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 Abstract 

Cardiovascular disease (CVD) is the biggest killer of people in western civilisation. Age 

is a significant risk factor for the development for CVD, and treatments and therapies to 

address this increased risk are crucial to quality of life and longevity. Exercise is one such 

intervention which has been shown to reduce CVD risk. Age is also associated with 

endothelial dysfunction, reduced angiogenic capabilities, and reduced ability to repair the 

vessel wall. Circulating angiogenic cells (CACs) are a subset of circulating cells which 

assist in the repair and growth of the vasculature and in the maintenance of endothelial 

function. Reductions in these cells are observed in those with vascular disease compared 

to age-matched healthy controls. Exercise may reduce CVD risk by improvements in 

number and/or function of these CACs. 

Data was collected from human volunteers of various ages, cardiorespiratory fitness (CRF) 

levels and latent viral infection history status to investigate the effects of chronological 

age, CRF, viral serology and other lifestyle factors, such as sedentary behaviours and 

exercise on CACs. The levels of CACs in these volunteers were measured using four-

colour flow cytometry using various monoclonal antibodies specific to cell surface 

markers that are used to identify specific subsets of these CACs. In addition, the response 

to acute exercise of a specific subset of these CACs, termed ‘angiogenic T-cells’ (TANG) 

were investigated, in a group of well-trained males aged 20-40 years, using a strenuous 

submaximal exercise bout. 

Advancing age was associated with a decline in various subsets of CACs, including bone 

marrow-derived CD34+ progenitors, putative endothelial progenitor cells (EPCs) and also 

TANG cells. Individuals with a higher CRF were more likely to have higher circulating 

numbers of TANG cells, particularly in the CD4+ subset. CRF did not appear to modulate 

CD34+ progenitors or EPC subsets. Increasing sitting time was associated with reduction 

in TANG cells, but after correcting for the effects of fitness, sitting time no longer 

negatively affected the circulating number of these cells. Acute exercise was a powerful 

stimulus for increasing the number of TANG cells (140% increase), potentially through an 

SDF-1:CXCR4-dependent mechanism, but more studies are required to investigate this. 

Latent CMV infection was associated with higher number of TANG cells (CD8+), but only 

in 18-40 year old individuals, and not in an older age group (41-65 year old). The 

significance of this has yet to be understood. 
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In conclusion, advancing age may contribute to increased CVD risk partly due to the 

observed reductions in angiogenic cells circulating in the peripheral compartment. 

Maintaining a high CRF may attenuate this CVD reduction by modulating TANG cell 

number, but potentially not CD34+ progenitor or EPC subsets. Acute exercise may offer 

a short window for vascular adaptation through the mobilisation of TANG cells into the 

circulation. 
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Rates of cardiovascular disease (CVD) are higher in Scotland and in the north of England 

in comparison to the rest of the United Kingdom, with over 50,000 ‘premature’1 deaths 

in the whole of the United Kingdom from CVD in 2009 (Scarborough et al., 2010). These 

high rates of CVD have been attributed to lifestyle factors, such as smoking, diet and 

increasing physical inactivity among the general population (Kontis et al., 2014). 

CVD can come in a variety of guises, including coronary heart disease (CHD) which is 

identified as a narrowing of the coronary arteries by a build-up of a fatty plaque, 

cerebrovascular disease which is defined as all disease affecting blood vessels that supply 

the brain (Scarborough et al., 2010), and peripheral arterial disease (PAD), identified as 

a narrowing or blockages of the arteries of the lower extremity, often leading to 

claudication2.  

Exercise has been shown to improve quality of life (Tang et al., 2009a), improve left 

ventricular function (Turan et al., 2006), reduce blood pressure (Liu et al., 2012), improve 

endothelial function3 (Ades et al., 2011) as well as reduce mortality rates in those with 

CVD (Wisløff et al., 2006; Aijaz et al., 2008; Sakamoto et al., 2009). In fact, exercise 

capacity has been deemed an independent predictor of mortality in PAD patients (Leeper 

et al., 2013), as well as in healthy men (Lee et al., 2011) even when considering smoking 

status, history of congenital heart disease (Leeper et al., 2013) and body mass index (BMI) 

(Lee et al., 2011). The effect is so profound, that general practitioners, surgeons and 

cardiac rehabilitation specialists promote the use of exercise training and testing 

throughout a period of rehabilitation from surgery or cardiac-related illnesses (Mezzani 

et al., 2009; Guazzi et al., 2012; Martin et al., 2012; Mezzani et al., 2012).  

There are many reported mechanisms for the beneficial effects of regular exercise on 

cardiovascular health, from reduced chronic low grade inflammation, improved organ 

and tissue perfusion, improved cardiac mechanics (improved left ventricular ejection 

fraction, increased stroke volume), reduced circulating pro-inflammatory cytokines to 

improved blood vessel growth. The focus of this thesis will be on blood vessel growth 

and repair. 

Blood vessel growth and repair involves two distinct mechanisms, angiogenesis and post-

natal vasculogenesis. Angiogenesis is the process of the growth of blood vessels from 

																																																													
1 ‘Premature’ meaning death before the age of 75 
2  Pain experienced in the legs, often after a period of walking in PAD patients 
3  The ability of the blood vessels to dilate after an ischaemic challenge	
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pre-existing vessels. This is achieved through endothelial cell proliferation, which is often 

stimulated by cells that have a paracrine4 effect on the endothelium. Alternatively, post-

natal vasculogenesis describes the growth of blood vessels involving non-resident 

endothelial cells e.g. the incorporation of bone marrow (BM)-derived stem/progenitor 

cells which differentiate into endothelial cells. Blood vessel growth is reduced with 

increasing age (Rivard et al., 1999; Sadoun and Reed, 2003; Reed and Edelberg, 2004), 

therefore increasing the risk of CVD. In addition, endothelial dysfunction is a hallmark 

of ageing (Black et al., 2008; Black et al., 2009) and progression of CVD (Gokce et al., 

2003; Green et al., 2011; Hafner et al., 2014), and it has been shown that CD34+ 

progenitors can be beneficial in maintaining endothelial health, and are themselves 

independently associated with endothelial function (Sibal et al., 2009; Bruyndonckx et 

al., 2014). Both endothelial progenitor cells (EPCs) (Asahara et al., 1997; Hur et al., 2004; 

Urbich et al., 2005) and angiogenic T lymphocytes (TANG) (Hur et al., 2007) play an 

important part in blood vessel growth and repair. EPCs can act both in angiogenesis and 

post-natal vasculogenesis (depending on phenotype) (Asahara et al., 1997; Hur et al., 

2004), and TANG acts by stimulating angiogenesis through secretion of growth factors and 

cytokines which act on endothelial cells (Hur et al., 2007; Kushner et al., 2010b). 

Circulating numbers of these cells have been identified to be reduced in those with 

vascular disease (Fadini et al., 2005; Schmidt-Lucke et al., 2005; Fadini et al., 2006; Sibal 

et al., 2009; Jung et al., 2010; Shantsila et al., 2012) or vascular risk factors (Vasa et al., 

2001; Weil et al., 2011). These cells have also been reported to be decreased in number 

with age (Thijssen et al., 2006; Hur et al., 2007), as well as impaired functionality5 with 

increasing age (Hoetzer et al., 2007; Kushner et al., 2010a; Xia et al., 2012a; Xia et al., 

2012b). Therefore, it is apparent that these cells are of utmost importance in maintaining 

vascular homeostasis in health and disease, and methods of increasing their number 

and/or function are required. Some methods include diet (Chan et al., 2011; Fernández et 

al., 2012; Heiss et al., 2012) as well as infusion of fully functional progenitor cells 

(Losordo et al., 2012), not excluding the administration of exogenous mobilising factors 

(Powell et al., 2005; Bruno et al., 2006), however these studies have all focused on CD34+ 

progenitor cells. There has been some evidence to show beneficial impact of protein on 

T-cell trafficking (Witard et al., 2014), as well as research showing polyunsaturated fatty 

																																																													
4 One cell having an effect on a cell in close vicinity through the secretion of hormones, 
cytokines or growth factors 
5 Cell migration to SDF-1 and/or VEGF, re-endothelialization of induced injury of 
carotid artery in mice (EPCs only), reduced cytokine release 
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acids acting to reduce production of interleukin-2 by T-cells (Wallace et al., 2001). This 

is in addition to several studies indicating a modulatory role of diet T-cell number and 

function (Papathanassoglou et al., 2006; Ma et al., 2007; Maganto-García et al., 2011), 

but with no research as of yet specifically on CD31+ T-cells, this may offer potential for 

future studies. Additionally, the effect of infusion of these cells or administration of 

mobilising factors on these cells has also yet to be investigated. It is important to note that 

the efficacy and safety of these procedures mentioned have yet to be standardised and 

fully elucidated. 

Other methods proposed to increase circulating numbers of EPCs and TANG cells, as well 

as improve cellular function, have included regular exercise. In fact, acute and regular 

exercise training has shown increases in circulating number and function of EPCs (Adams 

et al., 2004; Laufs et al., 2005a; Van Craenenbroeck et al., 2008; Van Craenenbroeck et 

al., 2011; Fernandes et al., 2012; Choi et al., 2014). There is no current evidence to show 

any effect of exercise (acute, chronic or cardiorespiratory fitness) on TANG cells. 

Recently, research has shown that sedentary behaviour can be deleterious on 

cardiometabolic health (Hamilton et al., 2007; Katzmarzyk et al., 2009; Gibbs et al., 2014; 

Chau et al., 2015), with negative impact on insulin sensitivity (Reynolds et al., 2014) and 

endothelial function (Nosova et al., 2014), in addition to being associated with increases 

in arterial stiffness (van Duijnhoven et al., 2010) and increases in circulating biomarkers 

of endothelial damage (Boyle et al., 2013). Currently, the impact of sedentary behaviours 

on circulating angiogenic cells (CAC) have yet to be addressed, and it is unknown 

whether regular exercise can attenuate any negative effects sitting time can have on these 

cells. 
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The studies comprised within this thesis are aimed at examining the effects of age, 

cardiorespiratory fitness (CRF), exercise and sedentary behaviours on CACs and cell 

surface receptor expression. The thesis is presented in eight subsequent chapters. These 

chapters are detailed as follows: 

Chapter 2: This chapter reviews the current literature on the importance of the 

endothelium in cardiovascular health and the role of exercise and age on the 

endothelium and CACs. 

Chapter 3: This chapter details the materials and methods used to collect the data 

presented in the subsequent studies 

Chapter 4: This chapter presents the study investigating the influence of age and 

CRF on circulating CD34+ progenitor cells and C-X-C chemokine receptor 4 

(CXCR4) cell surface expression 

Chapter 5: This chapter presents the study investigating the influence of age and 

CRF on circulating CD31+ T-cells and CXCR4 cell surface receptor expression 

Chapter 6: This chapter presents the study investigating the effect sedentary 

behaviour (sitting time and screen time) has on CD34+ progenitors, and CD31+ T-

cells and how CRF may attenuate these effects.  

Chapter 7: This chapter presents the study investigating the effects of acute 

exercise on the CD31+ and CD31- T-cells in the circulation, and the role of the 

SDF-1:CXCR4 axis in the changes seen. 

Chapter 8: This chapter presents the study investigating the role of 

cytomegalovirus (CMV) on CD31+ T-cells. 

Chapter 9: This chapter discusses the findings presented in this thesis. 

Conclusions are presented, as are limitations within the thesis, and future studies 

are proposed.   

 

Keywords: Endothelium, Progenitor, T-Cell, Angiogenesis, Vasculogenesis, Exercise, 

Age. 
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The following literature review will cover the main research in the areas of exercise in 

cardiovascular health and disease, as well as the protective role that endothelial progenitor 

cells (EPC) and angiogenic T-cells (TANG) play in preventing vascular disease. The effects 

of exercise, physical activity or inactivity and sedentary behaviour on the circulating 

number and function of these cells will also be addressed.  

 

2.1 Cardiovascular Disease: Current State of Play 

Heart and circulatory disease is the United Kingdom’s biggest killer, with more than 1 in 

4 deaths in men before the age of 75, and 1 in 5 deaths in women before the age of 75 

accountable to CVD (Scarborough et al., 2010). It is estimated that nearly 30% of all 

deaths around the world are caused by CVD (Lozano et al., 2012). The death rates 

attributable to CVD differ depending on geographical region. Well-developed countries 

have much lower death rates attributable to CVD in comparison to less developed 

countries, with France, Spain, Denmark, Switzerland, USA and the UK all showing 

reduced age-corrected mortality rates due to CVD (149.6, 162.0, 173.5, 181.2, 235.5 and 

205.2 respectively [deaths per 100,000 population]) in comparison to Republic of 

Moldova, Kazakhstan, Kyrgyzstan, Uzbekistan, Belarus, and Turkmenistan (790.3, 809.8, 

841.8, 858.0, and 1017.4 respectively [deaths per 100,000 population]) (Go et al., 2014; 

Nichols et al., 2014). In Scotland, 16.2% of adults, aged 16+ had any CVD diagnosable 

condition (Bromley et al., 2012). This is not simply a medical issue, but also an economic 

one, with CVD estimated to cost the UK economy in the region of £30 billion a year.  

Despite the high prevalence, the death rate from CVD has been falling since the 1970s 

(Lozano et al., 2012), mostly as a result of medical and surgical advancements, as well as 

reductions in major risk factors, for example smoking. As a population, we are becoming 

older, we are living longer and thus are exposed to more risk factors in our lifetime, and 

thereby age itself is a significant risk factor for developing CVD. In the UK, life 

expectancy for males increased from 68.7 years in 1970 to 77.8 years in 2010, and 

likewise female life expectancy increased from 75 to 81.9 years in the same time period 

(Wang et al., 2012). Lozano et al. (2012) mathematically modelled the percentage change 

in death caused by non-communicable disease (NCD; e.g. CVD, diabetes and cancer) as 

a result of an ageing population, and estimated that there was a ~39% increase in deaths 

attributable to NCD as a direct consequence of more people living longer, and 22.9% as 
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a result of an increasing global population. These findings tell us that, although our life 

expectancy is increasing, we are not ageing ‘successfully’.  

In addition to age, other major risk factors for developing CVD are: smoking, gender, 

high blood pressure (hypertension), dyslipidemia and diabetes (Cupples and D'Agostino, 

1987). It is only recently the focus has evolved to the role that physical activity and 

inactivity may play in the development, progression or the prevention of CVD. In 1953, 

a seminal study investigating the mortality rates in bus conductors and bus drivers showed 

that bus drivers had a significantly higher mortality rate from CVD than bus conductors 

(Morris et al., 1953). The conclusion was that due to a higher level of physical activity, 

the bus conductors were ‘protected’ from developing CVD, whereas the inactive mode of 

work of the bus drivers led them to be susceptible. The study by Morris et al. (1953) has 

since been followed up by a plethora of studies suggesting that physical activity and 

physical fitness offers protection against mortality and CVD (Kurl et al., 2003; Joyner 

and Green, 2009; Vigen et al., 2012; Barry et al., 2013; Berry et al., 2013; Chomistek et 

al., 2013; Holtermann et al., 2015). Unsurprisingly, sedentary time (time spent seated or 

lying down per day being inactive) appears to have deleterious effects on health and 

longevity (Laufs et al., 2005b; Hamilton et al., 2007; Katzmarzyk et al., 2009; van der 

Ploeg et al., 2012; Wilmot et al., 2012; Staiano et al., 2014; Chau et al., 2015), yet its 

importance has only recently come into the spotlight. With the current depth of evidence 

on physical fitness, activity and inactivity, these 3 lifestyle factors should be taken into 

account in disease risk stratification.  

Physical activity reduces chronic low-grade inflammation (Mathur and Pedersen, 2008) 

which is a player in atherosclerotic lesion development (Libby et al., 2002), improves 

capillary number and thus improves tissue perfusion (Hoier and Hellsten, 2014), 

improves cardiac function (Ehsani et al., 1991; Turan et al., 2006), reduces body fat 

(Sillanpää et al., 2008), reduces fasting blood glucose (Gillen et al., 2012) and reduces 

blood pressure (Liu et al., 2012). Physical activity and physical fitness have many other 

benefits other than those which directly affect the cardiovascular system (CVS), increased 

insulin sensitivity (Babraj et al., 2009), improved mood state, reduced risk of depression 

(Mammen and Faulkner, 2013), dementia (DeFina et al., 2013), and can reduce incidence 

of some forms of cancer (Lee, 2003). Many have campaigned for physical activity to be 

prescribed by doctors, implying that exercise is a ‘polypill’- one medication that can 

impact on a large number of physiological variables related to health (Fiuza-Luces et al., 

2013; Matheson et al., 2013; Kraus et al., 2015; Sanchis-Gomar et al., 2015). A recent 
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meta-analysis (16 articles, >340,000 participants) by Huseyin and John (2013) found that 

exercise was comparable to drugs when the end-result was mortality risk. The number of 

exercise trials was only 54 in comparison to the 248 drug trials, yet the results showed 

that with respect to mortality from CHD, exercise (odds mortality 0.89, 0.74-1.04 95% 

credible intervals) was as effective as statins (0.82, 0.75-0.90), beta-blockers (0.85, 0.78-

0.92), antiplatelets (0.83, 0.74-0.93), and ACE inhibitors (0.83, 0.72-0.96). Furthermore, 

exercise was the favoured intervention for stroke, as when compared with anticoagulants 

and antiplatelets, odds ratios were significantly reduced in exercise (0.09 [0.01 – 0.70 95% 

credible intervals] vs. anticoagulants, 0.10, [0.01 – 0.62] vs. antiplatelets). Exercise was 

not always the best treatment however, for example in heart failure, diuretics had a greater 

impact on reducing mortality than exercise (0.19 [0.03 – 0.66 95% credible intervals] vs. 

0.79 [0.59-1.00]). More studies are required in order to fully understand the role and 

importance of exercise in medical treatment and prevention. 

Despite the clear health benefits of physical activity, we are becoming an increasingly 

sedentary population. It is estimated that over the past 50 years physical activity levels 

have reduced by 20% (UK-Active, 2014), thus the American College of Sports 

Medicine’s (ACSM) minimum guidelines for physical activity, which are to accumulate 

30 minutes of moderate intensity aerobic exercise 5 days per week (ACSM, 2013) are not 

currently being met by the majority of the UK population (NISRA, 2007; NHS, 2009; 

Bromley et al., 2013; WGSD, 2014). A recent meta-analysis suggests it may not be that 

we need to meet these guidelines for everyone, as the biggest effect on all-cause mortality 

may be going from lowest level of leisure time physical activity to the next (Myers et al., 

2004; Kelly et al., 2014), with no need to reach very high levels of physical activity, as 

for most, this would be difficult to manage. 

Periods of inactivity reduces insulin sensitivity (Rimbert et al., 2004; Reynolds et al., 

2014), vascular function (Nosova et al., 2014), can accelerate atherosclerotic plaque 

formation in mice (Laufs et al., 2005b) and is associated with high levels of plasma 

inflammatory cytokines C-reactive protein (CRP) and interleukin-6 (IL-6) (Fischer et al., 

2007). Recently, the clinical effects of physical inactivity have been called the 

‘diseasome’, with physical inactivity being labelled a promoter of disease (Arias-Loste et 

al., 2014). A simple measure, such as daily sitting time can be used as a surrogate measure 

of inactivity and can discriminate those who are at high risk of all-cause mortality, with 

those reporting high levels of sitting time at greater risk (van der Ploeg et al., 2012; 

Wilmot et al., 2012), and thus this can easily be part of a general practitioner’s monitoring 
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list to classify patients as low or high risk and treat accordingly. However, there exists a 

dichotomy, where a large number of those who sit for long periods at work, may take part 

in high intense training, for example recreational runners, cyclists and triathletes. The 

inter-play between fitness and sitting time must therefore be considered, and the effect of 

one attenuating the effects of the other must be investigated.  

The attributable fraction for mortality by CVD and all-cause mortality in the UK by 

physical inactivity is reported to be 10.5% and 16.9% respectively (Lee et al., 2012b), yet 

it was estimated that if physical inactivity was eliminated, life expectancy would only 

increase by 1.07 years. One way of interpreting this is to suggest that by reducing physical 

inactivity and sedentary behaviour may not extend our life to a great extent, but it may 

help us grow older ‘successfully’ without the burden of disease, and improve quality of 

life. The current evidence suggests that physical inactivity levels may not be associated 

with an increased CVD risk, due to the influence of the covariates, such as moderate and 

vigorous physical activity levels (Pulsford et al., 2015), therefore the potential impact of 

covariates must be considered for any studies investigating physical activity/inactivity. 

Working groups have been set up with the specific goal of improving physical activity 

levels, and reducing sedentary time. For example, The Lancet Physical Activity 

Observatory has the following goals: 

1. To reduce the global prevalence of physical inactivity among adults from 31% to 

28% 

2. Increase the proportion of adolescents engaging in at least 1 hour per day of 

vigorous and moderate-intensity physical activity from 21% to 24% 

3. Reduce the proportions of coronary heart disease, type 2 diabetes, breast cancer, 

colon cancer, and premature deaths worldwide that are attributable to physical 

inactivity by 10% 

4. Increase the proportion of peer-reviewed scientific publications on physical 

activity that come from low-income and middle-income countries over the total 

number of publications by 10%. 

Taken from Kohl 3rd et al., 2012 

The World Health Organization (WHO) have charged their 25 member states to reduce 

physical inactivity levels by 10% by 2025 (WHO, 2010). The fact that these organisations 



11 
 

are publishing these guidelines and goals highlights the pandemic of physical inactivity, 

so much so that there is more media attention being paid to it (Figure 2.1). 

 

Figure 2.1. Media headlines concerning physical activity and inactivity levels. Sources: 

www.bbc.co.uk/news/health, www.theguardian.co.uk/society/health  

   

2.2 The Endothelium 

The endothelium is the inner layer of all blood vessels, and in the case of capillaries, the 

only layer. The endothelial cells function to control diffusion and transport nutrients, 

gases and other signalling proteins from the blood and into the tissues (and vice versa), 

and control the adhesion, rolling and migration of leukocytes to sites of infection and 

tissue damage. This cell is also crucial in the regulation of blood flow distribution 

throughout the body. The endothelium, under certain physiological conditions, can 

release vasoactive substances, for example nitric oxide (NO) and prostacyclin (PGI2). 

Vasodilatation (the increase in diameter of the vascular lumen to allow greater blood flow 

distal to the vessel) predominantly occurs via endothelial cell production and secretion of 

NO (Furchgott and Zawadzki, 1980) which subsequently acts on vascular smooth muscle 
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cells (VSMCs) to stimulate relaxation, and the end result being a widening of the vessel 

lumen (figure 2.2).  

The endothelial cells contain an isoform of NO synthase termed endothelial NO synthase 

(eNOS) (Novella et al., 2013), which, when activated, cleaves the nitrogen group from 

the amino acid L-arginine and combines it with an oxygen molecule to form NO. 

Activation of eNOS can occur via shear stress (the force of blood against the vessel wall) 

(Huang et al., 2015a) as well as other inflammatory mediators, such as bradykinin (Bae 

et al., 2003) which leads to the observed vasodilatation of inflammation. Shear stress 

provides a mechanical signal, which is ‘sensed’ by the glycocalyx (a carbohydrate rich 

extracellular layer anchored to the endothelial cell membrane). The glycocalyx offers a 

buffer between erythrocytes and endothelial cells, thereby offering cellular protection 

from mechanical disruption. Glycocalyx disruption by shear stress activates the enzyme 

phosphatidyl inositol-3 kinase (PI3K) leading to activation of protein kinase B. This 

enzyme phosphorylates eNOS resulting in NO production from L-arginine and oxygen. 

NO diffuses to neighbouring VSMCs where it binds to the haem group of guanylyl 

cyclase which then catalyses the production of cyclic guanosine monophosphate (cGMP) 

from guanosine triphosphate (GTP). The cGMP produced activates a protein kinase G 

which phosphorylates phospholamban to reduce the inhibition of calcium-ATPase (Ca2+-

ATPase) pumps, leading to an expulsion of Ca2+ from the cytoplasm, and thus reduced 

Ca2+ bioavailability within the cytoplasm to bind troponin to reveal binding sites on actin 

for myosin to bind in order for cross-bridge contraction to occur, thus causing relaxation. 

The second mechanism by which NO causes VSMC relaxation and thus vasodilatation is 

by activating potassium channels in the VSMC membrane, which hyperpolarises the 

muscle cell, leading to relaxation (Stankevičius et al., 2011). The importance of the 

endothelium in vasodilatation was exhibited in animal studies, where dilatation of arteries 

was dependent on the presence of an intact endothelial cell layer (Smiesko et al., 1985; 

Pohl et al., 1986). 
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Figure 2.2. Endothelium-dependent vasodilation. Figure shows the production of nitric 
oxide via mechanotransduction of laminar shear stress, diffusion across to the vascular 
smooth muscle cells and cause relaxation with resulting vessel lumen widening. Adapted 
from Harrison et al. (2006), Mochizuki et al. (2003) and Lincoln et al. (2001). c-src- 
Tyrosine-protein kinase CSK, Ras- Rat Sarcoma, Raf- Ras-Associated Factor, MAPK- 
Mitogen-Activated Protein Kinase, eNOS-endothelial nitric oxide, NO-nitric oxide, 
NFkB- Nuclear Factor kB, G- G protein, GC- Guanylate Cyclase, GTP- Guanosine 
Triphosphate, cGMP- Cyclic Guanosine Monophosphate , Ca2+ cytosolic calcium. 

 

The ability of endothelial cells to produce and release NO for VSMC relaxation is 

commonly known as endothelial function. This can be measured in vivo by flow-mediated 

dilatation (FMD). FMD utilises the ischaemic hyperaemic response to assess the ability 

of the blood vessels to dilate to an ischaemic challenge. Importantly, FMD seems to offer 

prognostic information regarding the vascular health of individuals who are 

asymptomatic and those with CVD. Indeed several studies have shown FMD to 

independently predict future CV events (Gokce et al., 2003; Meyer et al., 2005; Yeboah 

et al., 2007; Shechter et al., 2009; Yeboah et al., 2009; Green et al., 2011; Hafner et al., 

2014) confirming the role of a dysfunctional endothelium in CVD onset or progression.  

The physiological basis for a role of a dysfunctional endothelium in CVD is the 

assumption that it reflects NO bioavailability. NO not only functions in the regulation of 
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vascular tone, but it is also anti-atherogenic, and inhibits platelet and leukocyte adhesion 

to the endothelial cell wall (Moncada et al., 1991; Cooke and Tsao, 1994). The endothelial 

cell production of NO important for dilation of resistance vessels, but it is also the role 

the endothelium plays in repairing and growing of new blood vessels by endothelial 

proliferation that is important to maintain homeostasis. For example, after tissue injury, 

insufficient blood vessel formation can lead to tissue death as in CVD, and delayed wound 

healing (Watt and Fox, 2005; Martin-Rendon et al., 2009; Critser and Yoder, 2010). 

Therefore, CVD and other vascular-related diseases (for example diabetes mellitus) often 

display a lopsided cardiovascular (CV) maintenance system, whereby endothelial repair 

fails to keep up with endothelial damage.  

 

2.2.1 The Role of the Endothelium in Progression of Cardiovascular Disease and 

Ageing 

Endothelial dysfunction often precedes CVD, and as mentioned previously can predict 

CV events (Green et al., 2011) and mortality (Shechter et al., 2009). Anderson et al. (2011) 

found that in 1574 men, aged 49.4 ± 9.9 years, FMD did not predict subsequent CV events. 

The follow up period in this study was limited (only 9 years), and CV events only 

occurred in 71 of the men (4.5%), so results from the study need to be interpreted with 

caution. In addition, FMD is limited by the measure variation, which can be up to 20%. 

The majority of evidence supports the hypothesis that the endothelium plays a significant 

role in onset and progression of vascular diseases (Gokce et al., 2003; Shechter et al., 

2009; Li and Förstermann, 2013; Miller et al., 2013; Hafner et al., 2014; Liao et al., 2014; 

Manganaro et al., 2014).  

The vascular endothelium in disease states has been reported to be in replicative 

senescence, which may contribute to endothelial dysfunction, as senescent endothelial 

cells contain reduced levels of eNOS activity and reduced NO release upon shear stress 

stimulation (Matsushita et al., 2001). Oxidative stress caused by excessive levels of 

reactive oxygen species (ROS; for example free oxygen radicals, oxygen ions and 

peroxides) or reactive nitrogen species (RNS; for example NO, superoxides), which are 

known to be increased in CVD, may also contribute to endothelial dysfunction (Taddei et 

al., 2001). Oxidative stress has been associated with atherosclerosis (Stocker and Keaney, 

2004), as oxidised low density lipoprotein (oxLDL) stimulates macrophages to migrate 

from blood into the sub-endothelial space, to internalise the oxLDL which then cause the 
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macrophages to transition to foam cells - a key process in the initial development of an 

atherosclerotic lesion. Park et al. (2007) were able to demonstrate that in aged mice there 

is also a concomitant increase in ROS production by NADPH-oxidase which may 

contribute to endothelial dysfunction. Reducing production of ROS molecules (by 

treatment with NG nitro-L-arginine methyl ester [L-NAME] or diphenyliodonium) leads 

to improved endothelial function (Hamilton et al., 2001; Csiszar et al., 2002) highlighting 

the role of ROS in endothelial dysfunction. 

Advancing age is often characterised with a dysfunctional endothelial phenotype (Taddei 

et al., 2001; Muller-Delp, 2006; Soucy et al., 2006; Black et al., 2008; Black et al., 2009), 

apoptosis of aged endothelial cells (Wang et al., 2013) and altered intracellular signalling 

(Soucy et al., 2006). Oxidative stress appears to play a role in age-related endothelial 

dysfunction, as excessive ROS leads to cellular dysfunction and apoptosis (Dikalov, 2011) 

as a consequence of excessive hydrogen peroxide (H2O2) production leading to DNA 

damage and senescence. Aged vascular tissue exhibit greater levels of superoxide anions 

(O2
-) than their younger counterparts (Hamilton et al., 2001; Chrissobolis and Faraci, 

2008; Mayhan et al., 2008), a potential source of cellular H2O2 production. Studies have 

paradoxically shown an increase in eNOS content within aortic rings from old rats (22 

months old) in comparison to young (2 months old) (Luttrell et al., 2013) despite reduced 

endothelial function, a potential overcompensatory mechanism to increase the drive for 

NO production. 

 

2.2.2 The Protective Role of Exercise on the Endothelium 

Exercise offers anti-atherogenic effects, preventing or reversal of plaque formation in the 

vasculature (Szostak and Laurant, 2011; Huang et al., 2015b; Madssen et al., 2015). This 

can be achieved through modulation of endothelial adhesion receptor expression via 

shear-stress stimulation (Ando et al., 1994; Sheikh et al., 2003). Exercise results in an 

increase in cardiac output ("), and thus greater blood flow through the vasculature. This 

increase in blood flow consequently creates a greater shear stress stimulus, which is the 

shearing effect of circulating cells across the endothelial cell layer. Greater levels of 

laminar shear stress reduce adhesion receptor expression on the endothelium (Ando et al., 

1994; Sheikh et al., 2003) whereas lower levels and oscillatory/disturbed patterns of shear 

stress increases adhesion receptor expression (Chappell et al., 1998; Sheikh et al., 2003), 

commonly seen at bifurcation points in the arterial tree (points where vessels branch off) 
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(Chiu and Chien, 2011). These adhesion receptors (commonly platelet-endothelial 

adhesion molecule-1, PECAM-1; vascular cell adhesion molecule-1, VCAM-1) mediate 

the adhesion, rolling and extravasation of leukocytes across the vascular wall. Although 

the migration of leukocytes is very important for immunosurveillance, it can also be 

detrimental, as leukocyte infiltration of VSMCs is one of the initial steps for 

atherosclerotic plaque formation.  

There is a an abundance of data indicating that exercise training results in a greater FMD, 

indicating improved endothelial function (Black et al., 2008; Farsidfar et al., 2008; 

Rakobowchuk et al., 2008; Black et al., 2009; Birk et al., 2012; Luk et al., 2012; Murias 

et al., 2013; Ashor et al., 2015). Importantly also, sedentary behaviour results in the 

opposite, a reduction in FMD scores (Demiot et al., 2007; Thosar et al., 2012; Januszek 

et al., 2014; Thosar et al., 2015a). This is because there is a lack of increased stimulus of 

shear stress across the endothelium, which is required to an extent, for improvements in 

FMD to be seen as a result of exercise training (Birk et al., 2012). 

 

2.2.3 Angiogenesis 

The development of the vasculature occurs in the early stage of foetal development, and 

is termed vasculogenesis (Risau et al., 1988). The source of this vascular development 

includes haematopoietic progenitor cells from the embryonic yolk sac and placenta 

(Caprioli et al., 2001) and angioblasts, a subset of peripherally located blood island cells 

(Patel-Hett and D'Amore, 2011). Embryonic blood vessel development proceeds as 

angioblasts differentiate to form endothelial cells, form a lumen and deposit a basal 

lamina. An important family of signalling molecules involved in embryonic vascular 

development is the vascular endothelial growth factor (VEGF) family, including VEGF-

A, VEGF-B and VEGF-C. Embryos lacking a single copy of VEGF (VEGF-A+/-) 

(Carmeliet et al., 1996) or a receptor for VEGF-A (VEGFR1 or VEGFR2) die early in 

development stages due to an inability to regulate vasculogenesis (Fong et al., 1995) or 

to form sufficient vascular networks respectively (Shalaby et al., 1995). VEGF-deficient 

skeletal muscle also causes a regression of capillary number indicating a key role of 

VEGF to maintain skeletal muscle blood flow (Tang et al., 2004). VEGF is such an 

important regulator in angiogenesis, that anti-VEGF therapy has been used in cancer 

patients to inhibit the growth of tumours (Ebos et al., 2009) 
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Angiogenesis, the growth and formation of new blood vessels from pre-existing blood 

vessels, occurs in the adult. This post-natal vascular growth involves the splitting or 

sprouting of pre-existing vessels via a process of basement membrane degradation and 

endothelial cell tip formation. The process is highly dependent upon VEGF as with 

embryonic vascular growth. Angiogenesis may be stimulated by hypoxia as a 

consequence of hypoxia-inducible factor-1 α (HIF-1α)-induced expression of VEGF 

(Kelly et al., 2003). It may also be stimulated by shear stress across the endothelium, as 

increased shear stress increases capillary endothelial cell growth in vitro (Ando et al., 

1987).  

Angiogenesis is crucial for adult vascular homeostasis, and this ability is reduced with 

advancing age, shown both in mice (Rivard et al., 1999; Sadoun and Reed, 2003; Reed 

and Edelberg, 2004; Wang et al., 2011) and in humans (Gunin et al., 2014). The age-

related decline in angiogenic capabilities may be one mechanism behind age being a 

significant risk factor for development and progression of CVD. After all, angiogenesis 

would be of benefit to restoring blood flow to ischemic tissues. On the other hand, 

angiogenesis is a crucial process in the development of tumours. Accelerated 

angiogenesis provides a vascular network which provides more nutrients for the 

developing tumour to continue to grow (Folkman, 1995).  

Muscle tissue capillarity is reduced in cardiovascular-related disease states, as well as in 

metabolic syndrome (Frisbee et al., 2014) and this loss of vasculature is associated with 

a reduced exercise capacity (Potus et al., 2014). Both the loss of vasculature with disease 

and the link to reduced exercise performance indicates that maintenance or improvement 

in vascularisation of muscle tissue is key for prevention of vascular-related diseases and 

also for those who are taking part in an exercise training regime to promote aerobic fitness. 

Therefore the role of exercise in promoting angiogenesis may be of importance to both 

sporting and diseased populations. 

Exercise has a remarkable ability to stimulate blood vessel morphological changes. This 

encapsulates the ability of exercise to reduce vessel stiffness (Fujie et al., 2014), improve 

vascular function (Goto et al., 2003; Rakobowchuk et al., 2008; Black et al., 2009; Tinken 

et al., 2010) as well as increase vessel number (Laufs et al., 2004; Chinsomboon et al., 

2009; Geng et al., 2010; Bellafiore et al., 2013), and this would result in more efficient 

delivery of oxygen (O2) and nutrients to the exercising muscle. Exercise-stimulated 

angiogenesis allows for more blood flow to skeletal muscle for future exercise endeavours. 
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An increase in maximal oxygen consumption (#O2max) as a consequence of regular 

exercise training may be due in part to the increase in blood vessel number. It has been 

shown that the increases in vessel number are due to increases in gene expression, tissue 

content and circulating levels of pro-angiogenic growth factors, for example VEGF 

(Breen et al., 1996; Gustafsson et al., 1999; Ross et al., 2014), and HIF-1α (Gustafsson 

et al., 1999). 

These capillary changes are fibre-type specific (Gute et al., 1996; Waters et al., 2004), 

therefore the increases in pro-angiogenic growth factors must originate from the 

contractile tissue. VEGF has been shown to originate within skeletal muscle, located near 

the contractile elements (Hoier et al., 2013; Uchida et al., 2015), and during exercise, 

VEGF is transported from within the muscle fibre to the extracellular space via 

intracellular vesicles. The subsequent release of VEGF into interstitial space can then 

have an effect on surrounding capillaries and their endothelial cells, stimulating 

endothelial tip cell formation (Gerhardt et al., 2003) as well as acting as a chemoattractant 

to attract endothelial proliferation and vessel growth in the direction of the metabolically 

active tissue. 

 

2.3 Post-Natal Vasculogenesis - The Discovery of Endothelial 

Progenitors 

Until recently it was thought that adult vessel formation was by the process of 

angiogenesis, which is the growth and formation of new blood vessels from pre-existing 

vessels, which is highly flow-dependent (Ando et al., 1987; Hudlicka, 1991).  

In 1997, Asahara et al. (1997) discovered that by isolating CD34+ cells from human 

peripheral blood by magnetic sorting and plating these cells on fibronectin-coated plates, 

that they formed spindle and tube-like structures in vitro. After 7 days in culture, these 

cells began to express endothelial-lineage markers such as VEGF, PECAM (CD31), and 

E-selectin and would stain positively for eNOS. These cells were also able to secrete NO 

under stimulation by VEGF and acetylcholine, which is a key characteristic of mature 

endothelial cells. To confirm their roles in vascular growth, the researchers used a mouse 

hindlimb ischemic model and administered human CD34+ or CD34- cells. Athymic nude 

mice were used in this study to prevent graft-versus-host complications. The mice which 

were administered with CD34+ cells were found to have these cells incorporated into 
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vessels in the ischemic hindlimb. Authors failed to assess recovery of blood flow in the 

mice. Various studies have confirmed the incorporation of CD34+ cells into the vascular 

wall and differentiate into mature endothelial cells (Galasso et al., 2013; Shi et al., 2013). 

The topic of the origin of these cells has been much debated. Studies have shown that 

these cells are derived from BM progenitors (Asahara et al., 1999a; Reyes et al., 2002).  

Although the BM may be the origin of these cells, a small proportion circulate in 

peripheral blood, with reports of EPCs accounting for between 0.0001 and 0.01% of all 

circulating mononuclear cells (MNCs) (Case et al., 2007). Asahara et al. (1999a) 

investigated whether these progenitors were derived from BM, and used a murine BM 

transplant model, in which they lethally irradiated mice, transplanted them with BM 

overexpressing ß-galactosidase (lacZ) regulated by the Tie-2 promotor (murine VEGF 

receptor), or from mice with a null mutation for flk-1 (containing a promoter-less lacZ 

gene). With the use of tumour, wound healing, ischemic hindlimb and myocardial 

infarction models, they observed flk-1/lacZ and Tie-2/lacZ transcripts within the tumour 

tissue, in addition to EPCs located within neovascularised vessels in the remaining 

models. These cells were also observed to be localised in the lungs, spleen, liver, intestine, 

skin, ovary and uterus vasculature, albeit in small number, indicating that these BM-

derived cells do not simply play a role in repairing vasculature, but also in organ 

maintenance. 

Reyes et al. (2002) obtained BM from healthy human volunteers, and excluded CD45+ 

cells, as these cells are leukocyte precursors, and cultured the remainder of the BM cells 

on fibronectin plates, with VEGF as an endothelial-specific medium to encourage 

endothelial cell marker expression. After 9-14 days, these cells showed increased 

expression of VCAM-1, E-selectin, von Willebrand factor (vWf), PECAM (CD31), 

vascular endothelial-cadherin (VE-cadherin). These cells were then implanted into mice 

with Lewis lung carcinoma spheroids and the researchers discovered increased vascular 

mass in those that received the adult progenitor cell-derived endothelial cells than those 

who did not (x 1.45-fold).  The contribution of BM-derived progenitors to tumour 

vasculature has been debated, with some authors finding no contribution of these cells to 

vascular growth in murine tumour models or matrigel plug experiments (Purhonen et al., 

2008). This may be due to the lack of mobilisation of BM-derived progenitors observed 

in this study, and therefore the abundance of circulating BM-derived progenitors and the 

ability of these cells to significantly contribute to the vascular growth observed in the 

tumour would be limited. 
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Some researchers have contested the view that true endothelial precursors (cells that can 

differentiate into mature endothelial cells) are derived from the BM, although Asahara et 

al. (1999a) and Reyes et al. (2002) clearly show that BM-derived cells contribute to 

vascular growth in mice. It may be that these BM-derived cells are not true endothelial 

precursors, rather a cell line that can instigate and support endothelial cell growth by 

paracrine means through secretion of pro-angiogenic growth factors, such as VEGF, 

interleukin-8 (IL-8) and granulocyte colony-stimulating factor (G-CSF) (Hur et al., 2004). 

