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Block-Sparse Coding Based Machine Learning
Approach for Dependable Device-Free

Localization in IoT Environment
Lingjun Zhao, Huakun Huang, Chunhua Su, Shuxue Ding, Huawei Huang, Zhiyuan Tan, and Zhenni Li

Abstract—Device-free localization (DFL) locates targets without equipping with wireless devices or tag under the Internet-of-Things
(IoT) architectures. As an emerging technology, DFL has spawned extensive applications in IoT environment, such as intrusion
detection, mobile robot localization, and location-based services. Current DFL-related machine learning (ML) algorithms still suffer
from low localization accuracy and weak dependability/robustness because the group structure has not been considered in their
location estimation, which leads to a undependable process. To overcome these challenges, we propose in this work a dependable
block-sparse scheme by particularly considering the group structure of signals. An accurate and robust ML algorithm named
block-sparse coding with the proximal operator (BSCPO) is proposed for DFL. In addition, a severe Gaussian noise is added in the
original sensing signals for preserving network-related privacy as well as improving the dependability of model. The real-world
data-driven experimental results show that the proposed BSCPO achieves robust localization and signal-recovery performance even
under severely noisy conditions and outperforms state-of-the-art DFL methods. For single-target localization, BSCPO retains high
accuracy when the signal-to-noise ratio exceeds -10 dB. BSCPO is also able to localize accurately under most multitarget localization
test cases.

Index Terms—Device-Free Localization, Internet of Things, Machine Learning, Block, Sparse Coding, Multiple Targets.
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1 INTRODUCTION

W ITH the continuous deployment of wireless networks
[1], e.g., WiFi, fifth-generation communications (5G),

and satellite communications, people will inevitably be
covered by wireless signals wherever they are located.
The device-free localization (DFL) technology [2], a kind
of wireless localization technology, has been therefore ac-
knowledged as an emerging technology for providing high
quality-of-service (QoS) in the Internet-of-Things (IoT) envi-
ronment [3]. Because DFL can locate targets without carry-
ing any attached devices or tags [4], it has spawned a variety
of emerging industrial and household applications, such as
intrusion detection in security safeguard [5], mobile robot
localization [6] in smart factories, and healthcare monitoring
of patients and the elderly [7]. Fig. 1 briefly illustrates an
application under intrusion detection and tracking scenarios
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Fig. 1. DFL system-based Internet-of-Things (IoT) network for various
applications

with the DFL-based IoT system. As illustrated in this figure,
the wireless sensor networks (WSNs) are deployed in a
building to sense data on a target location. After sensing,
the data are sent to the edge servers for processing and
analyzing. Then, the useful location information is aggre-
gated for user access [8]. The user shown in Fig. 1 could
be a security administrator or a house host for security
safeguard, a caregiver for healthcare of the elderly, or other
similar providers.

As an example, a DFL system is illustrated in step (1) of
Fig. 2, in which the detection area is discretized into small
grids. Wireless sensor nodes, collaboratively transmitting
and receiving wireless signals, are deployed for sensing the
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Fig. 2. Illustration of the framework of the proposed block-sparse scheme for DFL. Here, we show an example of two-target localization.  is the
grid number.

data. When obstacles (e.g., intruders) appear at the detection
area, the energy of the broadcasting signal is attenuated,
leading to the signal variations of the transmitting–receiving
correspondences. That is, the sensed data conceal the tar-
get’s location information.

Because sensor nodes generate data with a specific pat-
tern that is associated with a specific target’s position and
that differs from others, the pattern information can be used
for localization. From this perspective, previous studies
transformed the localization problem into the classification
problem [8]–[10]. As a consequence, to tackle the classi-
fication problem, many popular machine learning (ML)
methods, such as k-nearest-neighbor (KNN) [11], support
vector machine (SVM) [12], and deep learning [13], are
employed for accurate single-target localization. However,
for multitarget localization problems, many current classi-
fication methods, e.g., deep autoencoder and KNN, need
to configure complex decision rules and suffer from low
localization accuracy.

Fortunately, sparse coding, which is based on the the-
ory of sparse representation in ML field, can improve this
situation. It is widely adopted in the DFL field because of
its advantages, e.g., high accuracy, high efficiency, simple
operation, and the ability to locate multitargets [10].

Specifically, in practical cases, one can assume that the
number of locations of targets is far fewer than the number
of all the grids of a detection area, therefore the localization
problem can be further transformed into a classical sparse
representation classification (SRC) problem, which can be
well solved by the machine-learning algorithm, sparse cod-
ing. In step (2) of Fig. 2, the collected data are preprocessed
to extract useful pattern information with a distinguished
feature. In step (3), we briefly illustrate the basic principle
of sparse coding. From step (3), once an observation signal
is presented, the sparse solution, whose nonzero-element

coordinations indicate the locations of targets, is obtained by
sparse coding. If the elements of a sparse solution associated
with the locations of targets appear to be nonzero, the
locations of the target can be estimated in step (4).

Typically, the sparsity-based DFL approach consists of
two stages: an offline stage for constructing the so-called
sensing matrix and an online stage for locating targets. The
offline stage includes steps (1) and (2) shown in Fig. 2, while
the online locating stage mainly comprises steps (3)–(4).
These two stages are described in subsection 2.2.2 in detail.

