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A novel 3D unsupervised domain adaptation
framework for cross-modality medical image

segmentation
Kai Yao, Zixian Su, Kaizhu Huang, Xi Yang, Jie Sun, Amir Hussain, Frans Coenen

Abstract— We consider the problem of volumetric (3D)
unsupervised domain adaptation (UDA) in cross-modality
medical image segmentation, aiming to perform segmen-
tation on the unannotated target domain (e.g. MRI) with
the help of labeled source domain (e.g. CT). Previous UDA
methods in medical image analysis usually suffer from two
challenges: 1) they focus on processing and analyzing data
at 2D level only, thus missing semantic information from
the depth level; 2) one-to-one mapping is adopted during
the style-transfer process, leading to insufficient alignment
in the target domain. Different from the existing methods,
in our work, we conduct a first of its kind investigation on
multi-style image translation for complete image alignment
to alleviate the domain shift problem, and also introduce
3D segmentation in domain adaptation tasks to maintain
semantic consistency at the depth level. In particular, we
develop an unsupervised domain adaptation framework
incorporating a novel quartet self-attention module to ef-
ficiently enhance relationships between widely separated
features in spatial regions on a higher dimension, leading
to a substantial improvement in segmentation accuracy
in the unlabeled target domain. In two challenging cross-
modality tasks, specifically brain structures and multi-
organ abdominal segmentation, our model is shown to
outperform current state-of-the-art methods by a signifi-
cant margin, demonstrating its potential as a benchmark
resource for the biomedical and health informatics research
community.1

Index Terms— Cross-modality learning, Image segmen-
tation, Style transfer, Unsupervised domain adaptation.

I. INTRODUCTION

RECENT years have witnessed the bloom of deep con-
volutional neural networks (CNNs) in medical image

processing [1]–[3]. However, well-trained deep models usually
perform poorly in real scenarios due to the severe data
distribution difference between training and test sets caused
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Fig. 1. Illustration of challenges from cross-modality medical images.
(a) 2D visual comparison between ceT1 and hrT2 images. (b) Com-
parison of the models trained on ceT1 images while evaluated on ceT1
images and hrT2 images using Dice score, denoted as “supervised” and
“no adaptation”, respectively. (c) 3D visualization of ceT1 image and its
corresponding label.

by different imaging modalities, scanning protocols, and/or de-
mographic properties. For instance, the contrast-enhanced T1
(ceT1) Magnetic Resonance Imaging (MRI) scans and high-
resolution T2 (hrT2) scans are commonly used for the follow-
up and treatment planning of vestibular schwannoma (VS), in
which two key brain structures, the tumour and cochlea, are
expected to be segmented in clinical practice [4]. However,
a large visual appearance variation can be observed between
ceT1 and hrT2 scans, as shown in Figure 1 (a). A model
purely trained on ceT1 images cannot directly generalize well
on hrT2 images due to the distribution shift between these two
modalities (seen in Figure 1 (b)).

To reduce the performance degradation across different
modalities, a straightforward way is to fine-tune the model
pre-trained on source data using labeled target data [5], [6].

https://github.com/Kaiseem/DAR-UNet
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Fig. 2. (Left) The transferred source images with mean-style of target domain might not reflect the true distribution of target domain, (Right) while
using multiple samples’ styles to transfer the source images can generate a target-like distribution of transferred images.

However, this method is often not suitable in real situations
especially in medical images. When we exploit pretrained
models in a practical scenario, annotated target datasets are
often limited due to the tedious labeling process and privacy
concerns. Instead, unsupervised domain adaptation (UDA) is
more attractive and feasible, where the ground truth in the
target domain is not required.

Most current UDA-based methods in medical image analy-
sis can be summarized from two perspectives. One is image
alignment, which transforms the image style from source
domain to target domain using unpaired image-to-image trans-
lation. Another is feature alignment, aiming to extract domain-
invariant features via adversarial training. Although the exist-
ing UDA-based methods in medical image analysis have made
large progress, drawbacks still remain in them.

First, they tend to ignore the 3D information inherently
available in medical images, but choose to cut the medical
volumes into slices and use 2D networks instead, where
abundant semantic information from depth level is left aside
in their settings [7]. These methods may work on tasks with
small domain adaptation and segmentation difficulty, where
the random slice training set can provide enough information
for segmentation and domain adaptation. However, for more
challenging tasks with larger segmentation difficulty, the ab-
sence of semantic consistency in depth channel would degrade
the overall performance in the target domain. In the case of
vestibular schwannoma segmentation as mentioned before, the
two structures, the tumour and cochlea, only take up 0.15%
volume of the whole sample (seen in Figure 1 (c)), which
poses a great challenge to the segmentation network. If only
2D slices are adopted, most training samples only contain
background information. Such imbalance issue between the
foreground and background would result in the failure of
segmentation network. Moreover, from the viewpoint of data
analysis, using neural networks to process a full 3D image
directly rather than 2D slices is more reasonable and inter-
pretable as the former is closer to what the human eyes are
exposed to.

Second, an overly simplified assumption for style transfer,
which is a commonly used strategy of image alignment [8],
[9], is adopted in most previous work, where they model this
process as a deterministic one-to-one mapping with a mean

style of each domain. Namely, for a given input source image,
such methods can only synthesize one rigid output with the
mean style of target domain. However, there exists an inherent
intra-domain variance in medical image datasets, meaning
that the image styles in a single domain are quite different.
The mean-style transformation would lead to the so-called
partial image alignment as shown in Figure 2 (Left), which
will undoubtedly weaken the model generalizability on edge
samples (samples far away from center point in style space) in
the target domain. To alleviate this shortcoming, some work
chooses to combine feature alignment in the following stage
for further alignment, which somehow lacks controllability as
an intermediate output in the high dimension space.

In this paper, to better solve the above problems, we pro-
pose a novel 3D unsupervised domain adaptation framework.
Specifically, a generative adversarial network (GAN) is first
trained for content-style disentangled cross-domain image-to-
image translation. Unlike previous efforts that encode domains
into a common feature space, our GAN extracts the domain-
invariant features as content and domain-specific features as
style separately, enabling a target-like image generation with
diverse styles. This diverse generation method allows complete
image alignment in target domain as shown in Figure 2 (Right)
to better reduce domain shift from image level; it can also
avoid further feature alignment in 3D segmentor, which may
introduce additional computational overhead. After that, the
synthesized target-like images (volumes) are utilized for train-
ing our proposed 3D dual attention residual U-Net (DAR-
UNet) segmentor. We implement a 3D voxel-wise Attention
Module (VAM) in the decoder part of the segmentation subnet
to focus on the essential areas of the feature maps that can
prioritize the effective areas for segmentation. Meanwhile, a
Quartet Attention Module (QAM) is adopted in each residual
block to stress the adjacent semantic information between
slices, which can effectively capture the semantic consistency
from the depth level.

In summary, the key contributions of this paper are as
follows:
• We propose DAR-UNet architecture, a novel 3D semantic

segmentation neural network that takes advantages of two
attention modules, VAM and QAM, to capture spatial
semantic information from various feature levels.
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Fig. 3. General process of our proposed framework. We first factorize the source domain images and target domain images in to content and style
via disentangled generative adversarial network. Then, for each input source volume, we generate target-like volumes with diverse styles. Finally,
we train our DAR-UNet with the transferred volumes.

• We investigate the feasibility of multi-style transfer strat-
egy for image alignment in cross-modality medical image
segmentation tasks, which shows impressive performance
in reducing distribution shift.

• DAR-UNet outperforms the state-of-the-art methods by a
large margin on two benchmarks, i.e., vestibular schwan-
noma dataset and abdominal multi-organ datasets.

II. RELATED WORK

A. Unsupervised Domain Adaptation
In domain adaptation, training images are denoted as the

source domain, while test images are termed as the target
domain. They tend to have similar content but different style
distributions. This phenomenon is known as domain shift
in machine learning. In medical image analysis, due to the
prevalence of varying hospital modalities and diverse hospital
populations, domain shift is even more serious compared with
conventional common data [10], [11]. Previous studies [12]
have revealed that the error of the model on the test set is
usually proportional to the domain shift from the training
set. In the case of large domain shift as commonly seen in
clinical practice, models trained on the source set tend to
perform poorly on target domain. Therefore, how to transfer
the knowledge from source domain to target domain in the
field of medical images is a critical problem. While relabeling
in target domain is labor-consuming and time-costly, unsuper-
vised domain adaptation (UDA) requiring no annotation has
attracted much interest as a promising and feasible alternative.

Recent research adopts adversarial learning to tackle the
domain shift problem from different aspects, including pixel-
level alignment [13], feature-level alignment [14], and the
joint learning methods [15]. Pixel-level alignment, also called
image transformation, adopts an image-to-image generative
model to convert the style of source domain into that of target
domain while keeping its content unchanged. Cooperated with
a discriminator, the style-transferred images are designed to
be indistinguishable with the target domain data. Feature
alignment, termed latent feature space transformation, aligns
the distributions across domains in the feature space rather

than the image space, in order to mitigate the domain shift.
In this process, the generator does not need to generate new
samples anymore; instead, it plays the role of feature extraction
to learn constantly the common characteristics of the data.

