
Teallach: A Model-Based User Interface Development Environment for Object
Databases

Tony Griffiths1, Peter J. Barclay2, Jo McKirdy3, Norman W. Paton1, Philip D. Gray3, Jessie
Kennedy2, Richard Cooper3, Carole A. Goble1, Adrian West1 and Michael Smyth2

1Department of Computer Science, University of Manchester,
Oxford Road, Manchester M13 9PL, UK.

Email: { griffitt, norm, carole, ajw} @cs.man.ac.uk

2Department of Computing Studies, Napier University,
Canal Court, 42 Craiglockhart Avenue, Edinburgh EH14 1LT, UK.

Email: { pjb, jessie, michael} @dcs.napier.ac.uk

3Department of Computing Science, University of Glasgow,
Glasgow G12 8QQ, UK.

Email: { jo, rich, pdg} @dcs.gla.ac.uk

Abstract
Model-based user interface development environments
show promise for improving the productivity of user
interface developers, and possibly for improving the quality
of developed interfaces. However, model-based techniques
have rarely been applied to the important area of database
interfaces. This lack of experience with data intensive
systems may have led to model-based projects failing to
support certain requirements that are essential in data
intensive applications, and has prevented database
interface developers from benefiting from model-based
techniques. This paper presents a model-based user
interface development environment for object databases,
describing the models it supports, the relationships
between these models, and the tool used to construct
interfaces using the models.

1. Introduction

In many organisations a significant proportion of the
user interfaces developed are user interfaces to databases
[20]. Although most commercial interface development
packages include facilities tailored for use with databases
(e.g., [2]), and most database vendors supply interface
building tools (e.g., [16]), such products rarely build upon
the most recent research activities on user interface
development environments, and provide little support for

specifying the dynamics of the developed interface. This
paper provides an overview of the Teallach project, which
is developing a model-based user interface development
environment for use with object databases.

Model-based user interface development environments
(MB-IDEs) [19] seek to describe the functionality of a user
interface using a collection of declarative models. In such a
context, constructing a user interface involves building and
linking a collection of models. In practice, these models
often include, but may not be limited to, a domain model, a
task model, a dialogue model and a presentation model. It
can be argued that the model-based approach improves
upon current component-based programming
environments, for example, by making the interface
development process more systematic, and by shielding
developers from certain low-level aspects of interface
implementation through judicious use of abstract models.
The features of MB-IDEs are discussed more fully in
Section 2. At this point, we note only that MB-IDEs are the
focus of significant attention in the user interface
development environment community, and that very little
work has been done to date that seeks to bring this
distinctive technology to bear on database problems [8].

Object databases are now in reasonably widespread use
in a range of advanced applications [5]. These applications
are typically characterised by the presence of rich
information models and complex processing or analyses.
User interface requirements vary widely from application

to application, but many applications use complex custom-
built visualisations (e.g. in geographic, scientific or design
domains), which indicates a need for an open architecture
into which different visual components can be
incorporated. Furthermore, many applications must make
use of operations associated with database objects, and
displays often have to present information that is not
directly associated with a small number of persistent
objects. This means that interface development
environments for object databases must incorporate
effective facilities for communication and temporary
storage of application data within the interface.

This paper describes how techniques from MB-IDEs can
be used to support the development of user interfaces to
object databases. In particular, the paper provides an
overview of the models and tools of the Teallach system,
which is a MB-IDE designed specifically for use with
object databases. The development of a MB-IDE in this
context has highlighted a number of limitations in earlier
systems, and thus hopefully advances the area of model-
based user interface development, as well as bringing
recent interface development techniques into contact with
data intensive applications.

The paper is structured as follows. Section 2 provides an
introduction to model-based user interface development
environments. Section 3 describes the Teallach models, of
which there are three – a domain model, a task model and a
presentation model. Section 3 also describes how the
models relate to each other, which is important to the
functionality of the overall environment. Section 4 provides
an overview of the method that directs interface
development, and the application development tools that
support the method. Section 5 presents some conclusions.