Some have suggested that EPCs are found to be resident within the vascular wall, and 

stimulated into differentiation upon demand. In mice, the adventitia of aortic root vessels 

contained clusters of cells positive for stem cell antigen-1 (Sca1) which had the potential 

to differentiate into a VSMC (Hu et al., 2004), however there was no evidence in this 

study to suggest they could differentiate into an endothelial cell. In adult human arteries, 

the adventitia contained CD34+ cells, which were found to promote vessel formation in 

vivo (Zengin et al., 2006). These cells could also form endothelial-like cells in the 

presence of VEGF in vitro, in addition to forming capillary-like structures (Pasquinelli et 

al., 2007). In contrast, adventitial Sca1+ cells from adult mice thoracic aorta failed to 

express endothelial cell antigens (Passman et al., 2008), suggesting these adventitial 

Sca1+ cells have the ability to differentiate into VSMCs alone. It is likely that vascular 

repair and growth proceeds in a complex fashion, with contribution of circulating EPCs 

that can differentiate into endothelial cells, circulating haematopoietic cells, which can 

support endothelial repair and growth through paracrine means, resident endothelial cell 

proliferation, and tissue-resident progenitor cells (both endothelial and VSMC resident 

progenitors) which differentiate when stimulated to do so.  The exact contribution of each 

to a single episode of vascular repair or insult is not known, and may differ depending on 

location on the vascular tree (Schwartz and Benditt, 1976). 

Whether circulating EPCs participate in endothelial differentiation, or promote 

vasculogenesis by secreting pro-angiogenic growth factors, they may be of use as a 

cellular biomarker for endothelial function (Oliveras et al., 2008) or for an individual’s 

vascular growth and repair ability. 
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2.3.1 The Mobilisation and Recruitment of Bone Marrow-Derived Endothelial 

Progenitor Cells 

For EPCs to exert their vasculo-reparative potential they must first be mobilised from the 

BM. Stem or progenitor cells often express C-X-C Chemokine Receptor 4 (CXCR4) 

(Hattori et al., 2001; Wojakowski et al., 2004; Kaminski et al., 2007; Ziaei et al., 2014) 

which is a seven-transmembrane-spanning G protein-coupled receptor and is the receptor 

for the ligand SDF-1. Stem/progenitor cell number within the BM is tightly regulated by 

the relationship between SDF-1 and CXCR4, more commonly known as the SDF-

1:CXCR4 axis. Stromal cells within the BM express and release SDF-1, which acts to 

prevent stem/progenitor cell release into the circulation. SDF-1 can be cleaved by CD26 

which can be located on stem/progenitor cells (Christopherson et al., 2002),  in addition 

to proteinases such as elastase and cathepsin G causing the inactivation of SDF-1, which 

themselves are released by neutrophils (Levesque et al., 2003). Therefore neutrophils may 

be a key cellular regulator of CXCR4+ stem/progenitor cell mobilisation. 

G-CSF (Takahashi et al., 1999; Natori et al., 2002; Powell et al., 2005; Pitchford et al., 

2009; Fu et al., 2015), and VEGF (Asahara et al., 1999b; Pitchford et al., 2009; Tashiro 

et al., 2014) are both known to stimulate the mobilisation of progenitor cells from the 

BM. VEGF appears to only mobilise BM-progenitor cells with a receptor for it, e.g. 

VEGFR2, as indicated by a loss of mobilisation of BM progenitors by VEGF that did not 

express this marker, for example hematopoietic stem cells (Pitchford et al., 2009). G-CSF 

is often used in the clinical settling to mobilise BM progenitor cells into the peripheral 

circulation for transplantation and use in medicine. Alongside VEGF, G-CSF may play a 

role in the maintenance of circulating progenitor cells as well as the dynamic changes to 

the desired requirements for these cells for tissue repair. 

Once mobilised, progenitor cells need to travel to where they are required for tissue repair. 

This is a process called ‘homing’, a process governed by a chemotactic gradient. EPCs 

express VEGFR2 in addition expressing CXCR4, therefore can home to sites of tissue 

damage and ischemia by travelling along a gradient of VEGF (Tang et al., 2009b; 

Williamson et al., 2013) and SDF-1 (Yamaguchi et al., 2003). In fact the migratory 

capacity of EPCs is often assessed by their ability to migrate across a semi-permeable 

membrane to differing concentrations of either VEGF or SDF-1 (Peichev et al., 2000), 

and blocking with antibodies or antagonists to VEGFR2 (Tang et al., 2009b) or CXCR4 

impair or completely block migration of these cells (Sun et al., 2013). 
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2.3.2 Characterisation of Endothelial Progenitor Cells 

There is widespread debate on the exact antigenic characterisation of circulating EPCs as 

well as their exact role in vascular repair. They are typically enumerated by fluorescence 

activated cell sorting (FACS) and flow cytometry, identifying cell surface antigens that 

appear on cultured cells that can form tubular-like structures in vitro. 

Cell surface antigens of EPCs include a stem cell antigen (for example CD34, CD133), 

and a marker of endothelial cell lineage (e.g. VEGF, vWf, CD31). As mentioned, the cells 

that express these markers in the combination of a stem cell marker and endothelial 

marker have the ability to form tube-like structures, and express eNOS, a key marker of 

putative endothelial precursor cells (Asahara et al., 1997). CD34 is often used as a stem 

cell marker for the identification of EPCs, however, CD34 can be expressed by mature 

endothelial cells (Fina et al., 1990) but is generally accepted to be a reliable marker for 

progenitors for a number of different tissue-types (Sidney et al., 2014). It therefore 

follows that more markers may be required to discriminate between circulating EPCs and 

circulating endothelial cells which may have detached from the vessel wall. Markers such 

as CD133 (also known as AC133) and the negative selection of CD45 have both been 

mooted as potential markers to use, not just to discriminate between circulating mature 

endothelial cells, but also between EPCs and hematopoietic stem cells which also express 

CD34 (Case et al., 2007). 

There appears to be two distinct subsets of EPCs, each one playing divergent roles in 

endothelial repair. These have been termed ‘early’ and ‘late’ EPCs, or outgrowth cells. 

They have been termed so because of their appearance in culture. Early EPCs appear early 

in culture (but die after 4 weeks), they secreted pro-angiogenic cytokines and growth 

factors, such as VEGF, IL-8, whereas late EPC appear late in culture (up to 12 weeks), 

produce more NO than the early EPC subset, and formed capillary tube-like structures to 

a greater extent than early EPCs (Hur et al., 2004). These subsets also differed in their 

gene expression profiles, with late EPCs expressing greater levels of VEGFR2 and VE-

cadherin messenger RNA (mRNA), suggestive of being more of an endothelial cell 

phenotype. Taken together, it can be suggested that late EPCs have potentially greater 

ability to differentiate into endothelial cells, whereas early EPCs have greater potential to 

act in a paracrine manner, by producing and secreting pro-angiogenic factors to stimulate 

endothelial cell proliferation. 
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Case and colleagues (2007) identified CD34+CD133+VEGFR2+ cells, muted to be EPCs, 

however these cells failed to form vessels to a significant extent. The authors referred to 

these cells as a subset of hematopoietic cells and not EPCs, and these cells were also 

found to be expressing CD45 to a high level. This study however failed to investigate 

gene expression profiles, or compare to a CD34+CD133-VEGFR2+ fraction, but they did 

compare endothelial cell colony forming unit (EC-CFU) measures between CD34+CD45+ 

and CD34+CD45-. The CD45- fraction was able to form EC-CFU, however the CD45+ 

cell fraction did not. Hence, positive or negative selection of CD45 may offer a means to 

measure distinct EPC populations. This inability of CD45+ or CD133+ progenitors to form 

endothelial-like cells has been seen elsewhere (Timmermans et al., 2007). Recent studies 

still use CD34+CD133+ or CD34+CD45+ as antigenic characterisation of EPCs, yet the 

literature shows that these cells are probably not true endothelial precursors. These cells 

may still offer some prognostic information as they may contribute to endothelial 

homeostasis through paracrine mechanisms. Cell surface antigens of both ‘early’ and ‘late’ 

putative EPCs are summarised in table 2.1. 

Table 2.1. Phenotyping of endothelial progenitors. 

 CD34 CD133 CD45 VEGFR2 CD31 vWf CXCR4 

‘Early’ 
EPC 

+ + + + + + +/- 

‘Late’ 
EPC 

+ - -/dim + + + +/- 

 

 

2.3.3 Endothelial Progenitors in Cardiovascular Disease and Diabetes 

Since endothelial progenitors play a role in vascular repair (whether that be paracrine or 

by adhering to the endothelium and differentiating into mature endothelial cells) it seems 

pertinent to investigate if they play a role in preventing CVD or vascular dysfunction. 

Many studies have found that in those with CVD or CV risk factors, circulating EPCs are 

either low in the circulation or are functionally impaired in comparison to age-matched 

healthy controls (Hill et al., 2003; Fadini et al., 2005; Schmidt-Lucke et al., 2005; Walter 

et al., 2005; Fadini et al., 2006; Xiao et al., 2007; Sibal et al., 2009; Jung et al., 2010; Liu 

and Xie, 2012; Rouhl et al., 2012; Shantsila et al., 2012; Teraa et al., 2013; Vemparala et 
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al., 2013; Barsotti et al., 2014; Bruyndonckx et al., 2014; Liao et al., 2014). Circulating 

EPC counts are also associated with endothelial function (Sibal et al., 2009; Bruyndonckx 

et al., 2014) potentially implicating the role of EPCs in maintaining endothelial 

homeostasis. Hill et al. (2003) published data that appeared to suggest that EC-CFU 

number, not traditional cardiovascular risk factors (Framingham Risk Scores) were 

associated with endothelial function. Some studies show no such differences between 

CVD and ‘healthy’ controls (Padfield et al., 2013), with one study showing that CD34+ 

circulating progenitor cells offered more prognostic information relating to risk of 

mortality than CD34+VEGFR2+ EPCs (Patel et al., 2015). Interestingly, when researchers 

investigated CD34+CXCR4+ numbers, those in the lowest tertile group had a hazard ratio 

of 2.77 for risk of death in comparison to those in the highest tertile. The addition of 

CXCR4 expression analysis to EPC studies investigating CVD risk and risk of mortality 

may add more physiological understanding behind the causes of vascular disease as 

CXCR4 could be potentially used as an indirect indicator of ability to migrate. Indeed 

blockade of CXCR4 expression in EPCs has been shown to significantly reduce in vitro 

EPC migration, adhesion and re-endothelialisation (Xia et al., 2012a). 

The number of late EPCs have been shown to be predictive of mortality rate, with higher 

numbers associated with a lower mortality rate in heart failure patients (Alba et al., 

2013b). Pelliccia et al. (2013) observed that in people with stable angina who had 

undergone percutaneous coronary intervention, those with higher numbers of 

CD34+CD45-VEGFR2+ cells had greater risk of a primary event than those with lower 

circulating number of these cells. Those in the highest tertile for these circulating cells 

were at significantly greater risk of a follow up event within 5 years, with <50% of those 

individuals being event free at the 5-year end point of the study. It is currently unclear 

why these authors found these results, but may be linked to the potential participation of 

EPCs in the progression of atherosclerosis (Massot et al., 2013), however evidence is 

limited. The role of EPCs in the progression or prevention of atherosclerosis has been 

investigated with much interest in the past decade. Some reports show that EPCs, either 

by association (Fadini et al., 2006) or by infusion are linked with either reduced 

atherosclerotic plaque number or burden, or with a decrease in plaque progression (Yao 

et al., 2012; Tousoulis et al., 2013). Interestingly, upon stimulation by tumour necrosis 

factor-α (TNF-α), late EPCs isolated from humans secreted significant levels of 

plasminogen activator inhibitor 1 (PAI-1) and monocyte chemoattractant protein-1 

(MCP-1) (Zhang et al., 2009). PAI-1 is linked with atherosclerosis (Peng et al., 2008) due 
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to its role in preventing the dissolution of fibrin and helps with clotting. In fact PAI-1 is 

expressed within atherosclerotic plaques, and expression is increased with increasingly 

progressed plaques (Padró et al., 1997). MCP-1 is involved in the adhesion of monocytes 

to the vascular wall (Gerszten et al., 1999), a process involved in atherosclerotic plaque 

development. Gosling et al. (1999) deleted the MCP-1 gene from alipoprotein B+ 

transgenic mice and found that there was a significant reduction in monocyte recruitment 

to atherosclerotic lesions in comparison to mice with the MCP-1 gene intact. Therefore 

both PAI-1 and MCP-1 could be considered a pro-inflammatory mediator of 

atherosclerosis. EPCs secreting these factors is a surprising function, and paves the way 

for the potential for EPCs to be involved in atherosclerosis development and progression. 

These observations could suggest that there may be evidence for a pro-inflammatory 

environment shifting EPCs from an anti-inflammatory to a pro-inflammatory phenotype. 

In the studies showing reduction in circulating number of EPCs, the reduction seen may 

be due to an exhaustion of the BM pool of these cells because of a chronic requirement 

for vascular repair. In those with CVD, there is evidence of extensive endothelial damage 

and dysfunction. Endothelial microparticles (EMPs) are blebs of cells that are released by 

endothelial cells undergoing apoptosis (Jimenez et al., 2003), and several studies have 

found that EMPs circulating in the blood are elevated in those with CVD (Bernal-

Mizrachi et al., 2004; Sinning et al., 2011) and diabetes (Sabatier et al., 2002), suggestive 

of both endothelial damage and a need for endothelial repair. Taken with the documented 

evidence of endothelial dysfunction with CVD (Gokce et al., 2003; Shechter et al., 2009; 

Li and Förstermann, 2013; Miller et al., 2013; Hafner et al., 2014; Liao et al., 2014; 

Manganaro et al., 2014) it appears that EPCs are at increased demand, and thus it may be 

that the signal for increased repair may deplete BM of progenitors. For example, an 

infusion of VEGF in mice has been shown to reduce number of both hematopoietic and 

mesenchymal stem and progenitor cells within the BM after five days (Tashiro et al., 

2014). It could be that the chronic need for EPCs in the CVS could eventually diminish 

BM progenitors as a result of inadequate production of progenitors. Critical limb ischemia 

patients have been seen to not only have reduced number of circulating EPCs, but also 

reduced number of BM CD34+ cells compared to healthy controls (Teraa et al., 2013). 

Over time this would mean reduced number appearing in the circulation that was seen in 

the latter study. The authors attributed this to the increased systemic inflammation that is 

seen in CVD. 
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The reduction in circulating progenitors may also be due to an impaired mobilisation 

process. Teraa et al. (2013) found a reduced matrix metalloproteinase-9 (MMP-9) activity 

in those with critical limb ischemia versus healthy controls, a finding that was 

accompanied by the reduction in circulating EPCs and in BM CD34+ progenitor cell 

numbers. MMP-9 is reported to play a role in the mobilisation of progenitors from the 

BM (Huang et al., 2009; Jujo et al., 2010; Ling et al., 2012), thought to be via cleaving 

BM SDF-1 (Jin et al., 2008), leaving CXCR4+ progenitors free to enter the circulation.  

With acute coronary syndromes (ACS) we see an increase in CD34+/CD133+ progenitor 

and EPC mobilisation in the acute phase after a myocardial infarction or other ischaemic 

event, e.g. ischaemic stroke (Shintani et al., 2001; Wojakowski et al., 2004; Assmus et 

al., 2012; Sobrino et al., 2012; Martí-Fàbregas et al., 2013; Paczkowska et al., 2013; Sepp 

et al., 2014; Regueiro et al., 2015). The changes in circulating EPC are accompanied by 

release of VEGF and SDF-1 (Shintani et al., 2001; Wojakowski et al., 2004; Sobrino et 

al., 2012; Paczkowska et al., 2013; Chen et al., 2015). The extent of mobilisation of these 

progenitor cells is positively associated with the rise in SDF-1 (Chen et al., 2015).  EPCs 

and other tissue-specific progenitor cells are mobilised as a consequence of ischaemic 

mobilising factors being released by the ischaemic tissue in order to stimulate or 

participate in repair or the growth of collateral vessels to improve recovery of blood flow 

to the ischaemic area.  Co-factors, such as diabetes, may also impair this process, a 

process which will be discussed later in this section. 

Type 1 (T1DM) and type 2 diabetic mellitus (T2DM) patients also appear to present with 

a lower circulating number and function of EPC progenitors than healthy controls (Fadini 

et al., 2005; Hamed et al., 2009; Sibal et al., 2009; Yue et al., 2011; Jiraritthamrong et 

al., 2012; Lombardo et al., 2012; Meng et al., 2013; Spinetti et al., 2013), an observation 

that is augmented with additional vascular conditions (Fadini et al., 2005). Glycated 

haemoglobin (HbA1c) (Yue et al., 2011), high levels of circulating glucose (Hamed et 

al., 2009), advanced glycation end products (AGEs) (Li et al., 2012) and oxidative stress 

have all been observed to affect progenitor cell number and function, through impairing 

mobilisation from the BM, increasing apoptosis of these cells (Jung et al., 2010; Spinetti 

et al., 2013), or by interrupting normal cell signalling within the cell to reduce NO 

production (Hamed et al., 2009). Spinetti et al. (2013) also observed differences in 

capillarity of the BM within T2DM patients who underwent hip surgery. In a multiple 

regression model the reduction in capillarity of the BM was associated with duration of 

the diabetes, and fasting glucose levels. The microvascular reductions could cause 
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disrupted nutrient supply for stem/progenitor cell production within the BM. There was 

also an accumulation of fat tissue within the BM with T2DM. The reduced vascularity of 

the BM may not only suggest a potential impaired mobilisation but also an impaired 

maintenance of the progenitor pool, as was observed. 

Paracrine mechanisms within EPCs also appear to be hindered in diabetic conditions. 

Hyperglycaemic conditions in vitro reduces secretion of VEGF and NO (Zhang et al., 

2013), and although this was performed in vitro for a period of 24 hours, the elevated 

fasting glucose that were observed with T2DM may chronically affect EPC paracrine 

functions thus reducing the body’s ability to maintain endothelial health. Impaired 

mobilisation has been seen in diabetics (Gallagher et al., 2007; Barthelmes et al., 2013; 

Fadini et al., 2013; Westerweel et al., 2013; Albiero et al., 2014), one study showing 

MMP-9-dependent mobilisation being impaired (Ling et al., 2012).  

Impairments in function, mobilisation and survival of EPCs in those with T1DM or 

T2DM may be potential process in common vascular complications that often develop 

with diabetes (Lockhart et al., 2011; Llauradó et al., 2012; Roberts and Porter, 2013; 

Sawada et al., 2014). For an in-depth review of progenitor cells and vascular regeneration 

in diabetes, readers are directed to the work by Fadini et al. (2014). 

Due to their apparent role in endothelial homeostasis and vascular repair, and potential 

role in helping to prevent vascular dysfunction with CVD and age, it is unsurprising that 

researchers and clinicians are interested in their therapeutic use in medicine. Recently, 

the use of stem and progenitor cells in medicine has increased. Although the clinical use 

is still in its infancy, there has been a lot of research in the use of these cells to help treat 

or prevent disease. With respect to EPCs, researchers have isolated these cells from 

several populations, grown them in a cell culture lab and then re-injected or transfused 

them into the patient and assessed efficacy for treatment as well as their safety in this 

setting. Many researchers have found success in neovascularisation, recovery of blood 

flow or reduction of infarct sizes in mouse models (Kalka et al., 2000; Chen et al., 2012; 

Schuh et al., 2012; Chang et al., 2013; Chen et al., 2013; Iskander et al., 2013). Studies 

in humans are sparse, but so far promising preliminary findings have been shown, for 

example reduced risk of morality or hospitalisation with those administered with BM-

progenitor cells compared to those who did not receive these cells (Schächinger et al., 

2006; Assmus et al., 2010). Despite these promising preliminary results, studies 

investigating long-term effects (>5 years) are warranted before these treatments are 
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declared ‘safe’. For further information on stem cell therapies for vascular medicine, 

readers are directed to the reviews by Asahara et al. (2011) and Lasala and Minguell 

(2011). Despite the promise of the therapeutic use of BM-derived progenitor cells in 

translational vascular medicine, it is likely the cost needed to produce a sufficient number 

of cells for human vascular or cardiac repair will be too great. Therefore it may be more 

efficient to promote EPC function and number through non-pharmacological means. 
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Table 2.2. Endothelial progenitors and vascular-related disease states. 

Reference Subject Characteristics EPC Assay Findings 

Barsotti et al., 2014 
14 non ischaemic heart disease, no CAD 

(75yrs) 
22 presence of CAD (76yrs) 

Circulating EPCs and myocardial tissue resident 
EPCs 

 
Flow cytometry 

CD34+CD45dimVEGFR2+ 
 

Lower circulating EPC in CAD group 
 

Greater EPCs in myocardial tissue in CAD 

Bruyndonckx et al., 2014 
57 obese children (15yrs) 

30 normal weight children (15yrs) 

Circulating EPCs 
 

Flow Cytometry 
CD34+CD45dimVEGFR2+ 

Circulating EPCs lower in obese children 
 

EPCs significantly positively associated with peripheral arterial 
tonometry. 

 
 

Fadini et al., 2006 
66 cIMT < Median (42yrs) 
71 cIMT >Median (48yrs) 

Circulating EPCs 
 

Flow Cytometry 
CD34+VEGFR2+ 

Reduced circulating EPCs in those with high cIMT (32% lower) 

Hill et al., 2003 
45 men, no symptomatic CAD 

50yrs 
EC-CFU assay 

Significant negative association between EPCs and Framingham Risk 
Score (FRS) 

 
Increased circulating EPCs associated with increased endothelial 

function 

Jung et al., 2010 

19 patients with vascular disease without DM 
(63yrs) 

20 patients with vascular disease and with DM 
(62yrs) 

Circulating EPCs 
 

Flow Cytometry 
CD34+VEGFR2+ 

CD34+CD133+VEGFR2+ 

No differences in circulating EPCs 
 

No relationship between EPCs and peripheral arterial tonometry 

CAD- Coronary Artery Disease, cIMT- Carotid Intima Media Thickness, DM- Diabetes Mellitus, EC-CFU- Endothelial Cell Colony Forming Units, EPC- Endothelial Progenitor Cells, 

FRS- Framingham Risk Score.
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Table 2.2. Endothelial progenitors and vascular-related disease states (continued). 

Reference Subject Characteristics EPC Assay Findings 

Liao et al., 2014 

19 CHD (55yrs) 
17 CAD & PAD (53yrs) 

21 DM (52 yrs) 
20 Healthy controls (51yrs) 

Circulating EPCs 
 

Flow Cytometry 
CD34+CD45dimVEGFR+ 

Lower circulating EPCs in DM + CHD + CAD & 
PAD compared to healthy controls 

 
EPCs inversely associated with BMI, SBP, Age, 

HbA1c, LDL-C 

Padfield et al., 2013 
201 patients undergoing coronary 
angiography for ACS or angina 

Circulating EPCs 
 

Flow Cytometry 
CD34+VEGFR2+ 

CD34+CD133+VEGFR2+ 

Circulating EPCs not related to CAD extent or 
clinical outcomes 

Rouhl et al., 2012 

32 hypertensive patients with CSVD 
(65yrs) 

29 hypertensive patients without CSVD 
(63 yrs) 

Circulating EPCs 
 

Flow Cytometry 
CD31+CD34+CD45dimVEGFR2+ 

EC CFU 
EPC Telomerase assay 

Decrease in circulating EPCs in those with CSVD 
compared to those without CSVD 

 
No difference in EPC colony forming units 

 
No difference in telomerase activity 

Shantsila et al., 2012 

50 heart failure patients (LVEF<40%) 
(66yrs) 

40 disease control (CAD but normal 
LVEF) (64yrs) 

40 healthy controls (61yrs) 

Circulating EPCs 
Flow Cytometry 
CD34+VEGFR2+ 

 
Heart failure patients displayed decrease in EPCs 

compared to healthy controls 
 

Decrease in circulating EPCs in CAD compared to 
healthy controls 

 
No difference between heart failure patients and CAD 

but normal LVEF patients. 

BMI- Body Mass Index, CAD- Coronary Artery Disease, CHD- Coronary Heart Disease, CSVD- Cerebral Small Vessel Disease, DM- Diabetic Mellitus, EC-CFU- Endothelial Cell 

Colony Forming Units, EPC- Endothelial Progenitor Cells, HbA1c- Glycated Haemoglobin LDL-C- Low Density Lipoprotein Cholesterol, LVEF- Left Ventricular Ejection Fraction, 

PAD- Peripheral Arterial Disease, SBP- Systolic Blood Pressure,.
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Table 2.2. Endothelial progenitors and vascular-related disease states (continued). 

Reference Subject Characteristics EPC Assay Findings 

Teraa et al., 2013 
101 critical limb ischaemia patients (65yrs) 

 
37 healthy controls (no PAD) (62yrs) 

Circulating and bone marrow EPCs 
 

Flow Cytometry 
CD34+VEGFR2+ 

CAC paracrine activity measured 

Decrease in circulating EPCs in critical limb 
ischaemia patients compared with controls 

 
MNC CXCR4 expression is decreased in bone 

marrow in critical limb ischaemia patients 
 

CAC paracrine function decreased in critical limb 
ischaemia patients 

Vemparala et al., 2013 
57 CAD (43yrs) 

 
57 controls (40yrs) 

Circulating EPCs 
 

Flow Cytometry 
CD34+VEGFR2+ 

EPC telomere length and telomerase activity 

Decreased circulating EPCs in CAD 
 

Decrease in telomere length and activity in CAD 

Walter et al., 2005 Healthy human volunteers and stable CAD 
patients (n=unknown) 

Circulating EPCs 
 

Flow Cytometry 
? + CXCR4 expression 

JAK-2 phosphorylation measured by immunoblotting 
 

CXCR4 cell surface expression on EPCs in CAD 
similar to controls 

 
Phosphorylation of JAK-2 decreased basally, and 
stimulated (with SDF-1α) in CAD compared to 

controls 

Xiao et al., 2007 571 adults (40-79yrs) 

Circulating EPCs 
 

EPC culture (n=571) 
EC-CFU (n=542) 

EPC Culture: 
 

Positive association with EPC culture number of cells 
and FRS 

 
Decrease in EPC associated with increase in cIMT 

 
SDF-1α strongest determinant of EPC culture 

numbers and EC-CFU 

CAC- Circulating Angiogenic Cells, CAD- Coronary Artery Disease, cIMT- Carotid Intima Media Thickness, EC-CFU- Endothelial Cell Colony Forming Units, EPC- Endothelial 

Progenitor Cells, FRS- Framingham Risk Score, JAK-2- Janus Kinase-2,  MNC- Mononuclear Cells, PAD- Peripheral Arterial Disease,
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Table 2.3. Diabetes Mellitus and endothelial progenitors. 

Reference Subject Characteristics EPC Assay Findings 

Albiero et al., 2014 

29 DAN (52yrs), 10yrs duration of 
diabetes 

 
112 no DAN (59yrs), 12yrs duration of 

diabetes 
 

Experimental diabetic mouse model 

Circulating PCs 
Flow Cytometry 

CD34+ 
Experimental mouse model: 

Basal and ischaemia-induced mobilisation of EPCs (CD34+Flk1+) 

DAN associated with decrease in CD34+ cells 
 

Impaired mobilisation of EPCs in diabetic mouse. 

Barthelmes et al., 2014 

Mouse model of diabetes 
 

16 wks hyperglycaemia vs. non-diabetic 
control mice 

Bone marrow and circulating EPCs 
Flow Cytometry 
Lin1-VEGFR2+ 

Mobilisation of Lin-VEGFR2+ cells attenuated in 
diabetic mice 

Fadini et al., 2005 

24 diabetics with PVD (69yrs) 
 

16 diabetics without PVD (70yrs) 
 

11 PVD without diabetes (68yrs) 
 

17 without PVD (50yrs) 

Circulating EPCs 
Flow Cytometry 
CD34+VEGFR2+ 

PVD associated with 47% decrease in circulating 
EPCs 

Fadini et al., 2013 
24 diabetics (10 T1DM, 14 T2DM) (49yrs) 

 
14 non-diabetics (40yrs) 

Circulating EPCs 
Flow Cytometry 

CD34+/CD34+CD133+/CD34+VEGFR2+/ 
CD133+VEGFR2+/CD34+CD133+VEGFR2+ 

Mobilisation to administration of G-CSF 

Lower mobilisation of 
CD34+CD34+CD133+/CD34+VEGFR2+/ 

CD133+VEGFR2+ in diabetics compared to healthy 
controls 

Gallagher et al., 2007 Induction of diabetes in 6-12wk old mice 
Circulating EPCs 
Flow Cytometry 
Tie2+VEGFR2+ 

Decrease in circulating EPCs in diabetic mice 
compared to non-diabetic mice. 

DAN- Diabetic Autonomic Neuropathy, EPC- Endothelial Progenitor Cells, PC- Progenitor Cells, PVD- Peripheral Vascular Disease, T1DM- Type 1 Diabetes Mellitus, T2DM- Type 2 

Diabetes Mellitus,.
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Table 2.3. Diabetes Mellitus and endothelial progenitors (continued). 

Reference Subject Characteristics EPC Assay Findings 

Hamed et al., 2009 
23 T2DM patients (60yrs) 

 
15 healthy controls (56yrs) 

Circulating EPCs 
Flow Cytometry 
CD34+VEGFR2+ 

EC-CFU 
EPC SOD activity, O2

- generation, NO production 
 

Circulating EPCs decreased in T2DM 
 

Decrease in EC-CFU in T2DM 
 

Decrease in EPC NO production in T2DM 
 

Increase in SOD activity in EPCs from T2DM 
patients 

 
Increase in O2

- generation in EPCs from T2DM 
patients 

Jiraritthamrong et al., 2012 Peripheral blood from healthy adult 
volunteers 

Circulating EPCs cultured in low, medium and high levels of glucose 
In vitro vessel formation capacity 

Ang-1 gene expression measured in EPCs 

Decreased in vitro vessel forming capacity in high 
glucose conditions compared with control 

 
Ang-1 mRNA decreased in EPCs cultured in high 

glucose conditions 

Ling et al., 2012 

31 T2DM (69yrs) 
 

31 non-diabetic controls (68yrs) 
 

Circulating EPCs 
Flow Cytometry 

CD34+CD133+CD45dimVEGFR2+ 
Measured 1, 3, 5, 7, 14 and 28 days post AMI 

Decreased mobilisation of EPCs in response to AMI 
in T2DM 

 
Despite greater release of SDF-1α 

Lombardo et al., 2012 
54 T2DM (53yrs) 

 
24 healthy controls (51yrs) 

Circulating EPCs 
Flow Cytometry 

Early: CD34+CD133+VEGFR2+ 
Late: CD31+VEGFR2+CD144+ 

Decreased circulating ‘late’ EPCs in T2DM 
compared to healthy controls 

 
No difference in ‘early’ EPCs 

AMI- Acute Myocardial Infarction, Ang-1- Angiopoietin-1, EC-CFU- Endothelial Cell Colony Forming Units, EPCs- Endothelial Progenitor Cells, NO- Nitric Oxide, SDF-1α- Stromal-

Derived Factor 1α, SOD- Superoxide Dismutase, T2DM- Type 2 Diabetes Mellitus. 



	
	

34 

Table 2.3. Diabetes Mellitus and endothelial progenitors (continued). 

Reference Subject Characteristics EPC Assay Findings 

Sibal et al., 2009 
74 T1DM (26yrs) 

 
80 healthy controls (25yrs) 

Circulating EPCs 
 

Flow Cytometry 
CD34+VEGFR2+/CD133+VEGFR2+/ 

CD34+CD144+/CD133+CD144+ 

Decrease in CD34+CD144+/CD133+VEGFR2+/ 
CD133+CD144+ EPCs in T1DM compared to controls 

 
CD34+CD144+ positively correlated with FMD in 

T1DM 

Westerweel et al., 2013 Experimentally induced diabetes in mice 

Circulating and bone marrow EPCs 
 

Flow Cytometry 
Sca1+Flk1+ 

Resting and after mobilisation induced by G-CSF/SCF 

Bone marrow EPCs similar between diabetic and 
non-diabetic mice 

 
Circulating EPCs decreased in diabetic mice 

 
Mobilisation of Sca1+Flk1+ attenuated in diabetic 

mice 

Yue et al., 2011 
234 T2DM (57yrs) 

 
121 controls (57yrs) 

Circulating EPCs 
 

Flow Cytometry 
CD34+VEGFR2+ 

CD133+VEGFR2+ 

Decrease in both subsets of EPCs in T2DM 
 

Those with HbA1c <6.5% had higher levels of EPCs 
than those with poor glucose control in T2DM 

 
Inverse relationship with arterial stiffness and EPCs 

HbA1c- Glycated Haemoglobin, EPCs- Endothelial Progenitor Cells, G-CSF- Granulocyte Colony-Stimulating Factor, SCF- Stem Cell Factor, T1DM- Type 1 Diabetes Mellitus, T2DM- 

Type 2 Diabetes Mellitus. 
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2.3.4 Endothelial Progenitors and Ageing 

CVD risk increases with age (Kannel and Gordan, 1978). One proposed mechanism for 

this age-related increased risk is the reduced ability for vascular growth and repair in 

response to vascular trauma, as shown by reduced endothelial repair after balloon injury 

in rat model (Torella et al., 2004). There is also a clear age-related impairment in 

angiogenesis (Rivard et al., 1999; Sadoun and Reed, 2003; Reed and Edelberg, 2004; 

Wang et al., 2011; Gunin et al., 2014), in addition to increased apoptosis of capillary 

endothelial cells surrounding skeletal muscle (Wang et al., 2013). Endothelial function is 

also reduced with advancing age (Spier et al., 2004; Heiss et al., 2005; Soucy et al., 2006; 

Prisby et al., 2007; Black et al., 2008; Black et al., 2009). This ageing effect on the 

endothelium could be due, in part, to impairments in mobilisation or function of EPCs. 

There is some evidence to support this, with observations that age results in reductions in 

circulating endothelial progenitor cells (Thijssen et al., 2006; Thum et al., 2007) and 

reductions in progenitor cell function (Heiss et al., 2005; Hoetzer et al., 2007; Thum et 

al., 2007; Xia et al., 2012a; Xia et al., 2012b; Williamson et al., 2013; Yang et al., 2013). 

Thijssen et al. (2006) observed significantly reduced CD34+VEGFR2+ EPCs in old (67-

76 years) versus young men (19-28 years), however the underlying reason for this 

reduction was not addressed. Heiss et al. (2005) observed no change in progenitor cell 

number, but measures of function (survival, migration to VEGF, and proliferation) were 

both impaired in old humans (61 years) compared to younger individuals (25 years). 

Migration and proliferative abilities of the EPCs were independent predictors of 

endothelial function in both age groups. The reduced function of EPCs in old subjects has 

been observed elsewhere, both Xia et al. (2012a) and Xia et al. (2012b) used in vivo 

mouse models to investigate the effect of aged human EPCs on regeneration after carotid 

artery injury. They found the extent to which the mouse was able to repair the vessel was 

age-dependent, with the mice receiving the ‘young’ EPCs displaying greater repair as 

evidenced by greater re-endothelialisation. Interestingly, other functional measures such 

as migration as well as adhesion of these cells under stimulation was reduced in EPCs 

from aged (~68yrs) compared to young (~26yrs) human subjects. The authors attributed 

this deleterious ageing effect to intracellular signalling of the cells, more specifically the 

phosphorylation of CXCR4’s downstream target, janus kinase-2 (JAK-2). Under 

stimulation with SDF-1, which binds to CXCR4, there appeared to be significantly less 

phosphorylated JAK-2 as a result, which was independent of CXCR4 expression on the 

cell surface of the EPCs as there was no difference in CXCR4 expression between the 
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two age groups. Therefore it may not be cell number and/or CXCR4 expression, but 

intracellular signalling which is affected by age. In the aged population in these two 

studies, there was also a reduction in circulating number of EPCs which may be one effect 

of ageing, and the aspects of EPC functional decline with age being related to intracellular 

mechanisms. 

Kushner et al. (2010a) stimulated isolated EPCs from young and old humans with the 

stimulant phytohemagglutinin (PHA) for 72 hours. The authors found a reduced release 

of the pro-angiogenic growth factor G-CSF in the old subjects, with no change in another 

pro-angiogenic factor, IL-8. Reduction in secretion of such factors may contribute to the 

reduced angiogenic potential in aged people. In another study, the same group measured 

telomere length in these cells. Telomeres are replicative DNA sequences (TTAGGG) at 

the end of chromosomes that protect the DNA genetic sequence from damage. As a result 

of repeated replications, telomeres can shorten, and telomere length has long been used 

as a marker for cellular ageing. Continuous telomere degradation leads to loss of its 

function, which has been associated with senescence (cell being unable to replicate further) 

or cellular apoptosis. In old people, EPCs appear to have reduced telomere lengths 

(Kushner et al., 2009) even in apparently healthy men, without diabetes or history of CVD. 

The reduced telomere length was not different between young and middle aged men 

however, indicating that function may not be affected until we are in our 60s, as was 

apparent with reductions in EPC migration in old people but not with middle aged 

subjects (Hoetzer et al., 2007). 

Mandraffino et al. (2012) conducted a very interesting study, where they measured 

circulating CD34+ progenitors in male and female octogenarians. They also measured 

ROS levels, BMI, and high-density lipoprotein cholesterol (HDL-C) and then followed 

them up for a period of 7 years. CD34+ progenitor cell numbers were significantly fewer 

at time of enrolment in those who had died at the end of the 7-year follow up, in 

comparison to those who remained alive. The number of these progenitor cells were 

significantly inversely correlated with levels of ROS, which may partly explain the 

reduced number of EPCs in those who died by the end of the 7-years, as those who had 

died by the end of the study had significantly higher baseline levels of ROS compared to 

survivors at the time of enrolment. Despite not investigating endothelial-specific 

progenitor cells, this study highlights the importance of maintaining high levels of 

progenitors later in life to sustain tissue repair. 
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As the study by Mandraffino et al. (2012) alluded to, the circulating environment may be 

affecting the progenitor cells and causing the potential dysfunction seen with age. For 

example, CD34+ progenitors from aged mice (19-26 months) expressed reduced Notch 

signalling factors (Delta, Notch protein) when incubated with their own serum, however 

when incubated with serum from young mice (2-3 months), Delta+ and Notch+ satellite 

CD34+ cells were significantly enhanced, with a concomitant improvement in muscle 

tissue regeneration (Conboy et al., 2005). 

Ageing may cause the depletion and functional loss of progenitor cells through many 

means. Oxidative stress (Mandraffino et al., 2012; Rimmelé et al., 2014), DNA damage 

(Rimmelé et al., 2014; Walter et al., 2015) and potentially BM depletion of these 

progenitor cells (de Haan and Van Zant, 1999; Rauscher et al., 2003; Dedeepiya et al., 

2012). One study found no changes in BM content of CD34+ progenitors with age (Povsic 

et al., 2010), however this has been contested (Abraham, 2013). Indeed, in support of 

Abraham (2013) several studies have observed declines in BM content of CD34+ 

progenitor cells with age (de Haan and Van Zant, 1999; Rauscher et al., 2003; Dedeepiya 

et al., 2012). The study by Povsic et al. (2010) only recruited participants with median 

age of 62 and recruited 107 participants compared to 332 for the study by Dedeepiya et 

al. (2012), as well as lacking functional data. The majority of the evidence suggests that 

there is in fact a depletion of BM progenitors with age which may explain, in part, the 

reduction seen in the circulation with age. 

The evidence from the research over the last 20 years indicates that EPC dysfunction and 

reduction in circulating number with age may play an important role in the age-related 

increase in CVD risk. It is hence important that we maintain EPC number and function 

throughout the lifespan to prevent NCD, which appears to be potentially modified with 

pharmaceuticals as well as modifying lifestyle factors. The effects of CVD, diabetes and 

age on EPCs are depicted in figure 2.3.  
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Figure 2.3. Effect of age, CVD and diabetes on circulating EPCs. EPCs circulate in small number in the blood and can promote neovascularisation 
through paracrine secretion of growth factors and stimulate resident endothelial cell proliferation, as well as differentiating into endothelial cells. The 
deleterious effects of age and vascular disease on EPCs are shown and have been found to reduce CXCR4 EPC cell surface expression, inhibit secretion 
of endothelial growth factors and reduce circulating numbers in the blood, leading to impaired neovascularisation. 
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2.3.5 Exercise and Physical Activity- Modulating Endothelial Progenitor Cells 

Regular exercise has many benefits, and has been prescribed to help individuals 

rehabilitating from cardiovascular events. General practitioners and cardiac rehabilitation 

personnel have proposed that exercise reduces the risk of recurring cardiac events, as well 

as improving other health parameters such as lowering blood pressure (Mughal et al., 

2001), and increasing left ventricular ejection fraction (LVEF) (Oberman et al., 1995; 

Turan et al., 2006). Since EPCs are reduced or dysfunctional in individuals with vascular-

related diseases, it is proposed that exercise, by either acutely or chronically improving 

either number or function of EPCs, can reduce cardiovascular risk and improve vascular 

function. It is also proposed that EPCs play an important role in vascular adaptations to 

exercise in athletes by contributing to capillarisation, resulting in increased oxygen supply 

to the working muscle and improved exercise capacity (Murias et al., 2011). There have 

been several reviews on the influence of exercise, both acute and chronic, on EPC number 

and/or function (Lenk et al., 2011; Silva et al., 2012; Volaklis et al., 2013). These have 

often focused on specific populations (for example healthy or CVD patients), and lack 

detailed mechanisms of the influence of exercise on EPC number and/or function. 

Acute exercise is known to mobilise EPCs and enhance functional ability of these cells 

in the post-exercise recovery period of up to 72 hours, depending on the intensity and 

duration of the exercise bout (Adams et al., 2004; Rehman et al., 2004; Laufs et al., 2005a; 

Van Craenenbroeck et al., 2008; Möbius-Winkler et al., 2009; Van Craenenbroeck et al., 

2010b; Sandri et al., 2011; Ross et al., 2014; Chang et al., 2015). Several studies have 

failed to show any changes or even a decrease in progenitor cell count post-exercise 

(Thijssen et al., 2006; Adams et al., 2008; Rummens et al., 2012), but there were many 

differences amongst these studies, including the subject population recruited, blood 

sampling time-points, the processing and analysis of EPCs, in addition to the duration, 

intensity and modality of the exercise bout.  

Sandri et al. (2011), Scalone et al. (2013) and Van Craenenbroeck et al. (2011) all 

compared the response of circulating number of EPCs to a maximal exercise test between 

individuals with CVD and apparently healthy controls. The results showed that although 

EPCs increased in response to the exercise bout in both groups, the response was 

attenuated in individuals with CVD. The control population in the study by Sandri et al. 

(2011) was not age-matched to the population with CVD, and was significantly younger 

than the CVD group, whereas the study by Van Craenenbroeck et al. (2011) successfully 
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age-matched their participants. The latter study also included a young population, thus 

investigating the effect of age on the ability to mobilise EPCs to a given exercise bout. 

They showed that the older control group had an attenuated response to exercise, however 

the response in the old group was still significantly greater than the CVD. Previous work 

by Van Craenenbroeck et al. (2010a) found no increase in circulating EPCs in either CVD 

patients or healthy sedentary control subjects 10 minutes following a graded exercise bout, 

although the EPCs had increased migratory capacity to both VEGF and SDF-1 in vitro. 

Interestingly, this study recorded an improved function of these cells, possibly before any 

rise in circulating EPCs, which could be as a result of increased CXCR4 surface 

expression induced by increased shear stress (Xia et al., 2012b) caused by increases in 

cardiac output.  This improved functional ability of EPCs has been seen in other studies, 

with improved EPC migration to a chemoattractant such as VEGF or SDF-1 in vitro 

(Laufs et al., 2005a; Yang et al., 2007; Van Craenenbroeck et al., 2010b).  

The effect of EPC responses to exercise appears to be duration-dependent. Laufs et al. 

(2005a) found an increase in circulating CD34+VEGFR2+ cells after 30 minutes running 

exercise at both 100% and 80% of the individual’s anaerobic threshold (IAT), however 

no such increase was found after 10 minutes running at 80% of IAT. When extended to a 

marathon, Adams et al. (2008) found no change in the same cellular phenotypic EPCs 

(CD34+VEGFR2+). This study only measured EPCs pre- and immediately post-exercise. 

Any EPC changes during or several hours after the exercise bout would have been missed. 

EPC mobilisation during an exercise bout and 24 hours post-exercise has been 

investigated by Möbius-Winkler et al. (2009), and a >5-fold increase in CD34+VEGFR2+ 

cells towards the end of a 4-hour cycling bout at IAT was observed. This increase did last 

up to 24-hours post-exercise when the EPCs returned to baseline levels. A 3.5-fold 

increase in CD133+VEGFR2+ EPCs towards the end of the exercise bout was also 

recorded which lasted up to 24-hours post-exercise until numbers returned to baseline 

levels. 

Increases in circulating EPC numbers are accompanied by increases in circulating VEGF 

(Adams et al., 2004; Möbius-Winkler et al., 2009; Sandri et al., 2011; Ross et al., 2014), 

SDF-1 (Chang et al., 2015), G-CSF, MMP-9 (Ross et al., 2014) or increased NO 

production (Yang et al., 2007). Some studies have not observed increases in circulating 

SDF-1 or G-CSF (Yang et al., 2007; Van Craenenbroeck et al., 2011). SDF-1 may play 

a greater role in homing of EPCs to ischaemic tissue during exercise, as SDF-1 can be 

expressed on ischaemic tissue cell surface membranes (van Solingen et al., 2011). The 
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data suggests that both VEGF and NO may play a greater role in exercise-induced EPC 

mobilisation than SDF-1 or G-CSF despite the ability of SDF-1 and G-CSF to mobilise 

EPCs from the BM after exogenous administration (Powell et al., 2005; Prokoph et al., 

2012). Further studies in VEGF and NO knockout mice will help elucidate the 

mechanisms behind VEGF and NO-induced EPC mobilisation in response to exercise. 

Indeed, acute ingestion of dietary nitrate mobilises CD34+VEGFR2+ and 

CD133+VEGFR2+ cells in healthy volunteers, thought to be via SDF-1, as SDF-1 was 

also increased by acute nitrate ingestion (Heiss et al., 2012). 

MMP-9 may also contribute to exercise-induced progenitor cell changes. Circulating 

levels of MMP-9 have been found to be increased post-exercise in studies showing 

increases in circulating EPCs (Ross et al., 2014) and haematopoietic progenitor cells 

(Wang et al., 2014b). Reduced level of MMP-9 activity is associated with impaired EPC 

mobilisation in diabetics (Ling et al., 2012). MMP-9 acts through transforming stromal 

cell membrane-bound Kit ligand (mKitL) to soluble Kit ligand (sKitL) within the BM 

(Heissig et al., 2002). Exogenous sKitL stimulates the mobilisation of progenitor cells in 

both MMP-9+/+ and MMP-9-/- mice. MMP-9 up-regulation within the BM was stimulated 

by increases in plasma SDF-1 and VEGF, and therefore exercise may stimulate progenitor 

cell mobilisation through SDF-1 or VEGF-induced activation of MMP-9 and subsequent 

conversion of mKitL to sKitL. MMP-9 may also act by cleaving the SDF-1:CXCR4 

bonds that may themselves prevent progenitor cell escape from BM (Jin et al., 2008).  

In summary, it is clear that there are beneficial effects of acute exercise on EPCs, whether 

that is by mobilising EPCs from the BM or by increasing their functional abilities 

potentially through mechanotransduction of shear stress and consequent up-regulation of 

CXCR4. However, these effects may be short-lived (Möbius-Winkler et al., 2009) and 

thus regular exercise training may confer a more long-lasting effect. 

As with acute exercise studies, most (Laufs et al., 2004; Steiner et al., 2005; Hoetzer et 

al., 2007; Sarto et al., 2007; Cesari et al., 2009; Manfredini et al., 2009; Van 

Craenenbroeck et al., 2010a; Schlager et al., 2011; Sonnenschein et al., 2011; Fernandes 

et al., 2012; Xia et al., 2012a; Choi et al., 2014) but not all studies (Thijssen et al., 2006; 

Luk et al., 2012), report an increase in number of circulating EPCs or functional capacities 

of EPCs after a period of exercise. 

Xia et al. (2012a) used a murine model of carotid artery injury to investigate the influence 

of exercise training in old men (~68 years old) on EPC function. Pre- and post-exercise 
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training (30 minutes per day, 3 days per week, 12 weeks aerobic exercise) human EPCs 

were isolated and cultured. These EPCs were then injected into the left carotid artery of 

athymic nude mice after carotid injury. Endothelial regeneration was evaluated by 

measuring area of re-endothelialisation in the denuded area 3 days after injecting the 

EPCs. The re-endothelialisation of the denuded carotid artery was dramatically improved 

by injection of the EPCs from elderly men post-exercise training in comparison to EPCs 

from the elderly men at baseline.  This improvement was accompanied by increases in 

CXCR4 intracellular protein expression and the ratio of p-JAK-2:JAK-2 (measure of 

intracellular signalling from CXCR4 to JAK-2) was improved. These findings of 

improved function have been seen elsewhere (Sonnenschein et al., 2011), as well as 

improved EPC migration towards VEGF (Hoetzer et al., 2007; Van Craenenbroeck et al., 

2010a; Schlager et al., 2011) or SDF-1 (Van Craenenbroeck et al., 2010a), adhesion to 

human umbilical cord vein endothelial cells (HUVEC) (Xia et al., 2012a), and secretion 

of various cytokines, and soluble factors, e.g. NO (Sonnenschein et al., 2011) 

The reported improvements in endothelial function with exercise training appear to be 

associated with increases in resting levels of circulating EPCs. Steiner et al. (2005) found 

that the increases in EPCs were positively associated with the improvements in FMD in 

asymptomatic CVD patients. The higher level of circulating EPCs over time may aid in 

the repair of the vascular endothelium and some EPCs may adhere to the vascular lumen 

wall and differentiate into mature endothelial cells. These newly differentiated cells may 

aid in the vascular function by secreting NO to greater levels than the dysfunctional cells 

they may have replaced. Although EPCs may not be the only potential cause of 

improvements in endothelial function, the improved FMD seen with exercise training 

may be in part due to improvements in EPC number and function. 

With respect to age, it appears that endurance training may offset the decline in EPC 

number and function associated with ageing (Yang et al., 2013). The conclusion was 

based on cross-sectional data comparing young (21-33 years old) vs. old (59-72 years 

old), and sedentary versus endurance-trained individuals. The authors then conducted a 

3-month exercise training regime (3 x a week, 30 minutes per session) in young and the 

old sedentary subjects. Both the young and the old sedentary participants exhibited an 

increase in EPC number as a result of the training regime, despite the younger group 

displaying an attenuated increase compared with the old group. The older participants 

further increased their EPC migratory capabilities in vitro. These increased levels of EPCs 

and function were inversely correlated with PWV, indicating reduced arterial stiffness.  
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Thijssen et al. (2006) surprisingly reported a decrease in EPCs in aged men after eight 

weeks of endurance training. The authors suggested that a reduced bioavailability of NO 

in the old men was to account for this decrease. There has been evidence of reduced NO 

availability in advancing age in humans (Di Massimo et al., 2006). However, 

Sonnenschein et al. (2011) was able to report an increase in NO production by EPCs as a 

result of a regular moderate-intensity exercise training programme in subjects with the 

metabolic syndrome, with an average age of 58. This suggests that exercise as a stimulus 

can significantly up-regulate NO production and release in vascular cells (Taddei et al., 

2000). Conversely, Brinkley et al. (2009) reported no significant changes in circulating 

nitrate/nitrite (measure of NO in the circulation) in older individuals after a period of 4 

weeks of exercise training. There is also evidence that suggests NO prevents endothelial 

senescence through the activation of telomerase (Vasa et al., 2000), and an age-related 

decline in NO bioavailability may contribute to endothelial senescence and apoptosis. It 

also may be that the inability to upregulate eNOS and subsequent NO production after 

exercise training in older adults leads to increased EPC senescence and apoptosis 

resulting in lower circulating functional EPCs. The other possible cause of reduced EPC 

circulating numbers in this study after the training period is the method by which they 

chose to analyse the EPCs. The authors quantified EPCs by flow cytometry within 24 

hours of incubation with antibodies. This long time delay could be the cause for this 

contrasting finding, as the fluorescent tag of the antibodies used may have degraded over 

this time period. 

The longitudinal change of !O2max appears to modulate EPC changes as a result of an 

exercise programme. Changes in EPC are associated with changes in !O2max (Cesari et 

al., 2013). Conversely, a reduction in !O2max was associated with a reduction in EPC 

count. The participants without an increase or even a decrease in EPC count post-exercise 

rehabilitation programme were those with a significantly higher maximal aerobic power 

output (Wmax) than those who had displayed an increase in EPCs (133W versus 119W). 

It could be that those with already higher levels of functional fitness and functionality 

will not respond with a positive change of EPCs to an exercise programme as those with 

a lower level of fitness. This is not due to differing responses of plasma VEGF post-

exercise, as this angiogenic factor and EPC-mobilising factor has been reported to be 

increased post-exercise independent of training status (Kraus et al., 2004) 

Intriguingly, increases in EPC function as a result of an exercise training programme may 

be predicted by the individuals responses to an acute bout of exercise. The extent of 
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improvement in EPC migration as a result of 6 months exercise training was highly 

associated with the individual’s migratory capacity improvements post-graded exercise 

test (r=0.780) (Van Craenenbroeck et al., 2010a). Therefore those most responsive to an 

acute bout of exercise will gain the most from an exercise training program. On the other 

hand, those who are not responsive to an acute bout of exercise may not benefit greatly 

from an exercise training programme. This has become a focal discussion point within 

exercise physiology circles, with the ‘trainability’ of individuals causing some to state 

that some people will not respond to training and therefore should not be pushed towards 

an exercise training program. Data to back this theory has come within the last 5 years, 

with studies showing large variations in physiological changes to a personalised training 

program (Timmons et al., 2010; Keller et al., 2011; Bacon et al., 2013). 

Contrary to the majority of the literature investigating activity and fitness on EPCs, Alba 

et al. (2013a) and Alba et al. (2013b) found that EPCs (CD34+VEGFR2+) were inversely 

associated with peak !O2. However, EPCs were analysed by flow cytometry after 

peripheral blood MNC isolation using Ficoll-density gradient. There is debate over 

whether this procedure will give the greatest yield of EPCs, and results in less background 

noise during the flow cytometric enumeration. On the other hand, by density gradient 

centrifugation there is a risk of losing a large number of cells, and considering that these 

EPCs are reported to make up only 0.0001 and 0.01% of MNCs (Case et al., 2007), it 

may be more beneficial to enumerate EPCs using whole blood. Therefore, results such as 

those seen from Alba et al. (2013a) and Alba et al. (2013b) must be interpreted with 

caution. It may also be the case that those with greater functional capacity (as assessed 

by peak !O2) may not have the ‘need’ for the increased progenitor cell number, therefore 

there is no increased requirement for their mobilisation into the peripheral circulation. 

These two studies did not include measures of VEGF or SDF-1, which themselves would 

have given a clearer picture of why they observed this surprising inverse relationship 

between progenitor cell numbers and peak !O2. Conversely, Povsic et al. (2013) found 

low number of circulating progenitor cells (CD34+) in 60-81 year old men with poor 6 

minute walking test scores, however no relation to other physical function tests such as 

grip strength or balance was demonstrated. 

The mechanisms by which there is an improvement in EPC function due to regular 

exercise training are several-fold. Firstly, exercise training can reduce basal levels of 

inflammation (Goldhammer et al., 2005; Stewart et al., 2007; Timmerman et al., 2008) 

and oxidative stress (McArdle and Jackson, 2000; Roberts et al., 2002; Bloomer and 
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Fisher-Wellman, 2008; Durrant et al., 2009), both of which are associated with reduced 

function of these cells (Witkowski et al., 2010). In addition, the regular increases of shear 

stress may act as a biomechanical signal to the EPCs, with the mechanical disruption of 

the cell membrane by the increased blood flow flowing past stimulating intracellular 

signalling cascades involved in upregulating functional proteins. Shear stress has been 

consistently shown to affect EPC biology through intracellular signalling mechanisms 

(Yang et al., 2012), promoting endothelial differentiation (Ye et al., 2008; Obi et al., 2009; 

Cheng et al., 2012; Cui et al., 2012; Obi et al., 2012; Cheng et al., 2013), increased NO 

production (Tao et al., 2006) and migration (Xia et al., 2012b) which itself may be a 

direct consequence of increased CXCR4 expression. It also appears that NO plays a 

significant role in the changes in EPCs in the circulation with exercise. In eNOS knockout 

mice (eNOS-/-) there was an attenuated response of EPCs to exercise training in 

comparison to wild-type mice, and in wild-type mice fed with an eNOS inhibitor (NG-

nitro-L-arginine methyl ester; L-NAME) there was no significant change in circulating 

EPCs (Laufs et al., 2004), highlighting the importance of NO in exercise-induced BM 

mobilisation of EPCs. 

 

2.3.6 Physical Inactivity and Vascular Health- Potential Deleterious Effect on 

Endothelial Progenitor Cells 

Physical inactivity, a risk factor for CVD development, and for mortality, may also affect 

progenitor cell number and/or function. It is known that inactivity deleteriously affects 

vascular health (Laufs et al., 2005b; Thijssen et al., 2010; Boyle et al., 2013; Thosar et 

al., 2015a). Enforced detraining after several weeks of training was shown to significantly 

reduce circulating EPCs, as well as decrease vascular function as assessed by reactive 

hyperaemia (Witkowski et al., 2010). These 2 outcome measures as a direct result of 

detraining were also positively associated, linking a possible reduction in EPC availability 

to a subsequent deleterious effect on the vasculature. Unsurprisingly there was a high 

level of oxidative stress, as measured by ROS after the detraining period, whereas the 

ROS level was reduced after a period of pre-conditioning exercise training. Schlager et 

al. (2011) found improvements in EPC migration and circulating numbers after three and 

six months of regular exercise training in PAD patients, however after six months of 

detraining the migratory ability of these cells returned to baseline levels. EPC circulating 

numbers (as expressed as % of MNCs) remained higher than baseline despite a trend for 



	

46 
	

reduction from 6 months of training.  Figure 2.4 summarises the effects of acute and 

regular exercise training on EPCs. 

 

Figure 2.4. The effect of acute and regular exercise training on number and function of 

EPCs. Acute exercise causes the proteolysis of stromal bond with EPCs allowing EPCs 

to transmigrate into the circulation. Once in the circulation, EPCs home to areas of high 

chemoattractant concentration (e.g. VEGF and SDF-1). Acute exercise-induced tissue 

ischaemia causes HIF-1-mediated increase in endothelial VEGF release. Exercise 

training causes increased EPC circulating numbers, and potentially increased CXCR4 

cell surface expression. In addition, exercise training stimulates increases in eNOS 

mRNA expression in endothelial cells. Taken together exercise training results in 

improved neovascularisation via improvements in EPC number and function, and 

increases endothelial function as a result of its direct effects on endothelial cells. 

It is clear that exercise training in a wide population of people (CVD patients, aged) can 

increase EPC circulating levels as well as improve their function which has been aligned 

to enhanced vascular repair, endothelial function and reduced arterial stiffness thus 

improving overall cardiovascular health and reducing the risk of potential future vascular-

related events.  
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2.4 Angiogenic T Cells- A New Prospect for Neovascularisation 

A variety of leukocytes are known to have angiogenic and vasculo-supportive properties. 

Polymorphonuclear neutrophils can release IL-8 (Cassatella, 1995) and VEGF (Gaudry 

et al., 1997), both of which are pro-angiogenic. Culture supernatant from the activated 

cells also stimulate capillary growth (Schruefer et al., 2005). This supernatant contained 

significant quantities of IL-8 and VEGF within one hour of stimulation, highlighting their 

proangiogenic capacity. Both nude mice (deficient in all components of the T-cell 

population) and CD8 knockout mice (CD8 is an antigen for cytotoxic T-cells) exhibit 

impaired angiogenic responses to damage or blood vessel occlusion (Stabile et al., 2003; 

Stabile et al., 2006). To further demonstrate the angiogenic properties of T-cells, CD3+ 

cells express VEGF mRNA in both CD4 and CD8 sub-fractions which is expressed to a 

greater extent by exposure to hypoxia (Freeman et al., 1995). Further support for the role 

of T-cells in post-natal vasculogenesis and endothelial repair came recently from Wu et 

al. (2015), who provided evidence of CD3+ T-cell involvement in vessels after 

experimental myocardial infarction in mice. Of all the cells that were located in the 

microvasculature that were not of vessel origin, 21% of these were CD3+ T-cells. 

However, recovery of blood flow and cardiac functional measures were not performed on 

the mice. 

Hur and colleagues (2007) isolated peripheral blood MNCs and attempting to isolate 

EPCs. In the central cluster they identified a population of CD3+ T-cells co-expressing 

CD31. CD31 is an adhesion molecule which regulates leukocyte adhesion and trafficking 

on the endothelium (Muller, 1995). These CD3+CD31+ T-cells were required for the 

optimal in vitro differentiation and proliferation of EPCs which were co-cultured (Hur et 

al., 2007). These ‘angiogenic T-cells’ (TANG) secreted VEGF, IL-8 and G-CSF to a greater 

extent than the CD31- sub-fraction of T-cells, and the TANG cells also had a greater 

capacity for adhesion to HUVECS, and they also migrated towards SDF-1 significantly 

more than the CD3+CD31- cells. It was also found that the TANG cells expressed CXCR4, 

which would explain their ability to migrate towards SDF-1. Blocking of CXCR4 on TANG 

with a neutralising antibody significantly reduced migration, suggesting that the 

transendothelial migration of these cells may depend on the SDF-1:CXCR4 axis. The 

authors injected these cells into mice with hindlimb ischaemia and assessed capillarity 

and blood flow recovery for 21 days after ligation of the femoral artery. Blood flow 

recovery and capillarity was greater in the mice which were injected with TANG cells in 

comparison to those mice injected with CD3+CD31- cells. This improved ability of the 
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double positive cells to promote vascular growth and capillaries may be linked through 

greater adhesion onto vessel wall due to the expression of CD31, as well as potentially 

through CXCR4 signalling as the researchers found that 97% of CD3+CD31+ cells 

expressed CXCR4, whereas only 37% of CD3+CD31- cells expressed CXCR4, potentially 

opening up a relationship between expression of CD31 and CXCR4 and expression of 

CD31 may also regulate CXCR4.  

Kushner et al. (2010b; 2010c) corroborated these findings through TANG cells migrating 

to both SDF-1 and VEGF. In addition to the previous findings showing that these cells 

secrete VEGF, IL-8 and G-CSF, Kushner et al. (2010b) stimulated the TANG cells with 

PHA and found that in addition to IL-8 and G-CSF, the cells also released MMP-9, a key 

enzyme involved in the degradation of the basement membrane in the process of 

angiogenesis. The authors also stated that these cells may be more susceptible to apoptosis 

by the relatively greater intracellular levels of caspase-3 and cytochrome c. Cytochrome 

c is involved in the caspase-9-dependent activation of caspase-3 (Li et al., 1997), which 

itself is involved in cellular apoptosis (Faleiro et al., 1997). Their susceptibility to 

apoptosis may be due to their status of being recent thymic emigrants (Ashman and Aylett, 

1991; Kilpatrick et al., 2008), as these cells display more T-cell receptor excision circles 

(TREC), an indicator of these cells recently passaging through the thymus (Huehn et al., 

2004). Recent thymic emigrants have yet to proliferate to a great extent, and highly 

proliferative and highly differentiated T-cells are less susceptible to apoptosis, (Spaulding 

et al., 1999), so this finding is not a surprise.  

Other studies have observed CD31 in T-cells being linked to modulating immunological 

functions, e.g. T-cell and B-lymphocyte interactions (Clement et al., 2015). CD31 

signalling in T-cells appeared to attenuate joint inflammation associated with rheumatoid 

arthritis (RA) in mice as indicated by CD31 agonism in T-cells causing a reduction in 

T:B-cell interaction, which is a classic process within arthritis and inflammation (Clement 

et al., 2015). The reduced T:B-cell interaction was accompanied by significantly reduced 

inflammation in ankle joints of mice, as well as reduced inflammatory cytokines TNF-α 

and interferon-γ (IFN-γ). TANG cells may play a role in preventing RA as the circulating 

number of these cells are low in patients with RA (Rodríguez-Carrio et al., 2014). 

Bird et al. (1993) demonstrated that CD31 may not assist in T-lymphocyte migration. 

This group performed transmigration experiments with T-cells across a human umbilical 

vein endothelial cell (HUVEC) monolayer, and found predominantly CD31- T-cells in 
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the transmigrated population. This could be due to a transient loss of CD31 expression as 

cells migrated across the HUVEC layer. The transmigrated cells were also depleted of 

CD45RA. The expression of CD31 and CD45RA on the T-cells basally were highly 

correlated, suggesting that CD3+CD31+ T-cells may be predominantly of naïve phenotype. 

Therefore, highly differentiated T-cells, which lack CD45RA and express high levels of 

CD45RO may have a greater potential to migrate. Yet Stockinger et al. (1992) 

demonstrated that after activation, CD3+ cells may lose CD45RA and upregulate 

CD45RO cell surface expression with no changes in CD31 cell surface expression seven 

days after activation with PHA. In contrast, Fornasa et al. (2010) demonstrated that 

memory T-cells may not downregulate cell surface CD31 expression, but rather 

enzymatically shed it from the membrane. The evidence from Bird et al. (1993) suggests 

that CD31 may not be required for T-cell migration, yet more recent evidence supports 

the role of CD31 in T-cell transendothelial migration by blocking CD31 suppressing 

CD4+ T-cell migration across TNF-α-treated human dermal microvascular cells (Manes 

et al., 2010). 

CD31 monoclonal antibody (mAb) binding on human monocytes has been demonstrated 

to elicit functional effects, such as respiratory burst (Stockinger et al., 1990). CD31 mAb 

binding had no effect on calcium release or proliferation in CD3+ T-lymphocytes 

(Stockinger et al., 1992), with the authors stating that CD31 appeared to have no 

physiological function on T-cells. Recently, Hur et al. (2007) stimulated CD3+CD31- and 

CD3+CD31+ T-cells isolated from human volunteers and observed a significantly greater 

release of pro-angiogenic cytokines and growth factors (VEGF, IL-8) in the CD31+ 

fraction compared to the CD31- subset. In addition the CD31+ subset demonstrated greater 

adhesion to HUVECs and greater transendothelial migration than CD31- T-cells. The 

greater transendothelial migration was attenuated by adding CXCR4 antibody, suggesting 

that the greater migration abilities of CD31+ T-cells compared to CD31- T-cells may be 

due to the SDF1:CXCR4 axis. The blunting effect of the CXCR4 antibody still did not 

blunt the transendothelial migration enough to similar levels seen with the CD31- 

population, suggesting that the presence of CD31 on T-cells may still aid migration 

independent of CXCR4. 

Several studies have implicated the CD31 molecule in immunomodulatory roles, with 

genetic deletion of CD31 leading to increased T-cell-mediated inflammation involved in 

collagen-induced arthritis (Tada et al., 2003) and increased allograft rejection and 

increased amplification of CD31- T-cells indicating reduced regulatory T-cell-mediated 
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immunosuppression (Ma et al., 2010). Kishore et al. (2012) suggested that CD31 may be 

a key molecule involved in controlling T-cell effector functions through attenuation of T-

cell receptor (TCR) activation and reduced Zap-70 phosphorylation which reportedly 

results in T-cell expansion and effector functions (Ma et al., 2010). The suppression of 

T-cell clonal expansion could be mediated by CD31-activated signalling as a result of 

interaction of CD31+ naïve T-cells with antigen-presenting dendritic cells, however the 

downstream cascade is not fully understood. Kishore et al. (2012) demonstrated that wild 

type (WT) mice displayed reduced T-cell responses (migration and phosphorylation of 

Akt) to chemokine CXCL10 compared to CD31-/- mice. It is interesting to note that the 

effects observed were only seen in activated T-cells, not naïve T-cells. The transformation 

of naïve T-cells to activated T-cells also appears to alter the distribution of CD31 on the 

T-cell surface membrane, with an even distribution in naïve T cells, and clustering of 

CD31 in activated T-cells (Kishore et al., 2012). The significance of this has yet to be 

identified. 

In summary, it appears that CD31 expression on T lymphocytes, in addition to being 

linked with vasculogenic properties, may also regulate T-cell activation and prevent T-

cell hyper-reactivity, which may play a role in prevention of auto-immune diseases, thus 

confirming that these cells may have a variety of roles within both the immune and 

cardiovascular systems. 

 

2.4.1 Angiogenic T Cells in Vascular Disease 

Due to their potential role in vasculogenesis, as shown by modulating HUVEC tube 

formation and their requirement for optimal EPC growth (Hur et al., 2007) several 

researchers have investigated whether TANG, or the lack of TANG, play a role in CVD 

prevention or development. Thus far, TANG levels (reported as a % of total CD3+ cells) 

have been observed to be inversely related with Framingham Risk Score (FRS; a scoring 

system that aims to give risk profile for CVD onset within 10 years) as well as age (Hur 

et al., 2007). The small sample number means that more investigation is required (n=58). 

Weil et al. (2011) failed to observe a relationship between TANG and forearm blood flow 

responses to acetylcholine, or to observe an association with the FRS, possibly as the 

study may have been underpowered to investigate this (n= 24). The authors suggested 

that TANG play only a minor role in endothelial function maintenance, but more studies 

are required with a greater number of participants to fully elucidate the role of TANG in 
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vascular function. The authors did find a relationship of migration to SDF-1 or VEGF and 

forearm blood flow response to acetylcholine, and also found an inverse association with 

FRS. It may be that function of these cells, not necessarily circulating number are more 

predictive or vascular risk/function. Therefore CXCR4 expression would also need to be 

also measured to assess if this is affected by age and/or CVD. So far no studies to date 

have measured CXCR4 expression in relation to mean fluorescence intensity (MFI- 

surrogate marker for level of expression on the cell surface which can be analysed by 

flow cytometry), or intracellular mRNA/protein levels. 

Rouhl et al. (2012) defined TANG as CD3+CD31+CXCR4+ cells, however they failed to 

provide a measure of relative expression of CXCR4 on the TANG cells. Despite this, TANG 

co-expressing CXCR4 were lower in hypertensives exhibiting small vessel 

cerebrovascular disease in comparison to those without small vessel cerebrovascular 

disease (age-matched and no differences in medications). No measures of oxidative stress, 

cellular function or vascular function were made therefore mechanisms or reasons behind 

this possible link between TANG number and vascular health have yet to be elucidated. 

CD31 expression on T-cells may play a regulatory role in atherosclerosis, preventing 

plaque neovascularisation, atherosclerotic lesion progression, as well as preventing T cell 

infiltration of plaques (Groyer et al., 2007). The role in atheroprotection of CD31+ T-cells 

most probably is not due to its vasculogenic effects, but could be attributed to their non-

activated status. T-cell activation is associated with a loss of CD31 expression (Zehnder 

et al., 1992), and thus CD31 expression on T-cells may represent a population on non-

activated cells. CD31 on CD4+ T-cells also play a regulatory role on CD8+ cytotoxic T-

cells and prevented their inflammatory effects on VSMCs in abdominal aortic aneurysms 

(Caligiuri et al., 2006). The exact role of the adhesion molecule CD31 on T-cells in the 

protection of the vascular wall from inflammatory processes has yet to be fully examined. 

In patients with RA TANG cells expressing CXCR4 were reduced versus healthy controls, 

but more interestingly, in those with RA, those who had also suffered a cardiovascular 

event since their diagnosis of RA had a significantly greater decrease in TANG (versus 

healthy controls) than those who were diagnosed with RA and were event free 

(Rodríguez-Carrio et al., 2014). The reduction in TANG could potentially account for 

increased vascular risk in those with RA through either reduction in vasculoprotection or 

an associated increase in systemic inflammation. 
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Although CD3+CD31+ TANG cells have been investigated for their vascular properties, 

other subsets of T-cells may be able to stimulate repair in vascular events. CD3+CXCR4+ 

could be potentially used as a biomarker for general cardiovascular risk without the 

requirement for the CD31 antibody marker. Teraa et al. (2013) found that T lymphocytes 

expressing CXCR4 were higher in critical limb ischemia patients compared to healthy 

controls, and interestingly CXCR4 expression in BM was lower in critical limb ischemia 

patients. The lower level of CXCR4+ cells in BM in these patients could mean an 

increased release of the CXCR4+ cells as there may be a greater signal to mobilise these 

cells from the BM for repair and to recovery blood flow to ischemic tissues. Akin to EPC 

responses to myocardial infarction, there may be an increased signal for circulating 

CXCR4+ cells to be mobilised into the circulation, whether they be CXCR4+ progenitors 

or CXCR4+ lymphocytes, to stimulate rapid repair and attempt to recover blood flow to 

the ischaemic limb or tissue, highlighting the importance to include general cell subsets 

for analysis (e.g. CD3+CXCR4+, CD34+, CD34+CXCR4+). 

By reducing the proportion of CD3+CD31+ cells and thus resulting in an increase in CD31- 

T-cells may promote inflammation which could have negative effects on the endothelium. 

CD31- T-cells, when stimulated, produce and release more IFN-γ than CD31+ T-cells 

(Caligiuri et al., 2006). Björkbacka et al. (2015) found an inverse relationship between 

IFN-γ-expressing CD4+ T-cells and coronary events. The role of CD31- T-cells in 

cardiovascular health has yet to be investigated in full. 

 

2.4.2 Angiogenic T Cells and Ageing 

Age is a risk factor for the development of CVD and thus it is important to assess the role 

TANG may play in preventing CVD, and if there is an age-related effect on these cells 

which would have a knock-on effect on cardiovascular risk. The literature supports the 

hypothesis that there is a reduction in TANG cells, as these cells were significantly lower 

in older (24% of CD3+ T-cells) compared with middle-aged (38%) and young (40%) men, 

and this was accompanied by a marked reduction in migration to both SDF-1 and VEGF 

in the middle-aged and old groups in comparison to the young group (Kushner et al., 

2010c). The data suggests that functional impairment may be the first step prior to a 

reduction in the proportion of CD3+CD31+ T-cells with age. Telomere length, as with 

EPCs, progressively declined with age in this study, and this telomeric reduction may be 



	

53 
	

associated with migration in these cells, potentially linking telomere length and cellular 

function. 

Thymic involution occurs with advanced age resulting in a decrease in thymic output of 

naïve T-cells (Fagnoni et al., 2000; Simpson, 2011), however, the changes in TANG cells 

were in the absence of CD3+ T-cell number, suggesting other age-related mechanisms are 

at play. Telomerase activity is linked with CXCR4 expression, at both the protein and 

mRNA level, as well as SDF-1-stimulated migration in fibroblasts (Qu et al., 2008). The 

age-related decline in telomere length and telomerase activity may be partially 

responsible for age-related dysfunction of TANG, and decline in number, however no 

studies have investigated the link between telomere length or telomerase activity and 

intracellular TANG signalling with specific focus on the CXCR4:SDF-1 axis. 

 

2.4.3 Angiogenic T Cells and Acute Exercise 

Acute exercise has a dramatic effect on circulating T-lymphocyte numbers. Acute 

exercise, depending on intensity and duration (Campbell et al., 2009) can elicit large 

increases in circulating T-cells, from 64% to 181% in healthy human volunteers (Simpson 

et al., 2007; Campbell et al., 2009). This is reportedly due to increases in cardiac output 

and subsequent shear stress on the vascular endothelium (detaching adherent lymphocytes) 

and by increases in catecholamines, such as epinephrine and norepinephrine (Simpson et 

al., 2007). Interestingly, exercise acutely preferentially mobilises T-cells with a highly 

differentiated phenotype compared to naive T-cells (Simpson et al., 2010; Turner et al., 

2010; LaVoy et al., 2014), potentially due to the greater expression of ß-adrenergic 

receptors found on the differentiated T-cells. However, to date, there is no evidence to 

demonstrate the effect of acute exercise on CD31-expressing T-cells, but there is evidence 

to suggest that T-cells expressing adhesion receptors, such as CD56 and integrins) 

demonstrate a greater ingress and subsequent egress from the peripheral circulation 

compared to cells that do not express these receptors (Goebel et al., 2000; Shephard, 2003; 

Simpson et al., 2006). The exact mechanism for the preferential redistribution of cells 

expressing adhesion receptors is not yet known. 

Evidence strongly suggests that acute exercise may provide a short window of vascular 

adaptation due to acute increases in CACs, such as EPCs (Adams et al., 2004; Rehman et 

al., 2004; Laufs et al., 2005a; Van Craenenbroeck et al., 2008; Möbius-Winkler et al., 
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2009; Sandri et al., 2011; Scalone et al., 2013; Ross et al., 2014; Chang et al., 2015), pro-

angiogenic monocytes (Rehman et al., 2004; Bonsignore et al., 2010; Avolio et al., 2015), 

as well as documented evidence of improved CAC function post-exercise (Chang et al., 

2015). These cells are reported to mobilise into the circulation due to exercise-induced 

increase in SDF-1α (Chang et al., 2015), a ligand for CXCR4, a receptor often located on 

these progenitor and CAC subtypes (Adams et al., 2013; Hur et al., 2013; Abdallah et al., 

2014). T-cells also express this chemokine receptor (Abbal et al., 1999; Hur et al., 2007; 

Besedovsky et al., 2014), therefore, the CXCR4:SDF-1α axis may play a role in the T-

cell redistribution observed with acute exercise. 

If CD31+ T-cells display a similar redistribution in response to acute exercise as other T-

cell subpopulations do (Simpson et al., 2008; Ingram et al., 2015), then this may offer a 

short period of time whereby these cells can act on the endothelium to promote 

endothelial health. 

 

2.5 The Role of C-X-C Chemokine Receptor 4 in Vascular Repair and 

Regeneration 

Cell migration is a key process for many cells which need to enter and exit the peripheral 

blood compartment in order to perform their effector functions. For circulating 

angiogenic cells (CAC), like EPCs and TANG cells, the ability to migrate to ischaemic 

tissue may be a key function which will underline their effect on prevention of vascular 

disease. A key player in the cell’s ability to migrate is CXCR4, a seven trans-membranous 

protein, which is a receptor for the ligand SDF-1 (Yamaguchi et al., 2003). 
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Figure 2.5. SDF-1 binding with extracellular N-terminus of CXCR4. From Kuil et al. 

(2012). 

 

The importance of CXCR4 is shown when deletion of CXCR4 in mice results in perinatal 

lethality, and in those mice with CXCR4 deficiency, the BM number of hematopoetic 

stem cells was reduced (Sugiyama et al., 2006), indicating a role for CXCR4 in 

haematopoiesis. CXCR4 may also play an important role in homing of T-cells to the 

thymus (Calderón and Boehm, 2011). Interestingly, CXCR4 also acts as an ‘entry’ protein 

for human immunodeficiency virus (HIV) into CD4+ T-cells (Hesselgesser et al., 1998).  

CXCR4 and SDF-1 (the ligand for CXCR4) is critical for development of vasculature 

during development as shown by reduced cardiac vascularisation in SDF-1 and CXCR4 

mutant mice (Ivins et al., 2015) as well as vascular abnormalities in embryonic 

development in SDF-1 and CXCR4-deficient mice (Ara et al., 2005). The process of 

SDF-1-induced trafficking of CXCR4+ MNCs to sites of vascularisation is thought to play 

a significant role in embryonic vascular development (Ivins et al., 2015). In the adults, 

circulatory increases in SDF-1, as caused by secretion by hypoxic tissue (Ceradini et al., 

2004; De Falco et al., 2004), signals CXCR4+ cells to move into the circulation from the 

BM and other lymphoid tissues (Hattori et al., 2001; Heissig et al., 2002) and home to 

areas of vascular damage or sites of ischaemia (Yao et al., 2003). Here, CXCR4+ cells 

can migrate to ischaemic tissue along a gradient of SDF-1 to where they can exert effector 

functions, either directly differentiating into mature endothelial cells (Mao et al., 2014), 
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or stimulate endothelial cell proliferation by paracrine means (Hur et al., 2007; Hur et al., 

2013). 

The ability of T-cells and progenitor cells to migrate to SDF-1 is highly dependent upon 

the cell surface expression of CXCR4 (Walter et al., 2005; Bryant et al., 2012; Xia et al., 

2012b; Adams et al., 2013; Mao et al., 2014) or the signalling between CXCR4 and its 

downstream target, JAK-2 (Walter et al., 2005; Xia et al., 2012a).  The study by Hur et 

al. (2007) demonstrated that CD31+ T-cell migration was significantly blunted by 

blocking CXCR4, yet this did not fully impair migration to levels similar to CD31- T-

cells, which was blunted compared to the CD31+ fraction. This indicates that CXCR4 is 

required for optimal cell migration, yet not essential. 

There is evidence to show that ageing and vascular disease results in a reduced number 

of CXCR4+ BM-derived cells (Xu et al., 2011), and blocking of CXCR4 with antibodies 

reduce the ability of EPCs to migrate to both SDF-1 and VEGF, in addition to an impaired 

vascular regeneration with disrupted CXCR4 signalling (Walter et al., 2005), yet these 

researchers observed no differences in cell surface expression of CXCR4 on EPCs 

between CAD patients and age-matched healthy controls indicating that cell surface 

expression may not be the determining factor behind their ability to stimulate 

revascularisation, but instead it may the signalling cascade, from CXCR4 to JAK-2 which 

may be disrupted in vascular disease or age. 

 

2.6 Summary 

Circulating angiogenic cells (CAC) are important to the maintenance and growth of the 

vasculature. Ageing is a significant risk factor for the onset and progression of CVD, and 

thus interventions which promote ‘successful’ ageing to reduce the risk of disease and 

mortality have been highly sought after. Exercise, whether it be acute or chronic exercise 

interventions, has been shown to improve circulating number and/or function of some 

CAC subsets, and also provides many more benefits such as improved blood pressure 

profile, reduced cholesterol and oxidative stress which may promote ‘successful’ ageing. 

However, further research is required into some of these cellular subsets to elucidate the 

effects of age, CRF and exercise on biomarkers of endothelial health. 
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2.7 Hypotheses and Aims of the Study 

The overarching aim of this thesis is to investigate the effects of chronological age, CRF, 

acute exercise and sedentary behaviours on CACs and CXCR4 cell surface expression. 

The specific aims and hypotheses for each of the studies conducted were: 

Chapter 4: 

1. The aim of this study was to examine the effect of chronological age and CRF (as 

measured by estimated !O2max) on circulating CD34+ progenitor cells and the cell 

surface expression of a key migratory and mobilisation factor, CXCR4 in 

apparently healthy men. 

Hypothesis: advancing age is associated with reduced number of CD34+ progenitors and 

CXCR4 cell surface expression, which can be attenuated by increasing CRF. 

Chapter 5: 

2. The primary aim of this study was to examine the effect of chronological age and 

CRF (as measured by estimated !O2max) on circulating CD31+ T-cells and the cell 

surface expression of CXCR4 in apparently healthy men. 

3. The secondary aim of this study was to investigate any effects of age and/or CRF 

on CD4+ and CD8+ T-cells expressing CD31 as well as any impact of 

cardiometabolic risk factors, such as BMI, waist circumference, fasting glucose 

and inflammatory cytokines. 

Hypothesis: advancing age is associated with reduced number and proportion of CD31+ 

T-cells with concomitant decline in CXCR4 cell surface expression. CRF attenuates the 

effect of age on these cells either through CD4 or CD8-dependent mechanism. 

 

Chapter 6: 

4. The primary aim of this study was to examine the effect of sedentary behaviours 

on both CD34+ progenitor cells, CD31+ T-cells and other cardiometabolic risk 

factors, such as BMI, waist circumference, fasting glucose and inflammatory 

cytokines. 
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5. The secondary aim of this study was to assess if CRF attenuates any deleterious 

effect sedentary behaviours have on any CAC subset or cardiometabolic risk 

factors. 

Hypothesis: Increasing sitting time and screen time will be associated with reduced 

number of CD34+ progenitor cells and CD31+ T-cells, which will be attenuated by 

increasing CRF levels. 

 

Chapter 7: 

6. The primary aim of this study was to evaluate the changes in CD31+ and CD31- 

T-cells to an acute bout of strenuous exercise 

7. The secondary aim of this study was to assess the relationship between changes 

in circulating SDF-1 and the changes in CXCR4+ T-cells expressing CD31. 

Hypothesis: Strenuous exercise causes an ingress of CD31+ T-cells, more so than CD31- 

T-cells and this ingress is associated with CXCR4 expression on the cell surface of these 

cells. 

 

Chapter 8: 

8. The primary aim of this study was to evaluate the impact of persistent viral 

infection (cytomegalovirus; CMV) on CD31+ T-cells 

9. The secondary aim of this study was to assess the CD4+ and CD8+ TANG cell 

differences between CMV seropositive versus seronegative individuals 

10. The final aim of this study was to assess the impact CMV plays in the age-related 

decline in CD31+ T-cells. 

Hypothesis: CMV is linked with reduced number of CD31+ T-cells as a result of CD4+ 

and CD8+ T-cell changes within CMV seropositive individuals. In addition, CMV will be 

linked with accelerated ageing of the CD31+ T-cell pool. 
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Chapter 3: General Materials and Methods 
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3.1 Participants 

Inclusion criteria for enrolment in this study were male, non-smoking, non-obese (BMI 

<35), no known cardiovascular risk factors, free from infectious disease for 6 weeks, and 

between the ages of 18 and 65 years. Smokers were excluded because of the deleterious 

effect of smoking on EPC number (Paschalaki et al., 2013). Those with excessive alcohol 

consumption (>14 drinks per week) were excluded as this has been found to significantly 

affect baseline circulating EPC number (Xiao et al., 2007). Participants who were taking 

medication affecting the immune system, routinely using ibuprofen and/or aspirin, anti-

depressants or medications affecting blood pressure were excluded from the study. The 

study was approved by Edinburgh Napier University Faculty Research Integrity 

Committee and written informed consent (Appendix 2) was obtained from all participants.  

 

3.2 Resting Measures 

Participants visited the Human Performance Centre at 9 am after an overnight fast, and 

participants refrained from ingesting caffeine from the night before, as well as refraining 

from any alcohol intake 24 hours prior to participation. Participants were also required to 

avoid strenuous exercise for 3 days prior to the visit.  

Firstly, participants were measured for height and body mass. From this BMI was 

calculated as: 

BMI = 
"#$%	'())	(+,)
./0,ℎ2	 3 	4  

Waist and hip measures were also taken to calculate waist-to-hip ratio, which is also 

considered a cardiovascular risk factor (de Koning et al., 2007). Waist circumference was 

measured at the midpoint between the lowest palpable rib and the iliac crest (World 

Health Organisation, 2008) and hip circumference was taken around the widest 

proportion of the buttocks with the participant standing upright (World Health 

Organisation, 2011). Blood pressure (BP) was measured using an automated blood 

pressure cuff (Nonin Puresat Avant 2120, Nonin Medical Inc, Minnesota, USA; Ultra-

Check® Blood Pressure Adult Cuff, Statcorp Medical, Florida, USA) after 5 minutes rest 

in a supine position on the non-dominant arm. BP was measured twice and the average 

systolic and diastolic measures were recorded.   
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3.3 Venepuncture 

Venepuncture was performed with the participant in a supine position after 5 minutes of 

rest. A 21-gauge needle and collection kit (BD Biociences, USA) was used for collection 

of peripheral blood. Blood samples were evacuated into 6mL tubes spray-coated with 

Ethylene Diamine Tetraacetic Acid (EDTA) anticoagulants using the BD Vacutainer 

Safety-Lok™ system (BD Biosciences, USA). To ensure that the blood was not 

contaminated with mature endothelial cells due to puncture of the vein, the first 3mL was 

discarded. Four x 6 mL EDTA tubes and 3 x 6 mL serum tubes (BD Biosciences, USA) 

were used for determination of circulating EPCs and TANG cells (EDTA blood) and for 

determination of fasting glucose, lipids, associated cytokines and growth factors (serum).  

For the acute exercise study (Chapter 7: The Effect of Acute Exercise on the Ingress and 

Egress of CD31+ T-Cells) venepuncture was performed pre-exercise (10km running time 

trial [TT]), immediately post- and 1 hour post-exercise to investigate the kinetics of TANG 

cells as a result of an exercise-stressor. Blood samples for this study were used to 

enumerate CD3+CD31+ T-cells (see 3.6 Flow Cytometric Enumeration of Angiogenic T-

cells). 

 

3.4 Isolation of Peripheral Blood Mononuclear Cells 

Peripheral blood mononuclear cells (PBMNCs) were isolated using density gradient 

centrifugation. Briefly, 3 x 6 mL EDTA peripheral blood was mixed 1:1 with sodium 

chloride (NaCl; 0.9% Sodium Chloride; Baxler, UK). Following this, 6 mL blood + NaCl 

solution was layered onto 3 mL Lymphoprep™ (Axis-Shield plc, Scotland) solution in a 

15 mL centrifuge tube (x 4 tubes). These tubes were centrifuged at 800 x g for 30 minutes 

at 22ºC. After centrifugation, the PBMNC band on the erythrocyte-serum interface was 

carefully aspirated into one 50mL centrifuge tube, and 40 mL NaCl (0.9%) solution was 

added prior to centrifugation at 250 x g for 10 minutes at 22ºC. The supernatant was 

discarded and the pellet resuspended in 40 mL phosphate buffered saline-bovine serum 

albumin (PBS-BSA; 0.01M phosphate buffer, 0.0027 M potassium chloride, 0.137 M 

sodium chloride, pH 6.5-7.5, 1% BSA) prior to re-centrifugation at 250 x g for 10 minutes 

at 22ºC. Once again the supernatant was discarded and the pellet resuspended in 1 mL 
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PBS-BSA. The sample was then stored at 4ºC in the dark until incubation with antibodies 

for TANG analysis (see 3.6 Flow Cytometric Enumeration of Angiogenic T Cells). 

 

3.5 Flow Cytometric Enumeration of Endothelial Progenitor Cells 

EPCs were quantified on a flow cytometer (BD FACS Calibur; BD Biosciences, USA). 

Briefly, 200 µL of EDTA whole peripheral blood was incubated with 20 µL of FcR 

Blocking Reagent (Miltenyi Biotec, Germany) for 15 minutes in the dark at 4°C, followed 

by incubation with 10 µL CD34-FITC, 10 µL CD45-APC (BD Biosciences, USA), 15 µL 

VEGFR2-PE, and 10 µL CXCR4- PE-Cy5 (BD Biosciences, USA) for 45 minutes at 4°C 

in the dark. CXCR4 receptor expression was analysed as CXCR4 is an important homing 

receptor for EPCs, and enhanced CXCR4 expression may enhance the endothelial repair 

capacity of EPCs (Sainz and Sata, 2007; Chen et al., 2010; Chen et al., 2012). 2 mL 

Pharm Lyse™ (BD Biosciences, USA) was added, and left to incubate at 4°C in the dark 

for 20 minutes prior to flow cytometric detection. For each sample, 500,000 CD45+ events 

(CD34+CD45dimVEGFR2+ EPC analysis) were collected for analysis. Samples containing 

no antibody for VEGFR2 and CXCR4 were used as negative controls to set electronic 

gating to determine positive events in positive samples. Following data acquisition, flow 

cytometric data was analysed using FCS Express v3.0 (De Novo, Los Angeles, USA). 

EPCs and CD34+ progenitors are expressed as percentage of total MNCs as advised by 

Van Craenenbroeck et al. (2013a) due to the error associated with calculating circulating 

CD34+ progenitor cells based on total whole blood cell (WBC) count. 

 

The colour-dot plots of flow cytometric enumeration of progenitor cells are shown in 

figure 3.1. 
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Figure 3.1. Flow cytometric enumeration of EPCs. A- CD45+ gating of mononuclear 

cells. B- Identification of CD45+CD34+ cells. C- Identification of CD45+CD34+ cells. D- 

VEGFR2+ subset of CD34+CD45dim cells (EPCs). E-CXCR4 expression on 

CD45dimCD34+VEGFR2+ EPCs. 
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3.6 Flow Cytometric Enumeration of Angiogenic T Cells 

Angiogenic T cells (TANG) were quantified on a flow cytometer (BD FACS Calibur; BD 

Biosciences, USA). Briefly, 0.5 x 106 PBMNCs were incubated with 1 µL anti-CD3 APC, 

anti-CD31 FITC and anti-CXCR4 PE-Cy5 (BD Biosciences, USA) for 45 minutes at 4°C 

in the dark. Immediately prior to flow cytometric enumeration 500 µL PBS-BSA was 

added. Lymphocyte gate was identified using a forward-scatter and side-scatter plot. A 

minimum of 100,000 gated lymphocyte events were collected per sample. Isotypes for 

CD31 (FITC-Anti-Mouse Isotype; BD Biosciences, USA) and CXCR4 (PE-Cy5 Anti-

Mouse Isotype; BD Biosciences, USA) were used (in matched concentrations) as controls 

to distinguish positive and negative events. In 50 participants aged 30-65, TANG were also 

analysed for the expression of CD4 (1 µL anti-CD4 PE [BD Biosciences, USA]) and CD8 

(1 µL anti-CD8 PE [BD Biosciences, USA]). Following data acquisition, data was 

analysed using FCS Express v3.0 (De Novo, Los Angeles, USA). The percentage of all 

lymphocytes and lymphocyte subsets expressing CD3, CD31 and CXCR4 were analysed, 

and total CD3+, CD3+CD31+, CD31+CD31+CXCR4+ T-cell subsets were calculated by 

multiplying the percentage of lymphocytes expressing the surface markers of interest by 

total lymphocyte count as enumerated by Automated Hematology Analyser XS-1000i 

(Sysmex, Japan). The intra-assay coefficient of variation was calculated as 1.34% for 

TANG (CD3+CD31+) cell enumeration. 

The colour-dot plots, contour plots, and histograms of flow cytometric enumeration of 

TANG are shown in figure 3.2. 
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Figure 3.2. Flow cytometric enumeration of TANG cells and coexpression of CXCR4. A- 

Side scatter vs. forward scatter for identification of lymphocyte gate. B- CD3+ gating of 

lymphocytes. C- Isotype and D-positive sample for CD31+ T cells. E- Isotype and positive 

sample for CXCR4+ events in TANG cells (CD3+CD31+). 
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3.7 Haematological Parameters 

EDTA whole blood was used to attain a differential white blood cell count immediately 

after blood collection (Sysmex Automated Hematology Analyser XS-1000i, Sysmex, 

Japan). Samples were measured in duplicate and averaged. Quality control samples were 

used prior to each blood sample being quantified for differential white blood cell count 

(e-Check XS, Sysmex, Japan). 

 

3.8 Analysis of Growth Factors, Cytokines and Cytomegalovirus Serostatus 

Aliquots of serum were prepared and stored at -80°C, for determination by enzyme-linked 

immunosorbent assay (ELISA). For the following markers analysis was performed on -

80°C stored serum: VEGF, SDF-1, IL-6 and IL-8 (R&D Systems, Inc, USA) and also 

used for CMV analysis (BioCheck Inc, USA). Standards of known concentrations were 

used to produce either concentration curve (VEGF, SDF-1, IL-6 and IL-8) or to determine 

fluorescence cut-off for determination of CMV serostatus. 

Serum is known to contain significantly more VEGF than plasma VEGF, as a result of a 

significant contribution of platelet-derived VEGF (Maloney et al., 1998). VEGF can be 

released in the serum as time for serum clotting increases, and thus time that serum was 

allowed to clot before processing was significantly controlled and maintained to limit 

additional error in the measurement of circulating VEGF. 

Fasting glucose, triglycerides, total cholesterol, HDL-C and low-density lipoprotein 

cholesterol (LDL-C) was measured in human serum by semi-automated 

spectrophotometry (RX Monza Clinical Chemistry Analyzer, Randox, UK). Samples 

were analysed in duplicate and averaged. Standards of known concentrations were used 

prior to batch analysis of frozen samples to calibrate the semi-automated 

spectrophotometer. 

Intra-assay coefficient of variation data for differential leukocyte count, ELISA data and 

spectrophotometry analysis of serum cytokines and growth factors are given in table 3.1. 
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Table 3.1. Coefficients of Variation for Blood Sample Analysis 

Assay 
CoV 

(%) 

Differential Leukocyte Count (Sysmex XS-1000i, Japan)  

Lymphocytes 2.37 

ELISA (various)  

VEGF 7.81 

SDF-1 4.10 

IL-6 18.19 

IL-8 14.12 

CMV IgG  8.56 

Semi-Automated Spectrophotometry (RX Monza, Randox, UK)  

Glucose 8.00 

Total Cholesterol 1.18 

HDL-C 2.13 

CoV- Coefficient of Variation, ELISA- Enzyme-Linked Immunosorbent Assay 

 

3.9 Submaximal Exercise Test Protocol 

After providing resting blood sample, all participants completed a submaximal cycling 

exercise test to estimate maximum oxygen uptake (!O2max). The protocol (YMCA 

submaximal cycling test) (Golding et al., 1989) consisted of 3-4 x 3 minute incremental 

stages, beginning at 50W at 50rpm. All tests were performed on a Veletron™ Dynafit Pro 

(Racer Mate®, Seattle, USA) stationary exercise bike. Heart rate (HR) was measured 

continuously throughout the test (Polar, Finland) and the average HR during the last 

minute of each stage (HR2min+HR3min/2) was used to determine each workload adjustment 

in the subsequent stage(s). !O2max was measured throughout the test through breath-by-

breath online analysis (LABManager v5.3.0, Cardinal Health, Germany). The test was 

terminated when the desired steady state HR was attained. !O2max was estimated using 

equations provided by Adams and Beam (1998). 
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3.10 Statistical Analysis 

Data were analysed using SPSS statistical package version 20.0 for Mac (SPSS Inc., IBM, 

USA). Specific details of the statistical tests used to analyse the data within each study 

are given in the subsequent chapters. Statistical significance was set at p<0.05. 
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Chapter 4: The Influence of Age and Cardiorespiratory 

Fitness on Circulating Endothelial Progenitor Cell Number 

and CXCR4 Cell Surface Expression 
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4.1 Introduction 

Cardiovascular disease (CVD) is estimated to cause nearly 30% of all deaths worldwide 

(Lozano et al., 2012). Risk factors include smoking, hypertension, diabetes, and ageing 

(Cupples and D'Agostino, 1987). Both CVD (Gokce et al., 2003; Shechter et al., 2009; 

Hafner et al., 2014; Liao et al., 2014) and ageing (Taddei et al., 2001; Muller-Delp, 2006; 

Soucy et al., 2006; Black et al., 2009) are associated with endothelial dysfunction. This 

is due to a variety of factors, such as increased vascular oxidative stress (Landmesser et 

al., 2002), increased endothelial apoptosis (Wang et al., 2013), and also as a result of 

reduced CAC which support normal endothelial growth and also play a role in the repair 

of a damaged endothelium. 

Asahara et al. (1997) discovered that CD34+ cells could form vessel-like structures in 

vitro. These cells have been termed putative endothelial progenitor cells (EPCs) and have 

been found to be independent predictors of endothelial function (Sibal et al., 2009; 

Bruyndonckx et al., 2014) and are reduced or dysfunctional in CVD patients compared 

to age-matched healthy controls (Fadini et al., 2005; Walter et al., 2005; Sibal et al., 2009; 

Jung et al., 2010; Lin et al., 2013; Teraa et al., 2013; Barsotti et al., 2014; Chan et al., 

2014). Ageing is associated with reduced number (Thijssen et al., 2006; Thum et al., 2007) 

and/or function (Heiss et al., 2005; Hoetzer et al., 2007; Thum et al., 2007; Xia et al., 

2012a; Xia et al., 2012b; Yang et al., 2012; Williamson et al., 2013) of these cells, 

therefore it is important to improve EPC profile throughout life to provide protection 

against the onset and progression of CVD.  

Exercise and physical activity reduces the risk of CVD (Morris et al., 1953; Kurl et al., 

2003; Vigen et al., 2012; Schnohr et al., 2015) which is potentially attributable to the 

improved endothelial function seen with exercise training (Spier et al., 2004; Black et al., 

2008; Rakobowchuk et al., 2008; Black et al., 2009; Birk et al., 2012; Mitranun et al., 

2014), which may be partly due to the increased number and function of EPCs observed 

after acute exercise (Laufs et al., 2005a; Shaffer et al., 2006; Yang et al., 2007; Van 

Craenenbroeck et al., 2008; Jenkins et al., 2009; Möbius-Winkler et al., 2009; Van 

Craenenbroeck et al., 2011; Ross et al., 2014; Chang et al., 2015) and chronic exercise 

training (Laufs et al., 2004; Steiner et al., 2005; Hoetzer et al., 2007; Manfredini et al., 

2009; Van Craenenbroeck et al., 2010a; Schlager et al., 2011; Sonnenschein et al., 2011; 

Fernandes et al., 2012; Xia et al., 2012a; Yang et al., 2013). Some studies have shown no 

changes in CD34+ progenitor cell or EPC basal levels after an exercise training 
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intervention (Thijssen et al., 2006; Witkowski et al., 2010; Luk et al., 2012), yet some, 

having found no changes in number, found changes in in vivo (Xia et al., 2012a) or in 

vitro (Manfredini et al., 2009; Sonnenschein et al., 2011) function of these cells. 

Therefore, debate has arisen whether exercise training stimulates the body to maintain 

higher levels of these progenitor cells in the circulation by mobilising them from the BM, 

or whether the effect is to improve the function of these cells via modulating intracellular 

gene expression and protein production, for example increasing CXCR4 intracellular 

protein levels (Xia et al., 2012a). 

The aim of this study was therefore to evaluate the effect of ageing in a healthy male 

population on circulating number and CXCR4 cell surface expression of CD34+ 

progenitor cells and EPCs, and to assess the role CRF plays on any age-related effects 

observed. 

 

4.2 Materials and Methods 

4.2.1 Participants 

Male participants (n=112), aged between 18 and 65 years volunteered to participate in the 

study, and consisted of students and staff based at Edinburgh Napier University, in 

addition to general public from the Edinburgh area. Prior to their involvement in the study, 

participants were asked to give written informed consent, after which they completed a 

Physiological Screening Questionnaire (see Appendix 3). Participants were excluded from 

the study if they were smokers, had an excessive alcohol intake (>14 drinks/week); had a 

BMI>35; were currently taking medication affecting the immune system, currently taking 

antidepressants; routinely using ibuprofen or aspirin. Additionally participants were 

excluded from the study if they: reported major affective disorders such as human 

immunodeficiency virus infection, hepatitis, arthritis, central or peripheral nervous 

disorders, or had a history of stroke or cardiac events; suffered from known 

cardiovascular or autoimmune disease; reported infection in the 6 weeks prior to study 

enrolment; or were bedridden in the 3 months prior to the study, or suffer from known 

cardiovascular or autoimmune disease (n=10 in total excluded). Participants who met the 

inclusion criteria (n=102) were asked to respond to these criteria on the Physiological 

Screening Questionnaire (see Appendix 3). Participants were advised not to partake in any 

strenuous exercise for 72 hours prior to their visit to the Human Performance Laboratory. 
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Ethical approval for the study was given by the Edinburgh Napier University Research 

and Ethics Governance Committee. Participant characteristics are shown in table 4.1. 

Table 4.1. Participant characteristics (n=102). Values shown are mean ± SD 

 All 

(n=102) 

18-30 years 

(n=36) 

31-50 years 

(n=42) 

51-65 years 

(n=24) 
p-value 

Age (years) 39 ± 14 24 ± 3 41 ± 6* 58 ± 5*# 0.000 

Height (m) 1.79 ± 0.08 1.82 ± 0.07 1.80 ± 0.08 1.78 ± 0.08 0.141 

Body Mass (kg) 83.64 ± 10.16 86.18 ± 10.39 84.02 ± 9.40 79.15 ± 10.12* 0.029 

BMI (kg·m2) 25.83 ± 2.60 26.06 ± 2.37 26.05 ± 2.45 25.09 ± 3.12 0.283 

SBP (mmHg) 130 ± 15 126 ± 10 129 ± 13 140 ± 19* 0.000 

DBP (mmHg) 78 ± 9 73 ± 8 80 ± 8 84 ± 9* 0.000 

MAP (mmHg) 96 ± 10 90 ± 7 96 ± 9* 103 ± 11* 0.000 

Waist-to-Hip Ratio 0.95 ± 0.05 0.92 ± 0.04 0.96 ± 0.04 0.97 ± 0.04 0.000 

!O2max 

(mL·kg·min-1) 

43.60 ± 9.48 44.19 ± 7.99 47.03 ± 9.62 36.70 ± 7.82*# 0.000 

BMI- Body Mass Index, SBP- Systolic Blood Pressure, DBP- Diastolic Blood Pressure, MAP- 

Mean Arterial Pressure. * p<0.05 vs. 18-30 years, # p<0.05 vs. 31-50 years. 

 

4.2.2 Anthropometric and Characteristics 

On arrival to the Human Performance Laboratory, after informed consent was given, 

participants were measured for height and body mass, with values used to calculate BMI. 

Resting blood pressure was measured after 5-minute rest in a supine position using an 

automated sphygmomanometer (Avant® 2120, Nonin Medical Inc., USA).  
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4.2.3 Blood Sampling 

Blood was taken from participants after a 5 minute supine rest by a certified phlebotomist. 

Blood samples were drawn into 6mL vacutainers (BD Biosciences, USA), which were 

either coated in EDTA to prevent coagulation or serum gel. EDTA blood was used for 

EPC enumeration (see 4.2.5 Endothelial Progenitor Cell Number and CXCR4 Expression 

Quantification), and serum was used for analysis of serum for chemotactic factors (see 

4.2.6 Serum Analysis for Chemotactic Factors). 

 

4.2.4 Submaximal Exercise Test to Estimate Maximal Oxygen Uptake 

Maximal oxygen uptake (!O2max) of each participant was estimated using a submaximal 

exercise test (YMCA) as previously described in general materials and methods Chapter 

3.15. Briefly, participants exercised on a stationary cycle ergometer (Veletron™ Dynafit 

Pro; Racer Mate®, Seattle, USA) at 50rpm for 3-4 incremental stages, each stage lasting 

3 minutes. The initial power output of the test was 50W and increased in subsequent 

stages depending on HR response.		!O2max was measured throughout the test through 

breath-by-breath online analysis (LABManager v5.3.0, Cardinal Health, Germany). The 

test was terminated when the desired steady state HR was attained (80% of HRmax, as 

calculated by equation from Tanaka et al., 2001). !O2max was estimated using equations 

provided by Adams and Beam (1998). 

 

4.2.5 Endothelial Progenitor Cell Number and CXCR4 Expression Quantification 

Peripheral whole blood was used for EPC analysis. Whole blood was labelled with 

monoclonal antibodies anti-CD34-FITC, anti-CD45-APC, anti-VEGFR2-PE and anti-

CXCR4-PE-Cy5 (all BD Biosciences, USA) and left to incubate at 4°C for 45 minutes in 

the dark as described in general materials and methods Chapter 3.5. Progenitor cell 

subsets in human whole blood were analysed using a BD FACSCalibur (BD Biosciences, 

USA) as detailed in general materials and methods Chapter 3.5. Total progenitors were 

considered CD34+ cells with a low side scatter (SSClow) and putative EPCs considered as 

CD34+CD45dimVEGFR2+ cells (Van Craenenbroeck et al., 2013b) as described in general 

materials and methods Chapter 3.8. 
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4.2.6 Serum Analysis for Chemotactic Factors 

Serum chemotactic factors VEGF and SDF-1α were analysed by ELISA as described in 

general materials and methods Chapter 3.12. Fasting glucose, triglycerides, total 

cholesterol, HDL-C and LDL-C was measured in human serum by semi-automated 

spectrophotometry (RX Monza Clinical Chemistry Analyzer, Randox, UK). Samples 

were analysed in duplicate and averaged.  

 

4.2.7 Statistical Analysis 

All data were assessed for normal distribution. Not normally distributed data were 

logarithmically or square root transformed. Linear regressions were initially performed 

to assess relationships between age and CRF on circulating CD34+ progenitor, EPC 

number or CXCR4 expression. Age and CRF were added to a regression model by 

hierarchical multiple regression analysis to assess the effect of CRF after correcting for 

chronological age (Ainslie et al., 2008; Giannaki et al., 2013; Ho, 2013). A two-way 

analyses of variance (ANOVA) were performed to detect any interaction between age 

and CRF on the progenitor cell subtypes. Fisher’s Least Significance Difference (LSD) 

post-hoc tests were performed to identify locations of any significant differences. 

Significance was set at p-value 0.05. Data was analysed using SPSS for Macintosh, 

version 20 (IBM, Chicago, USA). 

 

4.3 Results 

4.3.1 The effect of age and estimated !O2max on circulating CD34+ and putative 

endothelial progenitors 

The effects of age and !O2max on circulating CD34+ progenitor cells and putative 

endothelial progenitor cells assessed initially by linear regression analysis and are shown 

in table 4.2. Age was inversely associated with various CAC subsets (CD34+ [r=-0.251, 

p=0.006], CD34+CXCR4+ [r=-0.305, p=0.001], CD34+CD45dimVEGFR2+ [EPC] [r=-

0.209, p=0.020], CXCR4+ EPC [r=-0.252, p=0.007], and EPC CXCR4 mean fluorescence 

intensity (MFI) [r=-0.228, p=0.013]).  !O2max was not associated with basal circulating 

level of any CAC subset, yet other physiological variables were associated with CACs, 

with MAP (CD34+CXCR4+, r=-0.256, p=0.005), total cholesterol (CD34+, r=-0.229, 
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p=0.010; CD34+CXCR4+, r=-0.214, p=0.014) and IL-8 (CD34+ r=-0.223, p=0.019; 

CD34+CXCR4+, r=-0.240, p=0.013) were inversely associated with various CACs. SDF-

1α, a selected putative mobilising factor for progenitor cells was positively correlated 

with CD34+ progenitor cell subsets (EPC, r=0.239, p=0.009; CXCR4+ EPC, r=0.221, 

p=0.016). There was no effect of fasting glucose or serum IL-6 on CAC subsets. 

Since !O2max was also significantly associated with age (r=-0.328, p=0.000), hierarchical 

multiple regressions were performed to control for the effect of chronological age, and to 

assess the independent effect of CRF on these CAC subsets (tables 4.3 and 4.4). After 

correction for age, !O2max was still not associated with any CAC subsets (p>0.05). 
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Table 4.2. Univariate linear regression analysis on progenitor cell subsets in healthy males (n=102). 

 Pearson’s coefficient (p-value)  F-statistic (p-value) 
 Age !O2max  Age !O2max 

CD34+ -0.251 (0.006)* -0.064 (0.266)  6.542 (0.012)* 0.393 (0.532) 

CD34+CXCR4+ -0.305 (0.001)* -0.142 (0.077)  10.220 (0.002)* 2.060 (0.154) 

CD34+CXCR4+ MFI 0.039 (0.347) -0.077 (0.221)  0.596 (0.442) 0.596 (0.442) 

CD34+CD45dimVEGFR2+ -0.209 (0.020)* -0.040 (0.349)  4.332 (0.040)* 0.152 (0.697) 

CD34+CD45dimVEGFR2+CXCR4+ -0.252 (0.007)* -0.026 (0.401)  6.326 (0.014)* 0.064 (0.802) 

CD34+CD45dimVEGFR2+CXCR4+ MFI -0.228 (0.013)* 0.007 (0.474)  5.096 (0.026)* 0.004 (0.949) 

MFI- Mean Fluorescence Intensity, * significant p<0.05 
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Table 4.3. Hierarchical multiple regression analysis on CD34+ progenitor cell subsets in healthy males (n=102). 

Progenitor cell subsets Factors for Analysis R2 R2 Change Beta Value SEB Standardised ß F-statistic (p -value) t-statistic (p-value) 

CD34+ Model 1 
Age 
 
Model 2 
Age 
!O2max 

0.063 
 
 

0.083 
 
 

 
 
 

0.020 
 
 
 

 
-1.009 

 
 

-1.011 
-1.008 

 
1.004 

 
 

1.004 
1.005 

 

 
-1.285 

 
 

-1.340 
-1.158 

 

6.542 (0.012)* 
 
 

4.347 (0.016)* 
 
 
 

 
-2.558 (0.012)* 

 
 

-2.876 (0.005)* 
-1.442 (0.147) 

 
CD34+CXCR4+ 

 
Model 1 
Age 
 
Model 2 
Age 
!O2max 

0.093 
 
 

0.116 
 
 
 

 
 
 

0.055 
 
 
 
 

 
-1.020 

 
 

-1.025 
-1.024 

 
1.006 

 
 

1.006 
1.009 

 
-1.357 

 
 

-1.449 
-1.275 

10.220 (0.002)* 
 
 

8.559 (0.000)* 
 
 
 
 

 
-3.197 (0.002)* 

 
 

-3.844 (0.000)* 
-1.252 (0.0130) 

 

CD34+CXCR4+ MFI Model 1 
Age 
 
Model 2 
Age 
!O2max 

0.002 
 
 

0.006 
 

 
 
 

0.005 
 
 

 
1.000 

 
 

1.000 
1.002 

 
1.002 

 
 

1.002 
1.002 

 
1.094 

 
 

1.047 
1.180 

0.155 (0.694) 
 
 

0.314 (0.732) 
 

 
0.394 (0.694) 

 
 

0.191 (0.849) 
-0.687 (0.493) 

SEB- Standard error of the Beta value. MFI- Mean Fluorescence Intensity, * significant p<0.05 
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Table 4.4. Hierarchical multiple regression analysis on putative endothelial progenitor cells in healthy males (n=102). 

Progenitor cell subsets Factors for Analysis R2 R2 Change Beta Value SEB Standardised ß F-statistic (p -value) t-statistic (p-value) 

CD34+CD45dimVEGFR2+ Model 1 
Age 
 
Model 2 
Age 
!O2max 

0.044 
 
 

0.054 

 
 
 

0.010 

 
-1.015 

 
 

-1.017 
-1.011 

 
1.007 

 
 

1.007 
1.011 

 
-1.232 

 
 

-1.267 
-1.110 

4.332 (0.040)* 
 
 

2.667 (0.075) 

 
-2.081 (0.040)* 

 
-2.275 (0.025)* 
-1.1001 (0.319) 

CD34+CD45dimVEGFR2+CXCR4+ Model 1 
Age 
 
Model 2 
Age 
!O2max 

0.064 
 
 

0.073 

 
 
 

0.016 

 
-1.018 

 
 

-1.020 
-1.011 

 
1.007 

 
 

1.007 
1.011 

 
-1.287 

 
 

-1.323 
-1.107 

6.326 (0.014)* 
 
 

3.640 (0.030)* 

 
-2.515 (0.014)* 

 
 

-2.686 (0.009)* 
-0.979 (0.330) 

CD34+CD45dimVEGFR2+CXCR4+ 
MFI 

Model 1 
Age 
 
Model 2 
Age 
!O2max 

0.052 
 
 

0.055 

 
 
 

0.003 

 
-1.012 

 
 

-1.012 
-1.005 

 
1.005 

 
 

1.005 
1.007 

 
-1.690 

 
 

-1.754 
-1.148 

5.096 (0.026)* 
 
 

2.689 (0.073) 
 
 

 
-2.257 (0.026)* 

 
 

-2.318 (0.023)* 
-0.565 (0.573) 

SEB- Standard error of the Beta value, MFI- Mean Fluorescence Intensity (MFI), * significance, p<0.05 
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One-way analyses of variance (ANOVA) were performed to determine any differences 

in progenitor number and CXCR4 cell surface expression between participants aged 18-

30yrs, 31-50yrs and 51-65yrs.  

One-way ANOVA analysis between age groups identified several significant differences 

(figures 4.1 and 4.2). CD34+ and CD34+CXCR4+ circulating progenitors were 

significantly higher in the 18-30yrs group compared to the 31-50yrs (CD34+=0.143% ± 

0.011 [0.131-0.192, 95% CI]) vs. 0.113% ± 0.009 [0.094-0.132], p=0.031; 

CD34+CXCR4+=0.089% ± 0.010 [0.069-0.110] vs. 0.048% ± 0.006 [0.036-0.061], 

p=0.000) and 51-65yrs group (CD34+=0.143% ± 0.011 [0.131-0.192, 95% CI]) vs. 0.106% 

± 0.010 [0.085-0.126], p=0.033; CD34+CXCR4+=0.089% ± 0.010 [0.069-0.110] vs. 

0.040% ± 0.006 [0.028-0.051], p=0.001). Circulating EPCs (CD34+CD45dimVEGFR2+) 

only differed between the 18-30yrs and 31-50yrs groups (0.015% ± 0.003 [0.008-0.022] 

vs. 0.006% ± 0.001 [0.004-0.008], p=0.000), however the number of EPCs expressing 

CXCR4 was raised in the 18-30yrs group compared to both the 31-50yrs (0.011% ± 0.002 

[0.007-0.016] vs. 0.004% ± 0.001 [0.003-0.006], p=0.002) and 51-65yrs group (0.011% 

± 0.002 [0.007-0.016] vs. 0.006% ± 0.001 [0.003-0.008], p=0.026). 

 

Figure 4.1. Circulating CD34+ progenitor cells and EPCs in healthy males in age groups 

18-30yrs, 31-50yrs and 51-65yrs. *p<0.05 different from 18-30yrs. 
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Figure 4.2. Percentage of CD34+ and endothelial progenitors expressing CXCR4 in 

healthy males in age groups 18-30yrs, 31-50yrs and 51-65yrs. * p<0.05 different from 

18-30yrs. 

 

CXCR4 cell surface expression was assessed on CD34+ and CD34+CD45dimVEGFR2+ 

progenitor cells by flow cytometry and compared between males in age groups 18-30yrs, 

31-50yrs and 51-65yrs by one-way ANOVA (figure 4.3). CXCR4 cell surface expression 

levels (as measured by flow cytometric MFI) was not different on CD34+ progenitor cells 

between any age group. CD34+CD45dimVEGFR2+ EPC CXCR4 cell surface expression 

was significantly reduced in 51-65yrs compared to 18-30yrs (19.87 ± 2.65 arbitrary 

units/AU [14.55-25.19] vs. 34.93 ± 4.61 AU [25.53-44.32], p=0.005) and 31-50yrs (19.87 

± 2.65 AU [14.55-25.19] vs. 32.99 ± 4.90 AU [23.05-42.93], p=0.017). 
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Figure 4.3. CXCR4 cell surface expression levels on circulating CD34+ and 

CD34+CD45dimVEGFR2+ progenitor cells in healthy males in age groups 18-30yrs, 31-

50yrs and 51-65yrs. *p<0.05 different from 18-30yrs and 31-50yrs. 

 

Participants were then grouped within their age-classifications (18-30yrs, 30-50yrs an 51-

65yrs) into tertiles for estimated !O2max (for CRF-grouped participant characteristics, see 

table 4.5). To further investigate the effect of CRF on these progenitor cells with age, a 

two-way factorial ANOVA was performed, with age groups (18-30yrs, 31-50yrs and 51-

65yrs) and fitness groups (low CRF, moderate CRF, and high CRF- tertiles) as the fixed 

factors. 
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Table 4.5. Participant characteristics by cardiorespiratory fitness groupings (n=102). 

Age Grouping 18-30yrs 31-50yrs 51-65yrs p-
value 

!O2max Category Low 
CRF Moderate CRF High 

CRF 
Low 
CRF Moderate CRF High 

CRF 
Low 
CRF Moderate CRF High 

CRF  

N 12 12 12 14 14 14 8 8 8 NS 

Age (years) 28 ± 3 24 ± 3 23 ± 3 43 ± 8 39 ± 5 42 ± 6 61 ± 4 55 ± 4 58 ± 5 NS 

BMI (h·m2) 27.7 ± 2.4 24.7 ± 1.7* 25.9 ± 2.1* 26.2 ± 2.1 25.9 ± 2.8 26.1 ± 2.5 26.5 ± 2.9** 25.8 ± 3.5** 23.0 ± 2.0 <0.05 

Waist  
(cm) 

90.0 ± 5.1** 82.2 ± 3.8** 86.6 ± 4.5 95.3 ± 8.4 88.7 ± 6.8* 87.8 ± 8.6* 96.3 ± 9.5 92.5 ± 11.9 85.1 ± 3.3* <0.05 

Total Cholesterol  
(mmol·L-1) 

3.34 ± 
0.56** 

3.22 ±0.62** 2.66 ± 0.75 3.49 ± 0.86 3.43 ± 1.2 3.78 ± 0.99 3.66 ± 1.15 3.38 ± 0.53 3.40 ± 0.59 <0.05 

HDL-C  
(mmol·L-1) 

1.21 ± 0.29 1.20 ± 0.16 1.31 ± 0.33 1.10 ± 0.31 1.18 ± 0.24 1.37 ± 0.29 1.28 ± 0.26 1.25 ± 0.11 1.40 ± 0.28 NS 

LDL-C   
(mmol·L-1) 

1.51 ± 
0.50** 

1.42 ± 0.61** 0.77 ± 0.61 1.66 ± 0.97 1.58 ± 1.1 1.37 ± 0.39 1.61 ± 0.98 1.38 ± 0.56 1.35 ± 0.69 <0.05 

Fasting Glucose  
(mmol·L-1) 

4.15 ± 
0.97** 

3.78 ± 0.65** 3.61 ± 0.54 4.48 ± 1.49 4.10 ± 0.56 4.49 ± 0.79 5.03 ± 0.73 4.42 ± 0.65 4.23 ± 0.65* <0.05 

MAP (mmHg) 93 ± 6 89 ± 7 88 ± 8 96 ± 10 95 ± 9 97 ± 8 105 ± 15 100 ± 17 104 ± 11 NS 

!O2max 
(mL·kg·min-1) 35.8 ± 2.9** 43.8 ± 1.8* ** 53 ± 5.5* 36.40 ± 

5.27** 
47.43 ± 3.2* 

** 57.27 ± 4.38* 28.23 ± 
4.83** 

37.27 ± 
2.89** * 44.62 ± 3.92* <0.05 

NS- No significant differences between CRF groups within age categories. * significantly different from low CRF, P<0.001, **significantly different from 
high CRF, p<0.05 
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CD34+ progenitor cells were largely unaffected by CRF, except in the 31-50yrs group, 

where there was an apparent decline in CD34+ progenitor cells in the High CRF group 

compared to both the Low CRF (0.089 ± 0.014% [0.060-0.118] vs. 0.133 ± 0.017% 

[0.096-0.169], p=0.049) and Moderate CRF groups (0.089 ± 0.014% [0.060-0.118] vs. 

0.119 ± 0.017% [0.083-0.155], p=0.049). 

There was a significant age*CRF interaction found with the CD34+CXCR4+ progenitor 

cells (p=0.027). In the 31-50yrs group, the CD34+ progenitor cells expressing CXCR4+ 

were found to be higher in the Low CRF group and Moderate CRF in comparison to the 

High CRF groups (Low vs. High CRF: 0.061% ± 0.012 [0.036-0.086] vs. 0.023% ± 0.005 

[0.012-0.034], p=0.001; Moderate vs. High CRF: 0.061% ± 0.011 [0.037-0.086] vs. 0.023% 

± 0.005 [0.012-0.034], p=0.000) (figure 4.4B). Additionally, the percentage of CD34+ 

progenitors expressing CXCR4 was also lower in the High CRF group compared to the 

Moderate CRF group (25.85 ± 3.72% [17.80-33.89], vs. 48.63 ± 4.63% [38.69-58.56], 

p=0.000) and compared to the Low CRF group (25.85 ± 3.72% [17.80-33.89], vs. 44.09 

± 4.67% [33.93-54.25], p=0.004) in the 31-50yrs group (figure 4.4C).  

The intensity of expression of CXCR4 on these CD34+CXCR4+ progenitor cells, as 

quantified as MFI was not significantly different between age groups or between CRF 

groups, either as total groups, or within the different age subcategories (figure 4.5).  
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Figure 4.4. Effect of cardiorespiratory fitness on CD34+ progenitors in men aged 18-
30yrs, 31-50yrs and 51-65yrs (n=102 total). A showing the circulating CD34+ progenitor 
cell count, B showing the CD34+CXCR4+ circulating numbers, and C showing the 
proportion of total CD34+ progenitors expressing CXCR4. * significantly different from 
Low CRF, p<0.05. # significantly different from Moderate CRF, p<0.005. 
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Figure 4.5. Level of CXCR4 cell surface expression on CD34+ progenitor cells in healthy 

males grouped by age and cardiorespiratory fitness level. MFI- Mean Fluorescence 

Intensity. 

 

There was no observed effect of CRF on circulating EPCs or CXCR4-expressing EPCs 

(figure 4.6).  There appeared to be a progressive decline in all age groups from Low to 

High CRF in the percentage of EPCs expressing CXCR4, however this was not significant 

(figure 4.6C). 
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Figure 4.6. Effect of cardiorespiratory fitness on CD34+CD45dimVEGFR+ putative 

endothelial progenitors in men aged 18-30yrs, 31-50yrs and 51-65yrs (n=102 total). A- 

showing the circulating EPC count, B- showing the CXCR4+ EPC circulating numbers, 

and C- showing the intensity of CXCR4 cell surface expression on 

CD34+CD45dimVEGFR2+ progenitors. * significantly different from High CRF, p<0.05, 

** significantly different from Moderate CRF, p<0.05. 
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As with EPC number and CXCR4-expressing EPCs, there was no trend for changes in 

MFI with fitness levels amongst our participants in any age group (figure 4.7). No 

age*CRF interaction was observed (p=0.470). 

 

Figure 4.7. Level of CXCR4 cell surface expression on CD34+CD45dimVEGFR2+ 

endothelial precursor cells in healthy males grouped by age and CRF level. MFI- Mean 

Fluorescence Intensity. 

 

4.3.2 Effect of Age and CRF on Progenitor Cell Mobilising Factor SDF-1α 

Since age and CRF appear to exert differential effects on circulating CD34+ progenitors, 

the effect of these 2 factors on the circulating mobilising factor SDF-1α, was investigated. 

Two-way ANOVAs were performed with SDF-1α as the dependent variable, and age and 

CRF as the independent fixed factors. 

Circulating SDF-1α was found to be reduced in circulation of those in the 51-65yrs group 

compared to the 18-30yrs group (2262.13 ± 67.41pg·mL-1 [2122.69-2401.57] vs. 2572.61 

± 91.57 pg·mL-1 [2386.71-2758.51], p=0.007) and the 31-50yrs group (2262.13 ± 67.41 

pg·mL-1 [2122.69-2401.57] vs. 2373.04 ± 62.64 pg·mL-1 [2246.44-2499.63], p=0.004) 

(figure 4.8A). 
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Those with high levels of CRF displayed greater circulating SDF-1α than those with low 

CRF levels in the 31-50yrs group (2497.20 ± 105.33 pg·mL-1 [2269.64-2724.76] vs. 

2192.05 ± 113.32 pg·mL-1 [1942.63-2441.48], p=0.017) (figure 4.8B). Circulating SDF-

1α was significantly reduced in 18-30yrs group who displayed average levels of CRF 

group compared to the Low CRF group (2315.61 ± 165.32 pg·mL-1 [1951.73-2679.49] 

vs. 2852.46 pg·mL-1 [2538.94-3165.97] p=0.003). No other differences in circulating 

SDF-1α were observed. 

 

Figure 4.8. Effect of cardiorespiratory fitness and age on circulating SDF-1α in males 

aged 18-65yrs. A- the effect of chronological age on circulating SDF-1α. * significantly 

different from 18-30yrs, p<0.05. B- Effect of cardiorespiratory fitness on circulating 

SDF-1α. * significantly different from Low CRF, # significantly different from Moderate 

CRF. 
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4.3.3 Multiple Linear Regressions  

To determine the most important factors on these circulating CD34+ progenitors and 

CD34+CD45dimVEGFR2+ putative endothelial progenitors, stepwise multiple level 

regressions were performed with age, BMI, waist circumference, blood pressure (mean 

arterial pressure [MAP]), cholesterol levels, fasting glucose, SDF-1α, VEGF and 

estimated !O2max (table 4.6). Table 4.6 shows that CD34+ progenitors and their subsets 

are affected by chronological age, SDF-1α, waist circumference and total cholesterol. 

Interestingly, waist circumference and total cholesterol were positively associated with 

CD34+CXCR4+ cell subset. ! O2max was interestingly negatively associated with 

CD34+CXCR4+ progenitor cell number, otherwise had no effect in the hierarchical 

multiple regression on EPCs and CXCR4+ EPCs. 
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Table 4.6. Stepwise multiple linear regression model for CD34+ progenitors (n=102). 

Progenitor cell subsets Predictors in 
Model R R2 Beta 

Value SEB Standardised 
ß 

F-statistic  
(p -value) 

t-statistic  
(p-value) 

CD34+ Age 
Waist 0.372 0.138 -1.012 

1.017 
1.004 
1.006 

-1.391 
1.325 7.613 (0.001)* -3.338 (0.001)* 

2.838 (0.006)* 

CD34+CXCR4+ 

 
Age 
!O2max 

0.358 0.131 -1.020 
-1.024 

1.006 
1.019 

-1.451 
-1.276 8.536 (0.000)* -3.840 (0.000)* 

-2.520 (0.013)* 

CD34+CXCR4+ MFI Total 
Cholesterol 0.356 0.127 1.127 1.033 2.270 14.342 (0.000)* 3.787 (0.000)* 

CD34+CD45dimVEGFR2+ SDF-1α 0.239 0.057 1.001 0.000 1.270 5.710 (0.019)* 2.390 (0.019)* 

CD34+CD45dimVEGFR2+CXCR4+ Age 0.249 0.062 -1.018 1.007 -1.283 6.091 (0.015)* -2.468 (0.015)* 

CD34+CD45dimVEGFR2+CXCR4+ 
MFI Waist 0.256 0.066 -1.021 1.009 -1.803 6.460 (0.013)* -2.542 (0.013)* 

SEB- Standard Error of the Beta Value, MFI- Mean Fluorescence Intensity 
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4.3.4 Differences in CD34+ and EPC Quartiles 

To identify differences in qualities in those with high circulating progenitors versus those 

with low circulating levels, one-way ANOVAs were performed between quartiles of 

CD34+ frequency, CD34+CD45dimVEGFR2+ frequency to detect differences in age, BMI, 

waist circumference, cholesterol profile, blood pressure, SDF-1α and estimated !O2max. 

Those participants displaying greater circulating CD34+ progenitor cells tended to be 

younger and with a more favourable blood pressure profile than those with low levels of 

these circulating progenitor cells (table 4.7). As with the data already presented in this 

chapter on the effects of CRF on these CD34+ progenitor cells, there was no discernable 

pattern in those with high or low circulating levels of EPCs (table 4.8). 

Table 4.7. Differences in physical characteristics between quartiles of circulating CD34+ 

progenitor cells. 

CD34+ 1st Quartile 2nd Quartile 3rd Quartile 4th Quartile p-value 

Age (years) 43 ± 13* 43 ± 14* 35 ± 24 34 ± 12 0.024 

BMI (kg·m2) 25.8 ± 2.6 25.7 ± 3.1 26.4 ± 1.9 25.4 ± 2.7 0.576 

Waist (cm) 89.5 ± 9.4 88.8 ± 7.4 90.7 ± 8.2 87.9 ± 7.7 0.659 

MAP (mmHg) 100 ± 13* 97 ± 8 93 ± 8 93 ± 9 0.026 

SDF-1α 

(pg·mL-1) 
2423 ± 553 2410 ± 411 2356 ± 553 2480 ± 501 0.828 

Fasting Glucose 

(mmol·L-1) 
4.47 ± 0.75 4.18 ± 0.78 3.98 ± 1.11 4.27 ± 0.93 0.298 

Total Cholesterol 

(mmol·L-1) 
3.58 ± 1.04 3.39 ± 0.93 3.36 ± 0.94 3.16 ± 0.54 0.438 

HDL-C 

(mmol·L-1) 
1.27 ± 0.26 1.21 ± 0.24 1.29 ± 0.29 1.23 ± 0.32 0.746 

LDL-C 

(mmol·L-1) 
1.63 ± 0.97 1.52 ± 1.01 1.42 ± 0.82 1.25 ± 0.48 0.435 

!O2max 

(mL·kg·min-1) 
44.0 ± 10.0 44.8 ± 10.4 41.4 ± 9.3 44.1 ± 8.3 0.616 

BMI- Body Mass Index, MAP- Mean Arterial Pressure, HDL-C- High-Density 

Lipoprotein Cholesterol, LDL- Low-Density Lipoprotein Cholesterol. *p<0.05 vs. 3rd and 

4th Quartile. Values are mean ± SD 
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Table 4.8. Differences in physical characteristics between quartiles of circulating putative 

endothelial progenitor cells. 

CD34+CD45DIMVEGFR2+ 1st Quartile 2nd Quartile 3rd Quartile 4th Quartile p-

value 

Age (years) 42 ± 12 39 ± 13 41 ± 17 35 ± 13 0.303 

BMI (kg·m2) 26.1 ± 3.0 26.1 ± 2.5 25.2 ± 1.9 25.9 ± 2.1 0.554 

Waist (cm) 90.7 ± 9.4 90.1 ± 7.1 87.3 ± 8.0 87.9 ± 7.7 0.417 

MAP (mmHg) 95 ± 11 97 ± 10 97 ± 8 93 ± 8 0.539 

SDF-1α 

(pg·mL-1) 
2442 ± 351 2456 ± 460 2320 ± 450 2451 ± 560 0.680 

Fasting Glucose 

(mmol·L-1) 
4.29 ± 1.27 4.37 ± 0.83 4.18 ± 0.69 4.04 ± 0.76 0.596 

Total Cholesterol 

(mmol·L-1) 
3.33 ± 0.83 3.43 ± 1.00 3.36 ± 0.96 3.36 ± 0.96 0.983 

HDL-C 

(mmol·L-1) 
1.20 ± 0.26 1.21 ± 0.27 1.25 ± 0.26 1.33 ± 0.30 0.325 

LDL-C 

(mmol·L-1) 
1.41 ± 0.89 1.55 ± 1.01 1.43 ± 0.72 1.42 ± 0.87 0.918 

!O2max (mL·kg·min-1) 41.2 ± 10.3 43.9 ± 7.6 43.6 ± 8.8 45.6 ± 11.1 0.437 

BMI- Body Mass Index, MAP- Mean Arterial Pressure, HDL-C- High-Density 

Lipoprotein Cholesterol, LDL- Low-Density Lipoprotein Cholesterol.  
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4.4 Discussion 

The main findings of this study are that circulating CD34+ progenitors are reduced in 

circulating numbers with advancing age, with numbers of CXCR4+ progenitors also 

reduced. There appears to be minimal impact of CRF on these cells, with a reduction of 

CD34+ progenitors and CXCR4+CD34+ progenitors in high CRF group in 31-50 year old 

participants. There were no such effects seen in the 18-30yrs and 51-65yrs groups. Fitness 

appears not to play a role in attenuating the age-related decline in these CACs, either age 

independent or dependent.  Other factors appear to be more important, such as waist 

circumference, and cholesterol levels. Therefore, it cannot be discounted that CRF may 

play an indirect role on these CACs via modulating other health parameters such as 

cholesterol, waist circumference and other cardiometabolic risk factors. The largest 

predictor for circulating EPCs was circulating SDF-1α levels, a known circulating factor 

that assists in the mobilisation of progenitor cells from the BM and into the circulation. 

There also appears to be an age-related decline in circulating SDF-1α levels, potentially 

offering a mechanistic effect of advancing age on the observed decline in EPCs observed 

in this study. In addition, those with the highest number of CD34+ progenitor cells 

appeared to be younger and displayed a more favourable blood pressure profile.  

Advancing age is associated with endothelial dysfunction (Taddei et al., 2001; Muller-

Delp, 2006; Soucy et al., 2006; Black et al., 2008; Black et al., 2009). There are many 

mechanisms postulated for the age-related decline in endothelial function, such as an 

increase in oxidative stress (Hamilton et al., 2001; Taddei et al., 2001) and increased rate 

of endothelial cell apoptosis (Wang et al., 2013). Additionally, vascular regenerative 

potential may be reduced with advancing age, and cells that partake in the regeneration 

process, circulating or tissue-resident stem cells may also be impaired in the aged. Our 

data shows that advancing age is strongly related with reduction in several cell subsets of 

these circulating stem cells, CD34+ and CD34+CD45dimVEGFR2+ cells, with the latter 

termed endothelial progenitor cells (EPC). There was a 21% and 26% reduction in CD34+ 

progenitor cells from 18-30yrs to 31-50yrs and 51-65yrs respectively, as well as a 46% 

and 55% in CXCR4+ progenitor cells between the same age groups. EPCs were also 

reduced from 18-30yrs to 31-50yrs (60% reduction) and to 51-65yrs (47% reduction, 

p=0.095). As with CD34+ progenitor cells, CXCR4-expressing EPCs followed the ageing 

trend, with a 64% and 46% reduction in cell number from 18-30yrs to 31-50yrs and 51-

65yrs respectively. It was not only the CXCR4+ cell number that was reduced, but the 

intensity of the cell surface expression on EPCs was also reduced in the 51-65yrs 
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compared to the 18-30yrs group, with a significant 43% reduction. Our data supports 

other studies that have found a reduction in circulating number of CD34+ and EPCs with 

age (Thijssen et al., 2006; Thum et al., 2007), however, our data is the first to show that 

the CD45dim subset (reportedly ‘true’ endothelial precursors) of traditional 

CD34+VEGFR2+ EPCs is also affected negatively by age. In contrast, Heiss et al. (2005) 

found functional deficits in CD34+VEGFR2+ circulating cells rather than changes in 

number with age. These contrasting results highlight the importance for standardisation 

for EPC enumeration and quantification. 

The reduction in circulating progenitors could be attributed to impaired mobilisation of 

these cells, reduced survival, reduced BM-resident vascular progenitors, or all three. 

Several studies have identified an age-related decline in progenitor cell number within 

the BM of aged versus young populations (Muschler et al., 2001; Rauscher et al., 2003; 

Stolzing et al., 2008). These reductions in BM progenitor cell niche may be attributable 

to increased oxidative stress environment and senescence of these cells (Stolzing et al., 

2008). Consequently, reductions in the BM vascular progenitor cell niche may directly 

result in a reduction in numbers circulating in the peripheral blood compartment, further 

reducing the individual’s ability for vascular repair. 

In addition to a reduction of BM progenitor cell numbers, a reduced ability to mobilise 

these cells (Bosch-Marce et al., 2007) may be a cause for the observed reduction seen in 

this study. Ageing was associated with a reduction in circulating SDF-1α in our study, a 

known mobilising factor for CXCR4+ cells. Interestingly, SDF-1α  was the only variable 

in the multiple regression model for CD34+CD45dimVEGFR2+ cells (r=0.239, p=0.019) 

after correcting for age, fitness levels, circulating cholesterol, glucose and other 

anthropometric variables such as BMI and waist circumference. A 12% reduction in 

circulating SDF-1α was accompanied by a 47% reduction in CD34+CD45dimVEGFR2+ 

cells from the 18-30yrs to the 51-65ys, although the reduction in EPCs from the young 

group to the 51-65yrs group was not significant (p=0.095). Despite these observations, 

Xing et al. (2006) found that in old mice, mobilisation of haematopoietic cells actually 

had a greater ability to enter the circulation than young mice after a intra-arterial dose of 

G-CSF was given. There are several studies showing an impaired mobilisation of BM 

progenitors in old mice versus young mice, whether that is to a burn wound stimulus 

(Zhang et al., 2011) or exercise (Thijssen et al., 2006). Zhang et al. (2011) investigated 

the mobilisation pattern of BM-derived vascular progenitors in response to a burn wound 

in both young and old mice- which is often used as a tissue repair model in mice. Wound-
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induced SDF-1α expression was attenuated in the aged mice compared to the young mice, 

which had a knock-on effect of reduced progenitor cells entering the circulation, and 

subsequent reduced wound repair in comparison to the young mice. Although our study 

did not investigate stimulated release of progenitors, SDF-1α was reduced in our older 

individuals, which could be a significant predictor of basal progenitor cell levels. 

This is the first study to our knowledge that demonstrates a reduction in CXCR4+CD34+ 

cells with age in humans. Aged atherosclerotic mice displayed reduced number of 

CXCR4+ BM-derived cells (Xu et al., 2011) which serves to strengthen the findings in 

our cohort.  This may have implications for function of these cells as CXCR4 is a key 

receptor for these cells to migrate to ischaemic tissue expressing SDF-1α (Yamaguchi et 

al., 2003). Indeed progenitor cell function appears to be reduced with age also (Heiss et 

al., 2005; Hoetzer et al., 2007; Thum et al., 2007; Xia et al., 2012b; Williamson et al., 

2013). These decrements in function may be somewhat linked to reduced CXCR4 cell 

surface expression, which would limit the cell’s ability to migrate from the circulation to 

ischaemic tissue. This would have implications for the onset and progression of vascular 

disease. CVD patients display impaired CXCR4 signalling which was attributed to 

impaired vascular regeneration (Walter et al., 2005) as blocking CXCR4 with neutralising 

antibodies reduced the ability of these EPCs to migrate to both SDF-1α and VEGF. When 

these human EPCs were incubated with CXCR4 antibody, EPC-mediated recovery of 

blood flow to ischaemic hind limb was significantly reduced.  Corroborating with our 

data, these researchers found no difference in cell surface expression between CVD 

patients and age-matched healthy controls, indicating that CXCR4 cell surface expression 

may not be the most sensitive marker of CXCR4-mediated EPC dysfunction. Taken 

together, the reduction in circulating progenitor cell number and the reduced level of 

CXCR4+ progenitor cells may contribute to the age-related endothelial dysfunction as a 

result of impaired endothelial regeneration and repair. 

The data also indicates that before or after correction for age, there was no effect of CRF 

on these CAC subsets. This is in stark contrast to several studies which have demonstrated 

increases in CD34+ cell number in aerobically fit versus unfit individuals, or as a result 

of a longitudinal exercise training programme (Laufs et al., 2004; Steiner et al., 2005; 

Hoetzer et al., 2007; Sarto et al., 2007; Cesari et al., 2009; Manfredini et al., 2009; Van 

Craenenbroeck et al., 2010a; Schlager et al., 2011; Sonnenschein et al., 2011; Fernandes 

et al., 2012; Xia et al., 2012a; Choi et al., 2014). Interestingly, Thijssen et al. (2006), 

Witkowski et al. (2010) and Luk et al. (2012) found no changes in circulating progenitor 
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cell number, and in some investigators who found no changes in number subsequently 

observed improvements in either in vivo (Xia et al., 2012a) or in vitro (Manfredini et al., 

2009; Sonnenschein et al., 2011) function. 

It is likely that the differences in the data from the study presented and the studies showing 

increases in EPCs arises from the differences in the phenotype of EPC studied. Typically, 

EPCs have been defined as all circulating PBMNC co-expressing the stem cell antigen 

CD34 and an endothelial lineage antigen, VEGFR2 (Case et al., 2007). This phenotype 

encompasses both cells that support endothelial growth through paracrine mechanisms 

and cells that have the ability to differentiate into mature endothelial cells. Van 

Craenenbroeck et al. (2013a) recommended using  CD34+CD45dimVEGFR2+ as the 

phenotypic identify of ‘true’ endothelial precursors since CD45bright fraction of these cells 

appear to be primarily haematopoietic in origin and function to secrete more pro-

angiogenic cytokines and have less endothelial differentiating potential than CD45dim 

cells (Hur et al., 2004; Timmermans et al., 2007). 

Our data suggests that regular exercise may not affect CXCR4 cell surface expression on 

these progenitor cells. Xia et al. (2012a) observed an increase in CD34+ intracellular 

CXCR4 protein expression with exercise training in old subjects. This increased protein 

expression of this chemotactic receptor could lead to increased translocation of this 

receptor to the cell surface membrane, yet this was not assessed in this study. If this were 

to occur, this could apparently lead to the increased phosphorylation of JAK-2 after 

stimulation that was seen.  

CXCR4 expression on these cells is heavily associated with the cell’s ability to migrate 

to SDF-1α (Xia et al., 2012a), which itself can be produced by ischaemic tissue and act 

as a potent stimulator for vasculogenesis. The age-related decline in endothelial 

regenerative ability may be linked to the reduced number of CXCR4+ progenitors 

observed in our older cohort in the study, but by having a high CRF was potentially not 

strong enough to attenuate this age-related decline. CXCR4 is a cell surface receptor 

which can be upregulated when required, and thus a snapshot of the CXCR4 expression 

on these cells may not be a sensitive biomarker of cell function, and thus future studies 

should investigate the stimulated CXCR4 upregulation in these cells with age and 

exercise to further understand the effects of age and exercise on the function of these cells. 

Additionally, Walter et al. (2005) and Xia et al. (2012a) both are advocates for measuring 

the intracellular phosphorylation of JAK-2, a downstream target of CXCR4, to determine 
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mechanisms behind EPC dysfunction, as this measure was related to the extent to which 

these cells were able to either migrate to SDF-1α in vitro, or stimulate vascular repair in 

vivo. Therefore this may be a more sensitive measure to use in future studies to assess 

age- and exercise-related changes in vascular repair ability. 

The data collected indicates that SDF-1α is a positive regulator of EPC number, as the 

multiple regression analysis revealed that SDF-1α was positively associated with EPC 

numbers. There is evidence that elevated levels of basal SDF-1α is linked with higher 

basal circulating levels of progenitor cells potentially a result of mobilisation from the 

BM (Aiuti et al., 1997; Hattori et al., 2001; Moore et al., 2001) or enhanced survival 

within the circulatory environment (Sarto et al., 2007; Zheng et al., 2008; Yan et al., 2012; 

Zhu et al., 2012). Mesenchymal stem cell over-expression of SDF-1α, when transplanted 

into a mouse heart in a model of myocardial ischaemia, promoted greater incorporation 

of BM-derived progenitor cells and fewer apoptotic cells were found in the heart (Zhao 

et al., 2009) providing evidence to its therapeutic potential to stimulate vasculogenesis. 

SDF-1α has been purported as potential therapeutic pharmacological agent to reduce 

morbidity in those with vascular disease due to its role in mobilisation of pro-angiogenic 

progenitors, ensuring survival of these cells and stimulating vascular growth. For an in-

depth review of this topic, readers are directed to the work by Ho et al. (2012). 

Paradoxically, in a cohort from the Framingham Heart Study, circulating higher 

circulating levels of SDF-1α was significantly associated with decreased CD34+ cell 

frequency, yet higher levels of SDF-1α was a significant predictor for future CVD events 

and all-cause mortality in >3000 participants (Subramanian et al., 2014). This is in stark 

contrast to several studies that have found positive association between SDF-1α and 

CD34+ progenitor number (Moore et al., 2001; Becchi et al., 2008; Chang et al., 2009). 

With regard to exercise, Laufs et al. (2004) found increases in circulating EPCs without 

any observable increases in circulating SDF-1α, suggesting that the exercise-induced 

improvements in basal EPCs was not due to circulating SDF-1α levels. We did see an 

ageing effect on SDF-1α levels, with serial decreases from 18-30yrs to 31-50yrs and again 

to 51-65yrs. In our stepwise multiple level regression analysis, after correction for age, 

SDF-1α was the only variable associated with CD34+CD45dimVEGFR2+ EPCs, 

suggesting that they may be associated with modulating basal EPCs irrespective of age 

and exercise habits. 
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Recently, evidence is arising that SDF-1α may not act through modulating CXCR4 

expression or EPC migration. Instead SDF-1α may act through C-X-C Chemokine 

Receptor 7 (CXCR7), and evidence suggests that the SDF-1α-CXCR7 axis may modulate 

cell survival and cell cycle initiation (Yan et al., 2011; Torossian et al., 2014), and EPC 

function (Dai et al., 2011; Yan et al., 2011). Therefore future studies could assess both 

CXCR4 and CXCR7 expression on these CACs to evaluate ageing and exercise effects. 

 

4.5 Conclusion 

Ageing is associated with reduced CAC numbers and CXCR4+ BM-derived progenitors. 

CRF appeared to have little if any effect on these cells. Older individuals display reduced 

SDF-1α circulating levels, potentially causing the observed reduction in CACs in these 

individuals. Reduced SDF-1α and subsequent CAC circulating numbers may contribute 

to the well-described ageing-induced endothelial dysfunction and increased CVD risk. 
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Chapter 5: Influence of Age and Cardiorespiratory Fitness on 

Circulating Angiogenic T Cell Number and CXCR4 Cell 

Surface Expression 
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5.1 Introduction 

Data from Chapter 4 strongly suggests that age is negatively associated with a loss of 

EPCs, which may in turn have a deleterious effect on vascular health and angiogenesis. 

It is known that leukocytes can support angiogenesis (Gaudry et al., 1997; Schruefer et 

al., 2005). In 2007, Hur and colleagues (2007) isolated PBMNCs and cultured EPCs. In 

the central cluster of the culture they identified a sub-population of CD3+ T-cells co-

expressing CD31, which is itself an adhesion molecule (Muller, 1995). These cells are 

highly pro-angiogenic, being able to secrete high levels of VEGF, IL-8 and G-CSF to a 

significantly greater extent than CD31- fraction of these CD3+ T-cells (Hur et al., 2007; 

Kushner et al., 2010b). In a hindlimb ischaemic mouse model, mice injected with these 

CD3+CD31+ cells showed greater blood flow recovery to the ischaemic limb and greater 

capillarity compared with mice injected with saline or CD3+CD31- T-cells (Hur et al., 

2007). Unsurprisingly, these cells showed greater potential for adhesion to HUVECs than 

their CD31- counterparts, and they also migrated to a greater extent to SDF-1α than 

CD3+CD31- T-cells which indicated that these cells must express CXCR4 (the receptor 

for SDF-1α) more than the CD3+CD31- cells, which they did. As a result of their potent 

vasculogenic capabilities, these CD3+CD31+ cells were termed ‘angiogenic T-cells’, or 

TANG. The circulating number of these cells however has not been associated with 

endothelial function, but ability of these cells to migrate to SDF-1α, with improved 

migration to this factor positively correlating with improved forearm blood flow after an 

administered dose of acetylcholine (Weil et al., 2011). This suggests that when 

enumerating this cell subset, investigators should also be investigating CXCR4 cell 

surface expression, and this may be involved in the function of these cells to migrate to 

ischaemic areas. Circulating TANG levels have been found to be negatively correlated with 

the Framingham Risk Score (FRS) (Hur et al., 2007), reduced in patients with small vessel 

cerebrovascular disease (Rouhl et al., 2012) as well as with advancing age (Hur et al., 

2007; Kushner et al., 2010c), indicating that these cells may be implicated in the increased 

CVD risk with age, as a result of the imbalance between endothelial damage and repair. 

Exercise may play a role in improving endothelial function and reducing CVD risk by 

association with elevated CD31+ T-cell number and/or function. We have provided 

evidence that basal levels of CD34+ and CD34+CD45dimVEGFR2+ EPCs are unaffected 

by fitness level, an indicator of exercise training habits (see Chapter 4) and yet it is 

currently not known if exercise, either an acute exercise bout or chronic exercise training 

modulate the circulating levels of TANG or cell surface expression of CXCR4 of these 
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TANG cells. Therefore it was the aim of this study is to evaluate the effect of ageing in 

healthy males on circulating number and CXCR4 cell surface expression of CD3+CD31+ 

T-cells (TANG), and secondly to assess the role CRF plays in any age-related effects 

observed. 

 

5.2 Materials and Methods 

 

5.2.1 Participants 

Participant information, inclusion and exclusion criteria are detailed in Chapter 4 

(Influence of Age and Cardiorespiratory Fitness on Circulating Endothelial Progenitor 

Cells and CXCR4 Cell Surface Expression). Ethical approval for the study was given by 

the Edinburgh Napier University Research and Ethics Governance Committee. 

Participant characteristics are shown in table 4.1 (see Chapter 4 - Influence of Age and 

Cardiorespiratory Fitness on Circulating Endothelial Progenitor Cells and CXCR4 Cell 

Surface Expression). For anthropometric characteristics, see 4.2.2 Anthropometric and 

Characteristics. 

 

5.2.2 Blood Sampling and PBMNC Isolation 

Blood was taken from participants after a 5-minute supine rest by a certified phlebotomist. 

Blood samples were drawn into 6mL vacutainers (BD Biosciences, UK), which were 

either coated in EDTA to prevent coagulation or serum gel. EDTA blood was processed 

for PBMNC separation as previously described in general materials and methods Chapter 

3.7. Isolated PBMNCs were then used for TANG number and CXCR4 enumeration (see 

5.2.5 Angiogenic T Cell Number and CXCR4 Expression Quantification), and serum was 

used for analysis of serum for chemotactic factors (see 5.2.6 Serum Analysis for 

Chemotactic Factors and Inflammatory Markers). 
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5.2.4 Submaximal Exercise Test to Estimate Maximal Oxygen Uptake 

Maximal oxygen uptake (!O2max) of each participant was estimated using a submaximal 

exercise test (YMCA) as previously described in general materials and methods Chapter 

3.15. Briefly, participants exercised on a stationary cycle ergometer (Veletron™ Dynafit 

Pro; Racer Mate®, Seattle, USA) at 50rpm for 3-4 incremental stages, each stage lasting 

3 minutes. The initial power output of the test was 50W and increased in subsequent 

stages depending on HR response.		!O2max was measured throughout the test through 

breath-by-breath online analysis (LABManager v5.3.0, Cardinal Health, Germany). The 

test was terminated when the desired steady state HR was attained (80% of HRmax). 

!O2max was estimated using equations provided by Adams and Beam (1998). 

 

5.2.5 Angiogenic T Cell Number and CXCR4 Expression Quantification 

Isolated PBMNCs (0.5x106) were labelled with monoclonal antibodies anti-CD3-APC, 

anti-CD31-FITC, anti-CD4/CD8-PE and anti-CXCR4-PE-Cy5 (all BD Biosciences, 

USA), and were left to incubate at 4°C for 45 minutes in the dark prior to flow cytometric 

analysis as detailed in general materials and methods Chapter 3.9. CXCR4 cell surface 

expression was analysed as a surrogate for migratory ability. 

 

5.2.6 Serum Analysis for Chemotactic Factors and Inflammatory Markers 

Serum chemotactic factor SDF-1α, in addition to inflammatory markers IL-6, and IL-8 

were analysed by enzyme-linked immunosorbent assay (ELISA) as described in general 

materials and methods Chapter 3.12. Fasting glucose, triglycerides, total cholesterol, 

HDL-C and LDL-C was measured in human serum by semi-automated 

spectrophotometry (RX Monza Clinical Chemistry Analyzer, Randox, UK). Samples 

were analysed in duplicate and averaged.  
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5.2.7 Statistical Analysis 

All data were assessed for normal distribution. Not normally distributed data were 

logarithmically transformed. Linear regressions were initially performed to assess 

relationships between circulating CD3+CD31+ cells (TANG) or CXCR4 expression and 

variables such as age, CRF ( ! O2max), BMI, MAP, circulating triglycerides, total 

cholesterol, HDL-C, LDL-C, fasting glucose, as well as SDF-1α, which may stimulate 

upregulation of CXCR4 cell-surface. Variables with a significant association with TANG 

cells were added to a regression model by hierarchical multiple regression. A one-way 

analysis of variance (ANOVA) was used to detect differences in TANG populations 

between age groups (18-30yrs, 31-50yrs, 51-65 years) and between age-adjusted !O2max 

groupings. Two-way ANOVA were performed to detect any interaction between age and 

CRF on TANG cells and CXCR4 expression. Fisher’s Least Significant Difference (LSD) 

post-hoc tests were performed to identify locations of any significant differences. 

Data were analysed using SPSS for Macintosh, version 20 (IBM, Chicago, USA). 

 

5.3 Results 

5.3.1 The effect of age, CRF and other circulating factors on angiogenic T-cells 

Advancing age was associated with a decrease in TANG cell number, expressed as either 

total CD3+CD31+ cell number (r=-0.410, p=0.000) or as a proportion of total CD3+ T-

cells (r=-0.534, p=0.000), however there was no association present for CXCR4+ TANG 

number or intensity of expression (mean fluorescence intensity [MFI]) (see table 5.1). 

Estimated !O2max was positively correlated with proportion of total CD3+ T-cells 

expressing CD31 (r=0.284, p=0.002), and, like age, there was no association between 

!O2max and CXCR4 expression on TANG cells. 

Other measures of cardiometabolic health, such as total cholesterol (CXCR4+ TANG, r=-

0.228, p=0.011; % of TANG expressing CXCR4, r=-0.251, p=0.005), LDL-C (CXCR4+ 

TANG, r=-0.234, p=0.009; TANG CXCR4 MFI, r=-0.203, p=0.020), and fasting glucose 

(TANG as % CD3+, r=-0.261, p=0.004) were all negatively associated with various TANG 

cell subsets (data not shown). SDF-1α was only associated with rise in proportion of CD3+ 

T-cells expressing CD31 (r=0.245, p=0.007), with no other relationship observed with 

CXCR4 expression on these cells.  
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Hierarchical multiple level regression analyses were performed to assess the relationship 

between CRF and TANG cells after correcting for age to see if CRF attenuates the age-

related decline in these cells. After correction for age, CRF was not associated with any 

TANG subset or measure of CXCR4 cell surface expression. Results are shown in table 5.2.  
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Table 5.1. Univariate linear regression analysis on TANG cell number and CXCR4 cell surface expression subsets in healthy males (n=102). 

 

 Pearson’s coefficient (p-value)  F-statistic (p-value) 
 Age !O2max  Age !O2max 

CD3+CD31+ T-cells (cells·µL-1) -0.251 (0.006)* 0.144 (0.075)  6.542 (0.012)* 2.103 (0.150) 

CD3+CD31+ T-cells (% of CD3+) -0.305 (0.001)* 0.258 (0.005)*  10.220 (0.002)* 7.050 (0.009)* 

CXCR4+ TANG (cells·µL-1) 0.039 (0.347) 0.002 (0.491)  0.155 (0.694) 0.001 (0.982) 

%TANG expressing CXCR4 0.003 (0.486) -0.034 (0.366)  0.001 (0.972) 0.117 (0.733) 

MFI TANG CXCR4 0.041 (0.343) 0.009 (0.463)  0.163 (0.687) 0.009 (0.926) 

 

MFI- Mean Fluorescence Intensity. * significant p<0.05 
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Table 5.2. Hierarchical multiple level regression analysis on CD31+ T-cells in healthy men aged 18-65 (n=102). 

Angiogenic T-Cell Subsets Factors for Analysis R2 R2 Change Beta 
Value 

SEB Standardised 
ß 

F-statistic (p -value) t-statistic (p-value) 

CD3+CD31+ T-cells (cells·µL-1) 

Model 1 
Age 
 
Model 2 
Age 
!O2max 

0.168 
 
 

0.169 

 
 
 

0.001 
 
 

 
-6.654  

 
 

-6.502 
0.813 

 
1.479 

 
 

1.543 
2.257 

 
-0.410 

 
 

-0.401 
0.034 

20.250 (0.000)* 
 
 
 

10.102 (0.000)* 

 
-4.500 (0.000)* 

 
 

-4.213 (0.000) 
0.360 (0.719) 

CD3+CD31+ T-cells (% of CD3+) 

Model 1 
Age 
 
Model 2 
Age 
!O2max 

0.289 
 
 

0.303 
 
 

 
 
 

0.014 
 
 
 

 
-0.369 

 
 

-0.346 
0.125 

 
0.058 

 
 

0.060 
0.088 

 
-0.537 

 
 

-0.505 
0.124 

 

40.215 (0.000)* 
 
 

21.321 (0.000)* 

 
-6.342 (0.000)* 

 
 

-5.770 (0.000)* 
1.419 (0.159) 

CXCR4+ TANG (cells·µL-1) 

Model 1 
Age 
 
Model 2 
Age 
!O2max 

0.023 
 
 

0.025 

 
 
 

0.002 
 

 
-1.009 

 
 

-1.009 
-1.005 

 
1.005 

 
 

1.007 
1.009 

 
-1.419 

 
 

-1.456 
-1.102 

2.361 (0.128) 
 
 

1.255 (0.290) 

 
-1.537 (0.128) 

 
 

-1.584 (0.116) 
-0.410 (0.683) 

%TANG expressing CXCR4 

Model 1 
Age 
 
Model 2 
Age 
!O2max 

0.000 
 
 

0.002 

 
 
 

0.002 

 
-0.018 

 
 

-0.033 
-0.081 

 
0.135 

 
 

0.141 
0.206 

 
-0.013 

 
 

-0.024 
-0.041 

0.018 (0.894) 
 
 

0.085 (0.918)  

 
-0.133 (0.894) 

 
 

-0.234 (0.815) 
-0.391 (0.696) 

MFI TANG CXCR4 

Model 1 
Age 
 
Model 2 
Age 
!O2max 

0.010 
 
 

0.012 
 

 
 
 

0.002 

 
0.017 

 
 

0.019 
0.010 

 
0.017 

 
 

0.018 
0.026 

 
0.100 

 
 

0.111 
0.040 

1.016 (0.316) 
 
 

0.576 (0.564) 

 
1.008 (0.316) 

 
 

1.070 (0.287) 
0.381 (0.704) 

SEB- Standard Error of the Beta Value; MFI- Mean Fluorescence Intensity. *p<0.05 
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One-way analyses of variance (ANOVA) (CD3+CD31+/CD3+CD31+CXCR4+) were 

performed to determine the effects of age on TANG cells and levels of and CXCR4 

expression on these cells. With data available for CD4+ and CD8+ sub fractions only for 

the 31-50yrs and 51-65yrs groups, independent T-tests were performed to detect 

differences between age groups in these cells.  

Figure 5.1 shows that TANG cells were reduced in circulation of those in the 31-50yrs and 

51-65yrs group compared to the 18-30yrs group (631 ± 34 cells·µL-1 [563-699] vs. 751 ± 

39 cells·µL-1 [672-831], p=0.014, and 543 ± 32 [476-610] vs. 751± 39 [672-831], p=0.000, 

respectively). There was no significant difference in CD4+ or CD8+ TANG cells between 

the 31-50yrs and the 51-65yrs groups. In addition, the percentage of total T-cells 

expressing CD31 were dramatically reduced in the 31-50yrs and 51-65yrs group 

compared to the 18-30yrs cohort (53.91 ± 1.39% [51.11-56.72) vs. 61.67 ± 1.26% [59.09-

64.22], p=0.000; 49.15 ± 1.64% [45.77-52.54] vs. 61.67 ± 1.26% [59.09-64.22], p=0.000), 

and the 51-65yrs group also showing a reduction compared to the 31-50yrs group (49.15 

± 1.64% [45.77-52.54] vs. 53.91 ± 1.39% [51.11-56.72], p=0.027) (figure 5.2). 

Figure 5.1. Circulating CD3+CD31+ T-cells in healthy males in age groups 18-30yrs, 31-

50yrs and 51-65yrs.  * significantly different from 18-30yrs, p<0.05. 
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Figure 5.2. Percentage of CD3+ T-cells expressing CD31 changes with age. *significantly 

different from 18-30yrs, p<0.001, # significantly different from 31-50yrs group, p<0.05. 

 

Interestingly, the percentage of CD4+ and CD8+ T-cells which express CD31 differ, with 

<35% of CD4+ T-cells and >76% of CD8+ T-cells expressing CD31 (figure 5.3A, 

p=0.002). Subsequent gating for CXCR4 cell surface expression revealed that the CD4+ 

TANG cells had a greater proportion of CXCR4+ cells than the CD8+ TANG cells, with >30% 

CD4+ TANG cells expressing CXCR4, with only ~ 15% of CD8+ TANG cells doing so (31.56 

± 4.12% [23.27-39.85] vs. 14.80 ± 1.66% [11.45-49.51], p=0.006, figure 5.3B).  
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Figure 5.3. CD4+ and CD8+ T-cell expression of CD31 (A), and subsequent CXCR4 (B) 

cell surface expression (n=46). * significantly different from CD4+, p<0.05. 

Furthermore, the percentage of those CD4+ and CD8+ T-cells which co-express CD31 did 

not differ with age (figure 5.4A), yet the percentage of CD8+ TANG cells expressing 

CXCR4 was reduced in our 51-65yrs cohort compared to the 31-50yr group (10.27 ± 1.35% 

[7.44-13.10] vs. 16.96 ± 2.50% [11.80-22.12], p=0.033) (figure 5.4B). 
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Figure 5.4. CD4+ and CD8+ expression of CD31 (A) and subsequent CXCR4 cell surface 

expression (B) between age groups. *significantly different from 31-50yrs, p<0.05. 
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5.3.2 Cardiorespiratory Fitness and CD31+ T-Cells 

Participants were then grouped within their age-classifications (18-30yrs, 30-50yrs and 

51-65yrs) into tertiles for estimated !O2max  (for CRF-grouped participant characteristics, 

see table 4.5, Chapter 4: The Influence of Age and Cardiorespiratory Fitness on 

Circulating Endothelial Progenitor Cells and CXCR Cell Surface Expression). To further 

investigate the effect of CRF on these T-cells with age, linear regressions were performed 

to assess the relationship of TANG cells and age within CRF sub categories.  

Figure 5.5 shows the linear relationships between age and TANG cells within the CRF 

categories of low, moderate and high CRF. There is no difference in slope of the 

regression line, confirming the hierarchical multiple level regression analysis that if CRF 

plays a role in modulating TANG cell number, then it is not independent of age.  

 

 

Figure 5.5. Linear regressions of TANG and age in low, moderate and high CRF categories. 
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A two-way factorial ANOVA was performed, with age groups (18-30yrs, 31-50yrs and 

51-65yrs) and fitness groups (low CRF, moderate CRF, and high CRF- tertiles) as the 

fixed factors. 

Analysis showed that CD3+CD31+ T-cells, when expressed as cells·µL-1 did not 

significantly differ between CRF groups in all age groups (figure 5.6). TANG cell numbers 

in the high CRF group was higher than in low CRF for 18-30yrs (816 ± 59 cells·µL-1 

[687-946] vs. 522 ± 61 cells·µL-1 [522-788]), however this was not statistically significant 

(p=0.068), yet effect size calculations revealed that, although not significant, this was a 

moderate effect size (ES=0.78). No other notable differences were found. 

 

Figure 5.6. The effects of cardiorespiratory fitness on CD31+ T-cells in healthy males 

aged 18-65yrs with age-group specific low, moderate and high !O2max values. 
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Further sub-analysis of CD4 and CD8 proportion in both 31-50yrs and 51-65yrs revealed 

no differences in cell number between CRF groups (figure 5.7). Interestingly, the CD4+ 

TANG cells appeared to be higher in the moderate CRF compared to low CRF participants 

in the 51-65yrs group, with a large effect size (301 ± 44 cells·µL-1 [189-413] vs. 187 ± 

34 cells·µL-1 [104-271], ES=1.15). This suggests that CD4+ TANG cells may be more 

susceptible to changes in CRF, rather than CD8+ sub populations. 

 

Figure 5.7. CD4/CD8+ CD31+ T-cells in healthy males aged 18-65yrs with age-group 

specific low, moderate and high !O2max values. 
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Analysis of proportion of total T-cell pool revealed that high CRF was associated with 

greater percentage of T-cells expressing CD31 than low CRF in 18-30yrs (65.06 ± 2.01% 

[60.64-69.47] vs. 58.32 ± 1.49% [55.05-61.60], p=0.045), 51-65yrs (44.96 ± 1.96% 

[40.32-49.6] vs. 53.73 ± 2.34% [48.20-59.25], p=0.033) and total grouped participants 

(58.18 ± 1.45% [55.23-61.13] vs. 52.87 ± 1.66% [49.48-56.25], p=0.009) (figure 5.8). 

 

Figure 5.8. CD31+ T-cell proportion of total T-cells in those with age-group specific low, 

moderate and high !O2max values. * p<0.05 significantly different from low CRF. 

 

The changes in T-cell make up with CRF could potentially be a result of changes within 

the CD4+ T-cell pool, as shown by figure 5.9, with greater percentage of CD4+ T-cells 

expressing CD31, with no changes observed in the CD8+ T-cell pool. Participants in the 

moderate CRF and high CRF groups in the 51-65yrs group displayed greater percentage 

of CD4+ T-cells expressing CD31 than participants in the low CRF group (38.32 ± 5.20% 

[24.96-51.67] vs. 23.51 ± 3.86% [14.06-32.97], p=0.009; 36.63 ± 2.52% [30.68-42.58], 

p=0.013 respectively). CD4+ and CD8+ TANG analysis was not performed in the 18-30yrs 

group in this study. 
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Figure 5.9. Changes in CD4+ (A) and CD8+ (B) T-cell CD31 expression with age and 

CRF levels. * p <0.05 significantly different from low CRF. 
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There were no differences in CXCR4+ TANG cell number between CRF groups in any age 

category. This was reflected by no changes in either CD4+ or CD8+ subsets of TANG cells 

(figure 5.10). 

 

 

Figure 5.10. Age and cardiorespiratory fitness effects on CXCR4+ TANG cells. A+B- Total 

CD3+CD31+ TANG cells, C+D- CD4+ TANG, E+F- CD8+ TANG.  
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Cell surface expression of CXCR4 was largely unchanged between CRF groups, with 

only CD8+ TANG cells in the moderate CRF group showing reduced expression compared 

to the low CRF group (7.41 ± 0.29 [6.70-8.13] vs. 9.05 ± 0.89 [6.86-11.230, p=0.037) 

(figure 5.11). However, CD4+ and total CD3+CD31+ cells showed no differences. 

 

Figure 5.11. Cell surface expression levels of CXCR4 on CD3+CD31+ T-cells in different 

cardiorespiratory fitness groups. A- CD3+CD31+ cell surface expression of CXCR4, B- 

CD4+ TANG CXCR4 cell surface expression, C- CD8+ TANG CXCR4 cell surface expression. 
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5.3.3 Multiple Regression Analysis 

To further assess the contributions to TANG cell number and CXCR4 expression, stepwise 

multiple level regression analyses were performed. The following variables that were 

collected in the study were entered: age, estimated !O2max, BMI, waist circumference, 

MAP, fasting glucose, total cholesterol, HDL-C, LDL-C, IL-6 and IL-8 and SDF-1α.  

Results are shown in table 5.3. 

Stepwise multiple level regression showed that age is the greatest predictor for TANG 

circulating number, with LDL-C being related to CXCR4 expression on these cells. From 

the results presented in this chapter, unsurprisingly !O2max was not included in any model. 

However, it was thought that SDF-1α may regulate CXCR4+ TANG cell number, but this 

was not observed in this population of cells. 
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Table 5.3. Stepwise multiple linear regression model for CD3+CD31+ TANG cells (n=102). 

TANG cell subsets Predictors 
in Model R R2 Beta 

Value SEB Standardised 
ß 

F-statistic  
(p -value) 

t-statistic  
(p-value) 

CD3+CD31+ (cells·µL-1) Age -0.413 0.171 -6.706 1.486 -0.413 20.371 (0.000)* -4.513 (0.000)* 

CD3+CD31+ (% CD3+) Age -0.541 0.293 -0.372 0.058 -0.541 40.586 (0.000)* -6.371 (0.000)* 

CD3+CD31+CXCR4+ (cells·µL1) LDL-C -0.220 0.048 -1.230 1.097 -1.660 5.032 (0.027)* -2.243 (0.027)* 

% TANG expressing CXCR4 LDL-C -0.288 0.083 -6.410 2.144 -0.288 8.937 (0.004)* -2.989 (0.004)* 

TANG CXCR4 MFI N/A - - - - - - - 

SEB- Standard Error of the Beta Value; MFI- Mean Fluorescence Intensity, * p<0.05 
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5.4 Discussion 

Advanced age was associated with a decrease in CD3+CD31+ T-cell number, percentage 

of CD3+ T-cells expressing CD31, and CXCR4+ TANG cell number. In contrast to the 

CD34+ progenitor cells (see Chapter 4: The Influence of Age and Cardiorespiratory 

Fitness on Circulating Endothelial Progenitor Cells and CXCR4 Cell Surface 

Expression), CRF appears to play a role in the modulation of these cells, with higher 

levels of !O2max within the 18-30yrs and 51-65yrs group associated with higher levels of 

TANG cells (as a percentage of CD3+ T-cells).  

Our data shows that ageing results in a declined percentage of T-cells expressing the 

adhesion molecule CD31. There was an 8% and 13% reduction in proportion of T-cells 

expressing CD31 from the 18-30yrs group to the 31-50yrs and 51-65yrs group 

respectively. Additionally we observed a 16% and a 28% reduction in TANG cell number 

in the circulation between these groups. No changes in CD4+ or CD8+ T-cell expression 

of CD31 with age were observed, however CD4+ and CD8+ cells were only assessed in 

the 31-50 and 51-65yr cohort. Our results are in line with that of Kushner et al. (2010c) 

who found that young men (20-35 years old) had a significantly greater proportion of 

CD31+ T-lymphocytes (40%) compared to middle-aged  (36-55 years old) (38%) and old 

(56-75 years old) men (24%). The authors also measured TANG ability to migrate to both 

SDF-1α and VEGF and found a marked reduction in function of these cells in the middle-

aged and old group. Interestingly, our data shows a reduced number of these cells 

expressing CXCR4 on their cell surface in 31-50yrs group compared to the younger, 18-

30yrs group by 29%. The reduction in CXCR4+ TANG cells could contribute to the reduced 

function of these cells with advancing age. If one works on the premise that function is 

directly correlated with CXCR4 MFI then despite the observation of CXCR4+ TANG cells 

reducing with the age, the percentage of all TANG cells expressing CXCR4 was not 

affected by chronological age, indicating that these CXCR4+ TANG cells themselves, 

although declining in number with age, the function of each cell may not, depending on 

the premise that function is directly correlated with CXCR4 MFI. 

Reductions in T-cell pool are common with age, postulated to be a result of thymic 

involution which results in a decrease in thymic output of naïve T-cells (Fagnoni et al., 

2000; Simpson, 2011). It is highly likely that the reductions in circulating cell number of 

TANG cells are due somewhat to this thymic involution, however we also observed a 

decrease in percentage of total T-cells expressing CD31 with age suggesting other 
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mechanisms are also at work. From 31-50yrs to 51-65 years, there may have been a slight 

decrease in CD4+ and CD8+ CD31+ T-cells, yet this was not significant. We did not 

measure CD4 and CD8 expression on T-cells in the 18-30yr cohort, and thus is a 

limitation of our study, as the biggest decline in TANG number and proportion was from 

18-30yrs to 31-50yrs and 51-65yrs. Further research is required to elucidate whether it is 

the CD4+ or the CD8+ subset which is susceptible to ‘immunoageing’. Interestingly, the 

CD8+ TANG cells appear to lose CXCR4 expression from 31-50yrs to 51-65yrs, which 

could potentially contribute to the reduced migratory capacity of TANG cells with age as 

seen in the research by Kushner et al. (2010c). 

After correcting for this age-related decline in TANG cells, there was no effect of CRF on 

these cells, indicating that there was no independent effect of fitness, and that regular 

aerobic exercise may not attenuate the negative effect of advancing age. However, there 

was an age-dependent effect on these cells with those with higher levels of CRF in certain 

age categories (18-30yrs, 51-65yrs) displaying greater number and proportion of TANG 

cells. These changes may be as a result of the effect on the CD4+ population, with a higher 

number of these CD4+ T-cells expressing CD31 in those with higher levels of CRF 

compared to those with low levels of CRF. There was no effect on the CD8+ population 

or CXCR4 expression on these cells. Spielmann et al. (2011) demonstrated that CRF (also 

measured by estimating ! O2max through submaximal cycling test) was positively 

associated with levels of naïve CD8+ T-cells and negatively associated with CD4+ 

senescent T-cells, indicating that maintaining a high CRF may attenuate the progressive 

increase in senescent T-cells with age. In this study we did not measure markers of 

senescence (KLRG1 or CD57) however the percentage of CD3+CD4+ cells expressing 

CD31 declines with age (r=-0.267, p=0.036, data not shown). Evidence suggests that 

CD4+ T-cells lose expression of CD31 after activation (Zehnder et al., 1992) and 

differentiation (Demeure et al., 1996) potentially implicating the loss of CD31 in the 

differentiation of CD4+ T-cells from naïve to effector-type cells. In fact, CD45RA+ 

effector memory cells also lack CD31 (Tanaskovic et al., 2010) further suggesting the 

loss of these cells with ‘immune ageing’.  

CD31 may not only confer vascular protective capacity, but also may be beneficial for 

the immune system, as CD31 expression on these naïve T-cells may enhance the 

migration of these cells across the endothelium under an immune challenge for antigen 

priming (Zocchi et al., 1996). As well as playing a role in migration of these cells to sites 

of infection or damage, the adhesion molecule has been reported to play a regulatory role 
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on CD4+ T-cells, and on CD8+ T-cells it appears to prevent their inflammatory effects on 

vascular smooth muscle cells (Caligiuri et al., 2005). Taken together, the effects of 

exercise on the CD31+ T-cells may be an immunomodulatory adaptation rather than a 

vasculogenic adaptation. 

Pistillo et al. (2013) documented similar reductions in γδ T-cells with age. Most of these 

γδ T-cells do not express either CD4 or CD8 antigen. Around 15% (range 5-31%) of the 

total CD3+CD31+ TANG cells measured in this study did not express either CD4 or CD8 

(measured in 31-65yr cohort only) indicating that some of the TANG cells may in fact 

belong to the γδ T-cell group. More research is required to elucidate if the age-related 

decline in these TANG cells are largely due to the documented decline in the γδ T-cell 

group (Pistillo et al., 2013; Roux et al., 2013). 

It must be noted that although participants were measured for estimated !O2max, it cannot 

be concluded that regular exercise can modulate these cells unless further longitudinal 

exercise training studies are performed. Although it is highly likely that those with high 

CRF levels may also partake in more physical activity, there may be few participants in 

the cohort that, although expressing a high !O2max, may be relatively inactive. 

 

5.5 Conclusion 

Advancing age, as with CD34+ progenitors, is associated with a reduction in TANG cell 

number, and proportion of total T-cells expressing CD31. This positive effect of CRF on 

these cells may provide another mechanism by which regular exercise is beneficial for 

the cardiovascular system and may help in the prevention of CVD. 
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Chapter 6: Sedentary Behaviours, Circulating Angiogenic 

Cells and Cardiometabolic Risk Factors  
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6.1 Introduction 

CVD risk factors include smoking, hypertension, dyslipidaemia, and diabetes (Cupples 

and D'Agostino, 1987). Added to this is inadequate exercise and physical inactivity, 

which is linked to declines in cardiometabolic health. Several studies have reported that 

physical activity and CRF reduces the risk of CVD and mortality (Kurl et al., 2003; Lee 

et al., 2012a; Vigen et al., 2012; Barry et al., 2013; Berry et al., 2013; Chomistek et al., 

2013; Holtermann et al., 2015). Mechanistic effects of exercise include: reduced chronic 

low-grade inflammation (Mathur and Pedersen, 2008); improved cardiac function (Ehsani 

et al., 1991; Turan et al., 2006) and body composition (Sillanpää et al., 2008); reduced 

fasting glucose (Gillen et al., 2012); and improved tissue perfusion as a result of improved 

endothelial function (Rakobowchuk et al., 2008; Black et al., 2009; Tinken et al., 2010; 

Birk et al., 2012; Luk et al., 2012; Mitranun et al., 2014; Ashor et al., 2015) and/or 

capillary number (Laufs et al., 2004; Chinsomboon et al., 2009; Geng et al., 2010; 

Bellafiore et al., 2013).  

In contrast, sedentary time and physical inactivity behaviours are associated with ill-

effects on cardiometabolic health and longevity (Laufs et al., 2005b; Hamilton et al., 2007; 

Katzmarzyk et al., 2009; van der Ploeg et al., 2012; Wilmot et al., 2012; Stamatakis et 

al., 2013; Gibbs et al., 2014; Staiano et al., 2014; Young et al., 2014; Chau et al., 2015). 

Even short periods of physical inactivity can reduce insulin sensitivity (Reynolds et al., 

2014), endothelial function (Nosova et al., 2014), and increase systemic levels of 

inflammatory cytokines (Fischer et al., 2007). Prolonged periods of inactivity and 

sedentary behaviour can also lead to a marked reduction in CRF (as measured as !O2max) 

(Saltin et al., 1968; Ringholm et al., 2011); and also associated with elevations in arterial 

wall thickness (van Duijnhoven et al., 2010) and increases in the circulating level of 

biomarkers of endothelial damage (Boyle et al., 2013). McGavock et al. (2009) reported 

that the loss of CRF and also reductions in cardiac output over a period of 3 weeks bed 

rest was significantly greater than the loss of CRF seen over 40 years of adulthood 

signifying the large impact physical inactivity has on the cardiovascular system.  

However, CRF and physical inactivity are not synchronous with each other as there exists 

a dichotomy, whereby individuals who may be termed largely inactive (for example office 

workers) may still be termed as highly fit (with high levels of !O2max). Likewise, 

individuals may lead very active lives but may not be classified as highly fit. Therefore, 

the impact of CRF and physical inactivity on health must be investigated accordingly.  
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Circulating angiogenic cells (CACs) are a group of heterozygous circulating cells which 

participate in endothelial repair and regeneration (Asahara et al., 1997; Hur et al., 2007; 

Kushner et al., 2010b; Xia et al., 2012a). These cells include BM-derived progenitors 

(CD34+ progenitors, CD34+CD45dimVEGFR2+ endothelial precursor cells; EPCs) and 

CD31+ T-cells (angiogenic T-cells; TANG). Both the BM-derived progenitors and the TANG 

cells (circulating number and function) are associated with endothelial function (Sibal et 

al., 2009; Weil et al., 2011; Bruyndonckx et al., 2014) and also shown to be associated 

with CVD risk (Hill et al., 2003; Fadini et al., 2005; Schmidt-Lucke et al., 2005; Fadini 

et al., 2006; Xiao et al., 2007; Sibal et al., 2009; Jung et al., 2010; Liu and Xie, 2012; 

Rouhl et al., 2012; Shantsila et al., 2012; Teraa et al., 2013; Vemparala et al., 2013; 

Berezin and Kremer, 2014; Castejon et al., 2014; Chan et al., 2014). We have shown that 

high levels of CRF result in greater number of TANG cells (Chapter 5- Influence of Age 

and Cardiorespiratory Fitness on CD31+ T-Cells and CXCR4 Cell Surface Expression) 

with no change in the BM-derived progenitors (Chapter 4- Influence of Age and 

Cardiorespiratory Fitness on Endothelial Progenitor Cells and CXCR4 Cell Surface 

Expression). It is the aim of this study to therefore investigate whether self-reported 

physical inactivity affects CACs and other cardiometabolic risk factors in apparently 

healthy men. 

 

6.2 Materials and Methods 

6.2.1 Participants 

Male participants (n=42), aged between 31 and 65 volunteered for the study, and 

consisted of a mixture of students and staff based at Edinburgh Napier University, in 

addition to general public from the Edinburgh area. Participant information, inclusion and 

exclusion criteria are detailed in Chapter 4 (Influence of Age and Cardiorespiratory 

Fitness on Circulating Endothelial Progenitor Cells and CXCR4 Cell Surface 

Expression). Ethical approval for the study was given by the Edinburgh Napier University 

Research and Ethics Governance Committee. 

Participant information, inclusion and exclusion criteria are detailed in Chapter 4 

(Influence of Age and Cardiorespiratory Fitness on Circulating Endothelial Progenitor 

Cells and CXCR4 Cell Surface Expression). Ethical approval for the study was given by 

the Edinburgh Napier University Research and Ethics Governance Committee.  
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6.2.2 Resting Measures 

On arrival to the Human Performance Laboratory, after informed consent was given, 

participants were measured for height and body mass, with values used to calculate BMI. 

Waist and hip circumference were also measured as described in materials and methods 

Chapter 3.2. Resting blood pressure was measured after 5-minute rest in a supine position 

using an automated sphygmamometer (Nonin Puresat Avant 2120, Nonin Medical Inc, 

Minnesota, USA; Ultra-Check® Blood Pressure Adult Cuff, Statcorp Medical, Florida, 

USA). Participant characteristics are shown in table 6.1. 

 

Table 6.1. Participant characteristics. Values shown are mean ± SD (Range). 

 All (n=42) 

Age (years) 48 ± 10 
(31-65) 

Height (m) 1.78 ± 0.07 
(1.62-1.91) 

Body Mass (kg) 82.02 ± 9.92 
(69.10-108.90) 

BMI (kg·m2) 25.780 ± 2.74 
(21.20-33.09) 

SBP (mmHg) 132 ± 13 
(108-142) 

DBP (mmHg) 81 ± 8 
(63-99) 

MAP (mmHg) 98 ± 9 
(79-126) 

Waist-to-Hip Ratio 0.97 ± 0.03 
(0.90-1.04) 

"O2max (mL·kg·min-1) 43.19 ± 11.41 
(16.89-66.78) 

BMI- Body Mass Index, SBP- Systolic Blood Pressure, DBP- Diastolic Blood Pressure, 

MAP- Mean Arterial Pressure 
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6.2.3 Self-Reported Sitting Time 

Self-reported sitting time was obtained from n=42 (age 31-65 years), with participants 

answering the question ‘On average, how many hours do you usually spend sitting during 

a normal working day?’, with specific instruction to calculate based from when they woke 

up in the morning, to when they went to bed at night. These participants were also given 

a sitting time questionnaire, based on the 7 days prior to the laboratory visit (Sit-Q7d; 

Appendix 4), which quantifies the amount of sedentary time a person has spent in the 7 

days leading up to the completion of the questionnaire. Recently the questionnaire has 

been shown to be accurate and a valid tool to measure physical inactivity (Wijndaele et 

al., 2014). Domains of interest included 1) total sitting time, and 2) total screen time. 

Questionnaire data was coded via instructions given on the website: http://www.mrc-

epid.cam.ac.uk/research/resources/.  

 

6.2.4 Submaximal Exercise Test to Estimate Maximal Oxygen Uptake 

Maximal oxygen uptake (!O2max) of each participant was estimated using a submaximal 

exercise test (YMCA) (Golding et al., 1989) as previously described in general materials 

and methods Chapter 3.11. Briefly, participants exercised on a stationary cycle ergometer 

(Veletron™ Dynafit Pro; Racer Mate®, Seattle, USA) at 50rpm for 3-4 incremental 

stages, each stage lasting 3 minutes. The initial power output of the test was 50W and 

increased in subsequent stages depending on HR response. 		!O2max was measured 

throughout the test through breath-by-breath online analysis (LABManager v5.3.0, 

Cardinal Health, Germany). The test was terminated when the desired steady state HR 

was attained (80% of HRmax). !O2max was estimated using equations provided by Adams 

and Beam (1998). 

 

6.2.5 Blood Sampling and PBMNC Isolation 

Blood was taken from participants after a 5-minute supine rest by a certified phlebotomist. 

Blood samples were drawn into 6mL vacutainers (BD Biosciences, UK), which were 

either coated in EDTA to prevent coagulation or serum gel. EDTA blood (3 x tubes) was 

processed for PBMNC separation as previously described in general materials and 

methods Chapter 3.4, as well as for whole blood labelling for progenitor cell enumeration 
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(see 6.2.6 Circulating Progenitor Cell Number and CXCR4 Expression Quantification). 

Isolated PBMNCs were then used for TANG number and CXCR4 enumeration (see 6.2.7 

Angiogenic T Cell Number and CXCR4 Expression Quantification), and serum was used 

for analysis of serum for chemotactic factors and selected inflammatory markers (see 

6.2.8 Quantification of Serum Inflammatory Markers). 

 

6.2.6 Circulating Progenitor Cell Number and CXCR4 Expression Quantification 

Peripheral whole blood was used for progenitor cell analysis. Whole blood was labelled 

with monoclonal antibodies anti-CD34-FITC, anti-CD45-APC, anti-VEGFR2-PE and 

anti-CXCR4-PE-Cy5 (all BD Biosciences, USA), and left to incubate at 4°C for 45 

minutes in the dark as described in general materials and methods Chapter 3.5. Progenitor 

cell subsets in human whole blood were analysed using a BD FACSCalibur (BD 

Biosciences, USA) as detailed in general materials and methods Chapter 3.5. CXCR4 cell 

surface expression was also analysed as a surrogate for migratory ability on these 

progenitor cell subsets. 

 

6.2.7 Angiogenic T Cell Cell Number and CXCR4 Expression Quantification 

Isolated PBMNCs (0.5x106) were labelled with monoclonal antibodies anti-CD3-APC, 

anti-CD31-FITC and anti-CXCR4-PE-Cy5 (all BD Biosciences, USA), and were left to 

incubate at 4°C for 45 minutes in the dark prior to flow cytometric analysis as detailed in 

general materials and methods Chapter 3.6. CXCR4 cell surface expression was analysed 

as a surrogate for migratory ability of T-cells. 

 

6.2.8 Quantification of Serum Inflammatory Markers 

Serum IL-6 was measured by enzyme-linked immunosorbent assay (ELISA) and serum 

glucose, total cholesterol (TC), HDL-C, LDL-C, triglycerides were quantified by clinical 

chemistry analyser as described in general materials and methods Chapter 3.9. 
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6.2.9 Statistical Analysis 

Data was assessed for normal distribution using the Shapiro-Wilk test for normality. Not 

normally distributed data was logarithmically transformed (log10 or logn).  

Sit-Q7d questionnaire data was processed using the statistical package STATA version 

14 (StataCorp LP, Texas, USA). Midpoint values were assigned for all categories 

(multiple choice answers typically given as ranges). Weekday data and weekend data 

were weighted 5- and 2-fold respectively, before dividing the summed data by 7 to give 

a single value for sitting time averaged for the previous 7 days (Wijndaele et al., 2014). 

Data from the Sit-Q7d was also categorised and further analysed in terms of screen time. 

Participants were grouped into clusters for total self-reported sitting time from both the 

Sit-Q7d or single question-based recall as well as total screen time (Sit-Q7d). Clusters 

were identified by hierarchical cluster analysis using Ward’s method for identifying 

groupings, as well as using the squared Euclidean distance to measure intervals between 

groups (Mooi and Sarstedt, 2011). In all 3 cases, 4 groups were identified and thus 

participants were grouped into incremental groups of sedentary behaviour time, with 

group 1= lowest sedentary time, up to group 4= highest sedentary time (Sit-Q7d sitting 

time, single question-based sitting time, and Sit-Q7d screen time). 

Univariate linear regressions were performed to assess the effect of sedentary behaviours 

(‘On average, how many hours do you usually spend sitting during a normal working 

day?’; Sit-Q7d: average sitting time/screen time for past 7 days) on various CACs (CD34+, 

CD34+CD45dimVEGFR2+, CD3+CD31+) and concurrent CXCR4 cell surface expression. 

In addition, linear regressions were also performed to assess the effect of sitting time on 

various biomarkers of cardiometabolic health (fasting glucose, total cholesterol, HDL-C, 

LDL-C, TC:HDL-C), CXCR4+ cell-mobilising factor SDF-1α, and inflammatory 

biomarkers (IL-6, IL-8).  

After regressions were performed and groupings were set, one-way analyses of variance 

(ANOVA) were performed to assess the effect of sitting time (Sit-Q7d and single-

question-based, and screen time) on these CACs and cardiometabolic biomarkers. 

Fisher’s Least Significant Difference (LSD) post-hoc tests were performed to identify 

locations of any significant differences. Where required, any differences in TANG cells 

were further explored using one-way ANOVA for CD4+ and CD8+ TANG cells. 
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Hierarchical multiple level regression analyses were performed to assess the relationship 

between sitting time and TANG cells after correction for CRF. 

Sit-Q7d was processed using the statistical package STATA version 14 (StataCorp LP, 

Texas, USA). Data was analysed using SPSS for Macintosh, version 20 (IBM, Chicago, 

USA). Significance alpha was set at p=0.05. 

 

6.3 Results 

6.3.1 The Effect of Sedentary Behaviours on CACs and Cardiometabolic Biomarkers 

Univariate linear regressions were performed for various sedentary behaviours on various 

CAC subsets (CD34+, CD34+CD45dimVEGFR2+, CD3+CD31+) and CXCR4 cell surface 

expression on these cells. Sitting time (reported from Sit-Q7d) was inversely associated 

with TANG cells (r= -0.291, p=0.031). There was a trend for a decrease in expression 

intensity of CXCR4 on CD34+ progenitor cells (r= -0.242, p=0.061), and EPCs (r= -0.232, 

p=0.087) with increasing sitting time as well as a trend for an increase in percentage of 

TANG cells expressing CXCR4 with increasing sitting time (r=0.216, p=0.085) (table 6.2). 

Screen time was only associated with a decreased expression of CXCR4 on CXCR4+ 

EPCs (r= -0.292, p=0.042).  
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Table 6.2. Univariate linear regression analyses for various sedentary behaviours on CAC subsets (n=42).  

MFI- Mean Fluorescence Intensity; EPC- Endothelial Progenitor Cell; MNC- Mononuclear Cells, *p<0.05 

 

 Pearson’s coefficient (p-value)  F-statistic (p-value) 

 Sitting Time  
(Sit-Q7d) 

Screen Time 
 (Sit-Q7d) 

 Sitting Time  
(Sit-Q7d) 

Screen Time  
(Sit-Q7d) 

CD34+ (% MNCs) 0.118 (0.228) -0.099 (0.266)  0.565 (0.457) 0.397 (0.532) 

CD34+CXCR4+ (% MNCs) 0.134 (0.198) 0.118 (0.229)  0.734 (0.397) 0.563 (0.457) 

% CD34+ expressing CXCR4 0.012 (0.469) 0.132 (0.203)  0.006 (0.983) 0.705 (0.406) 

MFI CD34+ CXCR4 -0.242 (0.061) -0.077 (0.314)  2.490 (0.122) 0.237 (0.629) 

CD34+CD45dimVEGFR2+ (% MNCs) 0.100 (0.278) 0.228 (0.088)  0.354 (0.556) 1.915 (0.175) 

CXCR4+ EPCs (% MNCs) -0.011 (0.475) 0.149 (0.194)  0.004 (0.950) 0.768 (0.387) 

% EPCs expressing CXCR4 -0.008 (0.479) -0.156 (0.162)  0.003 (0.958) 0.994 (0.325) 

MFI EPC CXCR4 -0.232 (0.087) -0.292 (0.042)*  1.931 (0.174) 3.164 (0.084) 

CD3+CD31+ T-cells (cells·µL-1) -0.034 (0.415) 0.101 (0.262)  0.047 (0.830) 0.413 (0.524) 

CD3+CD31+ T-cells (% of CD3+) -0.291 (0.031)* -0.193 (0.110)  3.703 (0.061) 1.553 (0.220) 

CXCR4+ TANG (cells·µL-1) 0.128 (0.210). 0.140 (0.189)  0.664 (0.420) 0.796 (0.378) 

%TANG expressing CXCR4 0.216 (0.085) 0.054 (0.368)  1.995 (0.170) 0.115 (0.736) 

MFI TANG CXCR4 0.109 (0.246) 0.013 (0.469)  0.482 (0.492) 0.006 (0.937) 
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To further investigate the effect of sitting time on TANG cells, univariate analyses were 

performed for sitting time and screen time measures on CD4+ and CD8+ TANG cells. 

Results are shown in table 6.3. The apparent decrease in TANG cells with increasing sitting 

time appears to be due to the decrease in CD4+ cells expressing CD31 (r= -0.282, 

p=0.037), but not a decrease in CD3+CD4+CD31+ cell number (r= -0.080, p=0.309), 

indicating that sedentary behaviour may be associated with the loss of CD31 expression 

on CD4+ T-cells, rather than a decrease in CD4+ cells. There were no relationships 

between sedentary behaviours and CD8+ TANG cells. In addition, sitting time was 

positively associated with CD4:CD8 ratio (r= 0.333, p=0.017), a biomarker within the 

Immune Risk Profile (IRP). 
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Table 6.3. Univariate linear regression analyses for various sedentary behaviours on TANG subsets (n=42).  

 

 

 

 Pearson’s coefficient (p-value)  F-statistic (p-value) 

 Sitting Time  
(Sit-Q7d) 

Screen Time  
(Sit-Q7d) 

 Sitting Time  
(Sit-Q7d) 

Screen Time 
 (Sit-Q7d) 

CD4+ TANG (cells·µL-1) -0.080 (0.309) 0.117 (0.233)  0.254 (0.617) 0.544 (0.465) 

% CD4+ T-cells expressing CD31 (%) -0.282 (0.037)* -0.159 (0.161)  3.379 (0.074) 1.006 (0.322) 

CD3+CD4+CD31+CXCR4+ (cells·µL-1) 0.104 (0.258) 0.179 (0.132)  0.430 (0.516) 1.288 (0.263) 

% CD4+ TANG expressing CXCR4 0.389 (0.007)* 0.207 (0.100)  6.788 (0.013)* 1.709 (0.199) 

CD8+ TANG (cells·µL-1) 0.002 (0.494) 0.014 (0.467)  0.000 (0.988) 0.007 (0.933) 

% CD8+ T-cells expressing CD31 (%) -0.088 (0.292) 0.130 (0.209)  0.304 (0.584) 0.668 (0.419) 

CD3+CD8+CD31+CXCR4+ (cells·µL-1) 0.076 (0.317) 0.083 (0.302)  0.229 (0.635) 0.272 (0.605) 

% CD8+ TANG expressing CXCR4 0.185 (0.123) 0.154 (0.168)  1.385 (0.246) 0.951 (0.335) 

CD4:CD8 Ratio 0.333 (0.017)* 0.195 (0.111)  4.784 (0.033)* 1.539 (0.222) 
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Sitting time (r=0.243, p=0.060) and screen time (0.356, p=0.010) were positively 

associated with waist-to-hip ratio, and screen time was also correlated with TC:HDL-C 

ratio (r=0.359, p=0.010) as a result of the observed inverse relationship with HDL-C (r=-

0.341, p=0.013) (table 6.4). No associations were seen for sedentary behaviours and other 

common cardiometabolic risk factors such as BMI, triglycerides, fasting glucose, 

inflammatory cytokine IL-6, BP and LDL-C.
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Table 6.4. Univariate linear regression analyses for various sedentary behaviours on cardiometabolic biomarkers (n=42). 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

BMI- Body Mass Index, SBP-Systolic Blood Pressure; DBP- Diastolic Blood Pressure; HDL-C- High Density Lipoprotein Cholesterol, LDL-C- Low 
Density Lipoprotein Cholesterol 
 
 

 Pearson’s coefficient (p-value)  F-statistic (p-value) 

 Sitting Time  
(Sit-Q7d) 

Screen Time  
(Sit-Q7d) 

 Sitting Time  
(Sit-Q7d) 

Screen Time 
 (Sit-Q7d) 

BMI  0.047 (0.383) -0.043 (0.395)  0.090 (0.766) 0.072 (0.789) 

Waist Circumference 0.137 (0.194) 0.139 (0.190)  0.760 (0.388) 0.786 (0.381) 

Waist-to-Hip Ratio 0.243 (0.060) 0.356 (0.010)*  2.518 (0.120) 5.795 (0.021)* 

SBP 0.050 (0.376) -0.079 (0.309)  0.101 (0.753) 0.253 (0.618) 

DBP 0.119 (0.227) -0.042 (0.395)  0.572 (0.454) 0.072 (0.790) 

Fasting Glucose 0.054 (0.366) 0.012 (0.469)  0.119 (0.732) 0.006 (0.983) 

IL-6 0.004 (0.491) -0.101 (0.278)  0.000 (0.982) 0.352 (0.557) 

Total Cholesterol -0.063 (0.347) 0.125 (0.215)  0.158 (0.693) 0.635 (0.430) 

HDL-C 0.009 (0.478) -0.341 (0.013)*  0.003 (0.956) 5.278 (0.027)* 

LDL-C -0.089 (0.287) 0.201 (0.101)  0.323 (0.573) 1.685 (0.202) 

TC:HDL -0.033 (0.417) 0.359 (0.010)*  0.045 (0.837) 5.928 (0.019)* 

Triglycerides 0.090 (0.285) 0.173 (0.136)  0.327 (0.571) 1.237 (0.273) 
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Participants were then grouped into sitting time (Sit-Q7d) and screen time groups based 

on hierarchical cluster analysis. Cluster analysis revealed 4 distinct groups per sedentary 

behaviour measure. Group 1-4 indicates increments of time spent in the sedentary 

behaviour domain.  Characteristics of participants within these groups are shown in tables 

6.5 (sitting time) and 6.6 (screen time). 

 

Table 6.5. Participant characteristics based on sitting time cluster analyses (n=42). 

 Group 1  
(3-10hrs)  

(n=17) 

Group 2  
(10-12.5hrs) 

(n=8) 

Group 3 
(12.5-16hrs) 

(n=11) 

Group 4 
(>16hrs) 

(n=6) 

Age (yrs) 46 ± 8 50 ± 11 47 ± 11 51 ±9 

Height (m) 1.81 ± 0.06 1.76 ± 0.04 1.78 ± 0.04 1.76 ± 0.10 

Body Mass 
(kg) 81.14 ± 7.32 79 ± 5.57 86.76 ± 13.72 79.8 ± 11.98 

BMI (kg·m2) 24.92 ± 2.61 25.66 ± 1.88 27.29 ± 3.53 25.76 ± 1.59 

SBP (mmHg) 132 ± 11 131 ± 4 132 ± 21 131 ± 15 

DBP (mmHg) 81 ± 8 81 ± 9 80 ± 7 82 ± 11 

MAP (mmHg) 98 ± 8 98 ± 7 97 ± 11 98 ± 12 

!O2max 
(ml·kg·min-1) 47.39 ± 8.63 35.75 ± 13.80 44.89 ± 12.24 38.07 ± 8.71 

SBP- Systolic Blood Pressure, DBP- Diastolic Blood Pressure, MAP- Mean Arterial 

Pressure. Values shown are mean ± SD.  

 

 

 

 



	

137 
	

Table 6.6. Participant characteristics based on screen time cluster analyses (n=42). 

 Group 1  
(0.5-2hrs)  

(n=8) 

Group 2  
(2-3.5hrs) 

(n=12) 

Group 3  
(3.5-4hrs) 

(n=9) 

Group 4  
(4-6hrs) 
(n=11) 

Age (yrs) 45 ± 10 45 ± 9 52 ± 10 47 ± 10 

Height (m) 1.79 ± 0.06 1.79 ± 0.04 1.79 ± 0.07 1.77 ± 0.07 

Body Mass 
(kg) 81.30 ± 6.67 85.35 ± 10.74 81.13 ± 12.47 78.36 ± 8.53 

BMI (kg·m2) 25.55 ± 3.27 26.52 ± 3.01 25.41 ± 3.34 25.08 ± 1.82 

SBP (mmHg) 132 ± 14 133 ± 12 137 ± 21 126 ± 9 

DBP (mmHg) 82 ± 10 79 ± 8 85 ± 9 79 ± 6 

MAP (mmHg) 99 ± 11 97 ± 8 102 ± 12 95 ± 6 

!O2max 
(ml·kg·min-1) 

50.40 ± 
10.67* 47.86 ± 9.34* 37.10 ± 8.82 42.61 ± 9.83 

SBP- Systolic Blood Pressure, DBP- Diastolic Blood Pressure, MAP- Mean Arterial 

Pressure. Values shown are mean ± SD. *p<0.05 vs. 3.5-4hrs group. 
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One-way ANOVAs were performed for various CAC subsets in the various sedentary 

behaviour groups. Results are shown in tables 6.7 (sitting time) and 6.8 (screen time). 

There were no differences in CD34+ progenitor cells amongst any sedentary behaviour 

domains. CXCR4+ EPCs were found to be greater in sitting time 10-12.5hrs vs. 3-10hrs 

(0.0073 ± 0.0023% [0.0017-0.0129] 95% CI, vs. 0.0042 ± 0.0016% [0.0017-0.0066], 

p=0.032), 12.6-16hrs (0.0073 ± 0.0023% [0.0017-0.0129] 95% CI, vs. 0.0035 ± 0.0008% 

[0.0016-0.0053], p=0.017) and >16hrs (0.0073 ± 0.0023% [0.0017-0.0129] 95% CI, vs. 

0.0058 ± 0.0034% [0.0031-0.0146], p=0.022). There were no other differences in EPCs 

between sitting time groups or screen time groups. 

There was a trend for a decrease in proportion of CD3+ T-cells expressing CD31 from 

those reporting >16hrs of sitting time per day compared to those reporting 3-10hrs (44.13 

± 5.41% [30.21-58.04] 95% CI, vs. 52.08 ± 2.59% [46.59-57.57], p=0.099, ES=0.66) 

(table 6.7). However, in contrast to the univariate regression analysis, there was no 

detectable difference in CXCR4+ TANG cells between sitting time groups. There were no 

differences for TANG groups between screen time groups (table 6.8). 
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Table 6.7. One-way ANOVA results for daily average sitting time (Sit-Q7d) for CACs (n=42). 

Values shown are mean ± SEM (95% CI). *P<0.05 vs. Group 2. 

Variables 3-10hrs 
(n=17) 

10-12.5hrs 
(n=8) 

12.6-15hrs 
(n=11) 

>16hrs 
(n=6) p-value 

CD34+ (%MNC) 0.099 ± 0.014  
(0.070-0.127) 

0.107 ± 0.014  
(0.075-0.139) 

0.092 ± 0.012  
(0.066-0.118) 

0.105 ± 0.017  
(0.061-0.149) 0.775 

CD34+CXCR4+ (%MNC) 0.032 ± 0.006  
(0.019-0.045) 

0.042 ± 0.006  
(0.029-0.056) 

0.030 ± 0.005  
(0.019-0.041) 

0.033 ± 0.006  
(0.017-0.049) 0.392 

% CD34+ expressing CXCR4 31.54 ± 3.69  
(23.72-39.15) 

40.67 ± 4.49 
 (30.07-51.27) 

33.33 ± 4.70  
(22.86-43.80) 

31.31 ± 3.10 
 (23.35-39.27) 0.477 

EPCs (%MNC) 0.0060 ± 0.0014  
(0.0030-0.0091) 

0.0091 ± 0.0028  
(0.0023-0.0160) 

0.0065 ± 0.0026  
(0.0008-0.0122) 

0.0074 ± 0.0037  
(0.0021-0.0169) 0.167 

CXCR4+ EPCs (%MNC)  0.0042 ± 0.0016  
(0.0017 -0.0066)* 

0.0073 ± 0.0023  
(0.0017-0.0129) 

0.0035 ± 0.0008  
(0.0016-0.0053)* 

0.0058 ± 0.0034  
(0.0031-0.0146)* 0.074 

% EPCs expressing CXCR4 65.18 ± 9.33  
(45.28-85.07) 

56.87 ± 15.33  
(19.35-94.39) 

67.25 ± 8.25  
(48.87-85.63) 

69.92 ± 14.22  
(33.38-106.47) 0.400 

TANG (cells·µL-1) 540 ± 47  
(441-638) 

615 ± 48  
(500-729) 

624 ± 53  
(507-741) 

533 ± 80  
(326-740) 0.534 

TANG (% CD3+) 52.08 ± 2.59  
(46.59-57.57) 

49.91 ± 2.58  
(43.82-56.01) 

52.58 ± 2.41  
(47.21-57.95) 

44.13 ± 5.41  
(30.21-58.04) 0.344 

CXCR4+ TANG (cells·µL-1) 187 ± 41  
(100-275) 

192 ± 36 
 (106-277) 

223 ± 52  
(107-340) 

237 ± 72  
(53-237) 0.872 

% TANG expressing CXCR4 32.61 ± 5.55  
(20.86-44.37) 

31.28 ± 5.44  
(18.40-44.15) 

35.09 ± 6.50  
(20.60-49.58) 

45.46 ± 11.12  
(16.87-74.06) 0.622 
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Table 6.8. One-way ANOVA results for daily average screen time (Sit-Q7d) for CACs (n=42). 

Values shown are mean ± SEM (95% CI).  
 
 
 
 

Variables 0.5-2hrs 
(n=8) 

2-3.5hrs 
(n=12) 

3.5-4hrs 
(n=9) 

4-6hrs 
(n=11) p-value 

CD34+ (%MNC) 0.127 ± 0.024 
 (0.070-0.184) 

0.097 ± 0.010  
(0.074-0.120) 

0.079 ± 0.014  
(0.046-0.112) 

0.093 ± 0.012  
(0.067-0.120) 0.289 

CD34+CXCR4+ (%MNC) 0.040 ± 0.012  
(0.012-0.068) 

0.034 ± 0.005  
(0.023-0.045) 

0.027 ± 0.007  
(0.010-0.043) 

0.034 ± 0.005  
(0.023-0.045) 0.758 

% CD34+ expressing CXCR4 29.65 ± 5.75  
(16.05-43.26) 

35.78 ± 4.55 
 (25.70-45.86) 

31.89 ± 4.79  
(20.55-43.22) 

36.10 ± 4.14  
(26.73-45.47) 0.750 

EPCs (%MNC) 0.0075 ± 0.0025  
(0.0014-0.0135) 

0.0060 ± 0.0014  
(0.0028-0.0092) 

0.0039 ± 0.0012 
 (0.0010-0.0068) 

0.0092 ± 0.0034  
(0.0016-0.0168) 0.717 

CXCR4+ EPCs (%MNC)  0.0053 ± 0.0021  
(0.0004-0.0102) 

0.0048 ± 0.0013  
(0.0020-0.0077) 

0.0026 ±0.0012 
 (0.0003-0.0056) 

0.0052 ± 0.0021  
(0.005-0.0100) 0.708 

% EPCs expressing CXCR4 69.34 ± 13.01  
(13.57-100.10) 

79.90 ± 7.55 
 (63.09-96.72) 

46.67 ± 15.34  
(10.39-82.94) 

54.93 ± 9.66  
(33.07-76.79) 0.429 

TANG (cells·µL-1) 486 ± 63  
(336-636) 

616 ± 54 
 (497-736) 

573 ± 55  
(444-702) 

609 ± 61 
 (471-746) 0.423 

TANG (% CD3+) 52.20 ± 3.41  
(44.12-60.27) 

53.87 ± 2.42  
(48.54-59.20) 

48.04 ± 4.55 
 (37.27-58.81) 

50.86 ± 3.09  
(43.87-57.86) 0.643 

CXCR4+ TANG (cells·µL-1) 165 ± 72  
(6-337) 

258 ± 45  
(160-356) 

165 ± 26  
(103-228) 

190 ± 59  
(57-324) 0.455 

% TANG expressing CXCR4 30.32 ± 9.71 
 (7.37-53.27) 

40.27 ± 5.95  
(27.18-53.36) 

32.03 ±8.10  
(12.88-51.18) 

30.98 ± 7.08  
(14.96-47.01) 0.727 
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To further investigate differences in TANG cells, analysis of CD4+ and CD8+ TANG cells 

were performed between the various sedentary behaviour groups. There were no 

statistically significant differences between groups 1 (3-10hrs), 2 (10-12.5hrs), 3 (12.5-

16hrs) and 4 (>16hrs) for sitting time and any CD4+ or CD8+ TANG group (figures 6.1 and 

6.2). The difference in CD4+ cells expressing CD31 between 3-10hrs and >16hrs 

approached significance, with lower proportion of CD4+ T-cells expressing CD31 in 

participants reporting >16hrs of sitting per day compared to those reporting 3-10hrs of 

daily average sitting per day, with a moderate effect size (28.25 ± 4.60% [16.42-40.07] 

95% CI, vs. 36.02 ± 2.59% [30.54-41.50], p=0.128, ES=0.71) (figure 6.1B). Additionally, 

CD4+ TANG cells expressing CXCR4 appeared to be increased in those reporting the 

highest sitting time (>16hrs) compared to the lowest sitting time (3-10hrs), with a 

moderate effect size (41.62 ± 13.99% [5.66-77.58] 95% CI, vs. 27.41 ± 4.83% [17.17-

37.66], p=0.175, ES=0.52) (figure 6.2B).  

 

Figure 6.1. Circulating CD4+ and CD8+ TANG cells, expressed as cells·µL-1 (A) and 

percentage of CD4+ and CD8+ T-cells expressing CD31 (B) in different sitting time 

groups (groups 1-4). P=NS.  



	

142 
	

 

Figure 6.2. Circulating CXCR4+ CD4+ and CD8+ TANG cells, expressed as cells·µL-1 (A) 

and percentage of CD4+ and CD8+ TANG cells expressing CXCR4 (B) in different sitting 

time groups (groups 1-4). P=NS.  

 

As with the sitting time groups there were no significant differences in CD4+ or CD8+ 

TANG cell numbers (figure 6.3) or expression of CXCR4 (figure 6.4) with screen time. 

Interestingly, there was a trend for an increase in CD4+ TANG absolute cell number in 

screen time group 4 compared to group 1 (282 ± 37 cell·µL-1 [198-367] 95% CI, vs. 212 

± 35 cells·µL-1 [130-294], p=0.191, ES=0.65), yet this difference was not significant 

despite a moderate effect size (figure 6.3A). This was not due to an increased relative 

expression of CD31 on CD4+ T-cells (figure 6.3B), so therefore may be instead due to a 

greater absolute number of circulating CD4+ T-cells. 
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Figure 6.3. Circulating CD4+ and CD8+ TANG cells, expressed as cells·µL-1 (A) and 

percentage of CD4+ and CD8+ T-cells expressing CD31 (B) in different screen time 

groups (groups 1-4). P=NS.  
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There were no significant differences in CXCR4-expressing CD4+ or CD8+ TANG cells 

between screen time groups (figure 6.4). 

 

Figure 6.4. Circulating CXCR4+ CD4+ and CD8+ TANG cells, expressed as cells·µL-1 (A) 

and percentage of CD4+ and CD8+ TANG cells expressing CXCR4 (B) in different screen 

time groups (groups 1-4). P=NS.  

 

There were no observable differences between sedentary behaviour domain groups 

(sitting time and screen time) for the cardiometabolic risk factors measured: BMI, waist 

circumference, blood pressure, fasting glucose, IL-6, TC, LDL-C, TC:HDL-C and 

triglycerides (sitting time: table 6.9; screen time: Table 6.10). HDL-C was significantly 

lower in individuals reporting high levels of screen time compared to those reporting the 

lowest levels of screen time (4-6hrs: 1.27 ± 0.07mmol·L-1 [1.09-1.44] 95 % CI, vs. 0.5-

2hrs: 1.51 ± 0.12mmol·L-1 [1.23-1.80], p=0.038), but no differences between sitting time 

groups were observed.
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Table 6.9. One-way ANOVA results for daily average sitting time (Sit-Q7d) for cardiometabolic risk factors (n=42). 

BMI- Body Mass Index, SBP-Systolic Blood Pressure; DBP- Diastolic Blood Pressure; HDL-C- High Density Lipoprotein Cholesterol, LDL-C- Low 
Density Lipoprotein Cholesterol. Values shown are mean ± SEM.  

Variables 3-10hrs 
(n=17) 

10-12.5hrs 
(n=8) 

12.6-15hrs 
(n=11) 

>16hrs 
(n=6) p-value 

BMI (m·h2) 25.32 ± 0.72  
(23.75-26.88) 

25.66 ± 0.66  
(24.09-24.23) 

26.89 ± 1.09  
(24.38-29.39) 

25.64 ± 0.78  
(23.48-27.81) 0.169 

Waist Circumference (cm) 89.81 ± 2.27  
(84.90-94.71) 

92.04 ± 2.72  
(85.60-98.48) 

92.53 ± 3.78  
(83.81-101.26) 

93.84 ± 2.93  
(85.71-101.97) 0.353 

SBP (mmHg) 132 ± 3  
(126-138) 

131 ± 1  
(128-134) 

133 ± 7  
(116-150) 

131 ± 8 
 (110-152) 0.993 

DBP (mmHg) 81 ± 2  
(76-86) 

82 ± 3 
 (74-89) 

82 ± 3  
(76-88) 

80 ± 5  
(66-95) 0.975 

Fasting Glucose (mmol·L-1) 4.68 ± 0.34  
(3.94-5.42) 

4.81 ± 0.37  
(3.92-5.69) 

4.55 ± 0.26  
(3.94-5.16) 

4.62 ± 0.37  
(3.60-5.63) 0.808 

IL-6 (pg·mL-1) 0.27 ± 0.03  
(0.21-0.34) 

0.30 ± 0.05  
(0.19-0.41) 

0.56 ± 0.20  
(0.10-1.02) 

0.34 ± 0.09  
(0.09-0.59) 0.205 

TC (mmol·L-1) 3.42 ± 0.15  
(3.09-3.75) 

3.74 ± 0.41 
 (2.78-4.70) 

2.74 ± 0.28  
(2.09-3.38) 

3.21 ± 0.08  
(2.98-3.44) 0.174 

HDL-C (mmol·L-1) 1.44 ± 0.06  
(1.30-1.58) 

1.27 ± 0.11  
(1.02-1.52) 

1.23 ± 0.08  
(1.04-1,42) 

1.40 ± 0.11  
(1.09-1.72) 0.088 

LDL-C (mmol·L-1) 1.24 ± 0.17  
(0.88-1.60) 

1.64 ± 0.33  
(0.85-2.43) 

0.84 ± 0.29 
 (0.19-1.50) 

1.09 ± 0.19  
(0.58-1.61) 0.476 

TC:HDL 2.43 ± 0.16  
(2.09-2.77) 

3.01 ± 0.29  
(2.32-3.70) 

2.30 ± 0.29 
 (1.64-2.96) 

2.35 ± 0.18  
(1.84-2.86) 0.370 

Triglycerides (mg·dL-1) 143.51 ± 12.72  
(116.02-170.99) 

161.47 ± 17.65 
 (119.75-203.19) 

129.21 ± 7.68 
 (111.51-146.91) 

138.88 ± 12.24  
(104.91-172.86) 0.318 
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Table 6.10. One-way ANOVA results for daily average screen time (Sit-Q7d) for cardiometabolic risk factors (n=42). 

BMI- Body Mass Index, SBP- Systolic Blood Pressure, DBP- Diastolic Blood Pressure, TC- Total Cholesterol, HDL-C- High-Density Lipoprotein 

Cholesterol, LDL-C- Low-Density Lipoprotein Cholesterol. Values shown are mean ± SEM.  * p<0.05 vs. Group 1 

Variables 0.5-2hrs 
(n=8) 

2-3.5hrs 
(n=12) 

3.5-4hrs 
(n=9) 

4-6hrs 
(n=11) p-value 

BMI (m·h2) 25.93 ± 1.27  
(22.83-29.02) 

26.15 ± 0.72  
(24.51-27.78) 

25.82 ± 1.28  
(22.69-28.95) 

24.92 ± 0.71  
(23.24-26.59) 0.675 

Waist Circumference (cm) 90.44 ± 4.04  
(80.55-100.34) 

90.78 ± 1.89  
(86.50-95.07) 

92.07 ± 4.45  
(81.18-102.97) 

89.26 ± 2.84  
(82.56-95.97) 0.955 

SBP (mmHg) 130 ± 5  
(118-143) 

133 ± 4  
(124-142) 

137 ± 9  
(117-158) 

126 ± 4  
(118-135) 0.423 

DBP (mmHg) 81 ± 4  
(72-90) 

81 ± 3  
(75-86) 

85 ± 4  
(76-93) 

78 ± 2  
(74-82) 0.403 

Fasting Glucose (mmol·L-1) 5.05 ± 0.65  
(3.46-6.64) 

4.59 ± 0.18  
(4.19-4.99) 

4.57 ± 0.28 
 (3.88-5.25) 

4.36 ± 0.31  
(3.64-5.09) 0.686 

IL-6 (pg·mL-1) 0.33 ± 0.04  
(0.24-0.42) 

0.51 ± 0.19  
(0.09-0.92) 

0.31 ± 0.04  
(0.20-0.41) 

0.28 ± 0.06  
(0.14-0.42) 0.521 

TC (mmol·L-1) 3.37 ± 0.20  
(2.88-3.88) 

2.86 ± 0.26  
(2.26-3.46) 

3.66 ± 0.47  
(2.52-4.81) 

3.20 ± 0.22  
(2.68-3.71) 0.301 

HDL-C (mmol·L-1) 1.51 ± 0.12  
(1.23-1.80) 

1.31 ± 0.07  
(1.16-1.47) 

1.43 ± 0.10  
(1.18-1.69) 

1.27 ± 0.07*  
(1.09-1.44) 0.158 

LDL-C (mmol·L-1) 1.04 ± 0.16 
 (0.65-1.43) 

0.87 ± 0.25  
(0.30-1.43) 

1.48 ± 0.42  
(0.45-2.51) 

1.33 ± 0.24  
(0.75-1.90) 0.337 

TC:HDL 2.29 ± 0.19  
(1.81-2.76) 

2.22 ± 0.24 
 (1.68-2.75) 

2.57 ± 0.26  
(1.94-3.20) 

2.58 ± 0.22  
(2.05-3.11) 0.444 

Triglycerides (mg·dL-1) 158.74 ± 24.46  
(98.89-218.59) 

132.65 ± 6.45  
(118.05-147.24) 

146.29 ± 7.66  
(127.54-165.05) 

117.56 ± 3.25  
(109.86-125.25) 0.063 
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6.3.2 The Influence of Cardiorespiratory Fitness on the Effects of Sedentary Behaviour 

on CACs  

The results indicate that increasing sedentary time affect CD31+ T-cells (through a CD4-

dependent mechanism). However due to the effect of CRF observed on these cells (see 

Chapter 5- The Influence of Age and Cardiorespiratory Fitness on CD31+ T-Cells and 

CXCR4 Cell Surface Expression) we subsequently performed hierarchical multiple 

regression analysis to correct for CRF in the participants, and thus determine if CRF may 

attenuate the effects seen with sedentary behaviour. Results from the hierarchical multiple 

regression analysis for CD31+ T-cells are shown in table 6.11. 

Single univariate regression analysis, as shown previously in table 6.2 shows that 

increasing sitting time is associated with a decrease in CD3+CD31+ T-cells (% of total 

CD3+ T-cells) (r=-0.291, p=0.031). After correcting for !O2max, sitting time was no 

longer associated with the proportion of these cells (t=-1.153, p=0.256 correcting for 

!O2max from t=-1.924, p=0.061 uncorrected) (table 6.11). This was also the case for CD4+ 

T-cells expressing CD31 (table 6.11). CD4+ T-cells expressing CD31 were also inversely 

associated with sitting time (r=-0.282, p=0.037; table 6.3), but after correcting for !O2max, 

was no longer associated with sitting time (t=-1.144, p=0.260 correcting for !O2max from 

t=-1.838, p=0.074 uncorrected) (table 6.11). The relationship between sitting time and 

CXCR4-expressing CD4+ TANG cells (r=0.389, p=0.007) remained after correcting for 

CRF (t=3.032 p=0.004 correcting for !O2max from t=2.605, p=0.013 uncorrected) (table 

6.11). 
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Table 6.11. Hierarchical multiple regression analysis on CD31+ T-cells (n=42). 

Angiogenic T-Cell 
Subsets 

Factors for 
Analysis 

R2 R2 
Change 

Beta Value SEB Standardised ß F-statistic  
(p -value) 

t-statistic 
 (p-value) 

CD3+CD31+ T-cells 
(% of CD3+) 

Model 1 
Sitting Time 
 
Model 2 
Sitting Time 
!O2max 

0.085 
 
 

0.179 

 
 
 

0.095 
 

 
-0.011 

 
 

-0.007 
0.286 

 
0.006 

 
 

0.006 
0.135 

 
-0.291 

 
 

-0.178 
0.328 

3.703 (0.061)* 
 
 

4.264 (0.021)* 

 
-1.924 (0.061) 

 
 

-1.153 (0.256) 
2.121 (0.040)* 

% CD4+ T-cells 
expressing CD31 

Model 1 
Sitting Time 
 
Model 2 
Sitting Time 
!O2max 

0.080 
 
 

0.145 

 
 
 

0.066 
 
 

 
-0.011 

 
 

-0.007 
0.260 

 
0.006 

 
 

0.007 
0.152 

 
-0.282 

 
 

-0.184 
0.274 

3.379 (0.074) 
 
 

3.229 (0.051) 

 
-1.838 (0.074) 

 
 

-1.144 (0.260) 
1.707 (0.096) 

% CD4+ TANG 
expressing CXCR4 

Model 1 
Sitting Time 
 
Model 2 
Sitting Time 
!O2max 

0.152 
 
 

0.202 

 
 
 

0.051 
 
 

 
0.032 

 
 

0.039 
0.472 

 
0.012 

 
 

0.013 
0.308 

 
0.389 

 
 

0.480 
0.243 

6.788 (0.013) 
 
 

4.694 (0.015) 

 
2.605 (0.013)* 

 
 

3.032 (0.004)* 
1.535 (0.133) 

SEB- Standard Error of the Beta Value; *p<0.05 
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6.4 Discussion 

Sitting time (as measured by self-report of average sitting time for 7 days prior to study 

participation; Sit-Q7d) was associated with a decrease in circulating CD31+ T-cells. The 

observed association between sitting time and TANG cells was potentially due to a loss of 

CD31 expression on CD4+ T-cells. However, this association, when correcting for CRF 

(estimated !O2max) disappeared for both total TANG cells and CD4+ TANG. Furthermore, 

CXCR4-expression on CD34+ progenitor cells and EPCs appeared to decline with 

increasing sitting time. Interestingly, screen time measures (as measured by self-report of 

average screen time [computer games, television, computer-related tasks] for 7 days prior 

to study participation; Sit-Q7d) were largely unrelated to CAC and cardiometabolic risk 

factor variables. Screen time was only associated with a decreased expression intensity 

of CXCR4 on CXCR4-expressing EPCs. Both sitting time and screen time were 

associated with several cardiometabolic risk factors (waist-to-hip ratio, TC:HDL ratio, 

HDL-C), but no associations were found between these two sedentary behaviours and 

other risk factors, such as fasting glucose, inflammatory cytokine IL-6 levels, BMI, BP, 

LDL-C and triglycerides. 

One-way ANOVA analyses showed that those participants reporting the highest sitting 

time levels displayed greater CXCR4+ CD4+ TANG cells, however the effect size was only 

small-to-moderate (ES=0.52). This finding was not corroborated by the results in the 

univariate linear regression analyses. Similarly, CD4+ TANG cells appeared to be greater 

in those reporting high levels of daily average screen time compared to those with the 

lowest levels of daily average screen time, but the effect size was only 0.65 and also not 

supported by the findings from the univariate linear regression analysis (r=0.117, 

p=0.233). 

Those reporting high levels of sitting time are more likely to suffer from all-cause 

mortality (Katzmarzyk et al., 2009; van der Ploeg et al., 2012; Matthews et al., 2015), in 

addition to other forms of sedentary behaviour associated with detrimental effects on 

cardiometabolic risk factors, such as fasting glucose, waist circumference (Gennuso et al., 

2013), triglycerides, and BMI (Chau et al., 2014; Healy et al., 2015). Our data shows that 

in apparently healthy males, sedentary behaviour is unfavourably associated with several 

cardiometabolic risk factors TC:HDL ratio, HDL-C, and waist-to-hip ratio. Healy et al. 

(2015) was able to demonstrate that by replacing 2 hours a day of sitting time with 

standing or stepping, improvements can be made in several cardiometabolic risk factors 
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such as lower BMI, waist circumference, fasting glucose, triglycerides, HDL-C:TC ratio, 

as well as higher HDL-C concentrations suggesting reduced CVD and diabetic risk with 

replacing sedentary time with activity time. 

Sitting time is also associated with vascular dysfunction (Thosar et al., 2012; Restaino et 

al., 2015; Thosar et al., 2015a) and vascular stiffness (van de Laar et al., 2014; Younger 

et al., 2015). Circulating CD34+ progenitor and CD31+ T-cells have been previously 

shown to be independently related to endothelial function (Weil et al., 2011; 

Bruyndonckx et al., 2014). As such we sought to investigate the effect of sitting time on 

these cells, as changes in these cells with sedentary behaviour may affect endothelial 

function and provide a mechanism for the observed reduced endothelial function 

observed in several epidemiological and interventional studies (Restaino et al., 2015; 

Thosar et al., 2015a; Thosar et al., 2015b). Our data shows that those reporting higher 

levels of daily average sitting time were more likely to have a reduced percentage of CD3+ 

T-cells expressing CD31. This was attributable to the reduced CD31 expression on CD4+ 

T-cells. Paradoxically, there was a positive association between sitting time and CXCR4-

expressing CD4+ T-cells, indicating improved migratory function of these cells. This may 

be a physiological response to increase function of these CD31+ T-cells to maintain 

homeostasis. As we observed a decrease in CD31+ T-cells, this may be a response to 

partly reduce the homeostatic deleterious effect of sitting time on these cells. Cortisol, a 

stress hormone can upregulate CXCR4 cell surface expression in T-cells (Okutsu et al., 

2005), as well as by TNF-α and IL-6, but only in neuronal cells (Rostasy et al., 2005) and 

glial cells (Ödemis et al., 2002) respectively. More studies are required to investigate the 

mechanism by which sedentary lifestyle may lead to increases in CXCR4 cell surface 

expression, but could be due to rises in chronic low-grade inflammatory biomarkers as 

seen with sedentary behaviour (Yates et al., 2012; Henson et al., 2013), however we did 

not detect differences in IL-6, which can act as a pro-inflammatory cytokine (Gabay, 

2006), between sitting time groups, and therefore may be IL-6-independent. However, 

IL-6 an act as both pro- and anti-inflammatory in nature (Scheller et al., 2011), and thus 

is not an accurate reflection of an individual’s pro-inflammatory state, and thus more 

accurate biomarkers are required to fully elucidate if physical activity or inactivity affect 

inflammation. 

Due to the dichotomy of sedentary behaviour and CRF, where individuals can live a 

relatively sedentary lifestyle yet maintain high levels of !O2max through brief periods of 

intense exercise, we sought to investigate whether the effects of sitting time remained 
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after correcting for CRF. Interestingly the negative impact of sitting time on total 

circulating TANG cells and CD4+ TANG cells did not remain after correcting for CRF, 

indicating that the unfavourable health impact of a sedentary lifestyle can be attenuated 

by maintaining high levels of !O2max. 

The impact of sedentary lifestyle on the immune system has been addressed before 

(Simpson and Guy, 2010), but has yet to be investigated. Thus far, the effects of acute 

and regular exercise has been shown to affect various aspects of the immune system, such 

as CD4+ and CD8+ T-cell levels in the blood (Simpson et al., 2008; Turner et al., 2010), 

immunoglobulin levels in saliva and blood, as well as in vivo and in vitro immune 

responsiveness (Chin A Paw et al., 2000; Moro-García Marco et al., 2013). We have 

shown that those with high levels of !O2max have higher number of circulating TANG cells 

as a result of increased expression of CD31 on CD4+ T-cells in an age-dependent manner 

(see Chapter 5- Influence of Age and Cardiorespiratory Fitness on CD31+ T-Cells and 

CXCR4 Cell Surface Expression). The data shown in this study suggest that sedentary 

lifestyle may negatively impact on these cells. This could be one of many mechanisms by 

which sedentary lifestyle may lead to endothelial dysfunction. However, our data also 

imply that those living a sedentary lifestyle can eradicate some of the negative impacts of 

this lifestyle by attaining a high level of CRF potentially attainable through exercise 

training. 

 

Limitations 

This study has a few limitations. The quantification of sitting time and screen time were 

made purely by self-report, and lacks any accelerometer or step count measures of activity 

or inactivity. Ideally both measures would be made over a longitudinal study. The Sit-

Q7d, although shown recently to display criterion-based validity (Wijndaele et al., 2014), 

may be stronger for some criteria of sedentary time than others (e.g. screen time vs. total 

sedentary time), and thus further analysis of the results is required to reflect this. However 

reliable these self-report measures may be, these measures have limitations in participant 

recall of inactivity. Due to the low intensity nature of these sedentary behaviours, recall 

can prove difficult for participants. As a result, participants were asked to recall for only 

the past 7 days, potentially limiting the error associated with self-report. 
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Our study cohort was 43 in number, yet significantly underpowered to obtain sufficient 

statistical power to address the research question. We were unable to perform ANOVAs 

for sedentary time groups and CRF groups due to the low number of participants, and 

thus is a target for future study. 

We estimated !O2max from a submaximal exercise test (YMCA). Submaximal exercise 

tests have been widely used to estimate !O2max (Akalan et al., 2008; Faulkner et al., 2009; 

Spielmann et al., 2011). Many of the prediction equations rely on estimation of maximal 

heart rate (HRmax) of an individual to extrapolate data. Using HRmax prediction equations 

commonly underestimate HRmax (Gellish et al., 2007) and thus be a limiting factor when 

using submaximal exercise tests to predict !O2max. However, both Beekley et al. (2004) 

and Garatachea et al. (2007) demonstrated that !O2max as predicted using the YMCA 

submaximal cycling ergometer test, was not significantly different from !O2max measured 

directly. However, there appears to be a gender difference, with women showing large 

discrepancies between predicted and measured !O2max (Garatachea et al., 2007). Despite 

limitations arising from predicting !O2max, submaximal exercise tests to estimate CRF in 

men can be used in a research setting.  

 

Conclusion 

Sitting time is negatively related with TANG cells through a CD4-dependent mechanism, 

and thus may be a potential mechanism of the observed vascular dysfunction observed 

with sedentary lifestyles. Regular exercise training to attain a high CRF may attenuate or 

negate the deleterious impact of sedentary behaviours on these CACs. 
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Chapter 7: The Effect of an Acute Endurance Exercise Bout 

on Circulating CD31+ T-Cells 
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7.1 Introduction 

Exercise provides many cardiovascular benefits, such reducing blood pressure (Liu et al., 

2012), improving fasting glucose levels (Gillen et al., 2012), and reduces CVD risk and 

mortality rates (Kurl et al., 2003; Lee et al., 2012a; Vigen et al., 2012; Barry et al., 2013; 

Berry et al., 2013; Chomistek et al., 2013; Holtermann et al., 2015). It is thought that 

regular acute exercise-induced increases in sub-population of CACs provide a mechanism 

for the vasculo-protection, angiogenesis and improved endothelial function seen with 

exercise. Acute exercise has been shown to increase some populations of these cells, 

specifically CD34+ and CD34+VEGFR2+ putative EPCs (Adams et al., 2004; Rehman et 

al., 2004; Laufs et al., 2005a; Möbius-Winkler et al., 2009; Sandri et al., 2011; Scalone 

et al., 2013; Ross et al., 2014; Chang et al., 2015).  This mobilisation of BM-derived cells 

can cause these cells to be elevated up to 72 hours in the recovery period, offering a 

sustained window for vascular-adaptation post-exercise.  

CD3+CD31+ T-cells can act in a paracrine manner to secrete pro-angiogenic growth 

factors (e.g. VEGF, IL-8) to support endothelial cell growth and tube formation (Hur et 

al., 2007). The ability of these cells to migrate is associated with endothelial function 

(Weil et al., 2011), implicating them in vascular homeostasis. These angiogenic T-cells 

(TANG) have also been found to be reduced in individuals with cardiovascular risk factors 

(Hur et al., 2007), as well as those with small vessel cerebrovascular disease (Rouhl et 

al., 2012) in comparison to age-matched healthy controls. We have shown that advancing 

age is associated with reduced circulating numbers of these TANG cells, in addition to the 

CXCR4 cell surface expression of these cells, which could partially contribute to the age-

related increased CVD risk (Chapter 5: The Influence of Age and Cardiorespiratory 

Fitness on Angiogenic T-Cells and CXCR4 Cell Surface Expression), yet individuals with 

a higher level of fitness have more TANG cells and a mechanism by which exercise can be 

beneficial for the vascular system.  

T-cells are very responsive to acute bouts of exercise. Typically, there is a biphasic 

response in the circulation compartment of these CD3+ cells to acute exercise (Simpson 

et al., 2007; Turner et al., 2010; Witard et al., 2012). Initially, there is a lymphocytosis, 

where there is a large ingress of lymphocytes into the circulation immediately post-

exercise followed by an egress of cells from the circulation (lymphocytopenia). The 

lymphocytosis observed is thought to be a result of shear stress-modulated detachment of 

lymphocytes from the vascular endothelial wall as well as by ß-adrenergic mechanisms 
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as a consequence of increased circulating levels of catecholamines during exercise 

(Simpson et al., 2007). The increased cardiac output (") seen with exercise provides the 

mechanical shear stress stimulus to detach lymphocytes from the endothelial wall. Acute 

exercise activates the hypothalamic-pituitary-adrenal axis (HPA), which results in the 

release of the catecholamines epinephrine and norepinephrine. These catecholamines 

stimulate the ß-adrenergic receptor-expressing T-cells to ingress into the blood. Cytotoxic 

CD8+ T-cells, effector memory and senescent T-cells exhibit a greater ingress into the 

circulation during exercise (Simpson et al., 2010; Turner et al., 2010; LaVoy et al., 2014), 

most likely due to greater expression of ß-adrenergic receptors found on these cells. 

Indeed the blocking of these receptors through the use of propranolol impairs the 

lymphocytosis observed with ß-agonist infusion (Schedlowski et al., 1996). In 

immunosurveillance terms, this may be an evolutionary mechanism to allow for 

redistribution of these cytotoxic T-cells to be mobilised in response to a stressor to ward 

off infection (Dimitrov et al., 2010). Preferential mobilisation of cells expressing ß2 

receptors, also occurs with T-cells co-expressing several adhesion molecules, such as 

integrins (Shephard, 2003; Simpson et al., 2006) and CD56 (Goebel et al., 2000; Simpson 

et al., 2006), however the response of CD31+ expressing T-cells to acute exercise has yet 

to be documented.  

Cell surface receptor expression of CXCR4 may also be acutely modulated by exercise 

stimuli. Post-exercise plasma acutely stimulates the upregulation of CXCR4 on CD3+ T-

cell cell surfaces in vitro, and thought to be a result of the acute exercise increases in 

cortisol (Okutsu et al., 2005). This effect appeared to primarily affect CD4+ T-cells, with 

a smaller relative change in CXCR4 expression observed on the CD8+ T-cell subset. 

Migration of these cells to SDF-1α also improved as a result of incubation with post-

exercise plasma in comparison to pre-exercise plasma. However, no data as yet is 

currently available on the CXCR4+ T-cell kinetics as a result of acute exercise bout, and 

the potential mechanism(s). 

If these TANG (CD3+CD31+) are highly responsive to acute exercise, this may provide a 

potential mechanism for exercise-induced vascular adaptation, therefore it is the aim of 

this study to investigate the response of CD3+CD31+ TANG cells in addition to CXCR4 

cell surface expression of these cells to an acute bout of exercise, as well as compare to 

their CD3+CD31- counterparts. 
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7.2 Materials and Methods 

7.2.1 Participants 

Male participants (n=12), aged between 18 and 45 years volunteered to take part in the 

study, and consisted of a mixture of students and staff based at Edinburgh Napier 

University, in addition to general public from the Edinburgh area. Prior to their 

involvement in the study, participants were asked to give written informed consent, after 

which they completed a Physiological Screening Questionnaire (see Appendix 3). 

Participants were excluded from the study if they were smokers, had an excessive alcohol 

intake (>14 drinks/week), had a BMI>35, were currently taking medication affecting the 

immune system, antidepressants, routinely using ibuprofen, aspirin, reporting major 

affective disorders such as human immunodeficiency virus infection, hepatitis, arthritis, 

central or peripheral nervous disorders, previous stroke or cardiac events, reported 

infection in the 6 weeks prior to study enrolment, or were bedridden in the 3 months prior 

to the study, or suffer from known cardiovascular or autoimmune disease. Participants 

were advised not to partake in any strenuous exercise for 72 hours prior to their visits to 

the Human Performance Laboratory. Ethical approval for the study was given by the 

Edinburgh Napier University Research and Ethics Governance Committee. Participant 

characteristics are shown in table 7.1. 

 

 

 

 

 

 

 

 

 

 

 



	

157 
	

Table 7.1. Participant characteristics (n=12). Values shown are mean ± SD (Range). 

 All 
(n=12) 

Age (years) 32 ± 7  
(24-44) 

Height (m) 1.82 ± 0.07  
(1.65-1.97) 

Body Mass (kg) 76.60 ± 8.41  
(57.00-84.30) 

BMI (kg·m2) 23.02 ± 1.72  
(20.94-25.99) 

SBP (mmHg) 124 ± 6  
(117-135) 

DBP (mmHg) 75 ± 6 
 (66-82) 

#O2max  
(mL·kg·min-1) 

58.33 ± 4.29  
(50.00-67.30) 

10km Time (min:ss) 43:01 ± 5:27  
(35:10-54:34) 

 

BMI- Body Mass Index, SBP- Systolic Blood Pressure, DBP- Diastolic Blood Pressure, 

MAP- Mean Arterial Pressure. 

 

Visit 1 (Assessment of #O2max) 

7.2.2 Resting Measures 

Participants visited the Human Performance Centre having refrained from ingesting 

caffeine from the night before as well as refraining from any alcohol intake 24 hours prior 

to participation. Participants were also required to avoid strenuous exercise for 3 days 

prior to the visit.  

Participants were measured for height and body mass, from which BMI was calculated 

(see 3.2 Resting Measures). Blood pressure (BP) was measured using an automated blood 

pressure cuff (Nonin Puresat Avant 2120, Nonin Medical Inc, Minnesota, USA; Ultra-

Check® Blood Pressure Adult Cuff, Statcorp Medical, Florida, USA) after 5-minutes’ 
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rest in a supine position on the non-dominant arm. BP was measured twice and the 

average systolic and diastolic measures were recorded.   

 

7.2.5 Assessment of Maximal Oxygen Uptake (!O2max) 

Maximal oxygen uptake (!O2max) of each participant was measured by graded treadmill 

exercise test to volitional exhaustion. The test was composed of 3-minute stages, 

beginning at a speed of 10km·h-1, with subsequent stages increasing in pace by 3km·h-1. 

After completing the 3rd stage at 16km·h-1, the gradient of the treadmill was increased by 

2.5% every minute until the participant reaches volitional exhaustion and cannot continue. 

Breath-by-breath online analysis was performed throughout the test (LABManager v5.3.0, 

Cardinal Health, Germany) to measure !O2 and respiratory exchange ratio (RER). 

!O2max was identified and recorded as the final 8-breath averaged !O2. HR was recorded 

continually throughout the test by HR telemetry (Polar, Finland). 

 

Visit 2 (Exercise Trial) 

7.2.6 Resting Measures 

Participants visited the Human Performance Laboratory again within one week of 

completing the !O2max test. Participants attended the laboratory at 8am after an overnights 

fast and having refrained from caffeine and alcohol for 24 hours prior to the laboratory 

visit. They were also advised to refrain from exercise training for 72 hours prior to the 

laboratory visit. 

Participants were measured for height and body mass, from which BMI was calculated 

(see 3.2 Resting Measures). BP was measured using an automated blood pressure cuff 

(Nonin Puresat Avant 2120, Nonin Medical Inc, Minnesota, USA; Ultra-Check® Blood 

Pressure Adult Cuff, Statcorp Medical, Florida, USA) after 5 minutes rest in a supine 

position on the non-dominant arm. BP was measured twice and the average systolic and 

diastolic measures were recorded.  
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7.2.7 Blood Sampling and PBNMC Isolation 

Blood was taken from participants in a supine position before, immediately post- and 60 

minutes post-exercise. Peripheral blood samples were drawn into 6mL vacutainers (BD 

Biosciences, UK), which were either coated in EDTA to prevent coagulation, serum gel, 

or contained sodium citrate. EDTA blood was processed for PBMNC as previously 

described in general materials and methods (Chapter 3.7). Isolated PBMNCs were then 

used for TANG number and CXCR4 cell surface enumeration (see 7.2.9 Angiogenic T Cell 

Number and CXCR4 Expression Quantification), blood drawn into the citrate tubes was 

used for the analysis of circulating SDF-1α (see 7.2.10 Platelet-Free Plasma Analysis for 

Chemotactic Factor SDF-1α). 

 

7.2.8 10km Running Trial 

The exercise trial consisted of a self-paced 10km running effort on a treadmill ergometer. 

The participant was told to complete the 10km distance in the quickest speed they feel 

they could maintain for the full distance, however were also told that they could adjust 

the speed of the treadmill throughout the test if necessary. The participant was unaware 

of the distance covered or time lapsed during the trial. Participants were notified when 

they had 1km of the trial remaining. Participants were notified to drink water ab libitum.  

 

7.2.9 Angiogenic T Cell Number and CXCR4 Expression Quantification 

Isolated PBMNCs (0.5x106) were labelled with monoclonal antibodies anti-CD3-APC, 

anti-CD31-FITC, anti-CD4/anti-CD8-PE and anti-CXCR4-PE-Cy5 (all BD Biosciences), 

and were left to incubate at 4°C for 45 minutes in the dark prior to flow cytometric 

analysis as detailed in general materials and methods Chapter 3.9. CXCR4 cell surface 

expression was analysed as a surrogate for migratory ability. 
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7.2.10 Platelet-Free Plasma Analysis for Chemotactic Factor SDF-1α 

Potential chemotactic factor SDF-1α was analysed by enzyme-linked immunosorbent 

assay (ELISA) as described in general materials and methods Chapter 3.12. All samples 

were analysed in duplicate and averaged.  

 

7.2.11 Statistical Analysis 

All data were assessed for normal distribution. Not normally distributed data were 

logarithmically transformed.  

To assess the response of total CD3+CD31+ T-cells (TANG), CXCR4+ TANG cells, and 

CXCR4 cell surface expression (MFI) to acute exercise, several repeated measures 

analysis of variance (ANOVA) were performed, including the three time points as the 

dependent factor (pre-exercise, immediately post-exercise and 60 minutes post-exercise). 

To compare the effect of CD31- T-cells to their CD31+ counterparts two-way repeated 

measures ANOVA tests were performed, with time (pre, post- and 1-hour post-exercise) 

and phenotype (CD31+/-) as independent factors. CD4+ and CD8+ T-cell response within 

the TANG population were assessed, with one-way and two-way repeated measures 

ANOVAs performed in order to assess the contribution of these subtypes of CD3+ T-cells 

to the response seen. The level of ingress and egress of CD31+ cells were compared to 

their CD31- phenotype counterpart using paired samples T-test. 

Circulating SDF-1α changes were statistically assessed using one-way repeated measures 

ANOVA. To assess the contribution of SDF-1α to the ingress of CXCR4+ T-cells as a 

result of exercise, Pearson’s coefficient correlations were performed, using percentage 

changes in circulating SDF-1α and respective CXCR4+ cell changes as the independent 

factors. 

For the various ANOVAs performed, and where necessary, with Bonferonni post-hoc 

tests undertaken to identify locations of significance. 

Data was analysed using SPSS for Macintosh, version 20 (IBM, Chicago, USA). 

Significance was set at p=0.05. 
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7.3 Results 

7.3.1 CD3+CD31+ T-Cell Response to Acute Exercise 

There was a large increase in total CD31+ T-cells from pre- to immediately post-exercise 

(0.514 ± 0.045 cells x 109·L-1 [0.416-0.612 cells x 109·L-1] 95% CI, vs. 1.040 ± 0.128 

cells x 109·L-1  [0.759-1.320 cells x 109·L-1] 95% CI, p=0.000). The same pattern was 

observed for both CD4+ (0.224 ± 0.023 cells x 109·L-1  [0.173-0.275] 95% CI, vs. 0.375 

± 0.047 cells x 109·L-1 (0.272-0.479], 95% CI, p=0.002) and CD8+ TANG cells (0.236 ± 

0.027 cells x 109·L-1 [0.177-0.295] 95% CI, vs. 0.505 ± 0.064 cells x 109·L-1 [0.364-0.645] 

95% CI, p=0.001) from pre- to post- exercise (figure 7.1). There was a greater response 

of CD8+ TANG cells to the acute exercise stressor than CD4+ TANG cells (time x phenotype 

interaction p=0.003; figure 7.2). 

CXCR4-expressing TANG cells displayed a similar pattern, with total CXCR4-expressing 

CD31+ T-cells (0.089 ± 0.021 cells x 109·L-1 [0.043-0.135 cells x 109·L-1] 95% CI, vs. 

0.255 ± 0.046 cells x 109·L-1  [0.153-0.357 cells x 109·L-1] 95% CI, p=0.001), CXCR4-

expressing CD4+ (0.038 ± 0.012 cells x 109·L-1 [0.013-0.63 cells x 109·L-1] 95% CI, vs. 

0.109 ± 0.022 cells x 109·L-1  [0.060-0.158 cells x 109·L-1] 95% CI, p=0.006) and 

CXCR4+ CD8+ TANG cells (0.055 ± 0.014 cells x 109·L-1 [0.025-0.086 cells x 109·L-1] 95% 

CI, vs. 0.137 ± 0.025 cells x 109·L-1  [0.082-0.192 cells x 109·L-1] 95% CI, p=0.003) 

(figure 7.1) all demonstrating a significant increase post-exercise. 

In the recovery period post-exercise there was a significant drop in total TANG cells (1.040 

± 0.128 cells x 109·L-1 [0.759-1.320 cells x 109·L-1] 95% CI, vs. 0.464 ± 0.039 cells x 

109·L-1  [0.378-0.550 cells x 109·L-1] 95% CI, p=0.000), CD4+ TANG  cells (0.375 ± 0.047 

cells x 109·L-1 [0.272-0.479 cells x 109·L-1] 95% CI, vs. 0.217 ± 0.021 cells x 109·L-1  

[0.170-0.263 cells x 109·L-1] 95% CI, p=0.002) and CD8+ TANG cells (0.505 ± 0.064 cells 

x 109·L-1 [0.364-0.645 cells x 109·L-1] 95% CI, vs. 0.218 ± 0.026 cells x 109·L-1  [0.160-

0.276 cells x 109·L-1] 95% CI, p=0.001) from post- exercise to 1 hour post-exercise, to 

levels similar to pre-exercise (figure 7.1). 

CXCR4+ TANG cells showed a similar egress from the circulation in the post-exercise 

recovery period, with CXCR4-expressing total CD31+ T-cells (0.255 ± 0.046 cells x 

109·L-1 [0.153-0.357 cells x 109·L-1] 95% CI, vs. 0.081 ± 0.021 cells x 109·L-1  [0.035-

0.128 cells x 109·L-1] 95% CI, p=0.001), CD4+ TANG (0.109 ± 0.022 cells x 109·L-1 [0.060-

0.158 cells x 109·L-1] 95% CI, vs. 0.031 ± 0.009 cells x 109·L-1  [0.010-0.052 cells x 



	

162 
	

109·L-1] 95% CI, p=0.004) and CD8+ TANG (0.137 ± 0.025 cells x 109·L-1 [0.082-0.192 

cells x 109·L-1] 95% CI, vs. 0.057 ± 0.010 cells x 109·L-1  [0.021-0.093 cells x 109·L-1] 

95% CI, p=0.005) significantly decreased in peripheral circulation from post-exercise to 

1-hour post-exercise.  

 

Figure 7.1. Changes in CD31+ T-Cells (A: total CD31+ T-cells; B: CD4+ TANG; C: CD8+ 

TANG) and CXCR4+ TANG Cells (D: total CD31+ T-cells; E: CD4+ TANG; F: CD8+ TANG) 

with acute exercise (n=12). *p<0.05 vs. Pre-Exercise.* #p<0.05 vs. 1hr Post. 
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Figure 7.2. Acute exercise and changes in CD4+ and CD8+ TANG cells (n=12). *p<0.05 

time x phenotype interaction. 
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Percentage changes in CD31+ T-cells and their CD4+, CD8+ and CXCR4+ subsets with 

exercise are shown in figure 7.2.  

 

Figure 7.3. Percentage changes in CD31+ T-cells (A: mobilisation into the circulation; B: 

egress from circulation) with acute exercise (n=12). *p<0.05 vs. CD4+CD31+ T-cells. 

 

7.3.2 CXCR4 Cell Surface Expression 

CXCR4 cell surface expression on TANG subsets were compared from pre-exercise to 

post-exercise and 1-hour post-exercise. As shown in table 7.2 that CXCR4 cell surface 

expression was unaffected in total TANG cells and CD4+ subset by exercise. There was an 

increase in expression of CXCR4 on CD8+ TANG cells from pre-to post-exercise (10.21 ± 

0.83 AU [8.38-12.04] 95% CI, vs. 10.99 ± 0.93 AU [8.95-13.04], p=0.002) and for a 

decrease in cell surface expression from post-exercise to 1hr post-exercise in these cells 

(10.99 ± 0.93 AU [8.946-13.04] 95% CI, vs. 10.18 ± 0.86 AU [8.30-12.07], p=0.001). 

 

* 
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Table 7.2. CXCR4 cell surface receptor expression (Mean Fluorescence Intensity) in 

response to acute exercise.  

 Pre-Exercise Post-Exercise 
1 hr Post-

Exercise 
p-value (time) 

CD3+CD31+ 

(TANG) 
11.78 ± 0.44 12.25 ± 0.51 11.97 ± 0.60 0.088 

CD4+ TANG 12.80 ± 0.50 13.08 ± 0.46 12.70 ± 0.51 0.179 

CD8+ TANG 10.21 ± 0.83 10.99 ± 0.93 10.18 ± 0.86 0.000* 

Values shown are mean ± SEM. *p<0.05 effect for time. 

 

7.3.3 CD31+ vs. CD31- T-Cell Response to Acute Exercise 

To compare the mobilisation patterns of CD31+ and CD31- T-cells to acute strenuous 

exercise, two-way repeated measures ANOVAs were performed on total CD3+ T-cells, 

as well as CD4+ and CD8+ subsets. As shown in figure 7.4A, total CD3+ T-cells 

phenotypically positive or negative for CD31 showed similar pattern of mobilisation 

(time x phenotype interaction p=0.521). However, acute exercise had a greater effect on 

redeployment of CD4+ T cells that did not express CD31 (time x phenotype interaction 

p=0.010), and this was also the case for CD8+ T-cells lacking CD31 expression (time x 

phenotype interaction p=0.000) (figures 7.4B and 7.4C).  
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Figure 7.4. Changes in CD31+ and CD31- T-cells (A: total T-cells; B: CD4+ T-cells; C: 

CD8+ T-cells) with acute exercise (n=12).  
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Paired T-test analysis on egress and ingress of CD31+ compared to CD31- T-cells to acute 

exercise stimulus showed that CD31- T-cells displayed greater ingress (119.00 ± 20.30% 

[74.28-163.66] 95% CI, vs. 102.04 ± 17.95% [62.52-141.55] 95% CI, p=0.041) and 

egress (56.34 ± 4.17% [47.17-65.51] 95% CI, vs. 49.91 ± 5.65% [37.48-62.35] 95% CI, 

p=0.047) levels compared to their CD31+ counterparts (figure 7.5). This was due to the 

significantly greater ingress (200.41 ± 24.60% [146.26-254.55] 95% CI, vs. 122.58 ± 

26.72% [63.79-181.37] 95% CI, p=0.005) and egress (76.87 ± 3.01% [70.24-83.50] 95% 

CI, vs. 52.00 ± 6.35% [38.02-65.98] 95% CI, p=0.002) of CD8+CD31- T-cells from the 

circulation compared to CD8+CD31+ T-cells (44.78 ± 9.67% [13.99-75.57] 95% CI, vs. 

47.33 ± 10.08% [15.24-79.41] 95% CI, p=0.035), whereas there appeared no significant 

differences in the percentage ingress (89.48± 17.52% [50.92-128.04] 95% CI, vs. 82.75 

± 25.68% [26.23-139.27] 95% CI, p=0.631) and egress (42.25 ± 5.25% [30.70-53.79] 95% 

CI, vs. 36.63 ± 6.95% [21.33-51.93] 95% CI, p=0.120) between CD4+CD31- T-cells and 

CD4+CD31+ T-cells. 

 

Figure 7.5. Percentage changes in CD31+ and CD31- T-cells (A: mobilisation into the 

circulation; B: egress from circulation) with acute exercise (n=12). *p<0.05 vs. CD31+. 
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CXCR4+ TANG cells are rapidly mobilised in response to exercise. There was a 

significantly greater response of CXCR4+ TANG cells compared to CXCR4- TANG cells to 

exercise (p=0.017). This was due to both a greater ingress (239.00 ± 52.61% [123.20-

354.79] 95% CI, vs. 81.69 ± 14.33% [50.14-113.23] 95% CI, p=0.005) and a greater 

egress (69.68 ± 5.42% [57.76-81.61] 95% CI, vs. 44.01 ± 6.66% [29.35-58.67] 95% CI, 

p=0.004) of CXCR4-expressing TANG cells compared to their CXCR4- counterparts, with 

similar patterns being observed for CD4+ and CD8+ TANG cells (figures 7.6 and 7.7). 
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Figure 7.6 Changes in CXCR4+ CD31+ and CXCR4+CD31- T-cells (A: total T-cells; B: 

CD4+ T-cells; C: CD8+ T-cells) with acute exercise (n=12). *p<0.05 time x phenotype 

interaction 
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Figure 7.7. Percentage changes in CXCR4+ and CXCR4- TANG cells (A: mobilisation into 

the circulation; B: egress from circulation) with acute exercise (n=12). *p<0.05 vs. 

CXCR4- 

 

CD31-CXCR4+ cells demonstrated a greater response to the acute exercise bout than 

CD31+CXCR4+ cells (p=0.005), with greater mobilisation into the peripheral blood 

compartment post-exercise (381 ± 81.44% [202.54-561.03] 95% CI, vs. 239.00 ± 52.61% 

[123.20-354.79] 95% CI, p=0.018), and a greater migration from the circulation in the 

recovery period post-exercise (73.47 ± 4.98% [62.51-84.43] 95% CI, vs. 69.98 ± 5.41 

[57.76-81.61] 95% CI, p=0.038). This was due to in part, both increased response of CD4+ 

and CD8+ CD31- T-cells (figure 7.8). 
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Figure 7.8. CXCR4+ T-cell changes to acute exercise, CD31+ vs. CD31- phenotypes 

(n=12). *p<0.05 vs. CD31+. 
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Figure 7.9. Egress and Ingress of CXCR4+ T-cells to acute exercise, comparison between 

CD31+ and CD31- T-cells (n=12). *p<0.05 vs. CD31+. 

 

7.3.4 SDF-1:CXCR4 Axis in the Mobilisation of CD31+ T-Cells in Response to Acute 

Exercise 

CD31+ T-cells can express CXCR4 as shown previously. These CXCR4+ cells are 

mobilised into the blood in response to acute exercise. The ligand for CXCR4, SDF-1α 

was measured in platelet-free plasma of individuals undertaking the acute exercise bout 

pre-exercise, immediately post-exercise and 1 hour post-exercise. One way repeated 
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measures ANOVA was performed to assess the change in SDF-1α in response to acute 

exercise. 

Circulating SDF-1α significantly increased in the circulation from pre- to immediately 

post-exercise (1969.53 ± 78.50 pg·mL-1 [1796.76-2142.30] 95% CI, vs. 2582.66 ± 102.39 

pg·mL-1 [2357.31-2808.01] 95% CI, p=0.000). SDF-1α levels recover to pre-exercise 

levels in the one-hour recovery period post exercise (2582.66 ± 102.39 pg·mL-1 [2357.31-

2808.01] 95% CI, vs. 2162.13 ± 85.83 pg·mL-1 [1973.23-2351.04] 95% CI, p=0.000) 

(figure 7.10). 

 

Figure 7.10. The response of circulating SDF-1α to acute endurance exercise (n=12). 

*p<0.05 vs. pre-exercise, # p<0.05 vs. post-exercise. 

 

To determine if systemic increases in CXCR4+ TANG cells are attributable to systemic 

increases in SDF-1α univariate regression analyses were performed to assess the effect of 

changes in SDF-1α and CXCR4+ TANG cells. There was no significant relationship 

between changes in SDF-1α and changes in CXCR4+ TANG cells in response to the acute 

exercise bout (r=0.073, r2=0.005, p=0.822). Additionally, the change in SDF-1α from pre- 

to post-exercise was not associated with the increase observed in CD8+ TANG CXCR4 cell 

surface expression. 
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7.4 Discussion 

Acute exercise is known to stimulate the mobilisation of T-cells into the peripheral 

circulation in humans (Simpson et al., 2007; Turner et al., 2010; Witard et al., 2012). In 

fact, exercise preferentially mobilises specific T-cell subgroups, so that some T-cell 

groups enter and leave the circulation to a greater extent than others (Simpson et al., 2010). 

The evidence strongly suggest a preferential mobilisation of senescent and highly 

differentiated T-cells, and these cells also leave the circulation to a greater extent than 

naïve T-cells (Simpson et al., 2007; Spielmann et al., 2014). CD31+ T-cells are a group 

of T-cells which are potentially involved in maintenance of endothelial health (Weil et 

al., 2011). Data shown in this thesis has shown that these cells are maintained in older 

age in those with higher levels of CRF than those with lower levels of CRF (Chapter 5). 

Thus far, there is no evidence to show the response of these cells to an acute bout of 

exercise, therefore the response of these cells were studied in a small cohort of young 

healthy men (age 24-44yrs) to a 10km running time trial. 

The main finding of this study is that CD3+CD31+ T-cells are mobilised into the 

circulation in response to an acute exercise bout, and subsequently leave the circulation, 

mirroring the classic biphasic response of T-cells to exercise. The data also suggests that 

CD8+ TANG cells are more responsive to an acute exercise bout than CD4+ TANG cells. 

Interestingly, CD31- T-cells are mobilised to a greater extent than CD31+ T-cells. 

Additionally, there is a preferential egress from the circulation of CD31- T-cells in the 

post-exercise recovery period. This is largely due to a greater mobilisation and subsequent 

egress of CD8+CD31- T-cells observed. 

This is the first study to document the response of CD31+ T-cells to an acute exercise 

bout. Interestingly, CD31+ T-cells are not as highly mobilised as CD31- T-cells. Previous 

studies have shown preferential mobilisation of T-cells expressing adhesion molecules 

(such as integrins and CD56) in response to exercise (Goebel et al., 2000; Shephard, 2003; 

Simpson et al., 2006) however the data presented in this study suggests this is not the case 

for CD31-expressing T-cells. CD4+ and CD8+ T-cells expressing senescent and highly 

differentiated cell surface markers ingress to a greater extent than less differentiated CD8+ 

T-cells (Campbell et al., 2009). The panel used within this study did not contain cell 

surface markers for senescence or differentiation status. The exact phenotypic definition 

of CD8+/CD4+ T-cells expressing or not expressing CD31 are unknown, and thus cannot 
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be determined if the greater mobilisation of CD31- T-cells is due to their senescent or 

differentiation status. 

Potential mechanisms for the increase in circulating CD31+ T-cells as a result of exercise 

include an increase in shear stress-mediated demargination of T-cells from the vascular 

endothelium, as well as catecholamine-dependent ß-adrenergic ingress into the 

circulation of T-cells expressing ß-adrenergic receptors (Schedlowski et al., 1996; 

Simpson et al., 2007). In addition, increases in circulating SDF-1α may stimulate 

CXCR4+ T-cell chemotaxis into the peripheral blood compartment. SDF-1α is known to 

mobilise CXCR4+ progenitors into the circulation (Powell et al., 2005; Prokoph et al., 

2012), but as of yet the relevance and contribution of the SDF-1:CXCR4 axis in T-cell 

lymphocytosis has yet to be addressed. SDF-1α is significantly increased in systemic 

circulation of the male participants from pre- to post-exercise, and this is concomitantly 

accompanied by significant increases in CXCR4+ TANG cells, more so than CXCR4- TANG 

cells, suggesting a role for the SDF-1:CXCR4 axis in this response. SDF-1α also 

displayed a biphasic response to acute exercise, with a large increase in circulating SDF-

1α immediately post-exercise, and a return to baseline levels in the 1-hour post-exercise 

recovery period. SDF-1α has been shown to be increased in circulation post-acute 

exercise elsewhere (Van Craenenbroeck et al., 2010b; Chang et al., 2015), and is partly 

responsible for the acute increases in other CACs in response to an acute exercise stressor, 

such as EPCs (Chang et al., 2015). Our data also shows that CXCR4+ TANG cells were 

more responsive to exercise than TANG cells which were negative for CXCR4 expression, 

suggesting that CXCR4-dependent mechanisms may be at play. However, we failed to 

observe a significant relationship between SDF-1α release and CXCR4+ TANG ingress into 

the circulation, suggesting that although CXCR4+ cells are preferentially mobilised in 

comparison to CXCR4- cells, there may be other factors associated with increased 

expression of CXCR4 that may be responsible. As yet, these other factors have yet to be 

investigated. 

Interestingly, CXCR4 expression was largely unchanged in the total CD3+ TANG pool, 

with the same observation in CD4+ TANG cells. However, CXCR4 expression was 

significantly upregulated on CD8+ TANG cells, suggesting a differential effect of exercise 

on CD8+ and CD4+ T-cell receptor expression. CXCR4 expression is mooted to be related 

to the migratory capacity of these cells, and it appears that exercise either mobilises CD8+ 

TANG cells with high levels of CXCR4 cell surface expression, or the circulating 

environment during exercise stimulates an upregulation of this chemotactic receptor. One 
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previous study has detailed the effect of exercise-related cortisol levels on CXCR4 

expression on T-cells, whereby researchers incubated T-cells with exercise physiological 

circulating levels of cortisol in vitro, and observed this upregulation (Okutsu et al., 2005). 

However, that study failed to measure any differential effects of the cortisol on CD4+ or 

CD8+ T-cells. This is the first study to document circulating changes in CXCR4 

expression on T-cells. However, the functional significance of this finding is unknown, 

and whether this upregulation of CXCR4 expression translates to improved migration of 

this specific subset of CACs is also yet to be observed. However, careful interpretation is 

advised, as acute exercise may simply mobilise T-cells with an already heightened 

CXCR4 expression, as indicated by increased mobilisation of CXCR4+ TANG cells 

compared to CXCR4- TANG cells, rather than any changes occurring at the individual cell 

level. 

In conclusion, CD31+ T-cells are mobilised in response to an exercise stressor, due to 

both increases in CD4+ and CD8+ TANG cells. CD8+ TANG cells were more preferentially 

mobilised compared to CD4+ TANG cells, and CXCR4+ TANG cells mobilise in response to 

exercise more so than CXCR4- TANG cells, suggesting a potential role for the SDF-

1:CXCR4 axis in T-cell response to exercise. 
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Chapter 8: The Impact of Persistent Viral Infection on 

Circulating CD31+ T-Cells 
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8.1 Introduction 

Human Cytomegalovirus (HCMV) infection is a ß-herpes virus, and between 45% and 

75% of the Western population are positive for the virus (as assessed by CMV antibodies 

in serum/plasma) although this can vary with location and age (Colonna-Romano et al., 

2007; Vasto et al., 2007). HCMV can directly infect a wide variety of cell types including 

fibroblasts, endothelial, epithelial, neuronal, VSMCs, monocytes/macrophages, 

granulocytes and BM cells (Plachter et al., 1996; Mocarski, 2001). HCMV is 

asymptomatic in immunocompetent individuals, and once infected an organism it can 

remain latent for a prolonged period of time within cells before reactivating and 

multiplying. HCMV can reactivate due to various stimuli, for example inflammation 

(Humar et al., 1999; Aiello et al., 2008), elevated cortisol levels (Stowe et al., 2012) and 

physiological adrenergic stress (Prösch et al., 2000). However, in immunocompromised 

individuals, HCMV may cause disease, for example in AIDS patients, organ and BM 

transplant patients and in foetal infection. It can also result in death. 

HCMV is linked to neutropenia, mononucleosis, thrombocytopenia, and haemolytic 

anaemia, and reduced immunological function (Weller et al., 1962; Fiala et al., 1973; 

Jordan et al., 1973; Peterson et al., 1980; Yeager et al., 1983; Frasca et al., 2015) 

reflecting a significant deleterious impact on the immune system. HCMV exerts a 

deleterious effect on T-cell-mediated immunity. As HCMV reactivates over periods of 

years, it can cause a shrinking of the naïve T-cell pool via an expansion of the cytotoxic 

T-cell pool via T-cells differentiating towards a cytotoxic phenotype. Those who are 

HCMV seropositive have greater proportion of highly differentiated T-cells than 

seronegative populations, causing a reduced basal level of naïve T-cells (Spielmann et al., 

2011). As a result, antigen virgin T-cells are reduced, leaving the body potentially open 

to infection by novel viruses that have yet to be experienced by the host. The effects of 

these recurring reactivation of virus, and consequent clonal expansion of cytotoxic T-cells 

is termed ‘immunoageing’, and is associated with ‘immunosenescence’- a concept of the 

T-cells becoming senescent, with reduced telomere length and telomerase activity, and 

potential for detrimental effect on function (Fulop et al., 2013). CD8+ and CD4+ T-cell 

subset changes have been documented with prolonged HCMV infection, with an increase 

in effector memory and terminally differentiated T-cells, with a reduction in proportion 

of total T-cells that are naïve (Derhovanessian et al., 2011; Spielmann et al., 2011). Those 

who are CMV seropositive therefore have sustained immune activation profile as 
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characterised by a chronically elevated level of CRP, IL-18 and IFN-γ (van de Berg et al., 

2010) due to the cytotoxic profile of the terminally differentiated cells. 

CMV seropositivity has been linked somewhat to the progression of CVD, with an 

increase in atherosclerotic risk, however, despite a high prevalence, the association 

between the presence of serum antibodies against CMV and atherosclerosis in humans is 

still debated (Arasaratnam, 2013; Courivaud et al., 2013; Courivaud and Ducloux, 2013; 

Haeseker et al., 2013). There is some limited evidence that CMV can accelerate MNC 

telomere shortening which could promote atherosclerotic plaque development 

(Spyridopoulos et al., 2009), and that CMV infection could lead to atherosclerotic plaque 

development in kidney transplant recipients, with CMV reactivation, rather than 

serostatus being associated with reduced end point of atherosclerotic event or death 

(Courivaud et al., 2013). Higher circulating CRP levels and increased proportion of 

effector memory T-cells could promote an atherogenic environment due to the 

inflammatory profile of CMV-exposed patients (Olson et al., 2013) . Therefore CMV 

may not be directly associated with the development of atherosclerosis, but instead create 

a pro-inflammatory environment which can lead to atherosclerotic lesion development. 

Murine CMV studies have shown that arteries in CMV-infected mice display vascular 

dysfunction, both endothelium-dependent and independent (Khoretonenko et al., 2010; 

Gombos et al., 2013), accompanied by exacerbated leukocyte adhesion to blood vessels 

(Khoretonenko et al., 2010). These effects are likely due to CMV-infection of endothelial 

cells (Plachter et al., 1996) as well as the indirect effects via the immune system, as 

increased production of IFN-γ by cytotoxic T-cells has been shown to reduce VSMC 

sensitivity to NO and decrease eNOS content (Koh et al., 2004), and consequently result 

in reduced endothelial-dependent vasodilation. CMV infection of endothelial cells could 

promote a local inflammatory process which could lead to atherosclerotic plaque 

formation, as high levels of the virus have been found in carotid plaques in patients 

undergoing carotid endarterectomy (Yaiw et al., 2013). Despite finding CMV within the 

atherosclerotic plaques, the source of the CMV, whether it having been initially in 

resident endothelial cells or potentially macrophages that infiltrate the developing plaque 

was not assessed.  

It could be hypothesised that HCMV infection of BM progenitor cells could be an avenue 

by which HCMV can be linked with CVD, where the mobilisation and subsequent 

reactivation of the virus, can transfer the viral DNA to the endothelium where it may have 
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dysfunctional effects. It may also be that HCMV may cause apoptosis of these BM cells, 

depleting the BM pool, or may cause functional impairments, such as migration, or 

mobilisation of these cells. As yet, there is no evidence to support this. 

 

8.2 Materials and Methods 

8.2.1 Participants 

Male participants (n=50), aged between 18 and 65 volunteered from the study, and 

consisted of a mixture of students and staff based at Edinburgh Napier University, in 

addition to general public from the Edinburgh area. Participant information, inclusion and 

exclusion criteria are detailed in Chapter 4 (Influence of Age and Cardiorespiratory 

Fitness on Circulating Endothelial Progenitor Cells and CXCR4 Cell Surface 

Expression). Ethical approval for the study was given by the Edinburgh Napier University 

Research and Ethics Governance Committee. 

 

8.2.2 Resting Measures 

On arrival to the Human Performance Laboratory, after informed consent was given, 

participants were measured for height and body mass, with values used to calculate BMI. 

Waist and hip circumference were also measured as described in materials and methods 

Chapter 3.2. Resting blood pressure was measured after 5-minute rest in a supine position 

using an automated sphygmamometer (Nonin Puresat Avant 2120, Nonin Medical Inc, 

Minnesota, USA; Ultra-Check® Blood Pressure Adult Cuff, Statcorp Medical, Florida, 

USA). Participant characteristics are shown in table 8.1. 
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Table 8.1. Participant characteristics. 

 All  
(n=50) 

CMV+ 

(n=25) 
CMV- 

(n=25) 
Age (years) 39 ± 2 39 ± 3 40 ± 3 

Height (m) 1.82 ± 0.02 1.81 ± 0.02 1.83 ± 0.02 

Body Mass (kg) 83.04 ± 1.28 83.37 ± 1.93 82.71 ± 1.72 

BMI (kg·m2) 26.02 ± 0.34 26.61 ± 0.55 25.43 ± 0.38 

SBP (mmHg) 129 ± 2 130 ± 3 128± 3 

DBP (mmHg) 79 ± 1 79 ± 2 80 ± 2 

MAP (mmHg) 96 ± 1 96± 2 96 ± 2 

Waist (cm) 89.79  ± 1.19 90.22 ± 1.81 89.36 ± 1.57 

Waist-to-Hip Ratio 0.94 ± 0.01 0.95 ± 0.01 0.94 ± 0.01 

BMI- Body Mass Index, SBP- Systolic Blood Pressure, DBP- Diastolic Blood Pressure, 

MAP- Mean Arterial Pressure. Values shown are mean ± SD. 

 

8.2.3 Blood Sampling and PBMNC Isolation 

Blood was taken from participants after a 5-minute supine rest by a certified phlebotomist. 

Blood samples were drawn into 6mL vacutainers (BD Biosciences, UK), which were 

either coated in EDTA to prevent coagulation or serum gel. EDTA blood (3 x tubes) was 

processed for PBMNC as previously described in general materials and methods Chapter 

3.4. Isolated PBMNCs were then used for TANG number and CXCR4 enumeration (see 

6.2.7 Angiogenic T Cell Number and CXCR4 Expression Quantification), and serum was 

used for analysis of serum for chemotactic factors and selected inflammatory markers 

(see 6.2.8 Quantification of Serum Inflammatory Markers). 
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8.2.4 Angiogenic T Cell Cell Number and CXCR4 Expression Quantification 

Isolated PBMNCs (0.5x106) were labelled with monoclonal antibodies anti-CD3-APC, 

anti-CD31-FITC and anti-CXCR4-PE-Cy5 (all BD Biosciences), and were left to 

incubate at 4°C for 45 minutes in the dark prior to flow cytometric analysis as detailed in 

general materials and methods Chapter 3.6. CXCR4 cell surface expression was analysed 

as a surrogate for migratory ability of T-cells. 

 

8.2.5 Quantification of CMV Serostatus 

Serum samples were analysed in duplicates for CMV IgG antibodies by ELISA in 

accordance with manufacturer’s instructions (BioCheck Inc, USA) with the mean values 

recorded, and CMV IgG index calculated as the mean value of the samples divided by the 

mean value of calibrator 2. Samples were read at 450nm using a 96 well microplate reader 

(LT-5000MS ELISA Reader, Labtech International Ltd, UK).  

 

8.2.6 Statistical Analysis 

Data was assessed for normal distribution using the Shapiro-Wilk test for normality. Not 

normally distributed data was logarithmically transformed (log10 or logn).  

Participants were grouped into clusters for age groupings. Clusters were identified by 

hierarchical cluster analysis using Ward’s method for identifying groupings, as well as 

using the squared Euclidean distance to measure intervals between groups (Mooi and 

Sarstedt, 2011). Results of the cluster analysis identified 2 age groups. Participants were 

thus grouped into the following age groups accordingly: 18-40yrs, and 46-65yrs. 

CAC levels and CXCR4 cell surface expression, as well as various circulating 

inflammatory markers were compared between CMV+ and CMV- individuals by two-way 

analysis of variance (ANOVA) with Fisher’s Least Significant Differences (LSD) post-

hoc test, with age grouping and CMV serostatus as the independent factors. 

Univariate linear regression analyses were performed for various TANG subsets and age 

for CMV+ and CMV- populations respectively to assess the role CMV may play in TANG 

ageing. 
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Data was analysed using SPSS for Macintosh, version 20 (IBM, Chicago, USA). 

Significance alpha was set at p=0.05. 

 

8.3 Results 

8.3.1 CMV Serostatus and CD31+ T-Cells Subsets 

Two-way ANOVAs were performed to assess the influence of persistent viral infection 

on CD31+ T-cells and their subsets (CD4/CD8). Total CD31+ T-cells (expressed as 

cells·µL-1 or % of total CD3+ T-cells) did not differ between CMV seropositive and CMV 

seronegative individuals, independent of age (figures 8.1 and 8.2). There appeared to be 

elevated TANG cells in the younger individuals who are CMV seropositive compared to 

their age-matched CMV seronegative counterparts, however this was not statistically 

significant despite a moderate effect size (60.73 ± 2.50% [55.70-65.77] 95% CI, vs. 56.72 

± 2.50% [51.69-61.75], p=0.262, ES= 0.49). CD8+ TANG cells appeared to be greater in 

CMV+ compared to CMV- individuals within the 18-40yrs age group (364 ± 56 cells·µL-

1 [185-542 cells·µL-1], 95% CI, vs. 272 ± 30 cells·µL-1 [196-347] 95% CI), but this was 

not statistically significant (p=0.060, ES=1.00), but not in the 46-65yrs group (241 ± 30 

cells·µL-1 [168-314 cells·µL-1], 95% CI, vs. 193 ± 27 cells·µL-1 [119-267], 95% CI) 

(figure 8.1). However, the percentage of CD8+ T-cells expressing the adhesion marker 

CD31 was significantly greater in the CMV+ group compared to the CMV- individuals in 

the 18-40yrs group (87.93 ± 1.24% [83.98-91.88%], 95% CI, vs. 75.86 ± 1.26% [72.61-

79.11], 95% CI, p=0.043), but as with total CD8+ TANG cell number, this was not evident 

in the 46-65yrs group (71.43 ± 4.31% [60.90-81.97%] 95% CI, vs. 71.57 ± 4.91% [57.95-

85.20] 95% CI) (figure 8.3). 
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Figure 8.1. Circulating CD31+ T-cells in those aged 18-40yrs and 46-65yrs by CMV 

serostatus. Values shown are mean ± SEM, p=NS 

 

Figure 8.2. Circulating CD31+ T-cells (expressed as percentage of total CD3+ T-cells) in 

those aged 18-40yrs and 46-65yrs by CMV serostatus. Values shown are mean ± SEM, 

p=NS. 
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Figure 8.3. Circulating CD4+ and CD8+ T-cells expressing CD31 in men aged 18-40yrs 

and 46-65yrs by CMV serostatus. Values shown are mean ± SEM, *p<0.05 vs. 18-40yrs 

CMV-.  
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There was no difference in CXCR4+ TANG cells (total, CD4+, CD8+) or CXCR4 cell 

surface expression on these cells (% of TANG expressing CXCR4) between CMV+/- groups 

(figure 8.4).  

 

Figure 8.4. Effect of CMV serostatus on CXCR4 cell surface expression on CD31+ T-

cells in males aged 18-40yrs and 46-65yrs. Values shown are mean ± SEM, p=NS. 
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To confirm the findings that CXCR4 expression was unaffected by CMV serology, MFI 

of CXCR4 on CXCR4+ TANG cells and their subsets (CD4/CD8) was unaffected by CMV 

serostatus (table 8.2). 

 

Table 8.2. CMV serology and CXCR4 cell surface expression intensity (Mean 

Fluorescence Intensity) on TANG cells. 

 18-40yrs  46-65yrs 

 CMV+ CMV-  CMV+ CMV- 

TANG 9.20 ± 0.79 13.65 ± 2.65  8.33 ± 0.22 10.79 ± 0.91 

CD4+ TANG 10.98 ± 1.11 10.58 ± 0.95  9.83 ± 0.47 10.08 ± 0.97 

CD8+ TANG 7.97 ± 0.44 7.45 ± 0.35  7.81 ± 0.25 8.15 ± 0.50 

Values shown are mean ± SEM 

 

8.3.2 Univariate Regression Analysis. CMV Serostatus and Relationship with CD31+ T-

Cell Pool Depletion with Ageing 

CMV is associated with immunological ageing, as observed by a depletion of naïve cells 

and increased proportion of senescent and highly differentiated T-cells (Pawelec and 

Derhovanessian, 2011; Simpson et al., 2012; Spielmann et al., 2014). Therefore 

univariate regression analyses were performed for various TANG subsets and age for 

CMV+ and CMV- respectively to assess if CMV could play a role in accelerate TANG 

depletion with age. 

Ageing, as shown in Chapter 5, is associated with a decline in CD31-expressing T-cells. 

Figure 8.5 demonstrates the decline in CD31+ T-cells with age being greater in CMV 

seronegative population (CMV+: r=-0.360, r2= 0.129, p=0.077; CMV-: r=-0.629, r2=0.396, 

p=0.001; figure 8.5B).  
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Figure 8.5. Relationship between chronological age and CD31+ T-cells (cells·µL-1; A, % 

of CD3+ T-cells; B) in CMV seropositive and CMV seronegative males. A: CMV+ r=-

0.356, r2=-0.127 p=0.081, CMV- r=-0.470, r2=-0.221, p=0.018, B: CMV+: r=-0.360, r2= 

0.129, p=0.077; CMV-: r=-0.629, r2=0.396, p=0.001. 
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The greater rate of decline in CD31+ T-cells with age in CMV seronegative population 

may be due to the observed decline in CD4+ T-cells expressing CD31 in a sub cohort of 

the study (CMV+: r=-0.331, r2= 0.110, p=0.320; CMV-: r=-0.573, r2=0.329, p=0.065, 

figure 8.6A). Subsequent analysis of CD8+ T-cell population showed that CMV 

seropositive individuals display a greater decline in CD8+ T-cells expressing CD31 than 

CMV seronegative individuals (CMV+: r=-0.651, r2=0.423, p=0.030; CMV-: r=-0.352, 

r2=0.124, p=0.288; figure 8.6B). 

 

Figure 8.6. CMV serostatus-dependent CD4+ (A) and CD8+ (B) TANG ageing. A: CMV+: 

r=-0.331, r2= 0.110, p=0.320; CMV-: r=-0.573, r2=0.329, p=0.065, B: r=-0.651, r2=0.423, 

p=0.030; CMV-: r=-0.352, r2=0.124, p=0.288 

 



	

190 
	

8.4 Discussion 

CMV seropositivity in a young-middle aged cohort appeared to be associated with a rise 

in CD8+ TANG cells in the peripheral circulation of healthy males. This effect of CMV 

was not seen in the older 46-65yrs group. Additionally, CMV seropositivity actually 

appeared to be protective in part, against the age-related decline in CD31+ T-cells, through 

reduced CD4+ TANG loss. On the other hand, CMV seropositivity was associated with a 

greater decline in CD31-expressing CD8+ T-cells. The attenuated decline in CD31+ T-

cells with chronological age observed is probably due to a reduced loss of CD4+ TANG 

cells compared to the loss of CD8+ TANG cells seen with CMV seropositivity. Furthermore, 

CMV had no effect on CXCR4 cell surface expression of these cells. 

CMV has been strongly implicated in the process of premature immunological ageing, or 

‘immuno-ageing’ (Vasto et al., 2007; Pawelec and Derhovanessian, 2011). CMV, and 

other persistent viral infections, such as Epstein Barr virus (EBV) are known to be linked 

with a reduction in the naïve T-cell pool, and an expansion of the senescent and highly 

differentiated T-cell phenotype in peripheral blood lymphocytes (Ouyang et al., 2003; 

Simpson, 2011; Simpson et al., 2012; Wang et al., 2014a). However it is CMV which is 

reported to have the greatest effect on T-cell-mediated immunity (Koch et al., 2007). 

CMV viral reactivation can stimulate naïve T cells to replicate and differentiate into 

effector cells, and multiple rounds of division lead to T-cell senescence and differentiation 

(Simpson, 2011). Consequently CMV-specific cytotoxic T-cells in the blood are elevated 

which has a large impact on health of the elderly, as numbers of these CMV-specific T-

cells are associated with mortality (Pawelec et al., 2010). It is considered so harmful, that 

it is the main reactivating virus included in the immune risk profile (IRP), which is a wide 

array of immune markers which can be used to predict mortality in elderly humans 

(Pawelec et al., 2010; Simpson, 2011). 

CMV has also been linked with CVD, with an association between the presence of serum 

antibodies against CMV and atherosclerosis still being debated (Arasaratnam, 2013; 

Courivaud et al., 2013; Courivaud and Ducloux, 2013; Haeseker et al., 2013). There is 

some limited evidence that CMV can accelerate MNC telomere shortening, via excessive 

rounds of replication, which could promote atherosclerotic plaque development 

(Spyridopoulos et al., 2009) and that CMV infection could lead to atherosclerotic plaque 

development in kidney transplant recipients, with CMV reactivation, rather than 

serostatus being associated with reduced end point of atherosclerotic event or death 
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(Courivaud et al., 2013). Higher circulating CRP levels and increased proportion of 

effector memory T-cells could promote an atherogenic environment due to the 

inflammatory profile of CMV-exposed patients (Olson et al., 2013). Therefore CMV may 

not be directly implicated with the development of atherosclerosis, but instead create a 

pro-inflammatory environment which can lead to atherosclerotic lesion development. 

Murine CMV studies have shown that arteries in CMV-infected mice display vascular 

dysfunction, both endothelium-dependent and independent (Khoretonenko et al., 2010; 

Gombos et al., 2013), accompanied by exacerbated leukocyte adhesion to blood vessels 

(Khoretonenko et al., 2010). 

CD31+ T-cells are associated with maintenance of endothelial function (Weil et al., 2011), 

and lower numbers of these cells are seen in those with vascular disease compared to age-

matched healthy controls (Rouhl et al., 2012), and thus may provide to be an easy and 

reliable biomarker for endothelial function and CVD risk. