
 1 

 

Novel Architecture and Heuristic Algorithms for 

Software-Defined Wireless Sensor Networks 
Ammar Hawbani, Xingfu Wang Member, IEEE, Liang Zhao, Ahmed Al-Dubai Senior Member, IEEE, Geyong 

Min, Omar Busaileh 

Abstract— This paper extends the promising software-defined networking technology to wireless sensor networks to achieve 

two goals: 1) reducing the information exchange between the control and data planes, and 2) counterbalancing between the 

sender’s waiting-time and the duplicate packets. To this end and beyond the state-of-the-art, this work proposes an SDN-based 

architecture, namely MINI-SDN, that separates the control and data planes. Moreover, based on MINI-SDN, we propose MINI-

FLOW, a communication protocol that orchestrates the computation of flows and data routing between the two planes.  MINI-

FLOW supports uplink, downlink and intra-link flows. Uplink flows are computed based on a heuristic function that combines four 

values, the hops to the sink, the Received Signal Strength (RSS), the direction towards the sink, and the remaining energy. As for 

the downlink flows, two heuristic algorithms are proposed, Optimized Reverse Downlink (ORD) and Location-based Downlink(LD). 

ORD employs the reverse direction of the uplink while LD instantiates the flows based on a heuristic function that combines three 

values, the distance to the end node, the remaining energy and RSS value. Intra-link flows employ a combination of 

uplink/downlink flows. The experimental results show that the proposed architecture  and communication protocol perform and 

scale well with both network size and density, considering the joint problem of routing and load balancing. 

 Index Terms: wireless sensor networks, heuristic routing, MINI-FLOW, MINI-SDN. 

——————————   ◆   —————————— 

1 INTRODUCTION 

Conventional WSNs have been conceived to be applica-
tion-specific, which makes it incredibly difficult to recon-
figure high-level policies and respond to network-wide 
events. This is because employing these high-level policies 
necessitates specifying them in terms of distributed low-
level configuration [1]. Obviously, task reprogramming or 
service (e.g., new routing policy) would necessitate each 
node to be taken out of field-of-interest and the embedded 
software reprogrammed in the node’s hardware [6]. Thus, 
given the need for large-scale WSNs, this routine would 
not be realistic due to the fact that the network indeed con-
tains a large number of randomly deployed nodes in a 
harsh environment that makes it almost impossible to 
manually take out the nodes after being deployed. Such a 
problem is inherent to conventional WSNs since each node 
is manufactured to accommodate all the functionalities 
from the physical layer to the application layer, behaving 
like an autonomous system that executes both the data for-
warding and the network control [6]. 

 In fact, the application nature in WSN reinforces the 
need to develop sensor nodes that are characterized as be-
ing remotely reconfigurable, reprogrammable, maintaina-
ble, and self-healing. By utilizing such sensor nodes, new 
services and routing policies can be introduced in the net-
work as simple as installing a new software on a PC [3].  

Inappropriately, today’s conventional WSNs involve 

integration and interconnection of many proprietary, ver-
tically integrated sensor nodes that make it extraordinarily 
rigid to specify high-level network-wide policies using 
current technologies. The rigidity of underlying infrastruc-
ture offers limited options for innovation or improvement 
since network nodes mostly have been closed with a low-
level vendor-specific configuration that implements com-
plex high-level network policies [1] [9]. As a result, it is 
very difficult to replace network nodes with any other pro-
duced by any vendor. This curbs the operator in vendor 
lock-in, and restrains the use of commodity hardware. Be-
sides, it constrains the vendors in manufacturing isolated 
WSN nodes without adequately reusing common func-
tionalities, which in turn adversely affects production and 
prototyping [9]. 

 Recent technology shift proposes Software-Defined Net-
working (SDN) to dramatically simplify network configu-
ration and resource management [7] [4]. By implementing 
such technology, WSN behavior can be reprogrammed 
even after the deployment of nodes by remotely injecting 
embedded defined software into sensor nodes [16]. SDN is 
essentially featured by disengaging the control decision 
(control plane) from the network devices, leaving the de-
vices to perform data forwarding functionality (data 
plane) [8]. Such disengaging is particularly valuable to net-
work operators and designers. In addition, it attracts aca-
demia, industry and development community to pay in-
creasing attention to specific research aspects in both WSN 
and SDN [4]. 
1.1 Benefits of SDN in WSN 

1) By employing SDN, the nodes behave as data plane 
devices to forward data without interfering network 
control tasks such as topology management and 
routing strategies, simplifying their architecture and 
enhancing their energy efficiency. Moreover, armed 

———————————————— 

• A. H., Xingfu W. {anmande, wangxfu} @ustc.edu.cn, and Omar B. (busaileh 
@mail.ustc.edu.cn) are with School of Computer Science and Technology, 
University of Science and Technology of China, Hefei, Anhui 230027, China;  

• L.Zhao (lzhao@sau.edu.cn); Shenyang aerospace University; Shenyang, 
110136, China; Xingfu Wang and Liang Zhao are corresponding authors. 

• A.Al-Dubai is with School of Computing; Edinburgh Napier University; 
(a.al-dubai@napier.ac.uk);  

• G. Min is with Department of Computer Science, University of Exeter, Ex-
eter, EX4 4QF, U.K. (e-mail: g.min@exeter.ac.uk); 

 

mailto:g.min@exeter.ac.uk


2  

 

with a network-wide view, the controller introduces 
comprehensive duty-cycling, scheduling, routing 
and coverage & connectivity solutions [5]. Conse-
quently, such sophisticated strategies will be intro-
duced to WSN as simply as it is to remotely install 
new software on a PC [3]. 

2) Freeing WSNs from being vendor-specific, proprie-
tary, vertically integrated networks, allowing differ-
ent vendors to develop application-customizable 
devices in a non-isolated manner by sharing com-
mon functionalities. Besides accelerating the proto-
typing, production and protocols innovation [2], 
this avoids the complicated network management 
imposed by deploying multi-vendor nodes [10]. 

3) Releasing WSNs from being application-specific, be-
having in a plug-and-play manner since the data 
plane virtually supports all kinds of forwarding 
rules. Besides, the control plane separates the 
application layer from the physical layer, support-
ing multiple applications with different hardware to 
work under the same physical network architecture 
[5]. 

1.2 Motivations and Contributions 

Based on the limitations of WSNs and the benefits of SDN 
concept, WSN developers realized the need to shift from 
conventional WSNs to software-defined WSNs [6].  Re-
cently, a few studies highlighted the importance of extend-
ing SDN concepts to WSNs, noticeably focusing on the 
challenges, the requirements and the logical architecture of 
network components [2-10]. These studies provided con-
vincing motivations for the extension of SDN concept to 
conventional WSN. However, these studies mostly ad-
dressed the challenges and the abstract architecture while 
the information exchange between the controllers and the 
end nodes has not been addressed well so far. Motivated 
by these observations, in this work, we briefly address the 
WSN-SDN architecture and then deeply address the flows 
computation and instantiation, aiming at the following 
two goals. The first goal is to minimize the information ex-
change (network overhead) between the controller and the 
end nodes. The second goal is to trade-off between the 
waiting-time and the duplicate packets when the nodes are 
duty-cycled. More details about the trade-off between the 
sender waiting-time and the duplicate packets can be 
found in [29]. The main contributions of this paper are as 
follows: 
1) We propose MINI-SDN, a new architecture that inte-

grates the conventional WSN and the Software-Defined 
Networking (SDN). 

2) Based on MINI-SDN, we propose MINI-FLOW, a com-
munication protocol that facilitates the intercommuni-
cation between the elements in the data plane and the 
control plane. 

3) We further develop innovative heuristic algorithms to 
manage uplink, downlink and intra-link flows while 
reducing the information exchanged between the con-
trol and data planes. 

4) We implement MINI-SDN & MINI-FLOW on the 

 

1 https://github.com/howbani/WSNSIM 

platform proposed in [28] [29]. The source code is 
publicly available in the link1. The simulation results 
showed that our architecture MINI-SDN  and com-
munication protocol MINI-FLOW perform and scale 
well with both network size and density. 

 The remainder of this paper is organized as follows. 
The related works are reviewed in the next Section. Section 
3 and Section 4 present the MINI-SDN architecture and the 
MINI-FLOW protocol, respectively. Section 5 provides an 
analysis of the proposed MINI-FLOW protocol. The exper-
imental results are evaluated in Section 6. Finally, Section 
7 concludes this work. 

2 RELATED WORK 
Currently, OpenFlow [18] is the most popular instance of 
Software-Defined Networking, which has been proposed to 
resolve analogous issues in wired and address-centric net-
works. It achieved a high standing position in the network-
ing market and attracted many of the networking leader 
vendors including HP, NEC, NetGear, and IBM, to manu-
facture OpenFlow-compatible devices available in the mar-
ket.  In addition, it attracted developers to design a variety 
of SDN-based controllers e.g., NOX, Floodlight, and Maestro, 
available online [19]. OpenFlow creates one or more Flow 
Tables for each device to execute the packet lookups and 
forwarding, controls the communication between the con-
troller and network devices. The flow entry of the Flow Table 
is composed of three sections, matching rule, actions and sta-
tistical information. The matching rule specifies the values 
and conditions under which the flow entry applies. After 
matching the rules, the node executes actions (e.g., drop, 
update, forward to, etc.) identified in the second section of 
the flow entry. The third section contains statistical infor-
mation about the flows. 

 OpenFlow could not fulfill the requirements of WSN as 
its underlying infrastructure is composed of high-speed 
switches (e.g., Ethernet/MPLS switches and IP routers) 
whereas the WSN is characterized by low capabilities in 
terms of memory, processor, and energy source. Further-
more, WSN is a data-centric network which means that col-
lecting the sensory data is more important than knowing 
who sent the data, while OpenFlow is designed for address-
centric networks, which implicitly assume the presence of 
IP-like addressing to create flows. 

Technical challenges of extending OpenFlow to WSN are 
thoroughly articulated in [9]. Motivated by the challenges, 
including Creating flows, Openflow channel, Overhead of Con-
trol Traffic and Traffic Generation, Luo et al. [9] proposed 
Software-Defined WSN (SD-WSN), an architecture featuring 
a clear separation between data and control planes. The ar-
chitecture was divided into three layers, data, control, and 
application. Moreover, they provided a suite of prelimi-
nary solution, named as Sensor OpenFlow (SOF), to over-
come the aforementioned challenges. SOF introduces an 
OpenFlow-extension, supporting SDN-WSN by plugging 
new forwarding rules to OpenFlow. The rules of SOF 
slightly meet the requirements of WSN and handle in-net-
work packet processing via various types of WSNs defined 
addressing. 

https://github.com/howbani/WSNSIM


 3 

 

Although SOF addressed a few technical challenges of 
extending SDN to WSN, critical requirements such as duty 
cycles and in-network data aggregation were not ad-
dressed. Therefore, these requirements were analyzed in 
[4] and based on the discussion, Costanzo et al., proposed 
an SDN-architecture, named as Software-Defined Wireless 
Network (SDWN) which is designed based on IEEE 802.15.4 
standard (for low-power wireless nodes that operate in 868 
MHz, 915 MHz and 2.4 GHz frequency bands). Unlike SOF 
[9], the SDWN [4] contains aggregation layer, data for-
warding layer and application layer on the top of PHY and 
MAC layers. Furthermore, to cope with the challenges and 
requirements, Smart [10] undertakes a solution to some in-
herent problems in WSN such as network management, 
node mobility, localization and topology discovery. Unlike 
SOF [9] and SDWN [4], Smart [10] composes of five-layer 
stack, PHY, MAC, NOS (Network Operating System), MW 
(Middle-Ware) and application layer. Besides, Smart sug-
gests to reside the controller in the sink, and used a locali-
zation service for location-based routing. 

Furthermore, the requirements such as duty cycles, in-
network data aggregation, flexible rules and space con-
straints, which are essentials in designing Software Defined 
Wireless Network, are not considered in OpenFlow.  To meet 
these requirements and inspired by [4] and [9], the WSN-
WISE [3] [19] extended Openflow to support data aggrega-
tion, duty cycling and network function virtualization. It sim-
plifies policy implementation within a reprogrammable 
and vendor-independent WSN. Besides, WSN-WISE sup-
ports multiple controllers serving as a proxy between the 
two planes, allowing packets to travel following different 
flow rules defined by different controllers. These controllers 
periodically update the flow tables to let the nodes know 
their next-hop node towards the controllers. The topology 
information is collected through the discovery layer, which 
has access to the protocol stack. Above the IEEE 802.15.4 
stack, WSN-WISE defines the forwarding layer to handle the 
arriving packets as specified in the Flow Table. On top of 
the forwarding layer, WSN-WISE defines the In-Network 
Packet Processing layer to handle data aggregation. 

Enabling technologies to implement Software-Defined 
Sensor Network (SDSN) are presented in [2]. Zeng et al. [2] 
introduced an SDSNs based Cloud Sensing architecture 
which consists of a single control server and a set of soft-
ware-defined nodes. To deploy a new sensing task, the 
server remotely reprograms a few nodes in a distributed 
manner such that the reprogrammed nodes are admissible 
to sense and report the related targets. The functions to be 
activated in sensor nodes are defined in the server, which 
provides a role generation and delivery mechanism. Later, 
SDSN was extended in [16] by proposing a reconfigurable 
node that consists of a low-power field-programmable gate ar-
ray (FPGA) and a microcontroller unit (MCU) for changing 
network behavior. 

The rest of this section introduces a few of studies that 
attempted to address the problems related to the data rout-
ing between the two planes, data and control planes. Xiang 
et al. [25] proposed a routing algorithm in which the nodes 

 

2 https://github.com/howbani/lora 

are divided into clusters each assigned with a control node 
(cluster head). Based on the residual energy of the nodes 
and the transmission distance, the controller selects the 
control node. The selection of control nodes is formulated 
as an NP-hard problem which is optimized by adopting 
particle swarm optimization algorithm. Zeng et al., [26] inves-
tigated the coverage sets and nodes activations together 
with the task assignment and sensing scheduling. These 
problems are jointly formulated as a mixed-integer with 
quadratic constraints programming and mixed-integer lin-
ear programming. More recently, Li et al. [27] presented a 
Levenberg–Marquardt algorithm for solving the optimiza-
tion problem of traffic load. They also provided a 
convergence analysis of the Levenberg–Marquardt algo-
rithm. 

LORA [29] is an opportunistic routing protocol that em-
ployed zone routing, in which each node defines a candi-
date’s zone. Candidates within the zone are prioritized 
based on a metric, which is defined as multiplication of di-
rection, transmission distance distribution and residual en-
ergy. ZPR [28] modeled the data routing as an in-zone ran-
dom process. The zone in ZPR is defined by the source, 
while the zone in LORA is locally defined by each relay 
node. Candidates within the zone of ZPR are randomly se-
lected. The implementation of LORA and ZPR is available 
online in the link 2 and the link3, respectively. 

The aforementioned literature provided significant con-
tributions and offered convincing motivations for expand-
ing SDN concepts to WSN. However, designing an ab-
stracted architecture for WSN was their main research 
point while the information exchange between the control-
lers and the end nodes has not been addressed well so far. 
In addition, the combined problem of data routing and 
load balancing between the two planes is not practically 
studied. Moreover, the communication overhead between 
the two planes is not well evaluated. Thus, we go beyond 
the state-of-the-art by proposing an SDN based architec-
ture called MINI-SDN which separates the control from 
data plane and paves the way for the proposed communi-
cation protocol called MINI-FLOW which undertakes the 
packet exchange between the two planes. 

3 THE PROPOSED ARCHITECTURE MINI-SDN 
This section explains our proposed software-defined archi-
tecture for WSN. As shown in Figure 1, the WSN- SDN log-
ical architecture contains three components, the sensor net-
work (data plane), the sink, and the controller. The nodes 
reach the sink either directly by one hop or indirectly 
through multiple hops. The sink acts as an intermediate 
agent (gateway) between the control plane (controller) and 
the end nodes (data plane). The controller could be hosted 
either internally in the sink or externally on a remote 
server. We consider the controller as an external independ-
ent device that communicates with the sink directly but not 
with the sensor nodes. Like [4], each node in our architec-
ture is equipped with a micro-control unit (IEEE 802.15.4 
transceiver). Furthermore, the nodes have limited pro-
cessing, memory, communication and energy capabilities. 
The sink transceiver, based on IEEE 802.15.4 standard, is 

3 https://github.com/howbani/zpr 

https://github.com/howbani/lora
https://github.com/howbani/zpr


4  

 

connected to an Embedded Network Operation System 
(ENOS) which is armed with high computing and commu-
nication capabilities. 

 

 
Figure 1: Simplified view of the software-defined sensor network struc-
ture. 

MINI-SDN is an architecture that separates the control 
and data planes of WSNs. It consists of three integrated 
sub-architectures, MINI-SDN-Node, MINI-SDN-Sink and 
SDN-WSN controller. Figure 2 and Figure 3 explain the 
proposed architecture of MINI-SDN. Specifically, Figure 2 
depicts the proposed architecture for sinks (right side) and 
the sensor node (left side) while Figure 3 depicts the con-
troller of MINI-SDN. The two architectures (MINI-SDN-
Node and MINI-SDN-Sink) are intensely explained in the 
Subsections 3.1 and 3.2, respectively, while the MINI-SDN-
Controller is explained in Subsection 3.3. 

 
Figure 2: MINI-SDN protocol stack for sink and node. 

3.1 MINI-SDN Architecture for Sensor Nodes 

MINI-SDN-Node protocol stack runs the basic PHY and 
MAC functionalities defined by the standard IEEE 
802.15.4. At the top of IEEE 802.15.4 protocol stack, MINI-
SDN-Node defines the network layer, which runs in the mi-
cro-control unit, comprising three main blocks Neighbors 
Discovery (ND), Data Aggregation (DA), and Packets Router, 
see Figure 2 (left side). ND allows each node to store and 
discover the information (i.e., ID, battery state and RSSI) of 
nearby nodes. To achieve this, each node broadcasts a bea-
con packet and waits for a response from a nearby node 
that receives the beacon. DA executes data aggregation or 
decision fusion, aiming to reduce data redundancy and 
conserve network resources [9]. Packets Router is adapted 
to improve the performance of low Duty-cycled WSN by 
exploiting its broadcast nature (i.e., a node may pick up the 
packets that are destined to other nodes). Considering the 
duty cycles where a node randomly switches its mode to 
active or sleep, the Packets Router selects a set of candi-
dates as potential forwarders in order to reduce sender wait-
ing-time as well as to minimize duplicate packets. When a 
sender has a packet to send, it transmits preambles contin-
uously until either one of its candidates sends back an ACK 
or the preset timer of active duration expires. Typically, the 

sender seizes the earliest forwarding opportunity and does 
not need to wait for the predefined forwarder to wake up. 
When multiple candidates wake up, to avoid packet dupli-
cation the sender should coordinate its candidates and se-
lect one to forward the packet. Packets Router comprises 
three blocks, Candidates Coordination (CC), MINI-FLOW-Ta-
ble and Neighboring-Table. Candidates Coordination (CC) im-
plements an important mechanism intended to avoid 
packets duplication.  Given the fact that the nearby nodes 
can overhear any potential traffic within their ranges, the 
sender should be able to determine which neighboring 
node is going to forward the packet to the next hop. Oth-
erwise, a large number of duplicate packets will incur. 
Note that CC has access to edit the content of MINI-FLOW-
Table. Packets are forwarded based on the matching rules 
specified in MINI-FLOW-Table. The rules are remotely 
computed in the controller. We will deeply explain the 
MINI-FLOW-Table and Neighboring-Table in Section 4.  

 

 
Figure 3: Simplified view of MINI-SDN-Controller 

3.2 MINI-SDN Architecture for Sinks 

The MINI-SDN-Sink architecture is depicted in Figure 2. 
Like the protocol stack of MINI-SDN-Node explained in the 
previous subsection, MINI-SDN-Sink runs the basic PHY 
and MAC functionalities defined by the standard IEEE 
802.15.4. At the top of the MAC layer, MINI-SDN-Sink de-
fines Embedded Network Operation System (ENOS), which 
should have access to all layers including IEEE 802.15.4 
protocol stack and application layer, see Figure 2. 

The ENOS is an intermediate interface that operates the 
communications from sink to nodes and from sink to the 
controller. ENOS involves two main sides, the Controller-
side and Node-side. The Node-side is an interface responsible 
for nodes/sink intercommunications, while the Controller-
side is responsible for controller/sink intercommunications. 
The Node-side contains three parts, the Candidates Coordina-
tion (CC), MINI-FLOW-Table, and the Gateway Discovery. 
The CC and MINI-FLOW-Table implement the same func-
tionalities as in Packets Router of MINI-SDN-Node, ex-
plained in the previous subsection. Gateway Discovery dis-
covers the access nodes (i.e., the sensor nodes that directly 
communicate via one hop with the sink). The Controller-
side composes of two components PCI (Programmable Com-
munication Interface) and Adapter. The PCI component is the 
communication interface (e.g., USB, RS232, TCP/IP, etc.) 
that manages the communication between the sink and the 

Controller
Sink

Node

Operator Policy language

Data Plane



 5 

 

controller while the adapter component is responsible for 
rendering network policies and messages into a format 
that can be understood by the sensor nodes and the control-
ler.  

3.3 The Controller of MINI-SDN 

Network services (e.g., high & low levels network-wide 
policies, the traffic-forwarding decisions, and so on) are 
considered as the essential functionality that should be 
provided by the central controller which employs a Network 
Operating System (NOS), for example, Linux-based embed-
ded system with high computing and communication ca-
pabilities.  NOS manages and executes the main network 
functions such as program execution, I/O operations, se-
curity, and communications [13]. Our proposed Mini-Con-
troller for WSN, as shown in Figure 3, implements the net-
work service functions in the NOS, which comprises the 
Database, Flow-Engine (FE), Network Visualization (NV), To-
pology Constructor (TC), PCI and Applications. PCI is a com-
munication interface between the controller and the sinks. 
The Database is designed to store the topological collected 
data such as the node’s ID, node’s location, node’s neigh-
bors, node’s battery level, sinks and so on. Based on the 
data stored in the Database component, the Topology Con-
structor constructs a graph-based structure for the sensor 
network by using the vertices and edges. Utilizing the To-
pology Constructor and the topological collected data in the 
Database, the Network Visualization constructs a consistent 
and comprehensive representation of the current state and 
statistics of the network.  The Flow-Engine is the essential 
component of the controller in which all the traffic-for-
warding decisions are taken and all the high & low levels 
network-wide policies are implemented. In addition, Flow-
Engine translates the network-wide event-driven policies 
into forwarding rules implemented in the nodes. Besides, 
it is responsible of updating the MINI-FLOW-Table of the 
nodes and the sinks. 

TABLE 1: NOTATIONS. 

Notation Description 

ℕ ℕ = {𝑛0, 𝑛1, 𝑛2… }; 𝑛𝑖 ∈ ℕ is a sensor node. 

ℕ𝑖 Neighboring set of 𝑛𝑖;  

𝑚𝑖 Size of ℕ𝑖. 

𝑛𝑡, 𝑛s, 𝑛b End, source and sink nodes, respectively. 

𝐻(𝑛𝑖) Number of hops from 𝑛𝑖  to the sink. 

𝑅(𝑛𝑗 ∈ ℕ𝑖) RSSI value from 𝑛𝑖 to 𝑛𝑗 ∈ ℕ𝑖. 

𝐿𝑖 Residual energy of 𝑛𝑖. 

𝐿∗ Initial energy. 

𝑥𝑖, 𝑦𝑖 Location of the node 𝑛𝑖. 

𝑒 Euler's constant, approximately 2.71828. 

4 THE PROPOSED PROTOCOL MINI-FLOW 
MINI-FLOW is designed to manage and compute the flows 
and the paths between the control and data planes. It in-
volves three mechanisms, the uplink, the downlink and the 
data routing at the network initialization level. In addition, 
MINI-FLOW proposes intra-link flows to support routing 
of the traffic within the data plane. Before addressing these 
mechanisms, we will first elaborate the substructures of 
MINI-FLOW, the packet header, packets types, MINI-FLOW-
Table and Neighbors-Table. By the end of this subsection, we 

will introduce the forwarders coordination, the update 
mechanism of the flows and the exponential system pa-
rameters that control the flows. Note that, MINI-FLOW is 
designed based on the low power listening BoX-MAC (i.e., 
the default MAC protocol in TinyOS) [11]. The common 
notations used in this paper are summarized in Table 1. 

4.1 Packet Header 

To reach their intended destinations, the packets travel in 
the network using the fixed header format (10 bytes long) 
which is similar to the formats mentioned in the literature 
[3][4] with few differences, the Interested Sinks and the Can-
didates IDs (see Figure 4). When a network has multiple 
mobile sinks, the Interested Sinks specifies a group of the 
sinks which are interested in the content of the packet, 
whereas the Candidates IDs specifies the Candidates nodes 
which listened and acknowledged the packet. Further-
more, the header contains the estimated locations of the 
source and destination. These locations are estimated by 
utilizing the simplest ranging method, Received Signal 
Strength (RSS) that represents the relationship between the 
transmission distance and the signal strength degradation. 
Such relation is modeled by the path loss of the signal (radio 
signal degradation with distance). To calibrate the unstable 
changes of RSS, the self-calibration protocol, explained in 
[17], is utilized. 

 
Figure 4: Packet Header Format. 

4.2 Packet Types 

Based on the broadcasting nature of WSNs, MINI-FLOW 
supports five types of packets, listed as follows. 

Type 1. Beacon Packet: the sink or the sensor nodes pe-
riodically broadcast this type of packet, which is intended 
for neighboring discovery, battery state query, etc. The 
header of this packet does not encapsulate any of the fol-
lowings: address/location of the destination, Candidates IDs 
and interested sinks. The time to live is set to one (hop). The 
nodes, which hear this type of packets, send back a Re-
sponse Packet to the sender, reporting their information like 
battery states, number of hops to the sink, ID and RSSI. The 
header of the Response Packet contains the following: time 
to live (One hop), Candidates IDs (the sender of beacon 
packet). 

Type 2. Preamble Packet:  When a sender has a data 
packet, it sends preamble packets before transmitting the 
data packet. The nodes in Neighbors-Table, which hear this 
type of packet, send back an ACK packet to the sender ac-
knowledging their availability for receiving the data packet. 
The header of this packet contains the Candidates IDs and 
the address/location of the sender. It does not contain inter-
ested sinks and address/location of the destination. The time 
to live is set to one (hop). 

Type 3. ACK Packet: The nodes in the Neighbors-Table, 
which hear the Preamble Packet, send back an ACK packet to 

0 1 2 3 4 5 6 70 1 2 3 4 5 6 7

0

2

4

6

8

Packet Length Interested Sinks

Bit

B
y
te

Source Address

Destination Address

Packet Type Time to Live

Candidates IDs

Source Location

Destination Location



6  

 

the sender acknowledging their availability for receiving 
the data packet. When the sender receives the ACK packet, it 
sets the ACK value (Table 2) to 1.0. 