2. Model-Based User Interface Development
Environments

Early interactive design environments [3,12] provided
programmers with a way of developing user interfaces
semi-automatically via a specification of the dialogue, or
interactive behaviour, of the run-time system. Although
clearly superior to manual coding in a general-purpose
language, these systems generated rather crude interfaces,
and the designer is left with the substantial job of
configuring the system to take into account the nature of
the application data and operations, the resources of the
graphics or window system, and the abilities of users. Over
the past ten years, one strand of research has focused on
enhancing the user interface design environment with
additional information organised into components which
model design-relevant aspects of the target system and its
proposed context of use. The MB-IDEs arising from this
work exploit the information in their models to provide
full- or semi-automated generation of user interface

prototypes, and design assistance tools such as computer-
based design critics, simulators and model-checkers.

MB-IDEs may be compared with respect to the number
and expressiveness of their models, and the design tools
which exploit the model-based information. For
comparisons of collections of proposals, see [15, 8].

Early MB-IDEs, such as UIDE [6] and Humanoid [17],
incorporate relatively simple application, dialogue and
presentation (i.e., user interface component) models, plus a
rule-based user interface generator. ADEPT [9] adds a
model of user-system tasks, at a higher level of abstraction
than dialogue, to produce prototype interfaces for
evaluation and subsequent refinement. DRIVE [11]
includes a user model that captures capabilities and
limitations of the user population for automatic selection of
an appropriate interaction technique from several
candidates. As well as using sophisticated application, task,
dialogue and user models, TADEUS [15] partitions
presentation specification into abstract and concrete
presentation models, representing respectively the dialogue
role and the toolkit-dependent appearance and behaviour of
interface objects.

In addition to semi-automatic interface generation, a
variety of forms of design assistance can be found in the
family of MB-IDEs. Humanoid produces application-
related and context-sensitive help and undo/redo.
TRIDENT [1] uses a knowledge-base of design guidelines
to offer to the designer a set of appropriate presentation
components plus a human-readable rationale for the
selection. TADEUS’s dialogue model can be translated into
a Petri Net for simulation and model-checking.

With the exception of some highly domain-specific
applications such as those found in the avionics industry,
MB-IDEs have yet to receive acceptance in an industrial
setting. The most common tool for interface construction
remains the GUI-builder, which typically holds no
information about the components of the system beyond
the composition and configurable properties of interaction
objects. It has been hypothesised that model-based systems
may not yet be expressive enough [14]. Clearly, the models
must be able to capture sufficient relevant information to
provide useful assistance, and to do so via a specification
language and tools which retain a positive cost/benefit ratio
for the developer. Also, generation rules may produce poor
initial interfaces via automatic generation. A MB-IDE must
support, or at least accommodate, the construction of user
interfaces as sophisticated as those which can be built by
other means. Additionally, the tools must not impose an
unacceptable method of working on developers (e.g., a
rigidly top-down approach which leaves prototype
construction until the end of the design process [8]).

3. The Teallach Models

3.1 The Domain Model

Teallach assumes the pre-existence of the underlying
application for which a user interface is to be developed.
The application may take the form of standard Java classes
or may involve the services of an object-oriented database
management system (OODBMS). Irrespective of its guise,
if the application is to inform and link into the user
interface, it must be modelled within the Teallach system.
The Teallach domain model is the means by which this is
realised. In other words, the domain model reflects the
structure and functionality of the underlying application
and, where applicable, database connectivity and
interaction.

3.1.1 The Structure of the Domain Model. With a
view to providing a measure of platform independence, the
domain model represents applications in terms of the
concepts specified in the ODMG object database standard
[4]. The ODMG specification lists a collection of interfaces
covering a range of issues, including the fundamental
methods used for manipulating every component type in
the model.

The domain model is essentially a meta-model that
realises each of the ODMG concepts as an instantiable
class. For example, consider the metadata for
Operation, which is provided by ODMG to describe the
methods available on a type or class. To realise this,
Teallach has defined a class called dm_Operation that
captures the ODMG specification for Operation,
including its relationships with multiple Parameters, a
result Type and a list of Exceptions.

A similar process was followed for all the constructs of
the ODMG object model, resulting in a collection of
classes that are the core building blocks for domain models.
An individual domain model is a collection of related
instances of these building block types as dictated by the
structure and functionality of the underlying application.

The principal role of the domain model is to represent
the underlying application, and database connectivity and
interaction. In addition, however, it models auxiliary data
types that may be required to describe transient data vital to
the runtime operation of the application and interface.
Examples of auxiliary domain information include class
libraries that may be needed to manipulate the data input to
the system via the user interface before it is used directly
with the underlying application. These facilities are
required for the runtime operation of the user interface, but
are not an inherent part of the application itself. Auxiliary
data is also modelled using the ODMG derived building

blocks in order that the representation of domain
components is orthogonal to their source and persistence.

3.1.2 Using the Domain Model. Where Teallach is
being used to build an interface to an OODB application,
the schema of the database has to be analysed and
converted into a domain model using the building blocks
discussed above. Of those OODBMSs that claim ODMG
compliance, few, if any, have adopted the ODMG standard
schema definition language ODL as the means by which
the schemas of their databases are specified, and instead
have devised individual means for schema definition. This
in turn means that Teallach, via the domain model, has to
interface to each ODMG compliant OODBMS using a
different mechanism. Teallach is currently focusing on
POET [13]. POET’s specific manner of schema description
uses a configuration file that lists, amongst other things, the
name of the application database and schema, and the fully
qualified names of Java classes that are to be persistent
within the application database. The schema information is
extracted from a POET database in a two stage process.
Firstly, the configuration file is parsed to ascertain the
names of the persistent classes defined for the database.
Secondly, each of the classes is then introspected over to
discover its internal structure in terms of its fields, methods
and exceptions. This information is then used to guide the
construction of the appropriate instances of the building
block types mentioned previously. Figure 1 shows a very
simple class called Person which has a single field of
type String, a constructor method, and two access
methods. Given this information, the model as shown in
figure 2 is constructed to represent the class Person
within the domain model.

Figure 1. Definition of class Person

When modelling the auxiliary types mentioned
previously, introspection over the required classes is again
used to inform the instantiation of the appropriate domain
model constructs.

3.2 The Task Model

The task model provides support for modelling both the
structure of user tasks and the flow of information between
the models when carrying out the user’s tasks.

public class Person
{

private String name;
public Person(){name = “”;}
public String getName() {return(name); }
public void setName(String n){name = n;}

}

Figure 2. Domain Model of class Person

3.2.1 Basic Task Model Structure. The task model
shares its basic structure with the task models of several
MB-IDEs such as Adept [10], Mastermind [17] and
TADEUS [7]. An example of a task model in the context of
the Teallach tool is given in figure 3. The task model is a
goal-oriented task hierarchy, with its leaf nodes (termed
primitive tasks) representing interaction or action tasks.
The temporal relationship between sibling tasks is specified
by their parent task.

The task model provides seven temporal relations,
namely:
• Sequential: The subtasks must be performed in the

specified order; all subtasks must be completed before
the task’s goal is considered achieved.

• Order-independent: The subtasks may be performed in
any order; all subtasks must be completed before the
task’s goal is considered achieved.

• Repeatable: The sub-tasks are repeated a specified
number of times, or until a condition is satisfied.

• Concurrent: The subtasks are performed in parallel; all
subtasks must be completed before the task’s goal is
considered achieved. Two kinds of concurrent task are
distinguished by a flag: truly concurrent tasks occur at
the same time, while interleaved tasks have only one
sub-task at a particular time, although all are
progressing.

• Choice: The user must decide which one of the sub-
tasks is to be performed; the chosen subtask must be
completed before the task’s goal is considered
achieved.

• Optional: Zero or more (including all) of the subtasks
of a choice task may be chosen. This task type
therefore has an implicit concurrency controller; all
chosen subtask(s) must be completed before the task’s
goal is considered achieved.

• Conditional: There exists a choice between sub-tasks
that is dependent on a specified condition.