B. Representation Disentangling

Representation disentangling in different domains aims to
model factors of data variation implicitly, in which the repre-
sentations with small variation can be roughly regarded as
domain-invariant features, while those with large disparity
are domain-specific. Some previous work [16] takes unpaired
data to factorize representations into the content and attribute
space to produce diverse outputs. However, they only focus
on learning disentangled representation of images in a single
domain and cannot be easily extended to describe cross-
domain data. Recently, Liu et al. have proposed E-CDRD [17],
the first framework that addresses cross-domain disentangled
representation with only supervision from single-domain data.
Later, UFDN [18], a unified deep learning framework, is
presented to learn domain-invariant representations from data
across multiple domains in an unsupervised setting. After
that, many excellent approaches have investigated disentan-
gled representations of content and style for image-to-image
translation. Although it is hard to define the content/style
explicitly in different domains, it is assumed that two domains
share the same content but different styles. Moreover, domain-
invariant features are taken as the content revealing the spatial
structure of the segmentation target, while the rendering of
the structure is regarded as styles. Specifically, in DRIT [19],
features of each domain are disentangled into either domain-
invariant features (DIFs) or domains-specific features (DSFs),
which we also follow in this paper. With the disentangled
representations, image-to-image translation is performed by
swapping the content and the style extractions.

C. Attention Module

The attention mechanism emerges as improvement over the
encoder-decoder-based translation system in natural language
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Fig. 4. Visualization of multi-style image transformation via our proposed content-style disentangled GAN on abdominal multi-organ datasets. (Left)
Visualization of the target domain style space using T-SNE [20]. The styles are clustered into 5 classes using K-Means [21], and the blue triangles
represent the sampled styles which are used to generate the target-like images. Red star indicates the mean of all styles. (Right) The generated
target-like images with diverse styles. Each image is generated with the content of source image in the left column and the style of sampled target
image in the above row.

processing (NLP) to solve the long-range dependency problem
of RNN/LSTMs [22], [23]. It is then extended to computer
vision [24] so that global dependencies between input and
output can be well learned with more attentions on more
important locations. One pioneering work is residual attention
network (RAN) [25]. As the first attempt in visual recognition
to use a non-local operation, RAN can capture long-range
dependencies though its computational cost could be very
high. Subsequently, Zhang et al. creatively propose SAGAN
combining self-attention with GAN [26]. This method allows
attention-driven, long-range dependency modeling for image
generation tasks efficiently. While most existing works inves-
tigate the relationships in the 2D plane space of input, triplet
attention is proposed in [27] that comprises of three branches,
each responsible for capturing cross-dimension information
between the spatial dimensions and channel dimensions of the
input. Inspired by their work, we propose a quadruple attention
module that incorporates the information from depth channel
thanks to the available 3D information in the datasets.

III. MAIN METHOD

Our main idea is to rephrase the 3D UDA problem as an
image transformation problem and a segmentation problem,
as shown in Figure 3. Concretely, our system consists of
a 2D translation network and a 3D segmentation network.
The translation network disentangles the content and style of
the 2D slices from both domains. The translated images are
produced by randomly sampling one domain’s style code and
recombining it with the content code. Then, the translated
volumes are utilized for training the segmentation network
under supervision. In the following, we will first describe the
translation networks to minimize the domain gap. Afterwards,
we will detail the employed segmentor for 3D segmentation.

A. Translation Network for Content-Style Disentangling
Let xa ∈ RD×W×H be a given source domain greyscale

volume of domain Xa, ya ∈ RC×D×W×H be the correspond-

ing 3D labels Ya, and xb ∈ RD×W×H be a given target
domain greyscale volume of domain Xb, where C,D,W,H in-
dicate the class number, depth, width, and height, respectively.
Ia ∈ RW×H and Ib ∈ RW×H are the slices of the volumes
Xa and Xb along the Z-axis. Our aim is to achieve promising
performance in target domain by applying the model trained
on the labelled source domain. To this end, we develop a novel
2D content-style disentangled translation network in this paper.
Specifically, we assume that the latent space of images I ∈ I
can be factorized into a content code c ∈ C and a style code
s ∈ S . Our network consists of one shared content encoder
Genc c, two domain-specific style encoder Genc sa ,Genc sb , one
shared decoder Gdec, one content discriminator Dc, and two
image discriminators Da, Db. The encoders factorize the input
images into content representations and style representations,
while the decoder reconstructs the image from content repre-
sentation by injecting the style representations via Adaptive
Instance Normalization (AdaIN) layers [28]. We introduce
reconstruction losses in content-level, style-level, and pixel-
level to maintain the semantic information. In particular, pixel-
level adversarial training is used to learn cross-domain image-
to-image translation, while content-level adversarial training is
utilized to ensure a fine content feature alignment along with
the shared content encoder. The detailed descriptions about
reconstruction losses and adversarial losses of the translation
network are provided in the following.

1) Reconstruction Loss: To ensure a bijective mapping be-
tween I and {C, S} and preserve content and style information
of both domains, three reconstruction losses are employed at
pixel-level, content-level, and style-level, respectively. We first
perform the same-domain translation to reconstruct the input
source image Ia by passing it through the shared content
encoder Genc c, specific style encoder Genc sa , and the shared
decoder Gdec. The image reconstruction loss is optimized,

LIa
rec = EIa∼Ia‖Ia − Gdec(Genc c(Ia),Genc sa(Ia))‖1.

The content-level loss is engaged during the cross-domain
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Fig. 5. Overview of our proposed DAR-UNet for 3D segmentation. (a) The hybrid architecture of the proposed DAR-UNet. The proposed VAM
enhances the encoder-guided feature map, while the efficient QAM captures the dependencies across dimensions. (b) Pre-activation residual block.
(c) The structure of voxel-wise attention module (VAM). (d) The structure of quartet attention module (QAM).

translation. Given a content code ca encoded from source
domain, and a style code sb randomly encoded from target
domain, we should be able to reconstruct it after decoding
and encoding,

Lca
rec = Eca∼Ca,sb∼Sb‖ca − Genc c(Gdec(ca, sb))‖1 .

Similarly, we can also formulate the style-level loss of trans-
lation networks as below,

Lsa
rec = Esa∼Sa,cb∼Cb‖sa − Genc sb(Gdec(cb, sa))‖1 .

The target domain images go to the same path as above-
mentioned. Combining them together, we obtain the recon-
struction loss for the translation network,

Lrec = λI(LIa
rec + LIb

rec) + λc(Lca
rec + Lcb

rec)

+ λs(Lsa
rec + Lsb

rec),

where λI , λc, and λs are the hyper-parameter weights to
balance different losses.

2) Adversarial Loss: In the cross-domain translation, the
generator is trained to synthesize target-like translated images
to fool the discriminator, while the discriminator is trained to
distinguish from the real images and the translated images.
Under such training process, the distribution of translated
images can be matched to the target data distribution. The
optimization function is shown as follows

LIa
GAN = Ecb∼Cb,sa∼Sa [log(1−Da(Gdec(cb, sa)))]

+ EIa∼Ia [log(Da(Ia))] .

In order to further align the content representations from two
domains, we conduct content-level adversarial losses as below

Lc
GAN = Eca∼Ca [log(1−Dc(ca)] + Ecb∼Cb [log(Dc(cb)] .

Taking them together, we obtain the adversarial loss for the
translation network,

LGAN = LIa
GAN + LIb

GAN + Lc
GAN .

We jointly train the encoders, decoders, and discriminators
to optimize the final objective, which is a weighted sum of
the adversarial loss and the reconstruction loss terms

min
G

max
D
L(Genc c,Genc sa ,Genc sb ,Gdec,Da,Db,Dc)

= LGAN + Lrec .

B. Segmentation Network with Dual Attention

Before the training of segmentation network, we first collect
all the style representations of target domain images, and clus-
ter them into nk classes with K-Means [21]. For a given source
domain volume xa, one style sb is randomly selected from
each clustered class of styles to generate the translated source
domain volume xa→b slice by slice along the Z-axis, as shown
in Figure 4. After the process of multi-style generation, the
synthesized volumes are leveraged to train the segmentation
net. To maximize the semantic mining in such meaningful
data, we propose DAR-UNet which is adapted from the classic
2D ResU-Net [29], [30] to volumetric data by replacing part of
the 2D convolutions with 3D convolutions, providing accurate
segmentation masks and efficient computation. The detailed
descriptions about the components of DAR-UNet are provided
in the following subsection.

1) Voxel-wise Attention Module: In the U-Net like archi-
tecture, skip connections are adopted to pass the multi-scale
encoder feature maps into decoder, followed by a direct
concatenation to fuse the features. In order to make the decoder
to focus on the essential areas of the feature maps, we take
advantage of the attention mechanism which is widely used
in computer vision to enhance the quality of features. To be
specific, we add a Voxel-wise Attention Module (VAM) in each
scale of the decoder, as shown in Figure 5 (c). Xe represents
the feature from encoder, while Xd denotes the feature from
decoder. A voxel-wise attention map is generated with Xe and
Xd to enhance the certain area of decoder feature.
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2) Quartet Attention Module: Most of the existing attention
modules are designed to capture the dependencies of chan-
nels (C) and/or spatial location (W,H). Recent works [31]
demonstrate the potential of capturing the inter-dimensional
dependencies to improve networks with a low computation
cost. Following their work, we implement a Quartet Atten-
tion Module (QAM) that captures dependencies between the
(D,H,W ), (C,H,W ), (C,D,W ) and (C,D,H) dimensions
of the input tensor respectively. As shown in Figure 5 (d),
this quartet attention module works in a four-branch way to
output a refined tensor that better captures the global as well as
the local dependencies on higher dimensions. To be specific,
given an input tensor X ∈ RC×D×H×W , we first permute
the dimensions of the input tensor to get X d ∈ RD×C×H×W ,
X h ∈ RH×C×D×W and Xw ∈ RW×C×D×H . Then, Z-pool
operation is conducted on the aforementioned four tensors to
reduce the zeroth dimension. The Z-pool layer is written as

Z-pool(X ) = [MaxPool0d(X ),AvgPool0d(X )].