Type 4. Data Packet: After receiving an ACK-Packet, the 
Candidates Coordination (CC) in the Packets Router (Figure 2) 
sends the data packet to the next hop based on the Priority 
value (Table 2). In this type of packet, the address/ location 
of destination are attached to the header. In the field of Can-
didates IDs, the sender node specifies one candidate (next 
hop in the path) based on the Priority (Table 2). 

Type 5. Control Packet: The exchanged packets be-
tween the controller and the nodes include the rule/action 
request, rule/action response, topology info, etc. 

4.3 MINI-FLOW-Table 

Broadcasting nature and resource scarcity in WSNs impose 
that the WSN-SDN architecture should be characterized by 
being simplified and highly efficient. In such constrained 
networks, the nodes periodically switch between active 
and sleep states according to predefined wake-up inter-
vals.  MINI-FLOW is designed based on the low power lis-
tening BoX-MAC.  MINI-FLOW saves the flows as the en-
tries in the MINI-FLOW-Table, shown in Table 2, in which 
each flow is defined based on the direction of the flow, up-
link, downlink or intra-link. 
 

TABLE 2: MINI-FLOW-TABLE. 

 
MINI-FLOW-Table is designed to achieve two goals. The 
first goal is to reduce the exchange of information between 
the controller and end nodes by using a fixed flow that tar-
gets each node rather than each packet. The controller de-
livers the uplink, downlink or intra-link flows to each node 
after network initialization. The controller does not need to 
define the flows for each packet. This reduces the amount 
of information exchanged between the two planes. The 
controller updates the flows directly based on the statistics 
received from the end nodes. Flows could be updated 
whenever an end-node requests the routing policy. 

TABLE 3: NEIGHBORS-TABLE. 

 

The second goal is, in case of duty-cycled nodes, to re-
duce the waiting-time and to minimize the duplicate packets, 
each node is assigned with multiple flows each has a Prior-
ity value, which is heuristically computed in the Flow-En-
gine. When the sender-node has a packet, it sends a pream-
ble packet, which will be heard by all awaken neighboring 
nodes in Table 3. The nodes, which received the preamble 
packet, will send back an ACK to the sender. The sender 
sets the ACK value to 1.0 in the MINI-FLOW-Table. Other-
wise, the ACK value is set to 0.0. Based on the Priority 

value, if the flow is matched (i.e., the candidate is selected), 
then the corresponding Action is executed and the infor-
mation in the Statistics is updated. The Statistics infor-
mation is periodically reported to the controller. When the 
ACK value is 0.0, the corresponding Action will not be exe-
cuted even though the Priority value is the highest. Table 2 
shows an example of the flows in a node that has three 
neighboring nodes. We will explain how the controller com-
putes the Actions and Priority in the Subsection 4.4. Table 3 
shows the information to be stored in the node 𝑛𝑖 . We as-
sume it has four neighboring nodes ℕ𝑖 = { 𝑛1,  𝑛2,  𝑛3,  𝑛4}. 
The function 𝐻(𝑛𝑗 ∈ ℕ𝑖) returns the number of hops from 
𝑛𝑗 to the sink while 𝑅(𝑛𝑗 ∈ ℕ𝑖) returns the RSSI value from 
𝑛𝑖  to 𝑛𝑗. 

4.4 Flows Computing 
This section is devoted for computing uplink flows (i.e., the 
paths from the end nodes to the controllers), the downlink 
flows (i.e., the paths from the controllers to the end nodes), 
and the intra-link flows (i.e., data traffic within the data 
plane such as a path from a node to a cluster head CH in 
clustered WSN). MINI-FLOW supports both flat-based rout-
ing (i.e., all nodes of equal role) and hierarchical-based rout-
ing (i.e., different nodes may assume different roles). The 
following four subsections (4.4.1 to 4.4.4) elaborate the 
flows of flat-based routing while Subsection 4.4.5 explains 
the flows of hierarchical-based routing.  

 
Figure 5: Network initialization. An example of 100 nodes (indicated 
by the circle). The digits indicate the H-value (lower) and the ID (up-
per) of each node. The arrows show the available paths from the 
source node 𝑛61 to the sink 𝑛0. H-value is computed by ALGORITHM 
1. 

4.4.1 Network Initialization 
The goal of this phase is to have each node identify its H-
value(s), so that it can simply share the information (i.e., R-
values, H-value and energy level) with the controller. In flat-
based routing, the initialization phase starts at the sink 
where the H-value is set to 0. The sink starts the initializa-
tion by sending a beacon, then the nodes that received the 
beacon execute ALGORITHM 1, and further send their own 
new beacon. The process is terminated when each node 
knows its H-value. Figure 5 shows an example of imple-
menting ALGORITHM 1 on 100 nodes. The collected infor-
mation is reported to the sink by the following four steps. 
(1) The sender node transmits a preamble packet. (2) The 
nodes that received the preamble packet send back the ACK 



 7 

 

packets to the sender expressing their availability. (3) The 
Packets Router selects a candidate from the nodes, which 
expressed their availability providing that the H-value of 
the candidate node is smaller than the H-value of the 
sender. (4) The Packets Router specifies the ID of the candi-
date in the Candidates IDs field of the Control Packet. This 
process is repeated until the Packet reaches the sink node. 
The collected information is stored in the Database so the 
Network Visualization (NV), Topology Constructor (TC) and 
Flow-Engine (FE) can utilize it. In addition, each node saves 
its neighbors information in the Neighbors-Table (Table 3). 

 
ALGORITHM 1: Network Initialization 

𝐻 is a function that returns the number of hops to the sink. 

1.  NetworkInitialization (𝑛𝑥)  
2.  { 

3.     𝑛𝑥 broadcasts a beacon packet; 
4.      if(𝑛𝑖 hears the beacon) 
5.         if (𝐻(𝑛𝑥)< 𝐻(𝑛𝑖))  
6.             𝐻(𝑛𝑖)=𝐻(𝑛𝑥)+1; 
7.             𝑛𝑖 sends response to 𝑛𝑥; 
8.              if(𝑛𝑥 received the response from 𝑛𝑖) 
9.                  ℕ𝑥= ℕ𝑥 ∪ {𝑛𝑖};  
10.              End if 

11.         End if 

12.      End if 

13.  } 

4.4.2 Uplink Flows 
Uplink flows are computed through a heuristic function 
that combines four values, the number of hops to the sink, 
the Received Signal Strength (RSS), the direction towards the 
sink and the remaining energy. The data routing from 
nodes to the controllers is determined based on the Priority 
value of each flow in the MINI-FLOW-Table (Table 2). As 
shown in Figure 5, each node has multiple candidates at 
each transmission stage. Accordingly, each node has mul-
tiple potential paths to reach the sink. To optimize the path 
selection, we propose a heuristic algorithm that depends 
on the four values H-value, R-value, ℰ-value and L-value.  ℰ-
value represents the Euclidean distance from the node to the 
sink. H-value represents the number of hops from the node 
to the sink, obtained by ALGORITHM 1. L-value represents 
the remaining energy while R-value is a function of the 
distance between the sender and receiver node, which var-
ies due to various in-path interferences [12]. R-value is con-
sidered as a term in the proposed heuristic function since 
the energy consumption is strongly related to the transmis-
sion distance between the sender and receiver nodes [14]. 
Each of the four values has an impact on path selection.  

 (1) H-Distribution: This probability distribution prior-
itizes the nodes, which have smaller H-value (i.e., mini-
mum the number of hops to the sink as computed by AL-
GORITHM 1). Each node 𝑛𝑖  expresses the H-values of its 
neighboring nodes ℕ𝑖  as a vector, ℋ𝑖 = {𝐻𝑖,1, 𝐻𝑖,2, … , 𝐻𝑖,𝑚𝑖

} 
where 𝐻𝑖,𝑗 = 𝐻(𝑛𝑗), 𝑛𝑗 ∈ ℕ𝑖 , 𝑚𝑖 = |ℕ𝑖|. Then, ℋ𝑖  is normal-
ized into  ℋ̅𝑖 = {𝐻𝑖,1, 𝐻𝑖,2, … , 𝐻𝑖,𝑚𝑖

} by Eq.(1). Finally, the H-
value Distribution is defined by the mass function Eq.(2), de-
noted by ℋ̃𝑖 = (𝐻𝑖,1, 𝐻𝑖,2, … , 𝐻𝑖,𝑚𝑖

). Note that in Eq.(1), the  
𝛾𝐻 ≥ 0  is called the H-exponent. Greater value of  𝛾𝐻 offers 
a higher probability distribution for the nodes with smaller 

H-values to be selected as candidate nodes. 
�̅�𝑖,𝑗 = (1 + 𝐻(𝑛𝑗))

−𝛾𝐻
 ∀ 𝑛𝑗 ∈ ℕ𝑖   (1) 

�̃�𝑖,𝑗 = (1 − 𝑒
�̅�𝑖,𝑗) ∑(1 − 𝑒�̅�𝑖,𝑘)

𝑚𝑖

𝑘=1

⁄  ∀ 𝑛𝑗 ∈ ℕ𝑖      (2)  

Figure 6 shows the impact of 𝛾𝐻 on H-Distribution when 
node 𝑛𝑖  has 5 neighbor nodes, ℕ𝑖 = {𝑛1, 𝑛2, … , 𝑛5}. For sim-
plicity, the H-Values of the neighboring nodes are assumed 
to be  ℋ𝑖 = {𝐻𝑖,1 = 1,𝐻𝑖,2 = 2,… ,𝐻𝑖,5 = 5}, whereas 𝛾𝐻 varies 
from 0 to 1. The H-Distribution curve shows that the larger 
the value of H-exponent (𝛾𝐻), the greater the probability of 
selecting the node having a smaller H-value. 

 (2) R-Distribution: This distribution prioritizes the 
node with larger R-value. We assume that the RSSI value is 
represented in a positive form, the closer the value is to 
zero, the stronger the received signal has been. RSSI can 
vary greatly and affect the functionality in wireless net-
working. It is derived in the intermediate frequency (IF) 
stage before the IF amplifier. Node 𝑛𝑖  expresses the R-val-
ues of its neighbor nodes ℕ𝑖  as a vector  ℛ𝑖 =

{𝑅𝑖,1, 𝑅𝑖,2, … , 𝑅𝑖,𝑚𝑖
}  where  𝑅𝑖,𝑗 = 𝑅(𝑛𝑗), 𝑛𝑗 ∈ ℕ𝑖 , 𝑚𝑖 = |ℕ𝑖|. 

Then, ℛ𝑖   is normalized into  ℛ̅𝑖 = {�̅�𝑖,1, �̅�𝑖,2, … , �̅�𝑖,𝑚𝑖
}  by 

Eq.(3). Finally, the R-value Distribution is defined by the 
mass function Eq.(4), denoted by  ℛ̃𝑖 = (�̃�𝑖,1, �̃�𝑖,2, … , �̃�𝑖,𝑚𝑖

) . 
Note that in Eq.(4),  the 𝛾𝑅 ≥ 0  is called the R- exponent. 
Larger value of 𝛾𝑅 offers higher probability for the nodes, 
which have greater R-value to be selected as forwarders. 

�̅�𝑖,𝑗 = 1 − ([𝑅(𝑛𝑗)
𝛾𝑅
] ∑ 𝑅(𝑛𝑘)

𝑚𝑖

𝑘=1
⁄ ) ∀𝑛𝑗 ∈ ℕ𝑖   (3) 

�̃�𝑖,𝑗 = 𝑒�̅�𝑖,𝑗 ∑𝑒�̅�𝑖,𝑘

𝑚𝑖

𝑘=1

⁄  ∀𝑛𝑗 ∈ ℕ𝑖         (4)  

During simulation experiments, RSSI-based distance es-
timation model, as explained in [15], is employed to obtain 
the expected transmission distance. We implemented the 
free space propagation model [24] that assumes the ideal prop-
agation condition by representing the communication 
range as a circle around the transmitter. If a receiver is 
within the circle, it receives all packets. Otherwise, it loses 
all packets [17]. Figure 7 shows the impact of R- exponent 
𝛾𝑅  on the R-Distribution ( ℛ̃ ) when 𝑛𝑖  has 5 neighbor 
nodes ℕ𝑖 = {𝑛1, 𝑛2, … , 𝑛5} with transmission distance vary-
ing from 50m to 250m. The R-Distribution Control (RC) var-
ies from 0 to 1. The R-Distribution curve shows that as the 
value of 𝛾𝑅  becomes larger, the probability of selecting the 
nodes having larger R-value becomes higher. 

 

 
Figure 6: The curve of H-Distribu-
tion when the H-exponent control 
(HC) varies from 0.0 to 1.0.  

Figure 7: The curve of R-Distribu-
tion when the R-exponent control 
(RC) varies from 0.0 to 1.0.  

(3) L-Distribution: The goal of this distribution is to as-
sign a higher priority to the nodes with a greater remaining 



8  

 

energy level. Node 𝑛𝑖  defines an energy-normalized vector 
 ℒ̅𝑖 = (�̅�𝑖,1, �̅�𝑖,3, … , �̅�𝑖,𝑚𝑖

) by Eq.(5). Then,   the values on vec-
tor  ℒ̅𝑖 are plugged into the mass function Eq.(6) to obtain 
a discrete random variable,  ℒ̃𝑖 = (�̃�𝑖,1, �̃�𝑖,2, … , �̃�𝑖,𝑚𝑖

) . Note 
that  𝐿𝑗  denotes the residual energy of node 𝑛𝑗 while 𝐿∗ de-
notes the initial energy of 𝑛𝑗 . Also, in Eq.(6), the  𝛾L ≥ 0  is 
called the L-exponent. Greater value of 𝛾𝐿  offers greater 
probability distribution for the nodes, which have more re-
maining energy to be selected as candidates. 