Based on the theory of sparse representation, a sparsest
solution constrained by the linear relation y = Dx corre-
sponds to the actual true solution [14]. Thus, in an SRC
problem, a sparser solution implies a more accurate result.
To find a sparse solution with higher sparsity, various regu-
larization terms are employed. From an extensive review of
existing DFL-related studies, we find that the most popular
regularization terms are ℓ0 norm and ℓ1 norm. The relevant
literature is briefly summarized below.

1.1 Prior Art
Through a review of the recent literature, we find that, to ac-
curately locate targets, the previous studies have proposed
many schemes, such as deep neural networks (DNNs) [18],
KNN [11], radio tomographic imaging (RTI) [19], etc., using
the RSS or the channel state information (CSI) signal [20]–
[22]. Subsequently, to further improve the localization accu-
racy and performance, many studies exploited the sparse-
representation model of signals for DFL [15]–[17].

Zhang et al. [17] employed the compressed sensing (CS)
method for sparse target counting and locating in WSNs.
They utilized a greedy-matching pursuit (GMP) algorithm
to solve the ℓ1-norm regularized minimization problem,
which accurately estimated the locations of targets from
a small amount of data. Wang et al. [16] exploited the ℓ1
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TABLE 1
Comparisons with related studies.

Compared
Regularization Definition Sparse pattern Sparsity Localization

terms

ℓ0 norm ‖x‖0 = Σ=8=1 |G8 |
0 Element wise Individual level Able

Previous studies

[9], [10], [15]–[17] ℓ1 norm ‖x‖1 = Σ=8=1 |G8 |
1 Element wise Individual level Able

Proposed scheme
ℓ2,1 norm

‖x‖2,1 = Σ68=1

√
G2
81 + ... + G

2
8!

Joint elements Group
Capable(Block sparse) level

Note: x ∈ R= is the sparse solution. x is divided into 6 groups and there are ! elements for each group. = = 6 × !.

norm in their CS modeling objective function and employed
the Bayesian greedy-matching pursuit (BGMP) method for
single-target localization. Ke et al. [15] utilized a basis self-
calibration method to solve the problem of basis mismatch
in CS-based DFL. In their work, a prior information aided
OMP (POMP) algorithm with ℓ0 norm regularization was
proposed to improve reconstruction performance. Wang et
al. [9] formulated DFL as an SRC problem and addressed the
ℓ1-minimization problem by sparse coding via a CVX tool to
localize a single target. In previous work [10], we exploited
achieving an efficient DFL process with sparse coding in
the signal subspace. The localization performances of algo-
rithms with ℓ0 norm and ℓ1 norm were compared. According
to the experiment results of [10], the CVX tool suffered from
the limited efficiency with respect to the high-dimensional
data, resulting in the incapability of real-time detecting or
tracking. Feng et al. [23] utilized the sparse model in a
received signal strength (RSS) measurement-based indoor
localization system. They recovered sparse signals in a small
set of noisy signals by solving a ℓ1 minimization problem.

In these DFL studies, the objective functions usually
comprise two parts:

� (x) = argmin
x

Loss (x) + Regularizer (x) (1)

where the loss term is for minimizing the reconstructed
error [24] between the estimation signal and the observation
signal; the regularization term [25], [26] is for generating
sparsity in the sparse solution x. For sparse coding, different
sparse patterns derive from different regularization terms
[27], [28]. Previous DFL-related work employs ℓ0 norm or
ℓ1 norm as sparsity regularization, which generates the
element-wise sparse pattern at an individual level. Note
that ℓ0 norm and ℓ1 norm achieves individual variable se-
lection when searches solution at every iteration. However,
the natural group-sparse nature in DFL data is not well
investigated.

Also, because the element indices of a sparse solution
are associated with grid IDs, the ℓ0 norm- or ℓ1 norm-based
methods usually estimate a target’s location by selecting
the maximum in a sparse solution. However, in practical
scenarios, the targets may have different sizes or body types,
such as the two intruders in Fig. 2. A small target may
capture only one grid, while a large target may capture
multiple grids. Moreover, for high precision, the detection
area may be divided into a large number of small grids. In

this case, the individual selection of ℓ0 norm or the ℓ1 norm
results in a low precision with localization error, while a
group selection is more applicable to the DFL-based SRC
problem because it leads to sparsity at the group level, as
shown in the comparisons of step (4). To date, these issues
have not been adequately addressed in existing studies.

Additionally, for security, the industrial manager or
house host may aim to preserve network-related privacy.
An effective way to achieve this is to introduce phase offset
or amplitude change in the original signal so that an attacker
or an intruder cannot obtain the correct sensing signal.
However, this method largely induces signal fading and
severely degrades the decoding signal-to-noise ratio (SNR).
Therefore, developing a robust/dependable DFL algorithm
that can work under such challenging situations with excel-
lent signal-recovery performance has become necessary.

1.2 Our Contributions

In contrast to previous studies, to overcome the discussed
challenges, we propose in this work a block-sparse coding
scheme. Particularly, by exploiting the ℓ2,1 norm as the
regularization term, the natural group structure of DFL
signals will be taken full use to achieve the group selection
in the sparse solution. This scheme updating each group as
a block is thereby called block sparse. Because the ℓ2,1 norm is
nondifferentiable in some places, the ℓ2,1-norm regularized
problem is not straightforwardly solvable. To address this
issue, we present a novel algorithm based on the proxi-
mal operator method, which is mathematically effective in
solving the nonsmooth convex optimization problem in our
proposed scheme. Through the proposed algorithm, named
block-sparse coding with proximal operator (BSCPO), a
block-sparse solution is obtained. We then use the block-
sparse solution to locate targets, and this solution is ex-
pected to achieve a higher localization accuracy. In Table
1, we summarize the differences between the proposed
scheme and related studies for clear comparison.

