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a b s t r a c t

In recent years, the number of weather-related disasters significantly increases across the world. As
a typical example, short-range extreme precipitation can cause severe flooding and other secondary
disasters, which therefore requires accurate prediction of extent and intensity of precipitation in a
relatively short period of time. Based on the echo extrapolation of networked weather radars (i.e.,
the Internet of Radars), different solutions have been presented ranging from traditional optical-
flow methods to recent deep neural networks. However, these existing networks focus on local
features of echo variations to model the dynamics of holistic radar echo motion, so it often suffers
from inaccurate extrapolation of the radar echo motion trend, trajectory, and intensity. To address
the problem, this paper introduces the self-attention mechanism and an extra memory that saves
global spatiotemporal feature into the original Spatiotemporal LSTM (ST-LSTM) to form a self-attention
Integrated ST-LSTM recurrent unit (SAST-LSTM), capturing both spatial and temporal global features of
radar echo motion. And several these units are stacked to build the radar echo extrapolation network
SAST-Net. Comparative experiments show that the proposed model has better performance on different
real world radar echo datasets over other recent methods.

© 2022 ISA. Published by Elsevier Ltd. All rights reserved.
1. Introduction

Extreme precipitation can trigger flooding and waterlogging
n cities or mudslides and landslides in mountainous areas, which
ause significant human and economic loss. The ability to forecast
igh-intensity precipitation in a short period of time can greatly
acilitate damage reduction and even prevention. Therefore, pre-
ipitation nowcasting has always been a critical and difficult
hallenge, especially concerning kilometer-level precipitation in-
ensity forecasts in a local area within a relatively short period
f time such as 0-2 h [1]. Traditional Numerical Weather Fore-
ast (NWP) methods rely on mathematical and physical models
nd require a large amount of computing resources, which have
een commonly used for medium and long-term precipitation
orecasting, but not suitable for precipitation nowcasting due to
ow accuracy and ‘‘spin-up’’ problems [2,3]. Modern precipitation
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nowcasting mainly manipulates echo extrapolation of networked
radars, which is also known as Radar Network Composite, or
Internet of Radars (IoR) when echo images and extrapolation
results are remotely stored and exchanged [4].

Traditional radar echo extrapolation methods can be divided
into cross-correlation methods, centroid tracking methods and
optical flow-based methods. The cross-correlation methods [5,6]
can only capture the direction of motion of individual rainfall
clouds, but hardly capture the large-scale motion of the whole
weather system. The centroid tracking methods [7,8] are suit-
able for echoes of high intensity. When the echoes are split,
the accuracy of tracking and prediction will be reduced. The
optical flow-based methods [9–11] use the variation of the im-
age sequence in the temporal domain to calculate the optical
flow correlation between adjacent input frames, as well as the
motion field for extrapolation. However, it is arbitrary for these
methods to assume that the brightness of radar echo is constant.
In addition, the optical flow estimation step separates from the
extrapolation step. Therefore, determining the best parameters of
the motion field to obtain the best extrapolation results becomes
difficult, resulting in the limitations these methods.

Recently, artificial neural networks have been widely used and
mporal LSTM approach to edge-radar echo extrapolation in the Internet of Radars.

achieved outstanding performances in fields such as computer
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ision [12], edge computing [13–18], medical diagnosis [19,20],
nomaly detection [21–23], data mining [24–27], algorithm op-
imization [28–31], and time series prediction [32–34], etc. This
as attracted widespread attention from researchers in the field
f weather forecasting, and they began to apply these networks
o radar echo extrapolation. Radar raw data retrieved from a
eather radar can further generate radar combined reflectiv-

ty maps, which are arranged in the chronological order. Due
o its similarity to video frames, radar echo extrapolation can
e regarded as a spatiotemporal sequence prediction problem,
here n future radar echo maps are predicted from the input m

maps. Shi et al. [35] replaced the full connection in the original
LSTM unit with convolution and proposed a ConvLSTM model. It
was applied to predict radar echo with the observed echo maps
in Hong Kong. Base on ConvGRU model, a TrajGRU unit [36]
implemented by variable convolution was proposed to effectively
learn the spatial changes of recurrent connections. PredRNN [37]
and its variant PredRNN++ [38] were constructed by the ST-LSTM
and Causal LSTM models, respectively, where the features in the
top layer of network at the previous time step are conveyed
to the first layer of the current time step along a zigzag route,
enabling the network to capture short- and long-term features
at the same time. In addition, the classic U-Net network was
also employed for precipitation nowcasting [39]. Existing deep
neural networks being applied to radar echo extrapolation are
mainly based on Convolutional Neural Network (CNN), Recurrent
Neural Network (RNN), or the combination of multiple deep
models. These methods are affected by the receptive field of the
convolution layer [40], so they have limitations in capturing long-
range spatial features, making it difficult to model the dynamics
of complex objects like radar echoes that are constantly moving,
merging and dissipating, as therefore causing inaccurate or wrong
prediction results [41].

In recent years, the self-attention mechanism has been a hot
topic in deep learning. There have been many studies in nat-
ural language processing [42,43] and computer vision [44,45].
Compared to the CNN structure, the mechanism can efficiently
capture global dependencies and derive information from past
aggregated features, enhancing the ability to recognize complex
motion objects.