3.2.2 State Information and Information
Parameters. One of the main shortcomings of many MB-
IDE task models lies in their inability to represent and
handle user or application information flow within the user
interface design. The task model therefore allows the
declaration of local state, and the association of this state
with a task. Once specified, the designer can indicate how
this state information is set and utilised by tasks in the task
model.

State information can be associated with any non-
primitive task, with the associated task providing its scope.
A state object has type information corresponding to a
domain model class definition, and can therefore
correspond to either an application class, a programming
language class (such as those provided by a Java library), a
user defined class, or a presentation model class. In the task
model, information flow is specified by utilising a task’s
input and output parameters. In general, the output of a task
is linked to the state of its parent task.

Since Teallach’s primary concern is interface
development for object database applications, the task
model requires a means of creating and invoking database-
specific functionality such as sessions, transactions and
queries. Since the domain model provides a description of
these concepts in terms of the ODMG meta-model, the task
model can create state objects which correspond to
database sessions, transactions and queries; the required
functionality can be invoked through calls to a state object's
methods. For example, a state object q: Query
associated with a non-primitive task can be invoked
through its q.execute() method.

 type

 defines

 definedIn

 result operations

 defines

 definedIn

 operation

 signature

 specifies

 type

 result

 operations

 defines

 definedIn

 properties

 defines

 definedIn

 result

 operations

name
dm_Attribute

String
dm_PrimitiveType

n
dm_Parameter

setName
dm_Operation

void
dm_PrimitiveType

Person
dm_Interface

getName
dm_Operation

[constructor]
dm_Operation

Figure 3. Screen shot of Teallach tool, showing a link between the task and domain models

3.2.3 Primitive Task Types. The lowest level building
blocks of the task model are its primitive tasks. While a
primitive task can be created in the task model, there may
be a link to a corresponding domain model operation
(either from the application database, a user-defined type,
or a programming language primitive type). There are
several such task types, which can generally be classified
as action or interaction tasks.
An action task corresponds to some low-level activity
carried out by the application. An action task is associated
with a domain model operation.
An interaction task involves some degree of human-
computer interaction, either by the user providing input to
the computer, the computer providing feedback to the user,
or a combination of the two. An interaction task is
associated with a presentation model component.

3.2.4 Exception Handling. Once a task model
primitive task been linked to a domain model operation, the
task model can ask the domain model if the operation can
raise any exceptions. Typically this results in the designer
specifying where in the task hierarchy control flow will

continue once the exception has been handled. Any
information associated with the exception is passed along
the control flow.

3.3 The Presentation Model

Teallach’s presentation model is used to describe the
presentation of the user-interface being designed; in other
words, it describes the appearance and surface behaviour of
the generated user interface. There are two levels of
presentation, a concrete presentation model and an abstract
presentation model.

3.3.1 The Concrete Presentation Model. The elements
of the concrete presentation model are the widgets of the
toolkit being used to build the user-interface. Teallach uses
the Java Swing widget set. There are several advantages to
using Swing, as it provides a rich set of widgets, has an
efficient underlying implementation, and has a pluggable
look-and-feel, facilitating the construction of different
styles of interface. Teallach also allows the use of other,
custom widgets when building interfaces; this is essential if

we are not to rule out domain-specific widgets that
particular users may require (e.g., a standard molecule-
viewer application). Teallach uses the Java Beans
conventions as an adapter between itself and external
widgets to allow such user-supplied widgets to be
registered within the presentation model. Fragments of
interfaces that the user has created earlier may also be
saved for later reuse.

The concrete presentation model is represented in two
ways: there is a GUI view, which may be considered to be a
“preview” of part of the user-interface being constructed;
and there is a tree view, which represents the interface as a
hierarchical structure, based on the containment hierarchy
of its components. The tree view shows a higher-level view
of the concrete presentation, where the types and
interrelations of widgets are shown, but details such as
position, font and colour are omitted. The tree view is
contained in the main Presentation Editor window, whereas
the GUI view is free-floating. Both views are shown in
figure 4.

