analysis on panel data from China at the provincial level during the 1997–

2017 period. Our results suggest that AEPI has a positive effect on reducing CO2 

emissions. Compared with invention patents, utility patents have a stronger impact on 

reducing CO2 emissions. Furthermore, our results show that the reduction mechanism 

varies across different energy sources, which implies that AEPI actively responds to 

environmental regulations. Our study contributes to research on technological 

innovation and environmental economics. First, we find AEPI as the main driver of all 

types of green innovation in reducing CO2 emissions. Second, we explore the 

heterogeneous effects of different energy sources and deepen our understanding of 

different reduction mechanisms. Third, this study makes a methodological contribution 

to research using a series of quantitative analyses. 

The findings of this paper have two practical implications for policymakers. First, 

the government should further support green innovation by encouraging AEPI, as it is 

the main driver for reducing CO2 emissions in green innovation. The government could 

issue supportive policies such as fiscal subsidies, reward systems and tax reductions. 

Second, it is important to improve the efficiency of the patent review system, especially 
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for AEPI. The reduction of CO2 emissions could benefit from a shorter patent 

application time and a lower application cost. 

This study has two main limitations which provide the direction of future 

research. First, as the study is conducted in China, the findings may not apply to 

other emerging economies because of China's uniqueness in terms of economic 

size and institutions. Further studies are needed in other emerging economies to 

determine the generalisability of our findings. Due to data availability, a second 

limitation comes from the sub-country level of the study. Future research could 

adopt firm-level studies that focus on the innovation process of firms. This 

complementary research level would allow a better understanding of firms' role in 

the innovation process. 
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