In order to alleviate the impact of problems with the ex-
isting networks so as to improve the accuracy of radar echo
extrapolation, this paper proposes a Self-Attention Integrated
Spatiotemporal LSTM (SAST-LSTM) recurrent unit, in which the
global spatiotemporal features are captured based on the self-
attention mechanism and are saved in a dedicated global memory
to avoid the error accumulation. To better perform radar echo
extrapolation tasks, the recurrent units are stacked to build the
four-layer extrapolation network SAST-Net. According to the re-
sults, the proposed work shows improved performance over the
other models for radar echo extrapolation tasks.

The rest of this paper is organized as follows: Section 2 pro-
vides a brief overview of related research on radar echo ex-
trapolation using deep neural networks. Section 3 introduces
the self-attention mechanism and self-attention memory module.
Section 4 describes in detail the working process of the proposed
SAST-LSTM and the extrapolation network SAST-Net. Section 5
shows the conducted experiments and obtained results. Finally,
the conclusion of the experiment and future work plan are given
in Section 6.

2. Related work

Radar echo extrapolation tasks can be regarded as a kind
of spatiotemporal sequence prediction problem. At present, a
large number of researchers have used deep neural networks to
2

conduct researches. RNN is used to capture temporal features,
while CNN is generally used to capture spatial features.

Most CNN-based extrapolation models were inspired by meth-
ods in the fields of image classification and semantic segmen-
tation, the models in these fields are further optimized and
introduced into the radar echo extrapolation task. Klein et al. [46]
proposed a dynamic convolution layer. The kernel size changes
dynamically according to the input data, and used this structure
for short-term weather forecasting. Zhuang et al. [47] designed
a ST-CNN network to mine precipitation precursor information
from data for extreme precipitation prediction. Agrawal et al. [39]
used U-Net to predict the rainfall status in the next hour. Inspired
by U-Net and SegNet, RainNet [48] is proposed, which predicts
the precipitation intensity in Germany 5 min in advance. Fernan-
dez et al. [49] proposed a Broad-UNet, which has asymmetric
parallel convolution components, so that this model is able to
combine multi-scale features for nowcasting. Han et al. [50] used
a newly designed loss function to train U-Net to predict the radar
echo images in northern China 30 min in advance.

RNN-based models are mostly used in combination with con-
volution layers. Shi et al. [35] proposed ConvLSTM, a landmark
deep neural network in the field of radar echo extrapolation.
It combines convolution operation with traditional LSTM to en-
hance model’s ability to capture spatial features. The predicted
radar echo intensity is converted into the precipitation intensity
through the Z-R relationship, and the precipitation nowcasting
result is obtained. Shi et al. expanded the structure of ConvLSTM
by using a location-varying connection structure and proposed
a TrajGRU unit [36]. This model obtained better extrapolation
results than previous methods. Wang et al. [37] proposed a Pre-
dRNN, which is built by the newly designed Spatiotemporal LSTM
(ST-LSTM), which introduced an additional memory unit into the
original LSTM, enabling the model to capture temporal and spatial
features at the same time. The network adds zigzag connections
to convey captured features that improves the ability to model
complex objects. To address the gradient disappearance problem
in previous methods, Wang et al. [38] proposed a PredRNN++
model. It is built by several Causal LSTM units and a gradient
highway (GHU). The Causal LSTM unit with the double cascade
mechanism increases the model’s ability to capture short-term
features. The GHU enables the model to effectively convey gradi-
ent information. Wang et al. [51] proposed a Memory In Memory
(MIM) model. It innovatively uses the differential signal be-
tween adjacent recurrent states to model the stationary and
non-stationary characteristics of spatiotemporal dynamics. This
model has powerful generalization capabilities for different tasks
in multiple domains. Guen et al. [52] proposed a dual-branch
network PhyDNet, which uses PhyCell to capture physical fea-
tures such as the position objects, and ConvLSTM unit to capture
appearance, texture and other residual features. Finally, the two
types of information are merged to model dynamics.

Several research integrated the attention mechanism into the
previous network to enhance the prediction performance, and ap-
plied improved networks to spatiotemporal sequence prediction
tasks. Lin et al. [41] proposed the self-attention mechanism based
SA-ConvLSTM network, which achieves the best results on several
video datasets. Chai et al. [53] proposed CMS-LSTM networks
based on multi-scale attention modules for video prediction tasks.
Zhong et al. [54] improved the classic ST-LSTM unit and added
the attention mechanism into it, which is used to model the
long-range spatiotemporal dependence. Trebing et al. [55] added
convolutional block attention modules (CBAM) to U-Net, which
uses the attention mechanism for both channel and spatial di-
mensions. Luo et al. [56] proposed a IDA-LSTM model for radar
echo extrapolation tasks in response to the underestimation of
high-intensity radar echo regions by previous models.
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Fig. 1. The structure of Self-Attention Memory (SAM). Left side is the double
self-attention mechanism for capturing global features. The right is the gated
mechanism similar to GRU for updating global feature memory and hidden
states.

3. Preliminary

Self-attention mechanism is a kind of attention mechanism
nd has been introduced into many deep networks in other fields.
his mechanism can be formulated as Eq. (1), where Q is Query,
is Key and V is Value. These three terms are matrices, whose

ize are all B × C × H × W , dk is the dimension of Key.

Attention(Q , K , V ) = softmax
(
QK T

√
dk

)
V (1)

This mechanism calculates the similarity score of each pair of
points in the feature map by performing matrix multiplication on
Q with transposed K , and dividing each element of the similarity
matrix by

√
dk to reduce the influence of variance on the network

gradient update. Then it normalizes the result by applying soft-
max function to get the corresponding weight coefficient matrix.
Finally, the obtained matrix is multiplied with V . In this way, the
odel can capture global features that are important for future
rediction, without being limited by the receptive field due to the
ize of the convolution filter.
To better adapt to prediction tasks, a Self-Attention Memory

SAM) module [41] based on further optimized self-attention
echanism was proposed. Its structure is shown in Fig. 1. The
AM has two self-attention mechanism structure that share the
ame Query. The global feature memory G and the temporary hid-
en states H ′ are the input of this module. Firstly, H ′ is operated
y 1 × 1 convolution filters Whq, Whk, Whv to obtain Query Qh,
ey Kh and Value Vh. Then the module performs self-attention
echanism operation on H ′. The output of this operation is Zh,
hich contains global feature newly captured from H ′

t . The above
process can be formulated as:

Zh = softmax
(
QhK T

h
√
dkh

)
Vh (2)

At the same time, G is operated by two 1 × 1 filters Wgk, Wgv

to get Kg and Vg , respectively. The two feature maps are then
performed self-attention mechanism operation together with Qh.
The result is Zg , which contains features are closely related to
future prediction. This can be formulated as:

Zg = softmax

(
QhK T

g√
dkg

)
Vg (3)

Then Zt , Zg and original H ′ are concatenated along the channel
for feature fusion as shown in Eq. (4), where ∗ means convolution,
 t

3

[·] means channel concat.

Z = Wz ∗
[
Zh, Zg

]
(4)

The obtained Z and H ′
t are transmitted into a gated mechanism

similar to that in GRU. The input gate ist and input modulation
gate gst are calculated as Eqs. (5) and (6), respectively, where σ
is Sigmoid function, W represents convolution filters, b is bias.

ist = σ
(
Ws;zi ∗ Z + Ws;hi ∗ H ′

t + bs;i
)

(5)

gst = tanh
(
Ws;zg ∗ Z + Ws;hg ∗ H ′

t + bs;g
)

(6)

The above two gate are then used to update the global feature
memory Gt as shown is Eq. (7), where ⊙ means Hadamard
product:

Gt = (1 − ist) ⊙ Gt−1 + ist ⊙ gst (7)

Similarly, Z and H ′
t are used to obtain the output gate:

ost = σ
(
Ws;zo ∗ Z + Ws;ho ∗ Ht + bs;o

)
(8)

Finally, the module performs Hadamard product operation on
output gate ost and global feature memory G to get the updated
hidden state Ht :

Ht = ost ⊙ Gt (9)

4. Methodology

4.1. Self-attention integrated spatiotemporal LSTM

In order to enhance models’ ability to capture the global
features of radar echo variations and accurately model their dy-
namics, so as to obtain accurate extrapolated radar echo maps,
this paper introduces SAM into the original Spatiotemporal LSTM
(ST-LSTM) to form the Self-Attention Integrated Spatiotemporal
LSTM recurrent unit (SAST-LSTM). Its structure is shown in Fig. 2,
where t represents the tth time step, l represents the lth layer.

SAST-LSTM is the basic unit for building the stacked radar
echo extrapolation network SAST-Net, whose input includes the
hidden state H , the temporal memory C , the input state X , the
spatiotemporal memory M and the global feature memory G.
It should be noted that C is only updated along the temporal
dimension, while M and G are updated along the spatial di-
mension first, and then along the temporal dimension, so they
contain the spatiotemporal features of radar echo variations. The
specific update routes of the above states and memory cells will
be introduced in detail in Section 4.2.

The SAST-LSTM unit performs standard gated mechanism op-
erations like that in ConvLSTM on C l

t−1, H
l
t−1 and X l

t . The convo-
lution filters Wf is operated on H l

t−1 and X l
t . The obtained results

are performed on element-wise addition operation and Sigmoid
function to get the forget gate ft . This can be formulated as:

ft = σ
(
Wxf ∗ Xt + Whf ∗ H l

t−1 + bf
)

(10)

The convolution filters Wi and Wg are operated on H l
t−1 and

l
t , respectively. Then the unit performs similar operations like
q. (10) to get the input gate it :

it = σ
(
Wxi ∗ Xt + Whi ∗ H l

t−1 + bi
)

(11)

The input modulation gate gt can be obtained by the similar
pproach as well:

t = tanh
(
Wxg ∗ Xt + Whg ∗ H l

t−1 + bg
)

(12)

Then the Hadamard product operation between ft and C l
t−1 is

erformed to forget the unimportant temporal features transmit-

ed from previous time step. Also, the unit performs Hadamard
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Fig. 2. The structure of a recurrent unit in the proposed SAST-Net. An additional gating mechanism is dedicated to capturing spatiotemporal features, and the SAM
is introduced for global feature extraction. In parallel, an extra memory is added to store global features so as to alleviate error accumulation.
product operation between it and gt to obtain the captured
eatures. The result of these two steps is combined by performing
lement-wise addition operation. The result is used to update
emporal memory C l

t . The above process can be formulated as:

l
t = ft ⊙ C l

t−1 + it ⊙ gt (13)

The recurrent unit also performs gated mechanism operations
n spatiotemporal memory M l−1

t and input state X l
t to capture

spatiotemporal features from the input state at current time step.
Another group of convolution filters W ′

f , W
′

i , and W ′
g act on M l−1

t
and X l

t to obtain f ′
t , i

′
t , and g ′

t . These three gates are obtained in a
similar way to Eqs. (10)–(12):

f ′

t = σ
(
W ′

xf ∗ Xt + Wmf ∗ M l−1
t + b′

f

)
(14)

i′t = σ
(
W ′

xi ∗ Xt + Wmi ∗ M l−1
t + b′

i

)
(15)

g ′

t = tanh
(
W ′

xg ∗ Xt + Wmg ∗ M l−1
t + b′

g

)
(16)

By performing operations similar to the upper gated mecha-
nism, the newly captured spatiotemporal features are saved in
M l

t . This above process can be formulated as:

M l
t = f ′

t ⊙ M l−1
t + i′t ⊙ g ′

t (17)

Next, the input state X l
t , the hidden state H l

t−1, the updated
time memory C l

t and the updated spatiotemporal memory M l
t are

operated by convolution filter Wo to obtain the output gate ot :

ot = σ
(
Wxo ∗ Xt + Who ∗ H l

t−1 + Wmo ∗ M l
t + bo

)
(18)

Memory C l
t and memory M l

t are concatenated along the chan-
nel dimension, the concatenated result is then operated by ot to
obtain the temporary hidden state H ′l

t :

H ′l
t = ot ⊙ tanh

([
M l

t , C
l
t

])
(19)

Finally, the temporary hidden state H ′l
t and the global feature

memory Gl−1
t are used as the input of SAM to capture global

features. The obtained global feature map is stored in the memory
G. The final hidden state H l

t is obtained at the same time. The
process can be formulated as:

H l,Gl
= SAM

(
H ′l,Gl )

(20)
t t t t−1

4

4.2. Radar echo extrapolation network SAST-Net

Following the settings in previous works [37,38], this paper
stacks the SAST-LSTM recurrent units to build a four-layer radar
echo extrapolation network SAST-Net. It has been demonstrated
in previous work that stacking four layers of recurrent units can
increase the depth of the network to capture refined features.
In this way, models are better to model abrupt variation of
radar echoes, while avoiding the gradient vanishing problem.
The overall architecture of SAST-Net is shown in Fig. 3. Each
column in the figure shows the network at a single time step,
while each row represents a single layer of the network. The
horizontal direction represents the temporal domain, and the
vertical direction represents the spatial domain. All hidden states
and memory cells are initialized with zero matrices at the first
time step.

Taking the network at the tth time step as an example, it can
be clearly seen from the figure the SAST-LSTM unit in the first
layer takes the input radar echo map It at the tth time step as
the input state X1

t . For units in other layers of the network, the
hidden state H l−1

t output by the previous layer is used as the input
state. In particular, the hidden state H4

t , which is the output of the
fourth-layer unit, is operated by a 1 × 1 convolution filter so as
to obtain the extrapolated radar echo image Ît+1 at current time
step. In horizontal direction, the updated temporal memory C1

t
and the hidden state H1

t , which are the output of current unit,
are transmitted to the unit in the same layer at the next time
step. The blue arrows in the figure indicate the update route of
temporal memoryM and global feature memory G. Different from
temporal memory C , they are first updated in the vertical direc-
tion, and memory the local and global features in spatial domain
captured by units layer by layer. Then M4

t and G4
t are sent to the

first layer at next time step. These two memories are updated
with the new features captured from the new input state X1

t+1.
Therefore, M and G also contain temporal features. The stacked
structure follows the above-mentioned update route to complete
the modeling of radar echo dynamics and the extrapolation of
future echo maps.

5. Experiments

5.1. Experimental setup

To show the performance improvement of the proposed SAST-
Net, this model and some other representative methods are used
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Fig. 3. The overall architecture of SAST-Net built by stacking four-layer SAST-LSTM recurrent units. The blue arrows are depicting the zigzag route, where the global
feature memory G and the spatiotemporal memory M transmit and update. (For interpretation of the references to color in this figure legend, the reader is referred
to the web version of this article.)
to perform extrapolation tasks on two different real world radar
echoes datasets.

The first dataset is the Guangzhou Station dataset, in which
the data was observed by a CINRAD-SA Doppler weather radar
in Guangzhou during rainy season (May to August) from 2012
to 2014. The training set, validation set, and test set has 4570,
600 and 605 sequences, respectively. Each sequence has 20 radar
echo maps arranged in chronological order. The size of each map
is 500 × 500, and the spatial resolution is 1 km. To reduce
the computational complexity, the original maps are resized to
100 × 100. The observation interval of every two adjacent radar
echo maps is 6 min. In this experiment, all models predict the last
10 echo maps based on the first 10 maps.

The second dataset is the CIKM 2017 dataset, a publicly avail-
able dataset contains Doppler weather radar echo maps, which
were observed by the Meteorological Bureau of Shenzhen during
two consecutive years. The training set, validation set, and test set
has 8000, 4000 and 2000 sequences, respectively. Each sequence
in the dataset contains 15 maps. The original size of each echo
map is 101 × 101, and each point in the grid represents an
1 km × 1 km area. To facilitate the model to divide the map into
patches, the right and lower sides of the map are filled with zeros,
so that the size of new obtained image is 104 × 104. All models
eceive the first 5 maps to extrapolate the next 10 maps in this
xperiment.
The points with weak relationship to precipitation events (dBZ
10) in the above two datasets were replaced by 0, so that the

alue of points represent radar echo in the map ranges from 10 to
0. The value of points represent background is 0. All radar echo
aps are converted into images by Eq. (21):

ixel_value =

⌊
255 ×

(
dBZ_value

70

)
+ 0.5

⌋
(21)

Representative models used for comparative experiments in-
lude ConvLSTM, PredRNN, PredRNN++, Memory in Memory
MIM), PhyDNet, and SA-ConvLSTM. The residual branch of PhyD-
et and other models are all four-layers stacked structure like
5

the proposed SAST-Net. The recurrent units in these models
have 64 feature maps. All models are trained with the Adam
optimizer [57]. Scheduled sampling [58], layer normalization [59]
and early stopping training strategies are also used. The initial
learning rate and the batch size is set to 0.001 and 4, respectively.
The mean squared error (MSE) is used as the loss function. All
experiments are conducted on NVIDIA RTX 3090.

Due to the privacy concerns of weather radar data, this paper
uses a distributed cloud platform based on Java EE and ICE (In-
ternet Communications Engine) technology. Researchers use the
SSL-encrypted Internet of Weather Radars transmission network
to read and manage radar data. The platform accesses the Java
Web API through the ICE framework, realizing model training,
testing, log viewing and other functions. ICE is similar to socket
technology and is responsible for handling the underlying com-
munication programming. The service interfaces written in the
SLICE (Specification Language for ICE) language, which decouples
the client end from the server end, and the two ends can use
different programming languages to keep the programming style
consistent. The communication process of the ICE framework is
shown in Fig. 4. In addition, the communication channel is con-
figured with security protocols such as RSA, which can guarantee
the security of communication during the training process.

5.2. Evaluation metrics

To evaluate the quality of extrapolated echo maps by each
model, this paper selects Critical Success Index (CSI) and Heidke
Skill Score (HSS), which are often used in meteorological area as
the evaluation metrics for forecast results. The CSI focuses on the
correspondence between precipitation events predicted by the
model and the truly observed precipitation events, that is, the
probability that the model successfully predicts the precipitation
events. The higher the CSI score, the better the performance of
the model. The HSS focuses on the fraction of correct predictions
after eliminating those predictions, which would be correct due
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Table 1
The quantitative comparison of all models in terms of CSI and HSS on Guangzhou Station dataset in the comparative experiment.
Model CSI ↑ HSS ↑

τ = 10 τ = 20 τ = 30 τ = 40 Average τ = 10 τ = 20 τ = 30 τ = 40 Average

ConvLSTM 0.6738 0.6210 0.4807 0.1897 0.4913 0.7343 0.7212 0.6196 0.3081 0.5958
PredRNN 0.6956 0.6391 0.5086 0.2268 0.5175 0.7505 0.7360 0.6456 0.3584 0.6226
PredRNN++ 0.6965 0.6328 0.4871 0.2135 0.5075 0.7522 0.7314 0.6263 0.3411 0.6128
MIM 0.6937 0.6373 0.5193 0.2524 0.5257 0.7487 0.7343 0.6547 0.3905 0.6320
PhyDNet 0.6683 0.5673 0.4154 0.1678 0.4547 0.7223 0.6723 0.5552 0.2774 0.5568
SA-ConvLSTM 0.6889 0.6222 0.5027 0.2227 0.5091 0.7423 0.7197 0.6378 0.3509 0.6127
SAST-Net 0.6982 0.6499 0.5294 0.2680 0.5364 0.7544 0.7451 0.6637 0.4101 0.6433
Fig. 4. The communication process between server and client based on an
CE framework. The ICE can separate both sides (Client and Server) into
ifferent runtime/development environments. It can also establish a secure
ommunication tunnel using RSA or other cryptography algorithms.

urely to random chance. The higher HSS score indicates better
xtrapolation performance of the model.
The CSI and HSS scores of each model are calculated as fol-

ows. Given a dBZ threshold τ , for every pair of points with the
ame coordinates in extrapolated map and the corresponding
bserved echo map, if the point’s value in extrapolated map
nd the corresponding point’s value in observed map are both
reater than τ , this point pair belongs to the True Positive (TP)
lass. If the point’s value in extrapolated map is greater than τ

hile the corresponding point’s value in observed map is smaller
han τ , the pair belongs to the False Positive (FP) class. If the
oint’s value in extrapolated map is smaller than τ while the
orresponding point’s value in observed map is greater than τ ,
he pair belongs to the False Negative (FN) class. If the point’s
alue in extrapolated map and the corresponding point’s value
n observed map are both smaller than τ , this point pair belongs
o the True Negative (TN) class. Finally, counting the number of
oint pair in each class. The CSI score and HSS score of each model
re calculated following Eqs. (22) and (23). In the experiments,
hreshold τ is set to 10, 20, 30 and 40 dBZ.