The Teallach user may construct parts of interfaces by
hand, or use automatic generation to create parts that are
subsequently modified interactively. To facilitate the first
of these approaches, a palette of Swing widgets is
provided, which may be inserted into the interface as
desired (Figure 4 shows a subset of the palette, for
demonstration purposes; a complete, customisable, free-
floating palette is to be added). Methods for automatically
generating presentation fragments from fragments of other
models are described in Section 3.4.

3.3.2 The Abstract Presentation Model. Teallach’s
abstract presentation model defines abstract categories to
which concrete presentation widgets are assigned. For
example, radio-buttons, a drop-down list and a scrollable
list are all concrete widgets that may allow the end-user to
choose one option from several; hence, they are all

examples of an abstract category Chooser. The abstract
presentation model pre-defines a number of such standard
abstract categories, such as Displays (for showing data),
Editors (for changing data), and ActionItems (for invoking
behaviour). Furthermore, Teallach users may customise the
model by adding their own categories. Note that a single
concrete widget may be associated with more than one
abstract category.

These abstract categories have features that characterise
all their members. To use a widget with the abstract
presentation model, is it necessary first to register it.
Registering a widget involves declaring the category to
which it belongs and, for each category, specifying the
relationship between the properties of the concrete widget
and the features of the abstract category. For example, the
abstract TextDisplay category has the feature input,
representing the text to be displayed. To use a Swing
JTextField widget as a TextDisplay, it is necessary
to indicate that the JTextField’s input is provided by its
setText method. Therefore, the registration requires
specification of the mapping TextDisplay.input ->
JTextField.setText. Such mappings are specified in
a script file, which the user can author directly. It is
intended to add a Registration Wizard to Teallach that
guides the user through this registration process and
generates the script file automatically. However, only user-
supplied custom widgets need be registered by the user; in
the Teallach system, the widgets provided by Swing are
pre-registered with the standard categories.

In the current prototype, the abstract presentation model
may be shown in the presentation editor’s tree view, by
rendering the abstract category of a widget instead of its
concrete Swing type; the user may toggle between the
abstract and the concrete views of the presentation.

Figure 4. Example concrete presentation model views

A benefit that derives from the use of the abstract
presentation model is that (a notion of) style is supported in
the design of the end-user interface. For example, where
several different concrete presentations may represent the
same abstract presentation (as in the chooser example
above), a choice must be made; a collection of such choices
may be collected together into a style-sheet. A style-sheet
defines a named style as a collection of such choices,
which may then be applied to a fragment of an interface.
The style-sheet also describes any fixed customisations of
widgets to be used within the style it defines. This
approach provides three advantages: style decisions can be
applied consistently across an interface; when mapping
between models, presentation fragments can be generated
in terms of abstract categories, which are then made
concrete by applying an appropriate style; and the designer
is relieved of the need to specify the same choice
repeatedly.

Style-sheets are again to be represented as script files
showing mappings, but a planned style editor will not only
allow the user to view and apply different styles, but will
also contain a Style Wizard to guide the user through the
process of creating additional styles.

3.4 Interaction Between Models

This section briefly reviews the ways that the three
Teallach models can interact. There are two ways of
associating elements from different models: linking and
deriving . In linking, an association is made between
existing components in two models. In deriving,
components in one model are constructed based on
components in another; the derive mode also creates
associations between the newly created component and the
source of the derivation. In the modelling environment,
linking and deriving are different modelling tasks,
expressed using different interaction techniques. The
following subsections outline the ways in which
components from the different models can be associated
and derived. It should be noted that the domain model is
fixed, and as such cannot be changed by a derive operation.

3.4.1 From Domain to Task. Linking a domain
operation to a leaf task specifies that the task will be an
invocation of this operation on a particular instance of a
domain model class T:<Type> that defines the operation.
The designer must therefore first construct a new state
object t:T in the leaf tasks's immediate parent, and then
link the leaf task to the state object. Teallach then uses a
Link Wizard to guide the designer through the process of
creating the link. Such a link is shown between the ‘Connect’
task and the con:teallachDemo.Connection state
object to create the link to the con.connect(String,
String,Integer) method in Figure 3.