After the reduction of the zero-dimension, four standard
three-dimensional convolutional layers are utilized respec-
tively, followed by a sigmoid activation function to calculate
the corresponding attention maps. Then, the attention maps
are subsequently applied to the tensors before Z-pool. Finally,
the refined tensors are rearranged to their original dimension
(C,D,H,W ) and averaged to output final result. To summa-
rize, the whole process to obtain the refined attention-applied
tensor y from the quartet attention can be described as:

y =
1

4
(X dσ(ψ1(Z-pool(X d))) + Xwσ(ψ2(Z-pool(Xw)))

+X hσ(ψ3(Z-pool(X h))) + Xσ(ψ4(Z-pool(X )))),

where σ is the sigmoid activation function; ψi represents the
standard three-dimensional convolutional layers of size k in
each branch of quartet attention module; (·) represents the
permutation operation to (C,D,H,W ).

3) Anisotropic Resolution Network: Many medical images
are captured and collected slice-by-slice, resulting in a high in-
plane resolution but low through-plane resolution. Traditional
isotropic 3D CNNs require the spacing normalized images
with isotropic 3D resolution to avoid the imbalance problem
of receptive field along each axis [7]. However, since the ratio
of the through-plane and in-plane resolution in many medical
datasets is about 3-8, isotropic restoration of those images may
introduce useless information and storage space redundancy.
To this end, we utilize an anisotropic design to reduce the
memory cost. Specifically, the main structure of our proposed
DAR-UNet follows the typical encoder and decoder design of
U-Net, which contains five levels of convolution. As shown
in Figure 5, the first two levels and the other three levels use
the stride of (1,2,2) and (2,2,2) on (Depth, Width, Height),
respectively. With this design, our network can train and infer
with the images which have 4 times through-plane resolution
than in-plane resolution, enabling a significant reduction of
memory cost without performance decline.

4) Segmentation Loss: Since the source domain data are
annotated, we can train the segmentor S with the transferred
source domain images xa→b and their corresponding labels

ya. We engage a deep supervision strategy [32] to alleviate
the potential gradient vanishing problem during training. As
shown in Figure 5, one auxiliary prediction branch is applied
at each level, while the primary branch merges the total five
auxiliary branch features to generate the final prediction. All
the prediction branches are optimized with the segmentation
loss. We employ a sum of soft Dice loss [33] along with
Focal loss [34] to overcome the imbalance issue between the
foreground and background to train the segmentor:

Lseg(S) = LDice(Si(xka→b), ya) + λLFocal(Si(xka→b), ya),

where i = 0 represents the primary prediction branch, i =
{1, ..., 5} represents i-th prediction branch, k = {1, 2, ..., nk}
denotes the k-th style to generate the image, and λ = 10 is
the trade-off parameter to control the importance of each loss.

IV. EXPERIMENTS

A. Experimental Setup

1) Datasets: In our experiment, two datasets are utilized
to evaluate the efficacy of our method. The first dataset is
the vestibular schwannoma segmentation dataset [4], which
consists of unpaired 105 contrast-enhanced T1 (ceT1) and
105 high-resolution T2 (hrT2) Magnetic Resonance Imaging
(MRI) volumes from different clinical sites. We complete
adaptation experiments only on the direcition of “ceT1 to
hrT2” since the annotations of hrT2 volumes are inaccessible,
and the evaluation of UDA results are obtained by submitting
the results online 2. The segmentation labels contain two
cardiac structures, cochlea and vestibular schwannoma (VS),
which are very small targets as shown in Figure 1 (c).

The second dataset includes 30 volumes of CT data col-
lected from [36], and 20 volumes of T2-SPIR MRI training
data collected from the ISBI 2019 CHAOS Challenge [37]. To
evaluate the performance of UDA, we conduct the experiments
both in the “CT to MRI” direction and in the “MRI to CT”
direction. There are four abdominal organs to be segmented
including the liver, right kidney, left kidney, and spleen.

For vestibular schwannoma datasets, the split of training
and test set are given officially. For the multi-organ abdominal
datasets, we split the training-test sets according to SIFA [5]
for a fair comparison. Since CT data include the area from
neck to knee while MRI data only contain the abdominal area,
we crop the CT images to have the same view with MRI. In
order to meet the requirement of our anisotropic architecture,
the two datasets were first spatially normalized to the spacing
of [1.5, 0.41, 0.41] and [4, 1, 1] respectively, where the ratio of
the through-plane and in-plane resolution is around 4. Then
all the volumes are padded to have the same size of 512×512
pixels on XY plane. We perform min-max normalization to
rescale the images intensity to the the range [−1, 1] in the
data pre-processing stage.