SI =
TP

TP + FP + FN
(22)

SS =
2 × (TP × TN − FN × FP)

(TP + FN) × (FN + TN) + (TP + FP) × (FP + TN)
(23)

.3. Comparative experiments

Table 1 shows the quantitative evaluation results of all models
n Guangzhou Station dataset. It can be seen that the proposed
AST-Net obtained the best CSI and HSS scores for all thresholds.
hen the threshold τ is set to relatively low values (10 and 20

dBZ), SAST-Net shows slight improvements over other models.
For relatively high thresholds (30 and 40 dBZ), considering the
points with relatively high dBZ values are strongly related to
heavy precipitation, so it is quite important for the models to
make more accurate prediction under these two thresholds. The
CSI-30 score, and CSI-40 score of SAST-Net is 1.94% and 6.18%
higher than second-ranked model MIM. In terms of HSS score,
it improves by 1.37% when τ is set to 30 and improves by 5.02%
6

when τ is set to 40. The above results show that the proposed
SAST-Net has better extrapolation performance for radar echo,
especially that of higher intensity, compared with the existing
methods.

To evaluate the model’s robustness for high-intensity echoes
extrapolation, the CSI and HSS scores of all models at each lead
time stamp on the Guangzhou Station dataset when the threshold
is set to 30 and 40 are drawn in Fig. 5. The lead time is the
observation interval between the echo map and the last input
map. As can be seen from the figure, SAST-Net’s curves is always
at the top of all curves, indicating that it has achieved the highest
score at all time steps. Its slope is also smaller than that of
the other models, showing its more stable performance than the
existing methods. MIM’s curve is very close to that of SAST-Net
in the first several time steps, but the distance between them
becomes larger and larger as time goes. The reason is that the lack
of the memory, which can store global features, making it difficult
to model the dynamics of radar echo when performing long-term
extrapolation tasks. It is noted that the curve of SA-ConvLSTM
is unsmooth, because it lacks memory to store spatiotemporal
features, so the curve fluctuates greatly.

To assess the quality of extrapolated radar echo maps, Fig. 6
shows the visualization of all models’ extrapolated maps for one
test sequence from the Guangzhou Station dataset. The mapping
relationship between dBZ value and color of the radar echo is
shown in the color bar on the right. The first two rows are the
observed maps from the sequence, and all models extrapolate
maps in the second row based on the maps in the first row.
The following rows are the extrapolated results of each model.
The echo maps in one column have the same observation time
stamp. The more similar the extrapolated map is to the corre-
sponding observed map in the second row, indicating the better
the performance of the model.

The sequence shows that the high-intensity echo moving to
the right side of the map. The red echo area highlighted by the
red box in the figure is closely related to the potential severe
convective weather, so it is important for the models to make
accurate extrapolation of this part. ConvLSTM predicts the rough
outline of echoes, but the yellow and orange areas in the middle
and lower of the map showed a trend of dissipating, indicating
that the model fails to correctly predict the echoes with high
intensity value. PredRNN predicts the yellow area in the lower
of the map better, but it can be seen that the echo intensity of
the upper left yellow area is underestimated. The same problem
also appears in the extrapolated maps of PredRNN++. The yellow
and orange areas on the right of maps are quite different from
those in observed maps. PhyDNet predicts that the echoes are
in dissipating, so in the last few pictures, the whole area is
significantly smaller than that in observed maps, and the error
of the yellow and orange areas inside is larger, which results in
its lowest CSI and HSS scores. The extrapolated maps of MIM and
SA-ConvLSTM are more similar to the observation compared with
the above-mentioned methods, but it is worth noting that the red

area marked by the red box in these two models’ extrapolated
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Fig. 5. The CSI and HSS scores of all models at each lead time stamp on the Guangzhou Station dataset when the threshold τ is set to 30 and 40 in the comparative
experiment. The curves of proposed SAST-Net are smoother and always at the top of other models’, indicating its better robustness and extrapolation performance
than comparison models.
Table 2
The quantitative comparison of all models in terms of CSI and HSS on CIKM 2017 dataset in the comparative experiment.
Model CSI ↑ HSS ↑

τ = 10 τ = 20 τ = 30 τ = 40 Average τ = 10 τ = 20 τ = 30 τ = 40 Average

ConvLSTM 0.6809 0.4070 0.2075 0.0831 0.3446 0.6673 0.4844 0.3306 0.1525 0.4087
PredRNN 0.6699 0.3933 0.2200 0.0969 0.3450 0.6632 0.4653 0.3397 0.1746 0.4107
PredRNN++ 0.6676 0.3930 0.2068 0.1026 0.3425 0.6533 0.4779 0.3287 0.1847 0.4112
MIM 0.6832 0.4028 0.2360 0.1097 0.3579 0.6679 0.4779 0.3607 0.1954 0.4255
PhyDNet 0.6321 0.3597 0.1588 0.0885 0.3098 0.5971 0.4106 0.2411 0.1606 0.3524
SA-ConvLSTM 0.6857 0.3925 0.2159 0.1055 0.3499 0.6720 0.4845 0.3412 0.1892 0.4217
SAST-Net 0.6868 0.4100 0.2515 0.1264 0.3687 0.6722 0.4847 0.3838 0.2228 0.4409
maps, which indicates possible severe precipitation events, grad-
ually dissipates with time, which may lead to the failure to take
timely responses to heavy precipitation, and thus this problem
is fatal. For the SAST-Net proposed in this paper, the boundaries
of echo in the extrapolated maps are almost consistent with the
observed maps. With the help of its spatiotemporal structure
and self-attention mechanism, the model is able to capture and
learn features, so as to model the dynamics of radar echo more
accurately. The disappearance problem of the red area for MIM
and SA-ConvLSTM is also alleviated.

To evaluate the general applicability of the proposed SAST-
et, comparative experiments were also conducted on the CIKM
017 dataset. Table 2 shows the quantitative results of all models,
AST-Net also obtains the best CSI and HSS scores under all
our thresholds on this dataset. In particular, compared with the
econd-rank model MIM, its CSI-30 and CSI-40 score improve
7

by 6.57% and 17.76%, respectively. Its HSS-30 and HSS-40 score
improve by 6.40% and 14.02%, respectively.

Similarly, Fig. 7 shows the CSI and HSS scores of all models
on the CIKM 2017 dataset at each lead time stamp when the
threshold is set to 30 and 40. It can be seen that the curves of
SAST-Net are still ahead of other models’ at every time step. The
distances between its and other models’ increase over time.

Fig. 8 is the visualization of all models’ extrapolated maps for
one test sequence from the CIKM 2017 dataset. In this sequence,
the echoes move downward, and the two orange areas in the
middle of the map gradually merge. The red box is used to mark
the high-intensity echoes that need to be focused on the sequence
as well. In the extrapolated maps of ConvLSTM, the yellow area
tends to shrink and is scattered into several small areas of echoes,
indicating that the model cannot predict the motion trend of
radar echo correctly. The result of PredRNN suffers from the
problem of underestimating the intensity of echoes, so the yellow
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Fig. 6. The visualization of all models’ extrapolated radar echo maps for one test sequence from the Guangzhou Station dataset in the comparative experiment.
oth the boundary and intensity of the red striped echo area highlighted by the red box in SAST-Net’s extrapolated map are most similar to the Ground Truth, while
his area in other models’ maps suffer from the problem of dissipation or inaccurate position. (For interpretation of the references to color in this figure legend,
he reader is referred to the web version of this article.)
Table 3
The quantitative evaluation results of the four models on Guangzhou Station dataset in the ablation study.
Model CSI ↑ HSS ↑

τ = 10 τ = 20 τ = 30 τ = 40 Average τ = 10 τ = 20 τ = 30 τ = 40 Average

Baseline Model 0.6956 0.6391 0.5086 0.2268 0.5175 0.7505 0.7360 0.6456 0.3584 0.6226
SAST-Net wo.SA 0.6919 0.6418 0.5177 0.2303 0.5204 0.7476 0.7375 0.6530 0.3627 0.6252
SAST-Net wo.G 0.6953 0.6419 0.5229 0.2536 0.5284 0.7513 0.7382 0.6577 0.3919 0.6348
SAST-Net 0.6982 0.6499 0.5294 0.2680 0.5364 0.7544 0.7451 0.6637 0.4101 0.6433
and orange areas marked by the red box are significantly smaller
in area than they actually are. The PredRNN++, MIM and SA-
ConvLSTM also fail to correctly predict high-intensity echoes,
with the yellow and orange areas in the red box scattered or
dissipated. The extrapolated maps of PhyDNet are far from the
observed maps and suffer from distortion problem. The SAST-Net
proposed in this paper extrapolate the holistic variation of echoes
better, and the parts marked in red box, which need to be focused
on are closest to the actual observations compared with the other
models.

5.4. Ablation study

To demonstrate the effectiveness of the proposed structure,
blation study for the SAST-LSTM unit, which constitutes the
AST-Net, are conducted on the Guangzhou Station dataset. The
elf-attention mechanism and the global feature memory were
dded to the SAST-LSTM respectively. Thus, the experimental
ubjects include the baseline model PredRNN built by ST-LSTM
nits, SAST-Net without the self-attention mechanism (SAST-Net
o. SA), SAST-Net without global feature memory (SAST-Net wo.
8

G), and the standard SAST-Net. The quantitative results of all
models are shown in Table 3.

After adding self-attention mechanism and global feature
memory to the original ST-LSTM respectively, the scores of the
newly obtained SAST-Net without G and SAST-Net without SA,
although slightly lower than the baseline model when τ = 10,
but they show great improvements in their scores at higher
thresholds as well as in average scores, which is of significance
for destructive heavy precipitation forecasting. The performance
improvement of SAST-Net without SA is smaller than that of
SAST-Net without G, which shows that the self-attention mech-
anism has a significant contribution to model the holistic radar
echo motion. The best results are obtained by the standard SAST-
Net proposed in this paper, which is attributed to the combined
effect of the two new components mentioned above.