Using a domain class as the source of a derive operation
with a non-leaf node of the task model as its target creates a
new task structure, rooted in a new sub-task, that will
perform the default action (usually edit) on the domain
class. The public operations and attributes of the class are
added as subtasks to this new task. Figure 6 shows the task
hierarchy generated by using the Librarian class from the
domain model to derive a new sub-task (called edit
librarian) in the task model.

3.4.2 From Presentation to Task. Linking a node of
the presentation model to a node of the task model specifies
that an instance of the presentation object is to be used to
visualise the task. An example could be the linking of a
pre-built, custom editor for Librarian instances to the task
‘edit librarian’. In this case, both elements are considered
as leaves, as we do not wish to view them at a finer
granularity. The designer will therefore create a state object
which corresponds to an instance of the presentation model
information in the task model and link using the Link
Wizard.

Deriving a non-leaf node in the task model from the
information contained in a presentation model node
generates a new task structure which describes the
dynamics of the presentation object. For example, using the
librarian editor shown in Figure 5 as the source of the
derive operation with the root of the task model as the
target would generate the task structure shown in Figure 6.

3.4.3 From Task to Presentation, Linking a leaf of the
task model to a leaf of the presentation model has the same
effect as creating a link in the opposite direction, as
described in Section 3.4.2.

A task model node can be used to derive the structure of
a presentation model node whose purpose is to create a
default presentation for the task sub-hierarchy. For
example, the login dialog shown in Figure 4 could be
derived from a task structure like the one shown in Figure
3.

3.4.4 From Domain to Presentation. Domain items
may be used to generate presentation items directly, or may
be linked to them through the task model. For example,
linking a task set salary (which uses a method
setSalary(int amount) defined in the domain
model) to a presentation leaf representing an action-item
(eg, a button) causes the task, and hence the domain
method, to be invoked by the presentation item. If the
presentation item is not capable of invoking behaviour, an
error is reported. If the operation is associated with a non-
leaf presentation, a new action-item (leaf node) is added to
the presentation, which can be used to invoke the task.

Figure 5. Basic editor for Librarian generated from the domain model

Figure 6. Task hierarchy generated from a domain class

Deriving a node in the presentation model from the
information contained in a domain model class (e.g.,
Librarian) creates a basic default editor for Librarian. This
editor is constructed by examining the get- and set-
methods of the class, and inserting appropriate display or
edit fields in the generated presentation object. Figure 5
shows the result of deriving the Librarian class from the
domain to the root of the presentation model. Of course, the
user may wish to treat this generated object only as a
starting point, and may subsequently modify it.

4. The Teallach Design Method and Tools

4.1 The Method

MB-IDEs typically support a single fixed method for
developing their component models, frequently stipulating

that their task model must be constructed before any other
model. This results in an inflexible interface development
lifecycle, imposing a methodology that not all developers
will be comfortable with.

Teallach attempts to circumvent this problem by
removing constraints on the order in which its three models
must be constructed. This flexibility removes restrictions
on the order in which links between related model
components can be defined. For example, one mode of
working could be to create a high level task model, and
then to use the presentation model to articulate each of
these high level tasks. Once this process has been
completed, the designer must then specify how the
presentation model’s designs relate to the task model’s high
level tasks by linking the related components, as described
in Section 3.4.

Figure 7. Teallach architecture

Teallach’s ability to provide clean and transparent
access to its underlying application stems from the domain
model’s abstract view of the application. This shields the
remaining Teallach models from the complexities and
idiosyncrasies of external systems. Although there is no
stipulation that the domain model must be constructed
before the other models, Teallach assumes that all
references to domain model concepts must be resolved
before an interface can be generated.

Figure 7 presents an overview of the Teallach
architecture, which has been heavily influenced by the
requirement to support a flexible methodology. Central to
this architecture is the Teallach model store, which
provides several core facilities, including:
• Model linkage information: The store is responsible for

maintaining links created by the designer between
related model components.

• Mapping information: The store acts as a centralised
repository of information about the possible mappings
between the Teallach models. These mappings are
utilised when automatically generating model
fragments in one model from the information captured
in another.

Once models have been constructed and linked, the user
interface to the underlying application can be generated.
This is achieved through the use of a code generator, which
outputs Java programs corresponding to the developed
models. During the process of code generation the links
between the Teallach models are verified, and calls to
underlying domain data and functionality are resolved.

4.2 The Tools

Teallach provides an integrated toolkit that a designer
can use to construct and link the individual models that
form the model-based UI design. This toolkit supports
Teallach’s flexible design method. As shown in figure 3,
the Teallach toolkit consists of editors for the three models
within an overall tool environment providing project

management, editing, model linking and code generation
facilities. The toolkit uses a desktop metaphor and direct
manipulation techniques for model construction.

As previously discussed, a designer can create links
between related model components. In the Teallach tools
this is achieved by switching to link mode and drawing a
rubber-banded line from an element in the task model to a
state object representing the other model construct, to
associate the two. This can be seen in Figure 3, which
shows a link being created between the task model
Connect action task and the domain model connect
operation defined on the con: Connect state object.
The Link Wizard guides the designer through this process.
Once an operation has been associated with a task, the icon
in the task model is updated to reflect this change. Teallach
currently uses a simple hyperlink metaphor so show
associations between linked model components; this allows
the designer to jump to an associated component by
invoking its show linked components operation from a
popup menu.

To derive information from one model into another, the
designer simply drags a component from one model and
drops it at the desired location in the target model. For
example, the designer may construct a partial task
hierarchy corresponding to some constructed presentation
(or vice versa). Once the new structure has been generated,
the relationships between components are maintained
through the services provided by the Teallach store.

5. Conclusions

This paper has provided an overview of the Teallach
MB-IDE for object databases. Distinctive features of
Teallach include:
• A rich domain model that provides an abstract view of

structural and behavioural features of applications in
terms of the ODMG object model.

• A hierarchical task modelling language that is fully
integrated with the domain model so that not only can

Task Model

Domain Model

Presentation
Model

Mapping
Rules

Code
Generator

Database
or

Application

programming
language
classes

WidgetsProject
Store

Model Store

ODMG API

user tasks be described, but also the data associated
with those tasks.

• A presentation model in which abstract descriptions of
displays can be associated with task and domain model
concepts, and which is associated with an extensible
concrete presentation based on Java Beans and Swing.

• A flexible methodology, in which the models provide
abstract facilities for describing the user interface
without imposing a prescriptive approach to model
construction.

• A design environment that supports the flexible
methodology, and in particular the association of
components from different models.

• An open architecture, in which both application classes
and auxiliary functionality can be made accessible to
other Teallach models through the domain model, and
in which additional presentation components can be
registered using the Java Beans protocol.

The design of the Teallach system has from the start
been motivated by the desire to make the development of
user interfaces to object database systems more systematic
and more efficient. However, although we were willing to
trade some measure of generality in the Teallach system for
greater productivity in the database context, we believe that
there is very little that is database specific about Teallach.
While the domain model is clearly a data model from a
database, the ODMG model has much in common with
object models from other settings. What the database
orientation has provided is a requirement to take the
exchange of information between models seriously, and the
early identification of a library case study has acted as a
useful “reality check” throughout.

A further feature of Teallach is that it is decidedly non-
radical in a number of respects. In particular, the domain
model and the (concrete) presentation model are,
respectively, an existing data model and an existing widget
set, and the basic building blocks of the task model are
familiar from other MB-IDEs. We consider this
conservatism to be a virtue, as it allows reuse of software
systems and experience, and has allowed the Teallach
development effort to focus on what is required to integrate
these existing components effectively. As a result, where
Teallach makes a contribution in the area of MB-IDEs, it is
not in its individual components, but rather in the way
these components have been combined. Teallach is unusual
both in the extent to which the different models are
integrated (e.g. few other systems address issues relating to
the transmission of domain model concepts through the
task model), and in allowing associations to be constructed
between models in such a flexible manner. Thus Teallach
can be seen as contributing to model-based interface
development research by: clarifying how models can be
integrated; demonstrating how the use of model-based
systems need not lead to the imposition of a specific

development method; and by showing how tools can
support flexibility in model construction.