�̅�𝑖,𝑗 = [
𝐿𝑗

𝐿∗
]

𝛾L

   ∀ 𝑛𝑗 ∈ ℕ𝑖    (5) 

�̃�𝑖,𝑗 = (1 − 𝑒
−�̅�𝑖,𝑗) ∑(1 − 𝑒−�̅�𝑖,𝑘)

𝑚𝑖

𝑘=1

⁄      𝑛𝑗 ∈ ℕ𝑖; 𝛾𝐿 ≥ 0  (6) 

Figure 8 shows the impact of L-exponent (𝛾L) on the L-
Distribution (ℒ̃𝑖) when node 𝑛𝑖  has 5 neighbor nodes ℕ𝑖 =
{𝑛1, 𝑛2, … , 𝑛5}. For simplicity, the L-Values of the neighbor-
ing nodes are assumed to be  ℒ𝑖 = {𝐿𝑖,1 = 10, 𝐿𝑖,2 =
20,… , 𝐿𝑖,5 = 50} whereas 𝛾𝐿 varies from 0 to 1. The L-Dis-
tribution curve revealed that when the value of L-exponent 
𝛾𝐿 is greater, the probability of selecting the nodes which 
have more residual energy (L-value) gets higher. 

 

 
Figure 8: The curve of L-Distri-
bution when the L-exponent 𝛾𝐿 
varies from 0.0 to 1.0. 

 

Figure 9: The curve of D-Distri-
bution when the D-exponent 
control (DC) varies from 0.0 to 
1.0. 

 

 (4) Euclidean Distance to the Sink (ℰ-Distribution): The 
ℰ -Distribution aims to assign a higher priority in each 
transmission session for the nodes that are in the direction 
towards the sink 𝑛𝑏. Sender 𝑛𝑖  expresses the ℰ-value of its 
neighbor nodes (i.e., ∀𝑛𝑗 ∈ ℕ𝑖 ) as a vector,  ℰ𝑖 =
{ℰ𝑖,1, ℰ𝑖,2, … , ℰ𝑖,𝑚𝑖

}, where ℰ𝑖,𝑗  represents Euclidean distance 
from relay node 𝑛𝑗 to sink 𝑛𝑏 as expressed in Eq. (7). The 
vector  ℰ𝑖 is normalized into  ℰ�̅� = {ℰ�̅�,1, ℰ�̅�,2, … , ℰ�̅�,𝑚𝑖

} by Eq. 
(8), where 𝜑𝑖denotes the communication radius of 𝑛𝑖 . Fi-
nally, the ℰ -Distribution is obtained by Eq. (9), ℰ̃𝑖 =
(ℰ̃𝑖,1, ℰ̃𝑖,2, … , ℰ̃𝑖,𝑚𝑖

). In Eq. (8),  𝛾ℰ ≥ 0  is a system parameter, 
called the ℰ- exponent.  Greater value of 𝛾ℰ offers a higher 
probability for the nodes that have smaller ℰ-value (closer 
to the sink node) to be selected as candidates. 

ℰ𝑖,𝑗 = √(𝑥𝑏 − 𝑥𝑗)
2
+ (𝑦𝑏 − 𝑦𝑗)

2
     𝑛𝑗 ∈ ℕ𝑖  (7) 

ℰ�̅�,𝑗 = (1 − √
ℰ𝑖,𝑗

ℰ𝑖,𝑏 + 𝜑𝑖
)

𝛾ℰ

  , 𝑛𝑗 ∈ ℕ𝑖               (8) 

ℰ̃𝑖,𝑗 = ℰ�̅�,𝑗 ∑ℰ̅𝑖,𝑘

𝑚𝑖

𝑘=0

⁄ ,𝑛𝑗 ∈ ℕ𝑖                              (9) 

 (5) Uplink Flow Priority: The uplink Priority is com-
puted by the heuristic function defined as the average sum 
of the four distributions, H-Distribution, R-Distribution, ℰ-
Distribution and L-Distribution as formulated in Eq. (10). 
The four probability distributions are considered as four 

forces controlling the forwarding process at the same time. 
Each force has a different impact on the forwarding pro-
cess, so the greater the force, the greater the influence on 
the forwarding process. The Priority value �̃�𝑖,𝑗 indicates the 
probability of transmitting the data packet from the sender 
𝑛𝑖  to the receiver 𝑛𝑗 in the flow entries (Table 2). 

�̃�𝑖,𝑗 = (𝐻𝑖,𝑗 + �̃�𝑖,𝑗 + �̃�𝑖,𝑗 + ℰ̃𝑖,𝑗) 4⁄  

=
1

4
[(1 − 𝑒�̅�𝑖,𝑗) ∑(1 − 𝑒�̅�𝑖,𝑘)

𝑚𝑖

𝑘=1

⁄ + 𝑒�̅�𝑖,𝑗 ∑𝑒�̅�𝑖,𝑘

𝑚𝑖

𝑘=1

⁄ + (1 − 𝑒−�̅�𝑖,𝑗) ∑(1 − 𝑒−�̅�𝑖,𝑘)

𝑚𝑖

𝑘=1

⁄

+ ℰ̅𝑖,𝑗 ∑ℰ�̅�,𝑘

𝑚𝑖

𝑘=0

⁄ ]   𝑛𝑗 ∈ ℕ𝑖(10) 

4.4.3 Downlink Flows 
We propose two heuristic algorithms for the downlink. 
The first algorithm simply considers the downlink flows as 
the reverse of the uplink flows. The paths should be speci-
fied in the header of the packet. In the second algorithm, 
the paths are computed based on a heuristic function that 
considers three values, distance to the end node, the re-
maining energy and RSSI value. The location of the end 
node is specified in the header of the packet. The two heu-
ristic algorithms are precisely clarified in the following 
subsections. 

(1) Optimized Reverse Downlink (ORD):  The paths 
from the controller to end nodes are locally computed in the 
controller rather than in each node. There are multiple re-
verse paths from the controller to each end node (e.g., see 
Figure 10, the reverse paths from the sink node 𝑛0 to the 
end node 𝑛61). To optimize the downlink selection, based 
on the paths computed in the initialization process, the con-
troller constructs a sub-graph 𝐺𝑖 = (𝑉𝑖 , 𝐸𝑖) for the target end 
node 𝑛𝑡  and applies both the R-value and the L-value based 
on the collected information in the database. The priority of 
each potential path is computed as follows. Let ℙ𝑡

𝑏 =
{𝑛𝑏, … , 𝑛𝑡}  be a path from the sink node 𝑛𝑏  to the end 
node 𝑛𝑡. The ordered pair (𝑛𝑖 , 𝑛𝑗) represents one hop from  
𝑛𝑖  to 𝑛𝑗 while the set 𝐸(𝑛𝑖) represents the adjacent edges of 
𝑛𝑖 . The priority of the path ℙ𝑡

𝑏, denoted by ℙ̃𝑡
𝑏, is computed 

by Eq. (11) where �̃�𝑖,𝑗  and  �̃�𝑖,𝑗  are computed by Eq. (4) 
and Eq. (6), respectively. The controller sorts the obtained 
potential paths according to their priority. Higher priority 
implies higher path utility. 

ℙ̃𝑡
𝑏 = ∏ ((�̃�𝑖,𝑗 + �̃�𝑖,𝑗) ∑ (�̃�𝑖,𝑘 . �̃�𝑖,𝑘)

∀(𝑛𝑖 ,𝑛𝑘)∈𝐸(𝑛𝑖)

⁄ )

∀(𝑛𝑖,𝑛𝑗)∈ℙ𝑡
𝑏

  (11) 

 
Figure 10: The Sub-graph of the end node 𝑛61. It shows the potential 
reverse paths from the sink 𝑛0 to the node  𝑛61(the network topology 
is depicted in Figure 5). Each path contains eight hops. The weight 

of the edge (link) indicates the H-value (obtained by ALGORITHM 1) 
while the vertex ID indicates the ID of the sensor node. 

 (2) Location-based Downlink (LD) Algorithm: consid-
ering the values which have an influence on the selection 
of the path from the controller to the end node, the priority 
of the downlink is computed as an average sum of three 



 9 

 

values, R-value, D-value (the distance to the end node) and 
L-value. The R-Distribution and L-Distribution are explained 
in the previous subsection while the D-Distribution is ex-
plained below. 

 (a) Distance to End Node (D-Distribution): The goal 
of D-Distribution is to allocate a higher priority for the relay 
nodes that are closer to the end node 𝑛𝑡 . The sender 
node 𝑛𝑖  expresses the D-values of its neighbor nodes ∀𝑛𝑗 ∈
ℕ𝑖 as a vector, 𝒟𝑖 = {𝐷𝑖,1,𝑡 , 𝐷𝑖,2,t, … , 𝐷𝑖,𝑚𝑖,𝑡

} where 𝐷𝑖,𝑗,𝑡 = 𝐷𝑗,𝑡 
denotes the Euclidean distance from the relay node 𝑛𝑗 to the 
end node 𝑛𝑡, expressed in Eq. (12).  𝒟𝑖 is normalized into 
 �̅�𝑖 = {�̅�𝑖,1,t, �̅�𝑖,2,t, … , �̅�𝑖,𝑚𝑖,𝑡

} by Eq. (13) where 𝜑𝑖 is the com-
munication radius of 𝑛𝑖. Finally, the D-Distribution is de-
fined by the mass function Eq. (14), denoted by  �̃�𝑖 =
(�̃�𝑖,1,t, �̃�𝑖,2,t, … , �̃�𝑖,𝑚𝑖,𝑡

). In Eq. (14),  𝛾𝐷 ≥ 0  is called the D-
exponent. Greater 𝛾𝐷  offers a higher probability for the 
nodes, which have smaller D-value (closer to the end node) 
to be selected as candidates. Figure 9 shows the impact of 
𝛾𝐷  on the D-Distribution when 𝑛𝑖  has 5 neighbor 
nodes  ℕ𝑖 = {𝑛1, 𝑛2, … , 𝑛5} . The distance from 𝑛𝑖  to 𝑛𝑡  is 
225m while the distances from the neighbor nodes to 𝑛𝑡 are 
expressed by  𝒟𝑖 = {𝐷𝑖,1,𝑡 = 210,𝐷𝑖,2,t = 220,… , 𝐷𝑖,5𝑖,𝑡 = 250}. 
The value of 𝛾𝐷 varies from 0 to 1. The curve  of the D-Dis-
tribution shows that as the value of D-exponent (𝛾𝐷 ) be-
comes larger, the probability of selecting the nodes closer 
to 𝑛𝑡 becomes higher. 

𝐷𝑖,𝑗 = √(𝑥𝑖 − 𝑥𝑗)
2
+ (𝑦𝑖 − 𝑦𝑗)

2
                                                    (12) 

�̅�𝑖,𝑗,𝑡 = (
𝐷𝑗,𝑡

𝐷𝑖,𝑡 + 𝜑𝑖
) , 𝑛𝑗 ∈ ℕ𝑖                                                          (13) 

�̃�𝑖,𝑗,𝑡 = (1 − √�̅�𝑖,𝑗,𝑡)

1+𝛾𝐷

∑(1 −√�̅�𝑖,𝑘,𝑡)

1+𝛾𝐷
𝑚𝑖

𝑘=0

⁄ ,𝑛𝑗 ∈ ℕ𝑖 (14) 

 
(b)Downlink Flow Priority: The three distributions 

(quantities), R-Distribution, D-Distribution and L-Distribu-
tion, are considered as three forces that control the down-
link flow. The impacts of these forces are tuned by the ex-
ponential parameters such that a greater value of the expo-
nent increases the impact of the force. Consequently, to 
counterbalance the impact of these forces, the Priority of 
the downlink is computed as an average sum of these three 
forces, formulated in Eq. (15). 

�̃�𝑖,𝑗,𝑡 = (�̃�𝑖,𝑗 + �̃�𝑖,𝑗,𝑡 + �̃�𝑖,𝑗) 3⁄  

=
1

3
[(1 − 𝑒�̅�𝑖,𝑗) ∑(1 − 𝑒�̅�𝑖,𝑘)

𝑚𝑖

𝑘=1

⁄ + (1 − √�̅�𝑖,𝑗,𝑡)

1+𝛾𝐷

∑(1 −√�̅�𝑖,𝑘,𝑡)

1+𝛾𝐷
𝑚𝑖

𝑘=0

⁄

+ (1 − 𝑒−�̅�𝑖,𝑗) ∑(1 − 𝑒−�̅�𝑖,𝑘)

𝑚𝑖

𝑘=1

⁄ ]   , 𝑛𝑗 ∈ ℕ𝑖      (15) 

4.4.4 Intra-Link Flows 
In hierarchical-based routing e.g., clustered-based, the mem-
bers hand the collected data to the CH which then delivers 
it further to the sink directly or by another CH (multi-
hops). MINI-FLOW instantiates the intra-link flows to sup-
port the data traffic within the data plane devices. The ini-
tialization of the network in hierarchical-based routing starts 
at a CH where the H-value is set to 0. The CH starts the in-
itialization phase by sending beacons. The nodes that re-
ceive the beacon within the cluster execute ALGORITHM 1 
and further send their new beacons. The uplink/downlink 

flows from/to the CH to/from the sink in hierarchical-based 
routing are computed exactly as in flat-based routing. Simi-
larly, the intra-link flows from the end node to the CH can 
be computed based on a heuristic function that combines 
four values, the number of hops to the CH, the Received Sig-
nal Strength (RSS), the direction towards the CH and the 
remaining energy. Similar to the downlink, the intra-link 
from CH to the end node is computed as an average sum 
of the three values, R-value, D-value (the distance from CH 
to the end node) and L-value. 
4.5 Candidates and Coordination 
Commonly, the MAC layer coordinates the active/sleep 
states by one of the two approaches: synchronous or asyn-
chronous [21]. In the synchronous approach, the MAC pro-
tocol synchronizes the wake-up intervals and active peri-
ods such that multiple nodes wake up at the same time and 
have the same active period. While in the asynchronous 
approach, the nodes randomly define their wake up inter-
vals and active periods [23]. Sender and receiver nodes 
should be involved in an active state in order to undertake 
the communication task. This roughly runs in three steps 
[22]. First, the Network Layer determines the next hop (for-
warder) using a predefined routing metric e.g., link qual-
ity, number of hops, etc. Second, the MAC Layer waits for 
the intended forwarder to wake up and receive the packet. 
Third, the forwarder sends back an ACK to the sender, ac-
knowledging the received packet. These requirements are 
neglected in OpenFlow wired domains. Coordination 
among candidates is an important mechanism to avoid the 
negative impact of packets duplication. When more candi-
dates (neighboring nodes in active mode) have received 
the preamble packet, the next step is to ensure that the data 
packet will be sent to one candidate. The Candidates Coor-
dination (CC) selects the node, which has the maximum Pri-
ority in Table 2. The number of candidates in uplink and 
downlink are controlled by network density in a distrib-
uted manner.  