Furthermore, for privacy preservation, we add Gaussian
noise in the original data. With the advantages of the sparse
coding algorithm in signal reconstruction, the proposed
approach can achieve a robust signal-recovery performance
for DFL.

The major contributions of this article can be summa-
rized as follows.
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• We propose a dependable block-sparse representa-
tion model to extend previous machine learning
frameworks for DFL. The proposed block-sparse
scheme can achieve the group structure and generate
the sparsity at a group level, which can locate a single
target as well as multiple targets with different sizes.

• Through a well-designed objective function, the non-
smooth convex optimization problem caused by the
ℓ2,1-norm regularization is solved to obtain an equiv-
alent closed-form solution. The localization perfor-
mance of the proposed scheme has been evaluated
on the real-world DFL dataset.

• For privacy preservation in security needs, we add
severe Gaussian noise in the DFL data to validate
the performance of the proposed BSCPO algorithm
in terms of localization accuracy and dependability
under severely noisy conditions. Our experimental
results show that the proposed method is competi-
tive with state-of-the-art DFL algorithms, especially
under heavily noisy conditions.

The remainder of this paper is organized as follows.
Section 2 presents the problem formulation and the system
model. The design of an objective function and our pro-
posed BSCPO algorithm are shown in Section 3. In Section 4,
we carry out the performance evaluation and comparisons.
We summarize our contributions in Section 5.

2 PROBLEM FORMULATION

In this section, we first describe the procedure of back-
ground elimination for DFL data, transform the DFL prob-
lem into a sparse representation-based image classification
problem, and finally, present the sparse model.

2.1 Preliminaries
As shown in the aforementioned step (1) of Fig. 2, for
greater accessibility to DFL processing, the detection area is
surrounded by several wireless transmitter–receiver nodes
and is discretized into a number of grids. The wireless
nodes are not required to be regularly distributed, and
their positions are not necessarily be known. The target
affects the signal broadcasting because of scattering, diffract-
ing, and absorbing, thus varying the RSS measurements
at each node. When a target is at a grid, the joint signal
configurations comprising specific RSS measurements can
be sensed. In addition, RSS signals sensed from the closed
target locations usually indicate similar features. Therefore,
if the grid captured by a target is treated as a class, the target
positioning problem can be converted to a classification
problem.

In addition, if we view RSS measurements as image
pixels. The collected RSS signals can be constructed to an
RSS image with a special patterns. Furthermore, because
the signal basis of RSS measurements is much stronger
than the signal variation caused by targets, the important
characteristics are generally submerged in the raw signals.
This results in adverse factors for positioning analysis. To
overcome this challenge, we pre-process the raw signals by
a background elimination scheme. A clearer RSS variation
image is then obtained with distinct features. If the target

moves in different grids of detection area, we will image
different RSS signal variations with respective features. In
a consequence, the target positioning problem is further
formulated with the sparse-representation model, which
motivates us to tackle it by a sparse coding algorithm.

2.2 Sparse Representation Model of the DFL Signal
In this subsection, the procedure of developing the sparse
representation model of DFL is presented.

2.2.1 Data collection and process of background elimina-
tion
Here, let 'vacant

8, 9
denote the RSS measurement from the 8-th

node to the 9-th node collected without any target (but can
have some static bodies that construct the background) in
the detection area, i.e., a vacant area; let 'target

8, 9
denote the

measurement with a target existing in the detection area.
Then, the background elimination is performed by

Δ'8, 9 = '
target
8, 9

− 'vacant
8, 9 (2)

where Δ'8, 9 denotes the variation of the RSS measurement
caused by the target.

Assume that the total number of wireless sensor nodes
is # . As the illustration in step (1) of Fig. 2, each node
transmits wireless signals as a time schedule while the other
nodes receive and measure signals. Then, a matrix ΔR,
consisting of the variations of all # nodes, is constructed
as

ΔR2; =


Δ'1,1 Δ'1,2 · · · Δ'1,#
Δ'2,1 Δ'2,2 · · · Δ'2,#
...

...
. . .

...

Δ'# ,1 Δ'# ,2 · · · Δ'# ,#


(3)

where 2 is the index of the grid captured by the target, and
; is the sample index when a target is at the 2-th grid. For
Δ'8, 9 , 8 is the transmitter’s ID and 9 is the receiver’s ID.

2.2.2 Dataset construction
There are two stages below:

Offline stage to construct a sensing matrix (called
dictionary in sparse model). Suppose that there are �

grids in the detection area, as shown in Fig. 2, and each
grid is regarded as one category. All the potential tar-
gets’ locations are thereby divided into � classes in this
formulation. For each class 2 = 1, 2, · · · , �, we conduct
experiment trials of ; = 1, · · · , ! when an object is at
the corresponding grid. For each trial, by signal collec-
tion and background-elimination process, a signal-variation
matrix is obtained, i.e. ΔR2; ∈ R#×# . We then reshape
the variation matrix ΔR2; by merging its columns into
the vector d2; . Following by stacking all the variation
vectors together. We finally obtain the sensing matrix as
D = [d11,d12, · · ·d1! , · · · ,d21, · · · ,d2! , · · · ,d�1, · · · ,d�!].
This sensing matrix D contains object’s location information
of all grids and trials. D is termed as the dictionary with
size < × =, where < = #2, = = � × !.