Acknowledgements: This research is funded by the UK
Engineering and Physical Sciences Research Council
(EPSRC), whose support we are pleased to acknowledge.

References

[1] F. Bodart, A.-M. Hennebert, J.-M. Leheureux, I. Provot, B.
Sacre, J. Vanderdonckt, "Towards a Systematic Building of
Software Architectures: the TRIDENT Methodological
Guide", Interactive Systems: Design, Specification and
Verification. Springer, 1995, pp. 77-94.

[2] Borland Delphi. http://www.borland.com/delphi/
[3] W. Buxton, M.R. Lamb, D. Sherman, and K.E. Smith,

"Towards a comprehensive user interface management
system", Computer Graphics , 17(3), 1983,pp. 35-42.

[4] R.G.G. Cattell et al, The Object Database Standard: 2.0,
Morgan Kaufmann Publishers Inc., 1997

[5] A.B. Chaudhri and M. Loomis, Object Databases in
Practice, Prentice-Hall, 1998.

[6] J. Foley, W.C. Kim, S. Kovacevic, and K. Murray,
"Defining Interfaces at a High Level of Abstraction", IEEE
Computer , 1989, pp. 25-32.

[7] T. Elwert, T. Schlungbaum, "Modelling and Generation of
Graphical User Interfaces in the TADEUS Approach",
Designing, Specification, and Verification of Interactive
Systems (Palanque , P., Bastide, R. Eds.). Wien, Springer,
1995, pp. 193-208.

[8] T. Griffiths et al., "Exploiting Model-Based Techniques for
User Interfaces to Databases", Proc. Visual Database
Systems 4, (Y. Ioannidis and W. Klas (eds)), Chapman &
Hall, 1998, 21-46.

[9] P. Johnson, H. Johnson, and S. Wilson, "Rapid Prototyping
of User Interfaces Driven by Task Models", Scenario-Based
Design, (Carroll, J. ed). John Wiley & Son, 1995, pp. 209-
246.

[10] P. Markopoulos, J. Pycock, S. Wilson, and P. Johnson,
"Adept - A task based design environment", Proceedings of
the 25th Hawaii International Conference on System
Sciences, IEEE Computer Society Press, 1992, pp. 587-596.

[11] K. Mitchell, J. Kennedy, P. Barclay, "A Framework for User
Interfaces to Databases". Proc. AVI, ACM Press, 1996.

[12] D.R. Olsen, "MIKE: The Menu Interaction Kontol
Environment", ACM Transactions on Graphics , 5(4), 1987,
pp. 318-344.

[13] Poet Software. http://www.poet.com
[14] A. Puerta, H. Eriksson, J. Gennari, and M. Musen, "Model-

Based Automated Generation of User Interfaces", Proc.
National Conference on Artificial Intelligence (AAAI), 1994.

[15] E. Schlungbaum, T. Elwert, "Automatic User Interface
Generation from Declarative Models" Proc. CADUI, 1996,
pp. 3-18.

[16] Visual dBase http://www.dbase2000.com/
[17] P. Szekely, P. Luo, and R. Neches, "Facilitating the

Exploration of Interface Design Alternatives: The
HUMANOID Model of Interface Design", Proc. CHI 92,
1992, pp. 507-515.

[18] P. Szekely, P. Sukaviriya, P. Castells, J. Muhtkumarasamy,
E. Salcher, "Declarative Interface Models For User Interface
Construction Tools: The MASTERMIND Approach
Engineering For Human-Computer Interaction", 2nd
Workshop on Database Issues for Data Visualization (A.
Wierse, G.G. Grinstein, U. Lang, (eds.)), Springer-Verlag,
1996.

[19] P. Szekely, "Retrospective and Challenges for Model-Based
Interface Development", Proc. DSVIS, (F. Bodart and J.
Vanderdonckt (eds)), Springer-Verlag, 1996, pp. 1-27.

[20] M.M. Zloof, "Selected Ingredients in End-User
Programming", Proc. Visual Database Systems (VDB) 4, (Y.
Ioannidis and W. Klas (eds)), Chapman & Hall, 1998.