Uplink-Flow Action:  The action of the uplink flow, 
which must be executed on the packets (i.e., drop, for-
ward), is defined by Eq. (16) where 𝐶𝑖  is the threshold of 
uplink candidates that are allowed to be selected by the 
node 𝑛𝑖 . 

𝐴𝑐𝑡⃗⃗ ⃗⃗ ⃗⃗ ⃗(𝑛𝑖) =

{
 
 

 
 𝐹𝑜𝑟𝑤𝑎𝑟𝑑  𝐶𝑖 ≤ √𝑚𝑖  ;

�̃�𝑖,𝑗

∑ �̃�𝑖,𝑘
𝑚𝑖

𝑘=0

 ≥
1

𝑚𝑖
;  ∀𝑛𝑗 ∈ ℕ𝑖

𝐷𝑟𝑜𝑝      𝐶𝑖 > √𝑚𝑖  ;  
�̃�𝑖,𝑗

∑ �̃�𝑖,𝑘
𝑚𝑖

𝑘=0

<
1

𝑚𝑖
;  ∀𝑛𝑗 ∈ ℕ𝑖    

(16) 

Down-Flow Action:  The downlink action, which must 
be executed on the packets (i.e., drop, forward), is defined 
by Eq. (17) where �⃖�𝑖  is the threshold value of downlink 
candidates that are allowed to be selected by the node 𝑛𝑖. 

𝐴𝑐𝑡⃖⃗ ⃗⃗ ⃗⃗ ⃗(𝑛𝑖) =

{
 
 

 
 𝐹𝑜𝑟𝑤𝑎𝑟𝑑 �⃖�𝑖 ≤ √𝑚𝑖  ;  

�̃�𝑖,𝑗,𝑡

∑ �̃�𝑖,𝑘,𝑡
𝑚𝑖

𝑘=0

≥
1

𝑚𝑖
 ;  ∀𝑛𝑗 ∈ ℕ𝑖  

𝐷𝑟𝑜𝑝    �⃖�𝑖 > √𝑚𝑖   ;  
�̃�𝑖,𝑗,𝑡

∑ �̃�𝑖,𝑘,𝑡
𝑚𝑖

𝑘=0

<
1

𝑚𝑖
 ;  ∀𝑛𝑗 ∈ ℕ𝑖     

(17) 

4.6 System Parameters 
The flows are controlled through the five system parame-
ters, H-exponent 𝛾𝐻 , R-exponent  𝛾𝑅 ,  ℰ -exponent 𝛾ℰ , L-expo-
nent 𝛾𝐿 and D-exponent 𝛾𝐷. The uplink flows are controlled 
through the four parameters, H-exponent 𝛾𝐻, R-exponent 𝛾𝑅, 
 ℰ- exponent 𝛾ℰ  and L-exponent 𝛾𝐿 while the downlink flows 



10  

 

are controlled through the three parameters D-exponent 𝛾𝐷, 
R-exponent 𝛾𝑅 and L-exponent 𝛾𝐿.  

To maximize the network lifetime, the value of L-expo-
nent 𝛾𝐿 is set to be greater than the values of the other pa-
rameters in both uplink and downlink flows.  L-exponent 𝛾𝐿 
is designed to avoid choosing the nodes with low-energy 
in each transmission session. Greater value of L-exponent 𝛾𝐿 
increases the network lifetime, but it enforces the packets 
to travel via longer paths as it prefers the nodes with high-
energy. In order to avoid loops, the values of H-exponent 𝛾𝐻 
and D-exponent 𝛾𝐷  should continuously set to be greater 
than the value of R-exponent 𝛾𝑅. R-exponent 𝛾𝑅 induces the 
packets to be transmitted through shorter transmission 
distance in each transmission session (single hop) without 
considering the direction towards the sink nor considering 
the energy level of the relay nodes. H-exponent 𝛾𝐻 enforces 
the packet to reach the sink via the minimum number of 
hops without considering the energy level of the relay 
nodes.  D-exponent 𝛾𝐷 and ℰ- exponent 𝛾ℰ  induce the pack-
ets to travel towards the direction of the destination node 
via a shorter routing distance without considering the en-
ergy level of the relay nodes nor considering the transmis-
sion distance in each transmission session. The values of 
system parameters are strongly related to the network den-
sity and should be set in accordance with the application 
specifications and requirements. Considering the duty cy-
cle of the nodes, to counterbalance between the sender 
waiting time and the duplicate packet, the default values 
for uplink and downlink flows are obtained by Eq. (18) and 
Eq. (19), respectively. We assign higher priority for energy 
parameter in both uplink and downlink flows. 

𝑃𝑎𝑟⃗⃗⃗⃗ ⃗⃗ ⃗⃗ (𝑛𝑖) =

{
 
 

 
  𝛾𝐿 = (1 + √𝑚𝑖)            

𝛾𝐻 = (1 + √𝑚𝑖) 2𝜋⁄     
   

𝛾ℰ = (1 + √𝑚𝑖) 2𝜋    ⁄    

𝛾𝑅 = (1 + √𝑚𝑖) 3𝜋⁄       

      ( 18) 

𝑃𝑎𝑟⃖⃗ ⃗⃗ ⃗⃗ ⃗⃗ (𝑛𝑖) = {

 𝛾𝐿 = (1 + √𝑚𝑖)         

𝛾𝐷 = (1 + √𝑚𝑖) 2𝜋  ⁄

𝛾𝑅 = (1 + √𝑚𝑖) 3𝜋⁄

          (19) 

4.7 Flow Update  
The priority value should be updated periodically based 
on the remaining energy of nodes. Otherwise, higher pri-
ority nodes will exhaust their energy earlier. The controller 
updates the flows based on the statistics reported by the 
end nodes. In this work, the controller updates the flows for 
the end node each time the node loses 5% of its energy. 

5 ANALYSIS 

The performance of MINI-FLOW is fully related to the 
number of active candidates (wake-up candidates) se-
lected by the sender node in each hop. Therefore, finding 
the probability of having 𝜉 awake candidate nodes in each 
hop is important for evaluation. We assume the nodes are 
asynchronous and have the same active period of length 𝑡. 
The active period can be considered as a continuous inter-
val with randomly selected start and end points. We as-
sume that the starting point of each interval is randomly 
selected within [0, T]. For a given node 𝑛𝑖, the maximum 
number of candidates is set to 𝑐𝑖 = √𝑚𝑖, where 𝑚𝑖 denotes 
the number of neighbors for a node  𝑛𝑖 . The probability, 

denoted by 𝜙𝑖(𝜉 = 0), that all candidates are in sleep state 
is equal to the probability of no intersection between the 
active interval of 𝑛𝑖  and the active intervals of its candi-
dates. This probability depends on the value of 𝑥 in three 
cases. The easy case is when 𝑥 ∈ (𝑡, 𝑇 − 𝑡) in which each of 
the other 𝑐𝑖 − 1 intervals has probability of (𝑇 − 2𝑡) 𝑇⁄  of 
not intersecting. The second case, when 𝑥 ∈ (0, t), then for 
each, the probability of non-intersection for each of the oth-
ers is (𝑇 − (𝑥 + t)) 𝑇⁄ . The third case, when 𝑥 ∈ (𝑇 − 𝑡, 𝑇), 
then for each, the probability of non-intersection for each 
of the others is (𝑥 − 𝑡)/𝑇. The probability of zero intersec-
tion between 𝑛𝑖  and its candidates is obtained by summing 
the three cases as in Eq.(20). 

{
 
 
 
 

 
 
 
 𝑓1 = ∫ (

𝑇 − 2𝑡

𝑇
)
𝑐𝑖−1

𝑑𝑥 = (𝑇 − 2𝑡) (1 − (
2𝑡

𝑇
))

𝑐𝑖−1

        
𝑇−𝑡

𝑡

𝑓2 = ∫ (
𝑇 − (𝑥 + 𝑡)

𝑇
)

𝑐𝑖−1𝑡

0

𝑑𝑥 =
𝑇

𝑐𝑖
((
𝑇 − 𝑡

𝑇
)
𝑐𝑖

− (
𝑇 − 2𝑡

𝑇
)
𝑐𝑖

)

𝑓3 = ∫ (
𝑥 − 𝑡

𝑇
)
𝑐𝑖−1

𝑑𝑥
𝑇

𝑇−𝑡

=
𝑇

𝑐𝑖
((
𝑇 − 𝑡

𝑇
)
𝑐𝑖

− (
𝑇 − 2𝑡

𝑇
)
𝑐𝑖

)

𝜙𝑖(𝜉 = 0) =
1

𝑇
 (𝑓1 + 𝑓2 + 𝑓3);  0 < 𝑡 ≤

𝑇

2
; 𝑐𝑖 ≥ 0;           

       

                         (20) 

The probability of zero-intersection (i.e., no active can-
didate) gets higher with a smaller number of candidates. 
For a fixed length of active period 𝑡 , 𝜙𝑖(𝜉 = 0)  get higher 
when the initialization interval [0, 𝑇] gets greater. Also, for 
a fixed initialization interval [0, 𝑇], 𝜙𝑖(𝜉 = 0) get higher with 
a smaller length of active period 𝑡. 

Likewise, the probability that there is only one active 
candidate is given by Eq. (21) while the probability that 
there are more than two active candidates is given by Eq. 
(22). 

𝜙𝑖(𝜉 = 1) = (𝑐𝑖 − 1) (∫
𝑥 + 𝑡

𝑇
(
𝑇 − (𝑥 + 𝑡)

𝑇
)

𝑐𝑖−2𝑡

0

𝑑𝑥 + ∫
2𝑡

𝑇
(
𝑇 − 2𝑡

𝑇
)
𝑐𝑖−1

𝑑𝑥
𝑇−𝑡

𝑡

+ ∫
𝑇 − 𝑥 + 𝑡

𝑇
(
𝑥 − 𝑡

𝑇
)
𝑐𝑖−1

𝑑𝑥
𝑇

𝑇−𝑡

)   (21) 

𝜙𝑖(𝜉 ≥ 2) = 1 − [𝜙𝑖(𝜉 = 0) + 𝜙𝑖(𝜉 = 1)]      (22) 

To generalize 𝜙𝑖(𝜉), we assume that [0, 𝑇] is normalized 
to [0, 1]. The probability that there are exactly 𝜉(𝑐𝑖 ≥ 𝜉 >
1) active candidates and 𝑐𝑖 − 𝜉 sleep candidates is given by 
Eq. (23), where 𝜆𝜉 = 1 − 𝑡(𝑐𝑖 − 𝜉). 

𝜙𝑖(𝜉) = (𝑐𝑖 − 𝜉 + 1)(𝜆𝜉
𝑐𝑖 − 𝜆𝜉−1

𝑐𝑖 (∑(
𝑐𝑖
𝑢
)(

𝑡

𝜆𝜉−1
)

𝑢𝜉−2

𝑢=0

))  (23) 

5.1 Expected Energy Cost 

The energy cost, 𝑇𝑋(𝑖, 𝑗, 𝑘), for transmitting the packet of 
size  𝑘  from 𝑛𝑖  to 𝑛𝑗  is formulated by Eq. (24) 
where  𝐸𝑒𝑙𝑒𝑐 ,  𝜀𝑓𝑠 , and 𝜀𝑚𝑝  are constants, while 𝑑∗ =
√𝜀𝑓𝑠 𝜀𝑚𝑝⁄  is the Threshold Distance in meters, and 𝑑𝑖,𝑗 is the 
Euclidean distance between the sender 𝑛𝑖  and the receiver 𝑛𝑗 
[20].  

𝑇𝑋(𝑖, 𝑗, 𝑘) = {
(𝑘. 𝐸𝑒𝑙𝑒𝑐) + (𝑘. 𝜀𝑓𝑠. 𝑑𝑖,𝑗

2 )    𝑑𝑖,𝑗 < 𝑑∗
(𝑘. 𝐸𝑒𝑙𝑒𝑐) + (𝑘. 𝜀𝑚𝑝. 𝑑𝑖,𝑗

4 )    𝑑𝑖,𝑗 ≥ 𝑑∗
(24) 

Likewise, the energy required to receive a packet by 𝑛𝑗 
is formulated by Eq. (25).  

𝑅𝑋(𝑗, 𝑘) = 𝑘. 𝐸𝑒𝑙𝑒𝑐         (25) 

We compute the energy cost of each transmission phase, 
which sums the cost of transmitting and receiving the bea-
con packets, ACK packets, and data packets/control 
packet. The energy cost of each transmission phase in 



 11 

 

MINI-FLOW is totally determined by the number of active 
candidates in each hop. Based on Eq. (24) and Eq. (25), in 
the worst case (i.e., all candidates are active), the energy 
cost for transmitting and receiving the beacon packet is 
computed by Eq. (26) where 𝑐𝑖 = √𝑚𝑖 denotes the maxi-
mum number of candidates of 𝑛𝑖  , 𝑘𝑏 indicates the size of 
the beacon packet in bits and 𝑛𝑗  represents the selected 
next hop. 

𝑇𝐵(𝑖, 𝑗, 𝑘𝑏) = 𝑇𝑋(𝑖, 𝑗, 𝑘𝑏) +∑𝑅𝑋(𝑢, 𝑘𝑏)

𝑐𝑖

𝑢=1

= 

 𝑘𝑏 {
𝐸𝑒𝑙𝑒𝑐 + 𝜀𝑓𝑠 . 𝑑𝑖,𝑗

2 + 𝑐𝑖. 𝐸𝑒𝑙𝑒𝑐    𝑑𝑖,𝑗 < 𝑑∗

𝐸𝑒𝑙𝑒𝑐 + 𝜀𝑚𝑝. 𝑑𝑖,𝑗
4 + 𝑐𝑖. 𝐸𝑒𝑙𝑒𝑐    𝑑𝑖,𝑗 ≥ 𝑑∗

(26) 

Likewise, the energy required to send back ACK pack-
ets to 𝑛𝑖  is formulated by Eq. (27), where 𝑘𝑎  denotes the 
size of the ACK packet. 

𝑇𝐴(𝑖, 𝑘𝑎) =∑𝑅𝑋(𝑖, 𝑘𝑎)

𝑐𝑖

𝑢=1

+ ∑𝑇𝑋(𝑢, 𝑖, 𝑘𝑎)

𝑐𝑖

𝑢=1

= 

𝑘𝑎 (𝑐𝑖. 𝐸𝑒𝑙𝑒𝑐 + ∑ {
𝐸𝑒𝑙𝑒𝑐 + 𝜀𝑓𝑠. 𝑑𝑢,𝑖

2     𝑑𝑢,𝑖 < 𝑑∗

𝐸𝑒𝑙𝑒𝑐 + 𝜀𝑚𝑝 . 𝑑𝑢,𝑖
4   𝑑𝑢,𝑖 ≥ 𝑑∗

𝑐𝑖

𝑢=1

)  (27) 

Accordingly, based on Eq. (26) and Eq. (27), the energy 
cost of each transmission phase is computed by Eq. (28). 
𝑇𝑋̅̅ ̅(𝑖, 𝑗, 𝑘, 𝑘𝑏 , 𝑘𝑎) = 𝑇𝑋(𝑖, 𝑗, 𝑘) + 𝑅𝑋(𝑗, 𝑘) + 𝑇𝐵(𝑖, 𝑗, 𝑘𝑏) + 𝑇𝐴(𝑖, 𝑘𝑎)  (28) 

However, the worst case does not often occur. Thus, we 
are interested in finding a close form for the expected en-
ergy cost when there are 𝜉(𝑐𝑖 ≥ 𝜉 > 1) active candidate(s) 
assigned for the sender 𝑛𝑖 . Given 𝜉 active candidates, the 
energy cost for transmitting and receiving a beacon packet 
is generalized by Eq. (29).  

𝑇𝐵(𝑖, 𝑗, 𝑘𝑏 , 𝜉) = 𝑇𝑋(𝑖, 𝑗, 𝑘𝑏) +∑𝑅𝑋(𝑢, 𝑘𝑏)

𝜉

𝑢=0

= 𝑘𝑏 {
𝐸𝑒𝑙𝑒𝑐 + 𝜀𝑓𝑠 . 𝑑𝑖,𝑗

2 + 𝜉. 𝐸𝑒𝑙𝑒𝑐    𝑑𝑖,𝑗 < 𝑑∗

𝐸𝑒𝑙𝑒𝑐 + 𝜀𝑚𝑝. 𝑑𝑖,𝑗
4 + 𝜉. 𝐸𝑒𝑙𝑒𝑐    𝑑𝑖,𝑗 ≥ 𝑑∗

(29) 

In the same way, the energy consumed by sending back 
the ACKs to node 𝑛𝑖  is generalized by Eq. (30).  

𝑇𝐴(𝑖, 𝑘𝑎 , 𝜉) = ∑𝑅𝑋(𝑖, 𝑘𝑎)

𝜉

𝑢=0

+∑𝑇𝑋(𝑢, 𝑖, 𝑘𝑎)

𝜉

𝑢=0

 

= 𝑘𝑎 (𝜉. 𝐸𝑒𝑙𝑒𝑐 + ∑ {
𝐸𝑒𝑙𝑒𝑐 + 𝜀𝑓𝑠. 𝑑𝑢,𝑖

2     𝑑𝑢,𝑖 < 𝑑∗

𝐸𝑒𝑙𝑒𝑐 + 𝜀𝑚𝑝 . 𝑑𝑢,𝑖
4     𝑑𝑢,𝑖 ≥ 𝑑∗∀𝑛𝑢∈𝐴𝑖

)  (30) 

Accordingly, the energy consumption of each transmis-
sion phase is generalized by Eq. (31). 
𝑇𝑃ℎ𝑎𝑠𝑒(𝑖, 𝑗, 𝑘, 𝑘𝑏 , 𝑘𝑎 , 𝜉) = 𝑇𝑋(𝑖, 𝑗, 𝑘) + 𝑅𝑋(𝑗, 𝑘) + 𝑇𝐵(𝑖, 𝑗, 𝑘𝑏 , 𝜉) + 𝑇𝐴(𝑖, 𝑘𝑎, 𝜉)  (31) 

Finally, based on Eq. (31), the expected energy cost of 
each transmission phase is obtained by Eq. (32), where 
𝜙𝑖(𝜉 = 𝑢)  is the probability that there are exactly 𝜉 ≥ 1 active 
candidates assigned for the sender node 𝑛𝑖 .  

𝑇ℎ𝑜𝑝(𝑖, 𝑗) = ∑𝜙𝑖(𝜉 = 𝑢)

𝜉

𝑢=1

. 𝑇𝑃ℎ𝑎𝑠𝑒(𝑖, 𝑗, 𝑘, 𝑘𝑏 , 𝑘𝑎, 𝑢) (32) 

Based on Eq. (32), the expected energy cost for deliver-
ing the data packet through the routing path  ℙ =
{𝑛1, 𝑛2, 𝑛3, … , 𝑛𝜚} is formulated by Eq. (33) where 𝜚 denotes 
the number of nodes in the path ℙ, and 𝑃𝑟4(𝜉 = 𝑢) is given 
by Eq. (23). 
 

4 https://github.com/howbani/WSNSIM 

𝑇𝑝𝑎𝑡ℎ =∑𝑇ℎ𝑜𝑝(𝑦, 𝑦 + 1) =

𝜚

𝑦

∑∑𝜙𝑖(𝜉 = 𝑢).

𝜉

𝑢=1

𝑇𝑃ℎ𝑎𝑠𝑒(𝑦, 𝑦 + 1, 𝑘, 𝑘𝑏 , 𝑘𝑎, 𝑢)

𝜚−1

𝑦

(33) 

5.2 Average Waiting Times (AWTs) 

As the nodes are duty-cycled, the sender may wait for its 
forwarders to wake up. The AWTs represent the expected 
value of times the sender should wait for at least one of its 
forwarders to wake up to receive the packet. That is to say, 
the sender waits when it has a zero-active candidate. Thus, 
the probability of zero active candidate (Eq. (20)) is utilized 
to obtain the AWTs in one-hop as in Eq. (34). The AWTs 
along the path ℙ = {𝑛1, 𝑛2, 𝑛3, … , 𝑛𝜚} is formulated by Eq. 
(35) where 𝜚 denotes the number of nodes in the path. 

𝒜𝑖 =
1

𝑇
[(𝑇 − 2𝑡) (1 − (

2𝑡

𝑇
))

𝑐𝑖−1

+
2𝑇

𝑐𝑖
((
𝑇 − 𝑡

𝑇
)
𝑐𝑖

− (
𝑇 − 2𝑡

𝑇
)
𝑐𝑖

)]   (34) 

𝒜𝑝𝑎𝑡ℎ =∑𝒜𝑦

𝜚

𝑦=0

=
1

𝑇
∑((𝑇 − 2𝑡)(1 − (

2𝑡

𝑇
))

𝑐𝑦−1

+
2𝑇

𝑐𝑦
((
𝑇 − 𝑡

𝑇
)
𝑐𝑦

− (
𝑇 − 2𝑡

𝑇
)
𝑐𝑦

)) (35)

𝜚

𝑦=0

 

5.3 Redundant Packets (AxRP) 

When the sender node broadcasts a beacon packet, all its 
awoken candidates will hear the packet and receive it. 
However, after coordination, one candidate will be se-
lected to forward the packet while the other candidates 
will abort the received packet. The aborted packets are con-
sidered as redundant. AxRP is the average number of 
aborted packets. 

�̈�ℎ𝑜𝑝 = ∑𝑢.𝜙𝑖(𝜉 = 𝑢)

𝜉

𝑢=2

 (36) 

�̈�𝑝𝑎𝑡ℎ = ∑�̈�ℎ𝑜𝑝

𝜚

𝑦=1

= ∑∑𝑢.𝜙𝑖(𝜉 = 𝑢)

𝜉

𝑢=2

𝜚

𝑦=1

   (37) 

The probability of no redundant packets is obtained 
by𝜙𝑖(𝜉 = 1) , Eq. (21), while the probability of redundant 
packets is obtained by Eq. (22). The expected number of re-
dundant packets in each hope is formulated by Eq. (36) 
while the expected number of redundant packets along the 
path ℙ = {𝑛1, 𝑛2, 𝑛3, … , 𝑛𝜚} is given by Eq.  (37). 

6 SIMULATION AND RESULTS 
6.1 Simulation Settings 
We evaluated the performance of the proposed protocol 
using the simulator [28] [29] which is developed in visual 
studio 2015 (C# WPF). The documentations of the simulator 
are available online in the link4. We assumed that the nodes 
are randomly deployed in a fair distribution, and the sink 
node is placed in the center of the sensing field. For sim-
plicity, at the simulation level, the controller is located in 
the sink node. We utilized one sink and one controller.  
Each node runs BOX-MAC. The nodes have the same ac-
tive (1s)/sleep (2s) periods. Each node has a battery 
of 0.5 Jouls and consumes energy according to the First Or-
der Radio Model as in [20]. We employed free space propaga-
tion model that assumes the ideal propagation condition by 
representing the communication range as a circle around 
the transmitter. The packet generation rate is adjusted to 
1/0.1s (one packet in 0.1 second). In each 0.1s, a random 
node generates a packet and routes it towards the sink. The 

https://github.com/howbani/WSNSIM


12  

 

size of the data packet is 1024bits while the size of the con-
trol packet is 512bits. 

 
TABLE 4: SIMULATION PARAMETERS 

 

Comparisons to the State-of-the-art: Two well-known 
WSN protocols are selected: 

 (1) ORR, a load-balanced opportunistic routing proto-
col [21]. ORR runs in two steps. Step 1: the optimal number 
of candidates is computed based on a cost estimation func-
tion, which is derived from duty-cycle and network den-
sity. Step 2: the residual energy is used during the selection 
of forwarders [21]. During the simulation experiments, we 
set the alpha parameter to 1.0. The authors of ORR evalu-
ated ORR by varying the alpha parameter from 0.0 to 4.0. 

 (2) ORW, a practical opportunistic routing protocol 
[22]. ORW utilized the Expected Duty Cycled wakeups 
(EDC) as a global routing metric. EDC computes the ex-
pected number of wakeups until the packet reaches its in-
tended destination (via single hop or multiple hops). Ex-
plicitly, EDC defines the number of wakeups as the sum of 
three terms. First, the expected time needed to forward the 
packet (one hop). Second, the time needed to forward the 
packet from the selected forwarder to the intended desti-
nation. Third, a small constant accounting the cost of for-
warding the packet. These two protocols are implemented 
using C# WPF Visual Studio 2015 in the link5. 

6.2 Simulation Results  
Evaluation Metrics: We considered the following evalu-

ation metrics.  (1) Energy Consumption (EC): The total en-
ergy consumption required to deliver the packets from the 
sources to the destination at a given simulation time. The 
energy unit is Joule.  (2) Average Number of Redundant 
Packets (AxRP): When the sender node broadcasts a 
packet, all its awoken candidates will hear the packet and 
receive it. However, after coordination, one candidate will 
be selected to forward the packet while the other candi-
dates will abort the received packet. The aborted packets 
are considered as redundant. AxRP is the average number 
of the aborted packets at a given simulation time. (3) Aver-
age Routing Distance Efficiency (RDE): The Routing Dis-
tance Efficiency (RDE), measures the ratio of the Euclidean 
Distance 𝑑𝑠,𝑏 (between the sources to the sink) to the actual 
Routing Distance 𝑑𝑏

𝑠 for a data packet that travelled along 
the path. 𝑅𝐷𝐸 = 𝑑𝑠,𝑏 𝑑𝑏

𝑠⁄ . (4) Average Waiting Times 
(AWT): The average number of times the sender waits until 
one of its potential forwarders wakes up and receives the 
packet at a given simulation time. (5) Network Lifetime: 
The time (in seconds) from the starting moment of the sim-
ulation to the moment that the first node runs out of en-
ergy.  
6.2.1 Varying the Communication Ranges 

 

5 https://github.com/howbani/WSNSIM 

This section evaluates the performance of the network var-
ying the communication range. The communication range 
(CR) varies from 50m to 100m. The default parameters for 
this experiment are listed in Table 4(A). 

 

 
Figure 11: Energy consumption 

vs. varying communication 
range. 

Figure 12: Average number of 
hops vs. varying communica-
tion range. 

(a) Energy Consumption: The results of evaluating the 
energy consumption (EC) are depicted in Figure 11. Sev-
eral observations are concluded. In the case when the com-
munication range is lower than 80m, the energy consump-
tion decreases as the range of communication increases. 
The reason behind that is the number of hops decreases as 
the range of communication gets larger (see Figure 12). 
However, greater communication range increases the 
number of candidates for each node, which in turn in-
creases the number of redundant packets (AxRP) and max-
imizes the energy consumption (see Figure 13). In the case 
when the communication range is greater than 80m, the 
energy consumption increases as the range of communica-
tion increases. The reason behind that is the dramatic in-
crement in the negative effect of the duplicate packets 
AxRP generated from multiple receivers. MINI-FLOW 
achieved better energy saving than ORR and ORW due to 
the following two reasons. First, the number of hops is con-
trolled by the H-distribution such that the packets are 
mostly routed via the paths with the minimal number of 
hops.  Second, the MINI-FLOW forwarders are well con-
trolled by Eq. (16) and Eq. (17) such that few of the nodes 
are allowed to be selected as forwarders, which in turn re-
duces the negative effect of the duplicate packets gener-
ated from multiple receivers.  Although ORR calculates the 
maximum number of forwarders, it incurs a big amount of 
energy consumption during the calculation. Moreover, 
ORR periodically updates the EDC metric to achieve en-
ergy balancing among the nodes. However, its EDC metric 
is recursively calculated in the sink. This means that in 
each update phase, each node sends its current energy 
state to the sink that re-computes the EDC metric and 
sends back the new EDC metric (Expected Duty Cycled) to 
each node. Obviously, this hinders the network’s perfor-
mance and depletes its restricted resources. ORW com-
putes its EDC metric in the initializing process without 
considering the residual energy of the nodes. Both ORR 
and ORW suffer from the negative impact of duplicate 
packets. 

(b) The number of hops: The results of evaluating the 
number of hops are depicted in Figure 12, which indicate 
that the number of hops decreases as the range of commu-
nication increases since fewer numbers of hops means 
shorter Routing Distance, which in turn costs less energy. 

https://github.com/howbani/WSNSIM


 13 

 

The average number of hops in ORW is comparable to 
ORR since both of them utilize the Expected Duty Cycled 
wakeups (EDC) as a global routing metric.  

 

 

Figure 13: Average number of 
redundant packets (AxRP) vs. 
varying communication range. 

 

Figure 14: Average Routing 
Distance Efficiency (RDE) vs. 
varying communication range. 

 

EDC utilizes the expected number of wakeups until the 
packet reaches its intended destination (through single 
hop or multiple hops). ORR is approximately similar to 
ORW with a minor difference. ORR removes the third term 
in ORW (i.e., removes the forwarding-cost term from EDC) 
and adds the residual energy parameter to the first term of 
EDC. In MINI-FLOW, the number of hops is controlled by 
the H-distribution such that the packets are regularly routed 
through minimum hops. 

 

Figure 15: Average waiting-
time vs. varying communica-

tion range. 

Figure 16: Energy consumption 
vs. varying number of nodes.  

 

(c) Redundant Packets: The results of evaluating the av-
erage number of redundant packets (AxRP) are depicted in 
Figure 13. AxRP measures the negative impact of duplicate 
packets generated from multiple receivers.  We concluded 
that AxRP increases as the range of communication in-
creases. Greater communication range inevitably imposes 
the node to select more candidates, which in turn increases 
the probability of multiple receivers. MINI-FLOW is de-
signed to reduce the number of duplicate packets by Eq. 
(16) and Eq. (17) in each node such that the number of can-
didate nodes is controlled by the heuristic function of up-
link flows and the heuristic function of downlink flows. 

 (d) Routing Distance Efficiency: The results of evalu-
ating the average Routing Distance Efficiency (RDE) are de-
picted in Figure 14. We concluded that for a path, the RDE 
gets higher as the communication range increases since the 
packets travel through a smaller number of hops. MINI-
FLOW shows higher RDE than ORR and ORW because the 
packets travel through the shortest path to the destination.  
ORR and ORW selected more forwarder nodes, which in 
some cases selected the active next hop node even if it is 
not towards the direction of the destination. This obviously 
increases the Routing Distance and consequently reduces 
the RDE. 

(e) Average Waiting Times: The results of evaluating 
the Average Waiting Times (AWT) are shown in Figure 15, 
from which we concluded that for each path, the AWT gets 
smaller as the communication range increases. Greater 
communication range drives the node to employ more can-
didate nodes, which in turn reduces the waiting time. In 

fact, increasing the number of candidate nodes has two dif-
ferent impacts, positive and negative. The negative impact 
is the increment in duplicate packets, which raises the con-
sumption of energy. In contrast, the positive impact is the 
reduction in the number of waiting times such that the 
sender needs not to wait for a specific candidate to wake 
up and receive the packet. These two contradictory im-
pacts are reflected by the nature of asynchronous duty-cy-
cled WSN. From the network layer’s point of view, WSN 
designers utilize multiple candidate nodes to reduce the 
waiting times.  However, too many candidate nodes may 
simultaneously wake up, causing the duplication problem. 
MINI-FLOW is designed to counterbalance the two im-
pacts by trading off energy and waiting time. 

6.2.2 Varying the Number of Nodes 
This section evaluates the performance of the network var-
ying the number of nodes. The default parameters are 
listed in Table 4(B). The number of nodes varies from 100 
to 200.  

 
Figure 17: Average number of 
hops varying a number of 
nodes. 

Figure 18: Average number of 
redundant packets (AxRP) var-
ying number of nodes. 

.  

 

 
(a) Energy Consumption: Figure 16 shows the results of 

evaluating the energy consumption by varying the number 
of nodes. In view of that, we concluded that the energy 
consumption increases as the number of nodes increases.  
Increasing the number of nodes either leads to a high den-
sity or to a large size of the network. High network density 
increases the number of candidates assigned for each node, 
which in turn generates more Redundant Packets (AxRP) 
and consumes more energy. On the other hand, the large 
size of the network increases the number of hops and 
forces the packet to travel through longer paths, which in 
turn consumes more energy. MINI-FLOW outperforms 
ORR and ORW for the same reasons explained in 
Subsection 6.2.1(a).  

 (b) Number of hops: Figure 17 shows the evaluation 
results of the number of hops varying the number of nodes. 
We concluded that the number of hops increases as the size 
of the network increases. MINI-FLOW outperforms ORR 
and ORW for the same reasons explained in Subsection 
6.2.1(b). 

 

 
Figure 19: Average waiting-
time vs. varying number of 

nodes. 

 

Figure 20: Energy consumption 
vs. varying active periods. 

. 
(c) Redundant Packets: Figure 18 shows the results of 



14  

 

evaluating the redundant packets (AxRP) by varying the 
number of nodes. We concluded that AxRP increases as the 
number of nodes grows, since higher network density al-
ways leads to a rise in the number of candidates that are 
assigned for each node. MINI-FLOW outperforms ORR 
and ORW for the same reasons explained in Subsection 
6.2.1(c).  

 
Figure 21: Average number of 
redundant packets (AxRP) ac-
tive periods. 

 

Figure 22: Average waiting-time 
varying active periods. 

. 

.  

 

(d) Average Waiting Times: The results of evaluating 
the Average Waiting Times (AWT) are shown in Figure 19, 
from which we concluded that for each path, the AWT gets 
smaller as the network density increases. Greater density 
imposes the node to employ more candidate nodes, which 
in turn reduces the waiting time. For more details, refer to 
Subsection 6.2.1(e). 
6.2.3 Varying the Wake-up Intervals 
This section evaluates the performance of the network var-
ying the wake-up intervals. The default parameters are 
listed in Table 4(C). The active period varies from 1s to 5s. 

(a)Energy Consumption: Figure 20 shows the results of 
evaluating the energy consumption (EC) by varying the ac-
tive periods. It shows that the longer active periods enforce 
the nodes to consume more energy for the following two 
reasons. First, obviously, the node consumes more energy 
when it stays active for a long time. Second, the longer ac-
tive periods inevitably increase the probability of multiple 
receivers. This problem arises when multiple potential for-
warders simultaneously wake up and receive the same 
packet. It definitely degrades the channel capacity, espe-
cially when the application requires high traffic load. 
MINI-FLOW outperforms ORR and ORW for the same rea-
sons explained in Subsection 6.2.1(a). 

 
Figure 23: The network lifetime 
vs. varying communication 
ranges. 

 

Figure 24: The network lifetime 
vs. varying wakeup intervals. 

. 

.  

 

 
(b) Redundant Packets: Figure 21 shows the evaluation 

results of redundant packets (AxRP) varying the active pe-
riods.  It shows that longer active periods generate more 
AxRP since it undoubtedly increases the probability of 
multiple receivers. MINI-FLOW outperforms ORR and 
ORW for the same reasons explained in Subsection 6.2.1(c). 

(c) Average Waiting Times: Figure 22 shows the results 
of evaluating the Average Waiting Times (AWT) varying the 
active periods.  We concluded that for each path, the AWT 

gets smaller as the active period gets longer. Longer active 
period drives the node to employ more candidate nodes, 
which in turn reduces the waiting time. For more details, 
refer to Subsection 6.2.1(e).  
6.2.4 Network Lifetime 

We evaluate the network lifetime by implementing two 
scenarios. In the first scenario, different communication 
ranges are utilized.  The number of nodes is set to 100 while 
the communication range varies from 50m to 100m. The re-
sults are plotted in Figure 23. Note that with the fixed area 
size and number of nodes, larger communication range 
means higher network density. We concluded that greater 
communication range implies longer lifetime for two main 
reasons. First, greater communication range allows the 
node to have more candidate nodes which in turn en-
hances the load balancing among them. With higher den-
sity, even without employing the load-balancing mecha-
nism, the packets travel throughout diverged paths from 
the end nodes to the sink or from the controller to the end 
nodes. Second, greater communication ranges reduce the 
routing distance, which in turn minimize the energy con-
sumption and maximize the network lifetime. ORW shows 
the worst performance in terms of the network lifetime 
since no energy balancing mechanism is considered. Addi-
tionally, ORW suffers from the negative impact of dupli-
cated packets. This impact looks more negative when the 
communication range exceeds 80m.  The Candidate Set in 
ORW is fixed and computed when the network is initial-
ized which in turn increases the traffic load on nodes with 
higher EDC. ORR archived longer lifetime than ORW since 
it defined the maximum number of forwarders.  However, 
to ensure energy balancing, ORR suffers from an expensive 
cost of periodically updating the EDC metric. 

 

 
Figure 25: The average num-
ber of hops/packet vs. varying 
the system parameters H-ex-

ponent 𝜸𝑯 and 𝓔- exponent 𝜸𝓔. 

 

Figure 26: The network lifetime 
vs. varying the system param-
eters L-exponent 𝜸𝑳. The initial 

battery power is 0.1J. 

 

 

.  

 

To update the EDC metric, ORR collects the energy state 
of all nodes and then re-computes the EDC.  MINI-FLOW 
outperforms ORR and ORW in terms of the network life-
time since L-Distribution enforces the packets to travel 
through the nodes with higher remaining energy and R-
Distribution enforces the packets to travel through shorter 
transmission distance in each transmission session while 
the three distributions H-Distribution, D-Distribution and ℰ-
Distribution enforce the packets to travel via shorter rout-
ing distance. Moreover, MINI-FLOW updates the flows 
based on the node’s request. This is different from ORR in 
which each update session requires the data of the entire 
network. ORR considered the energy balancing mecha-
nism and neglected the importance of the routing distance 
of the whole path and the transmission distance in each 



 15 

 

hop. 
The second scenario evaluates the lifetime of the net-

work by varying the duty cycles. The number of nodes is 
set to 100 with 80m of communication range. The node 
sleeps for 2s while its active period varies from 1s to 5s.  
The results are plotted in Figure 24. We concluded that the 
network lifetime is shorter when the active period of the 
nodes is longer. This eventuates since longer active periods 
increase the negative impact of multiple receivers and 
hence a greater number of redundant packets (AxRP) is 
generated. 
6.2.5 Impact of System Parameters  

(a) H-exponent  𝜸𝑯  and 𝓔-exponent  𝜸𝓔 . We evaluated the 
average number of hops by varying the system parameters 
𝛾𝐻 and 𝛾ℰ. The values of 𝜸𝓔 and 𝜸𝑯 are varied from 0.5 to 5 
such that in each experiment the value of  𝜸𝓔 is equal to the 
value of 𝜸𝑯 while the other system parameters are fixed, 
 𝛾𝐿 = 𝛾𝑅 = 0.1 and 𝛾𝐷 = 0.4. We used three networks each 
has 100 nodes and the communication radius is set to 25m, 
30m and 35m. Each node sends 1packet/s until the first 
node runs out of energy.  The initial battery power is set to 
0.1J. The results are shown in Figure 25. We concluded that 
the average number of hops is reduced when the values of 
H-exponent 𝜸𝑯 and 𝓔-exponent 𝜸𝓔  increase since these two 
parameters prioritize the node that has a smaller number 
of hops and a shorter routing distance. 
 (b) L-exponent 𝜸𝑳. This subsection evaluates the network 
lifetime by varying the value of 𝜸𝐋 , from 0.0 to 0.5. The val-
ues of the other parameters are fixed,  𝛾𝐻 = 𝛾𝑅 = 0.1 
and 𝜸𝓔 =  𝛾𝐷 = 0.5. We used three networks each has 100 
nodes while the communication radius is set to 25m, 30m 
and 35m. Each node sends 1packet/s until the first node 
runs out of energy. The results are shown in Figure 26. We 
concluded that the network achieves longer lifetime as the 
value of L-exponent  𝜸𝑳  increases since it prioritizes the 
nodes with higher energy. However, the impact of L-expo-
nent 𝜸𝑳 gets smaller when its value gets larger than 1.0. L-
exponent 𝜸𝑳 enhances load balancing as long as its value is 
approximately equal to Eq. (18) and Eq. (19). Otherwise, it 
constructs longer paths in order to avoid low-energy 
nodes, which in turn maximizes the average packet delay 
and increases the average number of hops. 

6.2.6 Controller to End Nodes Overhead  

This subsection evaluates the communication overhead of 
updating the flows varying network size. That is the en-
ergy consumed for transmitting the control packets from 
the controller to the end nodes. This overhead is intensely 
related to flow-update-loss-percentage (FULP), denoted by σ.  
The controller updates the flows of the end node each time 
the node loses σ% of its energy. We ignored the overhead 
of network initialization. The network size varies from 
300𝑚2 to 500𝑚2 while σ varies from 5 to 15. The communi-
cation range is set to 50m, while the number of nodes in-
creases with the size of the network. We set the initial bat-
tery power to 0.1J and compute the percentage of the en-
ergy consumed for transmitting the control packets from 
the controller to the end nodes. The results are shown in 
Figure 27. Two observations are concluded. First, greater 

network sizes increase the communication overhead. Sec-
ond, greater values of σ increase the overhead too. 
 

 
Figure 27: The communication overhead of control packets varying 
the network size and FULP 

7 CONCLUSION 
This paper investigates the software-defined wireless sen-
sor networks and proposes an architecture and incorpo-
rated protocol to enhance the efficiency and scalability. 
The proposed architecture, MINI-SDN, is an attempt to-
wards separating the control logic from the sensor 
nodes/actuators. In fact, complete separation of the two 
planes may degrade the performance of WSNs since such 
networks are intrinsically distributed and data centric.  We 
proposed a data-centric protocol called MINI-FLOW that 
supports centralized and distributed routing mechanisms. 
MINI-FLOW presents three routing mechanisms, the up-
link, downlink and intra-link. The uplink routing is based 
on a heuristic function that combines four values, the num-
ber of hops to the sink, the distance towards the sinks, the 
Received Signal Strength and the remaining energy. Regard-
ing the downlink flows, we proposed two heuristic algo-
rithms. The first algorithm, Optimized Reverse Downlink, 
considers the reverse paths of uplink flows. The second al-
gorithm, Location-based Downlink, computes the paths 
based on a heuristic function that combines three values, 
distance to the end node, the remaining energy and RSS 
value. The experimental results show our architecture  and 
protocol scale well with both network size and density. 
ACKNOWLEDGMENTS  
This paper is supported by the “Fundamental Research 
Funds for the Central Universities NO. WK2150110012, 
WK2150110007” and by the National Natural Science 
Foundation of China (NO. 61772490, 61472382, 61472381 
and 61572454). 

REFERENCES 
[1] Hyojoon Kim, and Nick Feamster. "Improving network management with 

software defined networking." IEEE Communications Magazine 51, no. 2 

(2013): 114-119. 

[2] Deze Zeng, Toshiaki Miyazaki, Song Guo, Tsuneo Tsukahara, Junji 

Kitamichi, and Takafumi Hayashi. "Evolution of software-defined sensor 

networks." In Mobile Ad-hoc and Sensor Networks (MSN), 2013 IEEE Ninth 

International Conference on, pp. 410-413. IEEE, 2013. 

[3] Laura Galluccio, Sebastiano Milardo, Giacomo Morabito, and Sergio 

Palazzo. "SDN-WISE: Design, prototyping and experimentation of a state-

ful SDN solution for WIreless SEnsor networks." In Computer Communica-

tions (INFOCOM), 2015 IEEE Conference on, pp. 513-521. IEEE, 2015. 

[4] Salvatore Costanzo, Laura Galluccio, Giacomo Morabito, and Sergio 

Palazzo. "Software defined wireless networks: Unbridling SDNs." In Soft-

ware Defined Networking (EWSDN), 2012 European Workshop on, pp. 1-6. 

IEEE, 2012. 

[5] Israat Tanzeena Haque, and Nael Abu-Ghazaleh. "Wireless software 

defined networking: A survey and taxonomy." IEEE Communications Sur-

veys & Tutorials 18, no. 4 (2016): 2713-2737. 

0

3 0 0 3 5 0 4 0 0 4 5 0 5 0 0

C
O

N
TR

O
L 

O
V

ER
H

EA
D

 %

NETWORK SIZE (MXM)

5% 10% 15%



16  

 

[6] Musa Ndiaye, Gerhard P. Hancke, and Adnan M. Abu-Mahfouz. "Soft-

ware defined networking for improved wireless sensor network manage-

ment: A survey." Sensors 17, no. 5 (2017): 1031. 

[7] Kgotlaetsile Mathews Modieginyane, Babedi Betty Letswamotse, Reza 

Malekian, and Adnan M. Abu-Mahfouz. "Software defined wireless sen-

sor networks application opportunities for efficient network management: 

A survey." Computers & Elect.Engineering, vol. 66 (2018): 274-287.  

[8] Hlabishi I. Kobo, Adnan M. Abu-Mahfouz, and Gerhard P. Hancke. "A 

survey on software-defined wireless sensor networks: Challenges and de-

sign requirements." IEEE Access5 (2017): 1872-1899. 

[9] Tie Luo, Hwee-Pink Tan, and Tony QS Quek. "Sensor OpenFlow: Ena-

bling software-defined wireless sensor networks." IEEE Communications 

letters 16, no. 11 (2012): 1896-1899. 

[10] Alejandro De Gante, Mohamed Aslan, and Ashraf Matrawy. "Smart wire-

less sensor network management based on software-defined networking." 

In Communications (QBSC), 2014 27th Biennial Symposium on, pp. 71-75. 

IEEE, 2014. 

[11] David Moss, and Philip Levis. "BoX-MACs: Exploiting physical and link 

layer boundaries in low-power networking." Computer Systems Laboratory 

Stanford University (2008): 116-119. 

[12] Yogita Chapre, Prasant Mohapatra, Sanjay Jha, and Aruna Seneviratne. 

"Received signal strength indicator and its analysis in a typical WLAN 

system (short paper)." In Local Computer Networks (LCN), 2013 IEEE 38th 

Conference on, pp. 304-307. IEEE, 2013. 

[13] Diego Kreutz, Fernando MV Ramos, Paulo Esteves Verissimo, Christian 

Esteve Rothenberg, Siamak Azodolmolky, and Steve Uhlig. "Software-de-

fined networking: A comprehensive survey." Proceedings of the IEEE 103, 

no. 1 (2015): 14-76. 

[14] Ammar Hawbani, Xingfu Wang, Saleem Karmoshi, Hassan Kuhlani, 

Aiman Ghannami, Adili Abudukelimu, and Rafia Ghoul. "GLT: Grouping 

Based Location Tracking for Object Tracking Sensor Networks." Wireless 

Communications and Mobile Computing 2017 (2017). 

[15] Miroslav Botta, and Milan Simek. "Adaptive distance estimation based on 

RSSI in 802.15. 4 network." Radioengineering 22, no. 4 (2013): 1162-1168. 

[16] Toshiaki Miyazaki, Shoichi Yamaguchi, Koji Kobayashi, Junji Kitamichi, 

Song Guo, Tsuneo Tsukahara, and Takafumi Hayashi. "A software 

defined wireless sensor network." In Computing, Networking and Commu-

nications (ICNC), 2014 International Conference on, pp. 847-852. IEEE, 2014. 

[17] Jihoon Kang, Daeyoung Kim, and Youngsoo Kim. "RSS self-calibration 

protocol for WSN localization." In Wireless Pervasive Computing, 2007. 

ISWPC'07. 2nd International Symposium on. IEEE, 2007. 

[18] Ben Pfaff, B. Heller, D. Talayco, D. Erickson, G. Gibb, G. Appenzeller, J. 

Tourrilhes et al. "OpenFlow Switch Specification." Feb 28 (2011): 1-56. 

[19] Nascimento, Vagner, Marcelo Moraes, Rosivaldo Gomes, Billy Pinheiro, 

Antônio Abelém, Vinicius CM Borges, Kleber V. Cardoso, and Eduardo 

Cerqueira. "Filling the gap between software defined networking and 

wireless mesh networks." In Network and Service Management (CNSM), 

2014 10th International Conference on, pp. 451-454. IEEE, 2014. 

[20] Ammar Hawbani, Xingfu Wang, Saleem Karmoshi, Lin Wang, and Naji 

Husaini. "Sensors grouping hierarchy structure for wireless sensor net-

work." International Journal of Distributed Sensor Networks 11, no. 8  

(2015): 650519. 

[21] Jungmin So, and Heejung Byun. "Load-balanced opportunistic routing for 

duty-cycled wireless sensor networks." IEEE Transactions on Mobile 

Computing 16, no. 7 (2017): 1940-1955.  

[22] Euhanna Ghadimi, Olaf Landsiedel, Pablo Soldati, Simon Duquennoy, 

and Mikael Johansson. "Opportunistic routing in low duty-cycle wireless 

sensor networks." ACM Transactions on Sensor Networks (TOSN) 10, no. 

4 (2014): 67. 

[23] Azzedine Boukerche, and Amir Darehshoorzadeh. "Opportunistic rout-

ing in wireless networks: Models, algorithms, and classifications." ACM 

Computing Surveys (CSUR) 47, no. 2 (2015): 22. 

[24] P. Santi “Topology control in wireless ad hoc and sensor networks”. ACM 

computing surveys (CSUR), 37 no. 2 (2005), 164-194.  

[25] Wei Xiang, Ning Wang, and Yuan Zhou. "An energy-efficient routing al-

gorithm for software-defined wireless sensor networks." IEEE Sensors 

Journal 16, no. 20 (2016): 7393-7400. 

[26] Deze Zeng, Peng Li, Song Guo, Toshiaki Miyazaki, Jiankun Hu, and Yong 

Xiang. "Energy minimization in multi-task software-defined sensor net-

works." IEEE Transactions on Computers 64, no. 11 (2015): 3128-3139. 

[27] Guozhi Li, S. Guo, Y. Yang and Y. Yang. "Traffic Load Minimization in 

Software Defined Wireless Sensor Networks," in IEEE Internet of Things 

Journal, vol. 5, no. 3 (2018): 1370-1378. 

[28] Ammar Hawbani, Xingfu Wang, Adili Abudukelimu, Hassan Kuhlani, 

Yaser Al-sharabi, Ammar Qarariyah, and Aiman Ghannami. "Zone Prob-

abilistic Routing for Wireless Sensor Networks." IEEE Transactions on 

Mobile Computing 18, no. 3 (2019): 728-741. 

[29] Ammar Hawbani, Xingfu Wang, Yaser Sharabi, Aiman Ghannami, Has-

san Kuhlani, and Saleem Karmoshi. "LORA: Load-Balanced Opportunis-

tic Routing for Asynchronous Duty-Cycled WSN." IEEE Transactions on 

Mobile Computing 18, no. 7 (2018): 1601-1615. 

Ammar Hawbani is an associate professor of networking and 

communication algorithms in the School of Computer Science 

and Technology at University of Science and Technology of 

China, China. He received the B.S., M.S. and Ph.D. degrees in 

Computer Software and Theory from the University of Science 

and Technology of China (USTC), Hefei, China, in 2009, 2012 

and 2016, respectively. From 2016 to 2019, he worked as Post-

doctoral Researcher in the School of Computer Science and Technology at 

USTC. His research interests include IoT, WSNs, WBANs, WMNs, 

VANETs and SDN. 

 

 Xingfu Wang received the B.S. degree in electronic and infor-

mation engineering from Beijing Normal University of China 

in 1988, and the M.S. degree in computer science from the Uni-

versity of Science and Technology of China in 1997. He is an 

associate professor in the School of Compute Science and 

Technology, University of Science and Technology of China. His current 

research interests include Information Security, Data Management and 

WSN. 

 

Liang Zhao is a lecturer at Shenyang Aerospace University, 

China. He received his PhD degree from the School of Com-

puting at Edinburgh Napier University in 2011. Before joining 

Shenyang Aerospace University, he worked as associate sen-

ior researcher in Hitachi (China) Research and Development 

Corporation from 2012 to 2014. His research interests include 

WMNs, VANETs and SDN. 

 

Ahmed ADubai [SM] is Professor of Networking and Commu-

nication Algorithms in the School of Computing at Edinburgh 

Napier University, UK. He received the PhD degree in Compu-

ting from the University of Glasgow in 2004. His research in-

terests include Communication Algorithms, Mobile Communi-

cation, Internet of Things, and Future Internet.  

 

Geyong Min received the Ph.D. degree in computing science 

from the University of Glasgow, Glasgow, U.K., in 2003. He is 

a Professor of High Performance Computing and Networking 

with the Department of Mathematics and Computer Science, 

University of Exeter, Exeter, U.K. His current research inter-

ests include future Internet, wireless communications, multi-

media systems, information security, high performance com-

puting, ubiquitous computing, modeling, and performance engineering. 
 

 

 Omar Busaileh received his B.S. degree in Electronic and 

Information Engineering from Hefei University of Technol-

ogy. Currently a Master student in the School of Computer 

Science and Technology at USTC. His research interests 

mainly include WSNs, WBANs and SDN. 

 