2) Implementation Details: We use one RTX 3090 GPU
(24G memory) to carry out our experiments. For the training
of style transfer, we use LSGANs [38] to stabilize the training.
The parameters of disentangled GAN are optimized using

2Official evaluation website: https://crossmoda.grand-challenge.org/

https://crossmoda.grand-challenge.org
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Fig. 6. Visualization of segmentation results produced by different methods for abdominal CT images (top four rows) and MRI images (bottom four
rows). 2D visual comparison (1st,2nd,5th,6th rows) for slices and 3D visual comparison (3rd,4th,7th,8th rows) for volumes are provided. From left
to right are the raw test images (1st column), results of other 2D unsupervised domain adaptation methods (2nd-5th columns), results of our 3D
framework (6th column), results of our proposed DAR-UNnet under supervised training (7th column) and ground truth (last column). The liver, right
kidney, left kidney and spleen are indicated in blue, green, cyan, and red color respectively. Each row corresponds to one example.

AdaBelief [39] for 50 epochs and updated following the rule
of TTUR [40], in which discriminators and generators have
the different learning rates of 2e − 4 and 1e − 4. For the
training of segmentation, the parameters are optimized using
AdaBelief for 100 epochs with an initial learning rate of 5e−4
and a cosine learning rate decay strategy. We train DAR-UNet
with a batch size of 2, and the sub-volumes with the size of
32× 256× 256 voxels are randomly cropped during training,
followed by data augmentation including random rotation,

random translation, and elastic transform. The training time
for style transfer and segmentation are both about 6 hours.
We set nk = 5 and λ = 10 for all the experiments. During
inference, we engage a sliding window strategy with size of
32 × 256 × 256 and stride of 16 × 128 × 128, thus we can
handle any size of input volumes.

3) Evaluation Metrics: Two evaluation metrics are used in
our experiment. Dice similarity coefficient (Dice) measures
the voxel-level overlap ratio between the prediction mask and
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TABLE I
PERFORMANCE COMPARISON OF DIFFERENT METHODS FOR CROSS-MODALITY VESTIBULAR SCHWANNOMA SEGMENTATION.

Vestibular schwannoma ceT1 - hrT2

Dice(%) ↑ ASD(voxel) ↓Method Cochlea VS Avg Cochlea VS Avg
No adaptation 0.00 0.00 0.00 - - -

SynSeg-Net [13] 3.72 21.99 12.86 11.99 14.68 13.34
CycleGAN [8] 27.69 29.86 28.78 4.65 14.34 9.50
CyCADA [15] 30.58 33.08 31.83 2.32 14.05 8.19

SIFA [5] 39.06 35.73 37.40 1.08 13.34 7.21
Ours 80.22 84.44 82.33 0.20 0.59 0.40

Input Ours

2
D

 v
ie

w

Input Ours

3
D

 v
ie

w

(Right) 2D and 3D visualization of segmentation (by our method). Cochlea and vestibular schwannoma are indicated in green & red, respectively.

TABLE II
PERFORMANCE COMPARISON OF DIFFERENT METHODS FOR CROSS-MODALITY ABDOMINAL SEGMENTATION.

AbdominalMRI-CT AbdominalCT-MRI

Method
Dice(%)↑ ASD(voxel)↓ Dice(%)↑ ASD(voxel)↓

Liver R.kid L.Kid Spleen Avg Liver R.kid L.Kid Spleen Avg Liver R.kid L.Kid Spleen Avg Liver R.kid L.Kid Spleen Avg
Supervisedtraining 95.77 89.93 90.00 90.48 91.54 1.18 2.38 0.94 1.51 1.50 94.98 94.13 92.22 93.21 93.64 0.54 0.32 0.50 0.56 0.48

Noadaptation 8.89 1.56 0.00 0.00 2.63 29.91 62.14 68.85 79.10 60.00 0.00 0.00 0.00 0.00 0.00 - - - - -
SynSeg-Net [13] 85.00 82.10 72.70 81.00 80.20 2.20 1.30 2.10 2.00 1.90 87.20 90.20 76.60 79.60 83.40 2.80 0.70 4.80 2.50 2.70
AdaOutput [14] 85.40 79.70 79.70 81.70 81.60 1.70 1.20 1.80 1.60 1.60 85.80 89.70 76.30 82.20 83.50 1.90 1.40 3.00 1.80 2.10
CycleGAN [8] 83.40 79.30 79.40 77.30 79.90 1.80 1.30 1.20 1.90 1.60 88.80 87.30 76.80 79.40 83.10 2.00 3.20 1.90 2.60 2.40
CyCADA [15] 84.50 78.60 80.30 76.90 80.01 2.60 1.40 1.30 1.90 1.80 88.70 89.30 78.10 80.20 84.10 1.50 1.70 1.30 1.60 1.50

SIFA [5] 88.00 83.30 80.90 82.60 83.70 1.20 1.00 1.50 1.60 1.30 90.00 89.10 80.20 82.30 85.40 1.50 0.60 1.50 2.40 1.50
DSAN [35] - - - - - - - - - - 89.30 90.16 90.09 89.84 89.84 - - - - -

Ours 89.59 86.10 88.10 84.38 87.04 1.73 1.42 2.02 2.15 1.83 94.00 90.50 87.99 92.46 91.25 0.64 0.50 0.67 0.38 0.54

the ground truth mask. Average symmetric surface distance
(ASD) is used to calculate the average distances between the
surface of the two in 3D. Higher Dice value as well as lower
ASD indicate better segmentation performance.

B. Comparison with State-of-the-art Methods
We compare our proposed method with the state-of-the-art

methods in the vestibular schwannoma and abdominal multi-
organ segmentation tasks. Several 2D-based deep learning
methods are included, e.g., SynSeg-Net [13], AdaOutput [14],
CycleGAN [8], CyCADA [15], SIFA [5], and DSAN [35].
SynSeg-Net and CycleGAN adapt image appearance for pixel
alignment, while AdaOutput engages feature alignment for do-
main adaptation. The rest of them conduct a mixture of image
and feature alignments, while none employs multi-style image
generation. In addition, we provide the results of our proposed
DAR-UNet under supervised training and no adaptation in
abdominal datasets, which can be approximately considered
as the upper and lower bounds of our method. We do not give
the upper bound on the vestibular schwannoma dataset since
the target domain annotations are unavailable. The comparative
results on vestibular schwannoma segmentation are obtained
by reimplementing the official codes, while the results on
abdominal multi-organ segmentation are referred to previous
works [5], [35]. To our best knowledge, there is no other
comparable 3D-based UDA methods that were developed for
vestibular schwannoma and abdominal multi-organ datasets.

The quantitative performance of different methods are pre-
sented in Table I (Left) and Table II for brain and abdomi-

nal images respectively. Obviously, our method significantly
outperforms other comparative approaches by a large margin,
especially on the vestibular schwannoma dataset. Classical
2D UDA methods fail to perform well on this task since
the background takes up a great proportion (≥99%). Most
of the 2D slices do not contain any key structures, so the
network tends to output the all-black labels due to severe class-
imbalance problems. Notably, the methods utilizing both im-
age and feature alignments (e.g., CyCADA, SIFA, and DSAN)
obtain better results than those that adopt one single alignment.
This result confirms our statement that feature alignment may
help the incomplete image alignment that exploits a domain-
level style transfer. Meanwhile, even if we do not use feature
alignment, our method achieves promising results thanks to
the complete image alignment in the first stage. In addition,
our 3D segmentor as well as the proposed VAM and QAM
can further boost the performance. It is noted that although our
method outperforms the other approaches in most cases, the
ASD result of the direction MRI-CT on abdominal multi-organ
dataset is worse than the other methods. It may be caused by
the different criteria of annotation for MRI and CT images.
For instance, the annotation of kidney is hollow in MRI but
filled in CT, as shown in Figure 6 last column.

The visualization of different methods on abdominal images
is presented in Figure 6. Since the previous methods took
the 2D framework, the interactions across depth are missed,
resulting in some inconsistent results along Z-axis. However,
this inconsistency cannot be observed in the 2D view, we also
provided 3D visualization of the results. Our method can fully
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TABLE III
PERFORMANCE COMPARISON OF DAR-UNET TRAINED USING

TRANSFERRED IMAGES FROM DIFFERENT GANS.

MRI - CT Dice (%) CT - MRI Dice (%)

Entangled GAN 81.37 84.87
Disentangled GAN (mean-style generation) 83.87 89.84
Disentangled GAN (multi-style generation) 87.04 91.25

take advantage of 3D framework to model depth information
as well as both VAM and QAM to capture global features,
thus leading to more consistent results along Z-axis.

C. Effect of Complete Image Alignment
The main goal of image alignment is to reduce the domain

gap from a stylistic perspective, weakening the negative in-
fluence of different appearances between two domains on the
segmentation task. Therefore, we design the network according
to the following criteria: 1) the semantic content of the domain
should be well preserved, and 2) the distribution of transferred
source images and target images should fit well. To achieve
this, we engage a feature disentangled GAN to extract the
domain-invariant representations as content and the domain-
specific representations as style. Once trained, we can sample
the styles from target domain images for each content extracted
from source domain samples, thus making the transferred
samples own the target domain distribution.

To evaluate the effect of complete image alignment, we
conduct several experiments on abdominal multi-organ data
with different settings of style transfer. Specifically, we train
our DAR-UNet using the transferred images obtained from
entangled GAN, disentangled GAN with the mean-style gen-
eration, and disentangled GAN with multi-style generation.
We utilize CycleGAN as the entangled GAN considering its
popular usage in computer vision. As shown in Table III, the
entangled GAN attains only 81.37% and 84.87% in Dice in
two directions, the lowest among the three methods. Although
the disentangled way improves both the tasks, it is still lower
than the representation disentangled multi-style generation
synthesis by 3.17% and 1.41% in MRI-CT and CT-MRI
respectively, demonstrating the effectiveness of multi-style
transformation in reducing domain gap. We also visualize our
disentangled GAN in Figure 7. As observed, the generated
images vary from each other; this is especially evident in some
samples. For instance, the style 2 samples in ceT1 - hrT2
and the style 4 samples in MRI - CT exhibit quite different
appearances from the mean style samples. Namely, if only
mean style samples are used to train the segmentation net,
samples with rare styles in the target domain may not be
correctly segmented as the network has never seen this kind of
distribution before. This phenomenon is also revealed in the
numerical result. We can infer that the style variance in the CT
domain is much larger than MR, which means the multi-style
transformation strategy should be more useful in task MRI-
CT segmentation. If we compare the improvement brought by
multi-style generation, it is evident that this value is higher
for the MRI-CT adaptation task than its reverse direction.

TABLE IV
ABLATION STUDY ON THE KEY COMPONENTS OF DAR-UNET.

Anisotropic stride - X X X X X

QAM - - X - X X

VAM - - - X X X

Deep Supervision - - - - - X

Dice (%) 78.60 86.84 88.81 88.86 89.96 91.25
Memory Cost During Training (GB) 43.6 14.6 18.4 17.0 21.2 23.5

D. Ablation Study
To examine different components in our framework, we con-

duct an ablation study with five variants of the proposed DAR-
UNet on the abdominal dataset for CT to MRI adaptation, as
shown in Table IV. First, we remove all the components to get
the traditional 3D ResU-Net with isotropic resolution. We train
the model using the spatial normalized patches with a size of
(128, 256, 256) and batch size of 2, taking 43.6 GB memory
in total. Second, after adding the proposed anisotropic archi-
tecture and training the model with anisotropic patches with a
size of (32, 256, 256), the memory cost dramatically decreases
to 14.6 GB and the performance increases by 8.24%. The
intuition behind the anisotropic stride strategy is to increase
the information abundance of volume while reducing useless
features without dropping the learnable parameters. Next, the
proposed QAM and VAM improves 1.97% and 2.02% in Dice
score respectively suggesting that attention modules modeling
global correlation can significantly benefit 3D segmentation
tasks. Meanwhile, although the improvement brought by the
attention module is close to saturation, the combination of
QAM and VAM achieved almost 1% improvement compared
with using either one of them. Finally, a deep supervision
strategy further boosts the performance of 1.29% by alleviating
the gradient vanishing problem in the deep level of the DAR-
UNet, with an additional memory cost of 2.3 GB only.

V. DISCUSSION AND LIMITATION

In this paper, we carefully design the proposed VAM
and QAM for maximizing performance improvement under
certain memory costs. To be specific, VAM is designed to
replace the skip connection in UNet-like architecture, and then
enhance the encoder-guided feature map; QAM is designed
to capture the cross-dependencies among channel and spatial
dimensions in the 3D task. The two different attention modules
are complementary and appropriate in our 3D UNet-like
architecture, compared with other attention modules which
aim to build interdependencies among channels or/and spatial
locations. With the robust and strong segmentor, the proposed
DAR-UNet can be trained on target-like source datasets, and
generalize well on target domain.

Meanwhile, although we handle the issue of UDA problem
with a novel 3D framework, our method still has some limita-
tions. First, since a 3D image-to-image translation framework
may require tons of training samples and GPU memory, we
engaged a 2D image-to-image translation by transferring the
slices of volumes for efficiency, which may result in incon-
sistent style along axial. Second, as a two-step framework,
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Fig. 7. Visual comparison of 2D image transfer results produced by mean-style transformation and multi-style transformation for the direction of
’ceT1-hrT2’ (1st row), ’CT-MRI’ (2nd row) and ’MRI-CT’ (3rd row). From left to right are the raw test images (1st column), ground truth (2nd column),
results of partial image alignment (3rd column) and results of complete image alignment (4-8th columns). Style 1-5 indicate different sampled styles
using K-Means.

the feature alignment, and semantic segmentation cannot be
optimized simultaneously, which may lower the performance
ceiling of the whole model. Future work includes investigation
of intra-domain variance in medical datasets and exploration
of a fully end-to-end 3D unsupervised domain adaptation
framework.

VI. CONCLUSION

In this paper, we propose a novel 3D framework for unsuper-
vised domain adaptation in medical image segmentation. Com-
bining multi-style transformation and dual-attention modules,
our framework shows impressive performance in alleviating
domain shift problems. In two cross-modality tasks, vestibular
schwannoma and multi-organ abdominal segmentation, our
proposed approach greatly exceeds the performance of state-
of-the-art methods.
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