Online stage to process the test signal. We employ sim-
ilar processes including data collection, background elimi-
nation, and matrix-to-vector conversion in this stage. The
observed signal y then obtained while ) targets are localized
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Fig. 3. Illustration of sparse representation classification (SRC) of a test
signal. In (a), the empty symbols represent the bases constructed in
the offline stage; the red square represents a test signal, whereas the
blue triangles are the bases selected for linear representation of the test
signal. In (b), each color denotes the high coherence existing among the
data of the same class.

at different grids, where ) must be smaller than the total
grid number. If ) = 1, it is for single-target localization while,
if ) > 1, it is for multitarget localization.

2.2.3 Sparse representation of the test signal
We now further formulate the localization problem as an
SRC problem.

To easily understand the principle of the sparse represen-
tation model, let us first consider a simple example in (a) of
Fig. 3, where the detection area is discretized into nine grids,
i.e., � = 9. Thus, the dictionary consists of all samples from
nine classes. Because there exists a high coherence among
the data of the same class, the spatial distribution of data
emerges as (b) for each class. This leads to the phenomenon
that the test signal is preferred to select the base samples in
the same class to represent itself. Therefore, as shown in (a),
when the test signal belongs to the first class, the samples
marked with blue triangles are selected to represent the test
signal. Here, the red square indicates the test signal, and the
other symbols are samples of the dictionary.

According to 2.2.2, in the online stage, when targets
locate at the detection area, a test signal y is obtained.
Here, we take two targets as an example. Suppose that
the targets are at the ?-th grid and @-th grid, respectively.
If sufficient samples are given, the test signal y can be
linearly represented with the two corresponding sample sets
of dictionary D. The linear representation is given as

y = Dx + e

=

�∑
2=1

!∑
;=1

d2;G2; + e

=
∑
2=?

!∑
;=1

d?;G?; +
∑
2=@

!∑
;=1

d@;G@; +
�∑
>=1

!∑
;=1

d>;G>; + e

for 1 < ? < �, 1 < @ < �, > ≠ ? ≠ @,
�∑
>=1

!∑
;=1

d>;G>; = 0

(4)

where x = [0 · · · 0 G?1 · · · G?! 0 · · · 0 G@1 · · · G@! 0 · · · 0])
∈ R= is a vector comprised of coefficients; G? 9 and G@ 9 ∈ R
(for 1 < 9 < !) are the nonzero coefficients belonging to
the ?-th class or the @-th class, respectively; and e indicates
noise.

In summary, the observation signal y can be sparsely
represented in terms of the = base samples of the dictio-
nary D. From this perspective, Eq. (4) becomes a sparse
representation problem where x is a sparse coefficient vector
whose nonzero elements are associated with the locations
of targets. Based on Eq. (4), once the sparse solution (i.e.,
sparse coefficient vector) x is effectively determined, the
accurate locations of the target are estimated. Therefore, the
DFL problem is essentially an SRC problem and can be well
formulated with the sparse representation model.

3 OUR APPROACH

In this section, we first summarize the challenges of sparse
coding in existing work. We then propose our solution by
devising a new objective function. Finally, to address such
an objective function, a block-sparse coding algorithm is
presented in detail.

3.1 Existing Challenges and Our Proposed Solution

3.1.1 Existing challenges in sparse coding

Sparse coding is for finding a potential vector variable that
contains a small portion of non-zero valued components,
termed as sparse, based on a dictionary D the and observed
signal y. In practical applications, to achieve an accurate
or robust DFL, a large number of samples are required
in the step of constructing a dictionary. This results in a
high possibility that the total number of base samples = is
larger than < of the dictionary. Thus, Eq. (4) is usually an
undetermined system, and its solution is not unique, i.e., the
problem is ill-posed.

However, by selecting the sparsest solution, we can
make the problem well-posed. This inspired us to solve
the optimization problem with the sparsity regularization
method for finding the sparsest solution. The most popu-
lar sparse regularization terms are ℓ0 norm and ℓ1 norm.
Unfortunately, using ℓ0 norm to find the sparsest solution
of a linear equation in the undetermined system has been
proven to be NP-hard. ℓ1 norm treats the sparse mode as
a singleton independently and generates the sparsity at
an individual level. In contrast, since the close locations
of targets derive the inner group structure of DFL data,
individual selection of ℓ1 norm and ℓ1 norm suffers from
reduced localization precision.

3.1.2 Proposed solution – A new objective function with
block-sparse mode

To determine the sparsest solution, in this paper, we exploit
ℓ2,1 norm as the regularization term to achieve the group
selection, generating a block-sparse mode in the sparse
solution. The objective function is given as

� (x) : x∗ = argmin
x

1
2
‖y −Dx‖22 + _‖x‖2,1 (5)

where the first term ‖ · ‖22 is a measure of the fitting error
between the observation signal and estimated signal; the
second term with ℓ2,1 norm is a sparsity regularizer that
generates the group sparsity; and _ is a scalable parameter
that trades off the fitting error and the sparsity.
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3.2 Localization Algorithm with Block-Sparse Coding

3.2.1 Block-sparse coding via proximal operator
Because Eq. (5) is convex although not smooth, it admits
the global optimum. Normally, the subgradient method is
adopted for solving Eq. (5). By incorporating the derivative
of Eq. (5) to zero, we can obtain the minimizer x∗ as

x∗ = (D)D + _
m (‖x‖2,1)

mx
)−1D) y. (6)

However, processing Eq. (6) by the subgradient method
is not easy because (D)D)−1 involves high computational
and memory cost as D is generally with high dimension.
In addition, (D)D)−1 may be very ill-conditioned or may
not be invertible. To address this problem, we exploit the
proximal operator method for searching the sparse solution.
The proximal operator is an efficient method for solving
the nonsmooth and nondifferentiable optimization prob-
lem. For different objective functions, a specific proximal
operator can be derived. For the optimization process of
nonsmooth ‖ · ‖2,1, a normal formula is given below

%(v) : argmin
v

[‖u − v‖22 + W‖v‖2,1. (7)

To coincide with Eq.(7), we make a modification based
on (5). The processes of modification and derivation are
given in the APPENDIX section in detail. Then, let us
consider the minimization of an objective function simpler
than Eq. (5):

%(x) : argmin
x

`

2
‖b − x‖22 + _‖x‖2,1 +  (8)

where  is treated as a known constant because it does not
rely on x; ` is a scaling factor that should be set larger than
the largest eigenvalue 4 of (D)D), e.g., 1.01×4; and b is an
intermediate variable with the same size to x, given as:

b = x(:) + 1
`

D) (y −Dx(:) ) (9)

x(:+1) = prox‖ · ‖2,1 (b)

= prox‖ · ‖2,1 (x
(:) + 1

`
D) (y −Dx(:) ))

(10)

where x(0) = 0; prox‖ · ‖2,1 (·) is the proximal operator of ℓ2,1
norm, given by

prox‖ · ‖2,1 (18) =

(‖b28 ‖2−

_

`
) 18

‖b2
8
‖2
, ‖b28 ‖2 >

_

`

0, Otherwise
(11)

where 18 is the i-th element of b and b2
8
∈ R! denotes the c-th

group of vector b. The optimization process is mainly based
on Eq. (9) and Eq. (10) in each iteration. Until convergence
or the stop rule is satisfied in the k-th iteration, the optimally
sparse solution G∗ can be determined as x(:+1) .

3.2.2 Target localization based on the block-sparse solution
From the presented analysis, the optimally sparse solution
x∗ can be obtained by performing Eqs (8)– (11). Here, there
are two cases, i.e., if x∗ includes only one group of nonzero
elements, it is for single-target localization; if x∗ includes
multiple groups of nonzero elements, multi-target localiza-
tion occurs.

Algorithm 1 Block Sparse Coding with Proximal Operator
Input: y ∈ R<, D ∈ R<×=, `, _, x0 = 0
Output: i1, . . ., i(

1: for : = 0 to maxiteration do
2: b← x(:) + 1

`
D) (y −Dx(:) )

3: x(:+1) ← prox‖ · ‖2,1 (b)
4: Until the convergence criterion is met or the maxi-

mum iteration number is reached.
5: end for
6: x∗ ← x(:+1)

7: V∗ ← x∗ according to Eq. (12)
8: Estimated the locations of targets are at the i1-th, i2-th,
. . ., and the i(-th grids by Eq. (13).

9: Return {i1, . . ., i(}

0 3 6 9 12 2115 18
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12

21

15
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X 

Y 

Wireless TelosB
sensor node
Grid Unit: feet

Base 
station

Computer

Note that: The base station
is built by a refitted wireless
TelosB sensor node. It is
contacted with the laptop
computer via a USB port

Data
collection

Fig. 4. Experimental setup of the DFL system illustrated according to the
SPAN Lab of the University of Utah [29].

For an easy operation process of location estimation, we
convert x∗ into a block-sparse solution V∗:

V∗ =

[√
Σ!
;=1G1; ,

√
Σ!
;=1G2; , · · · ,

√
Σ!
;=1G�;

]
=

[
‖x∗(1) ‖2, ‖x

∗
(2) ‖2, · · · , ‖G

∗
(�) ‖2

]
=

[
V∗1, V

∗
2, · · · , V

∗
�

] (12)

where x∗(2) (for 1 ≤ 2 ≤ �) denotes the c-th group of elements
{G21, · · · , G2!}. Because the elements of V∗ are associated
with the grids, for the total � grids of a detection area,
the locations of targets are estimated as follows. Suppose
that, there are ( targets. Then, the locations of ( targets can
be estimated at the i1-th grid, . . ., the i(-th grid, where
i1, . . ., i( are the subscripts of the nonzero elements with
decreasing order. Then, the locations of targets are given by

i1 = argmax
i1

{V∗1, · · · , V
∗
i1
, · · · , V∗� }

i2 = argmax
i2

{V∗1, · · · , V
∗
i2
, · · · , V∗� }, for

{V∗i1
} ⊄ {V∗1, · · · , V

∗
i2
, · · · , V∗� }

. . .

i( = argmax
i(

{V∗1, · · · , V
∗
i(
, · · · , V∗� }, for

{V∗i1
, . . . , V∗i#−1

} ⊄ {V∗1, · · · , V
∗
i(
, · · · , V∗� }.

(13)



7

(a) Rtarget (b) Rvacant (c) Signal variation, ΔR
Fig. 5. Example of data preprocessing with the background elimination scheme. Note that the signal variation of (c) is calculated by subtracting the
signal of (b) from (a). Here, the target locates at the 36-th grid.

(a) Noisy signal (b) Location estimation (c) Recovery signal
Fig. 6. Imaging the noiseless test signal and noisy test signal; location estimation with block-sparse solutions and recovery signals of the proposed
BSCPO algorithm. Here, we present an example when the target is at the 36-th grid of the detection area. The noise level of (c) is SNR = -5 dB.