Fig. 9 is the visualization of radar echo maps extrapolated by
different models for a sequence from Guangzhou Station dataset
in the ablation study. This sequence shows the echo in the middle
moves towards the right side of the map, and the generation of
high-intensity echo in the lower side of the map, as highlighted

by two red boxes in the figure. The baseline model PredRNN fails
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Fig. 7. The CSI and HSS scores of all models at each lead time stamp on the CIKM 2017 dataset when the threshold τ is set to 30 and 40 in the comparative
xperiment. The curves of the proposed SAST-Net are above other models and decline slower, showing its more stable performance for long-range extrapolation.
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o correctly predict the motion trend of radar echoes. The echo
rea marked by red boxes showed the occurrence of dissipation
nd underestimation of intensity. The SAST-Net without SA but
ith the extra memory can remember more features of echo
ariations, enabling the model to accurately predict the rough
oundary of echo areas. But the intensity of echoes marked by
ed boxes is underestimated. The SAST-Net without G captures
he global features of radar echo motion with the help of the
elf-attention mechanism, so it successfully predicts the echo
n the middle of map. However, due to lack of global feature
emory, prediction errors started to occur and accumulated over

ime from lead time T = 30, leading to an inaccurate extrapo-
ation of echo variations in the top left of the map, as well as
he underestimation of echo intensity highlighted by the lower
ed box. The standard SAST-Net not only successfully predicts
he position of the echoes in the maps, but also make accurate
xtrapolations in which both the boundary and intensity of the
cho areas marked in red boxes are most similar to those in the
orresponding observed maps. This owing to its ability to capture
nd learn global features of the radar echo motion by using
he self-attention mechanism, and to avoid the accumulation of
rrors with the help of global feature memory.

.5. Result analysis

From the results of comparative experiments and ablation
tudy conducted on two different real-world radar echo datasets,
9

t can be clearly seen the effectiveness of SAST-LSTM’s compo-
ents and SAST-Net‘s improved extrapolation performance over
ther models.
Unlike traditional video prediction tasks, radar echo extrapo-

ation is more challenging as, echoes may dissipate or aggregated
ogether rather than just do their own motion, which requires the
odel to infer future maps from a global view.
Those recent models are only able to capture local features

f the echo variations by performing convolution operations but
annot model the holistic motion of the radar echo, so their ex-
rapolated maps often have echo-intensity underestimation prob-
em. The second-ranked MIM model alleviates this problem to
ome extent by decomposing the dynamics into non-stationary
nd stationary states, but it still faces the inaccurate echo-motion
odeling problem, which is shown in Fig. 8. The orange area
radually dissipates. In addition, the model may face the error ac-
umulation problem due to its lack of additional memory, leading
o a rapid decline in its prediction performance over time.

The SAST-Net, which built by SAST-LSTM units, can better
apture global features of echo variations by integrating the self-
ttention mechanism, improving the accuracy in predicting holis-
ic radar motion. In addition, the additional memory added to
he model alleviate error accumulation problem, so the model
as more stable performance when perform long-range extrapo-
ation. With the collaborative work of these two components, the
ynamic modeling ability of the SAST-Net for radar echoes can be
mproved, and more accurate extrapolated maps can be obtained.
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Fig. 8. The visualization of all models’ extrapolated radar echo maps for one test sequence from the CIKM 2017 dataset in the comparative experiment. The proposed
AST-Net can predict the yellow and orange areas marked in the red box, as well as sporadic red areas related to possible severe convective weather events. The
xtrapolated maps of the other models differ significantly from the observed maps and suffer from echo dissipation or even distortion. (For interpretation of the
eferences to color in this figure legend, the reader is referred to the web version of this article.)
Fig. 9. The visualization of the four models’ extrapolated radar echo maps for one test sequence from the Guangzhou Station dataset in the ablation study. The
tandard SAST-Net captures and learns the global features of the radar echoes with the help of SA and global feature memory, so as to alleviate error accumulation
nd achieve accurate extrapolation of both the motion trends and intensity of two echo areas marked by the red boxes. (For interpretation of the references to
olor in this figure legend, the reader is referred to the web version of this article.)
t
g

. Conclusion

This paper proposes the SAST-LSTM, a spatiotemporal recur-
ent unit integrates the self-attention mechanism, which enable it
10
o capture and learn global spatiotemporal features, and an extra
lobal feature memory G is added to avoid error accumulation

with time goes. With the help of the above two components,
the model can accurately model the dynamics of radar echo
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otion. In order to perform radar echo extrapolation tasks, the
AST-LSTM unit are stacked to build a four-layer radar echo
xtrapolation network SAST-Net. The experiments conducted on
wo different real world radar echo datasets demonstrate the
mprovements of the proposed SAST-Net on performing radar
cho extrapolation tasks compared with other recent methods.
n the future, the authors will seek solutions to further improve
he clarity of extrapolated radar echo maps.
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