The proposed localization algorithm is called BSCPO,
and its pseudo-code is presented in Algorithm 1.

4 PERFORMANCE EVALUATION

In this section, we evaluate the performance of the proposed
approach on the real-world experimental dataset [29] of
outdoor DFL. All of the following experiments were per-
formed in MATLAB R2016b and executed on a computer of
Windows 10 64-bit with 8GB RAM and Intel CoreTM i7 CPU.

4.1 Experiment Explanation

The experiments are performed, as shown in Fig. 4, with the
following settings according to [29]. The square detection
area, with a 21x21 foot square, is discretized into 36 grids
and surrounded by 28 TelosB sensor nodes. Each sensor
node works in a frequency band of 2.4 GHz. The interval
distance is 3 feet between two neighboring nodes, and each
node is placed 3 feet off the ground. A base station listens to
the whole network traffic for delivering the collected real-
time data to the computer by a USB port. At each grid, 30
trials were conducted with a short time interval.

For the single-target localization experiments, the RSS
sample matrices are partitioned into two portions, of which
25 samples are used to construct the dictionary, while the
rest are test samples; for the multitarget localization exper-
iments, it shares the same dictionary with the single-target
experiments, while the test signals are from the new RSS

samples of locating two targets. The dictionary size is 784×
900, while each test sample is 784× 1.

4.1.1 Data preprocessing of background elimination

Because the original RSS signal is measured directly from
the environment, it may include many useless signal compo-
nents that are stronger than the useful signal variation. For
example, the base signal of the background does not change
even if there are targets in the detection area. Therefore,
preprocessing of background elimination is necessary. In
the experiments of outdoor DFL, we perform data prepro-
cessing by subtracting Rvacant from Rtarget, as shown in Fig.
5. Then, after this preprocess, most of the useless signal
components can be eliminated, and the signal variation is
apparent.

4.1.2 Compared methods

ℓ0 norm and ℓ1 norm are the most popular sparse regular-
ization terms in the DFL fields, and many related references
have reported their effectiveness [9], [10], [30], [31]. Hence,
we compare the performance of the proposed BSCPO with
the algorithms structured by ℓ0 norm and ℓ1 norm. Fur-
thermore, to demonstrate the enhanced performance of the
proposed block-sparse scheme, we further compare it with
multiple baselines and state-of-the-art machine-learning al-
gorithms, including a deep neural network with convolu-
tional autoencoder (CAE), one-dimensional convolutional
neural network (CNN-1D), SVM, KNN, sparse coding with
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(a) Sparse solution of ℓ0 norm (b) Sparse solution of ℓ1 norm

(c) Sparse solution of ℓ2,1 norm

Ground-truth location
Proposall0 l1

(d) Location map
Fig. 7. Performance comparison of algorithms with ℓ2,1 norm, ℓ1 norm, and ℓ0 norm with a noisy test signal of SNR = -15 dB. Here, the ground-truth
location of the target is at grid 16, associated to the element index number from 376 to 400, and highlighted in red in the above subfigures. The
estimated location is marked with a black square. For (a), ℓ0 norm is incorrectly located at grid 21; (b) ℓ1 norm is incorrectly located at grid 23; (c)
ℓ2,1 norm is successfully located at grid 16; and (d) results of (a)–(c).

iterative shrinkage-thresholding algorithm (SC-ISTA), and
sparse coding with orthogonal matching pursuit (SC-OMP).

4.1.3 Other settings and metrics
To clarify the performance evaluation and comparison, the
localization accuracy is used as a metric to evaluate the
performance of algorithms. This refers to the percentage of
the count of correctly estimated samples with respect to the
count of all test samples.

For privacy preservation, we add severe Gaussian noise
in the original RSS signals to prevent network-related pri-
vacy from leaking to intruders or attackers. In practical
applications, the DFL system is unavoidably disturbed
by environmental noise, e.g., electromagnetic interference
caused by surrounding wireless devices. Therefore, the
signal-recovery performance, robustness and dependabil-
ity are important for DFL algorithms. We use SNR as
a measurement of the signal quality. SNR is defined as
SNR(dB) = 10 log10 (Psignal/Pnoise), where %B86=0; and %=>8B4
represent the power of signal and the power of noise,
respectively.

4.2 Experimental Result and Discussion

In this subsection, we perform validation experiments to
evaluate the performance of the proposed block-sparse
scheme. We 1) show the performance for locating a single

target, 2) show the performance for locating two targets,
and 3) provide a comparison with the baselines and state-
of-the-art DFL methods.

4.2.1 Performance of the proposed approach for single-
target localization
The proposed approach can achieve robust performance
even when the DFL system is disturbed by severe noise.
Fig. 6 shows an example when the target is at the 36-th
grid of the detection area. From Fig. 6 (a), the test signal is
more severely polluted by noise than the original noiseless
signal of Fig. 5 (c). Despite this adverse condition, through
the block-sparse solution, the target can still be accurately
located because the related element of block-sparse solu-
tions is outstandingly nonzero (see Fig. 5 (b)). This can also
be explained by the recovery result of Fig. 6 (c) in which the
test signal is clearly reconstructed.

Fig. 7 shows an example to explain the reason why our
proposal is more capable of DFL than the algorithms with
ℓ0 norm and ℓ1 norm. Through the sparse solutions of ℓ0
norm or ℓ1 norm, the target location is incorrectly estimated
because the element value of another group is larger than
the ground-truth value (see Fig. 7 (a), (b), and (d)) because
of the noise. In contrast, using the group-sparse solution
of BSCPO, the target can be correctly located because the
maximum element coincides with the ground truth (see Fig.
7 (c) and (d)).
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(a) Noisy test signal (b) Noisy dictionary
Fig. 8. Localization accuracy of algorithms with ℓ2,1 norm, ℓ1 norm, and ℓ0 norm on noisy test samples. Here, Alg. is short for algorithm.

(a) Sensor-1 as transmitter (b) Sensor-1 as receiver
Fig. 9. Signal-recovery performance of the proposed BSCPO algorithm. Here, wireless sensor-1 is taken as an example. SNR = -5 dB.

TABLE 2
Comparison of the localization performance with other machine-learning algorithms

Compared terms Noisy dictionary Noisy testing
(-10 dB) signal (-5 dB)

KNN [10] 2.8% (Failed) 2.8% (Failed)
SC-OMP [30] 2.8% (Failed) 2.8% (Failed)
SC-ISTA [10] 4.4% (Failed) 11.1%

SVM [32] 5.5% (Failed) 90.6%
CNN-1D [33] 57.8% 65.8%
Deep CAE [8] 85.0% 94.0%
The proposed 100% 100%

After considering all the test samples, Fig. 8 presents
the localization accuracy of BSCPO and comparisons under
various noisy conditions. From Fig. 8, the proposed BSCPO
outperforms the algorithms with ℓ0 norm and ℓ1 norm in
localization accuracy and robustness. BSCPO achieves high
localization accuracy of 100% when the SNR of the noisy
test signal and noisy dictionary exceeds -10 dB and -20 dB,
respectively.

In particular, in Fig. 9, we take the wireless transmitter–
receiver sensor-1 as an example for presenting the recovery
or denoising performance of our proposed algorithm. The
SNR of the noisy signal is -5 dB. From Fig. 9, there are some

apparent amplitude offsets between the noisy signals and
the original signals. Through the denoising process using
our BSCPO algorithm, the signals are almost completely
recovered and two recovery signals are very close to the
corresponding noise-free original signals, respectively.

4.2.2 Comparison with baselines and state-of-the-art DFL
methods
We now compare the proposed scheme with six other
machine-learning methods except for the previously dis-
cussed algorithms with ℓ0 norm and ℓ1 norm. In particular,
the deep CAE [8], SC-ISTA [10], and SC-OMP [30] are
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TABLE 3
Ground-truth location distributions of two targets under six cases

Cases Indexes of grids Coordinate (Unit: feet)
Target 1 (G1, H1) Target 2 (G2, H2)

1 Grid 25, Grid 26 (3, 15) (6, 15)
2 Grid 25, Grid 27 (3, 15) (9, 15)
3 Grid 25, Grid 28 (3, 15) (12, 15)
4 Grid 25, Grid 29 (3, 15) (15, 15)
5 Grid 25, Grid 30 (3, 15) (18, 15)
6 Grid 23, Grid 25 (3, 15) (15, 12)

(a) Case 1 (b) Case 6

Ground-truth location of target 1
Ground-truth location of target 2

Estimated location 1
Estimated location 2

Case 1 Case 2 Case 6

(c) Localization results with location map by the proposed
approach corresponding to six test cases

Fig. 10. Localization results of the proposed approach for multitarget experiments. (a) and (b) show location estimations with the block-sparse
solution. The ground-truth location distributions of six cases are listed in Table 3.

existing state-of-the-art DFL algorithms that use the same
dataset implemented in this paper. According to [9] and [10],
the raw RSS signal without background elimination was
used for SC-ISTA, SC-OMP, and KNN; therefore, the same
conditions are adopted in the comparison experiments. Fur-
thermore, we also perform experiments with the commonly
used baseline classification methods, i.e., SVM [32] and the
one-dimensional CNN (CNN-1D) [33]. For SVM, a one-vs-
one strategy and radial basis function kernels are employed
for the task of multiclass classification.

The comparison results are presented in Table 2. From
Table 2, our BSCPO algorithm achieves the highest local-
ization accuracy under severely noisy conditions of SNR =
-10 (for dictionary) and SNR = -5 dB (for test signal). This
indicates that BSCPO outperforms the other six machine-
learning algorithms in terms of robustness and localization

accuracy, which leads to a dependable DFL process.

4.2.3 Performance of the proposed approach for multitarget
localization
We evaluate the localization performance of the proposed
BSCPO with respect to locating multitargets where the case
of locating two targets is taken as the example. The ground-
truth locations of targets are distributed under six cases
listed in Table 3.

The localization results on the raw test data are shown
in Fig. 10. The targets can be accurately located from case
1 to case 5 (see Fig. 10 (a) and (c)). Here, the block-sparse
solution of one correct-locating case, i.e., case 1, is taken
as an example. For case 6, the target at grid 23 is incor-
rectly located at the diagonally adjacent grid 28 but is still
approaching the correct location, while another target can
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be located correctly at grid 25 (see Fig. 10 (b) and (c)). This
indicates that the proposed BSCPO performs well in the task
of multitarget localization.

Discussion: In summary, the proposed block-sparse-
coding scheme achieves a better localization performance
and robustness for localizing a single target and multiple
targets. Nonetheless, since the real data is directly transmit-
ted among sensors, base station and servers, the privacy of
legal objects may be leaked. Such a data privacy issue is
very critical under a normal IoT architecture. However, the
related studies as well as our current work does not consider
the privacy preservation yet. Therefore, for the future work,
we will further investigate the privacy issue faced by DFL
system for various IoT applications. For privacy preserva-
tion, a promising method is federated machine learning.
This is an emerging technology because it can update the
model with transmitting the real data, which thereby pro-
tects the data privacy. In our future work, we will investigate
how to update the variations of dictionary without leaking
the real data. In addition, since the proposed block-sparse-
coding method is robust to noisy signal and can be used
for classification, it will be possibly extended for other
applications, for example detecting some network attacks
(e.g., the distributed denial-of-service attack).

5 CONCLUSION

In this paper, we present a block-sparse based ML ap-
proach to achieve an accurate and robust DFL process in
IoT environment. In particular, ℓ2,1 norm is exploited to
generate a group structure in the sparse solution. We then
devise an optimization method with the proximal operator,
which leads to the proposed ML algorithm, i.e. BSCPO.
In addition, to prevent the network-related privacy from
leaking to intruders, we add severe Gaussian noise in the
original RSS signals to degrade the SNR. The dependability
of the proposed scheme are then evaluated by compar-
ing with multiple baselines and state-of-the-art machine-
learning algorithms. Experimental results based on the real-
world dataset show that BSCPO takes full use of the natural
knowledge as group structure and is capable of target
localization. To locate a single target, the proposed BSCPO
achieves a high localization accuracy of 100% when the SNR
of the noisy test signal and noisy dictionary exceeds -10
dB and -20 dB, respectively. For all six cases of multitarget
localization, BSCPO can accurately locate the targets in a
total of five cases and correctly recover the corresponding
observation signals. Furthermore, BSCPO outperforms the
other algorithms in terms of localization accuracy and ro-
bustness under heavily noisy conditions.

APPENDIX
PROOF OF TRANSFORMATION WITH RESPECTIVE TO
THE OBJECTIVE FUNCTION

The equation of original objective function (14) is as follows:

� (x) = 1
2
‖y −Dx‖22 + _‖x‖2,1 (14)

By incorporating the derivative of (14) to zero, we can obtain
the minimizer x∗ as follows,

x∗ = (D)D + _
m (‖x‖2,1)

mx
)−1D) y (15)

The modified objective function (16) is,

%(x) : argmin
x

`

2
‖b − x‖22 + _‖x‖2,1 +  (16)

where  is regarded as a known constant that it does not
depend on x; ` is a scaling parameter that should be greater
than the largest eigenvalue of (D)D), for example, 1.01
times the largest eigenvalue; b is an intermediate variable
with the same size of x, given in the following derivation.

Here, we present the processes of modification and
derivation from (14) to (16) in detail.

According to the analysis with respect to (15), � (x) is
not easily minimized because solving (D)D)−1 may be
computationally expensive or failed. This motivates us to
construct a new function that avoids solving the (D)D)−1

by the majorization-minimization (MM) approach [34], [35].
MM approach minimizes a difficult problem instead by a
group of easier minimization problems (k=0,1,2...).

Based on the principle of MM, we should find a �: (x) so
that at each iteration k, we can choose a �: (x) that coincides
with � (x) at x(:) but otherwise upper-bounds � (x), i.e., the
following conditions

• (a) �: (x) ≥ � (x) for all x
• (b) �< (x(:) ) = � (x(:) )

Then, the procedure is designed as the following steps,

�: (x) = � (x) +Non-negative function of x (17)

�: (x) =
1
2
‖y −Dx‖22 + _‖x‖2,1

+ (x − x(:) )) (`I −D)D) (x − x(:) )
(18)

where ` must be selected to equal or greater than the maxi-
mal eigenvalue of (D)D). Then, in the final term, (`I−D)D)
will be a positive semi-definite matrix, which means that

v) (`I −D)D)v ≥ 0, ∀v, for

` ≥ maximal eigenvalue of (D)D)
(19)

So we have a �: (x) as desired. Let us then check the
derivative of the new function with respect to x,

m�: (x)
mx

= −D) y − (`I −D)D)x(:) + `x + _
m (‖x‖2,1)

mx
(20)

m�: (x)
mx

= 0 ⇒

x∗∗ = x(:) + 1
`

D) (y −Dx(:) ) + _
`

m (‖x‖2,1)
mx

(21)

Compared (21) with (15), we can see that (21) avoids
solving (D)D)−1, which will significantly save the compu-
tational resource.

Finally, through the following derivation process, we can
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obtain the modified objective function of (16).

�: (x) =
1
2

y) y − y)Dx + 1
2

x)D)Dx2+
1
2
(x − x(:) )) (`I −D)D) (x − x(:) ) + _‖x‖2,1

=
1
2

y) y + 1
2
(x(:) )) (`I −D)D)x(:)−(

y)D + (x(:) )) (`I −D)D)
)
x + 1

2
`x) x + _‖x‖2,1

(22)
Here, let

b =
1
`

[
(D) y + (`I −D)D)x(:)

]
= x(:) + 1

`
D) (y −Dx(k) )

(23)

We can obtain the quadratic expression below

�: (x) =
`

2
(−2b) x + x) x) +  1 + _‖x‖2,1

=
`

2
‖b − x‖22 + _‖x‖2,1 +  

(24)

where  1 consists of the first two terms of (22) which do not
depend on x, and  is a constant with respect to x, given as
follows

 =
1
2

y) y + 1
2

y)DD) y + y)D(`I −D)D)x(:)−
1
2
(x(:) ))D)D(`I −D)D)x(:)

(25)

In a consequence, The problem %(x) in (16) equals to
minimize �: (x) of (24).
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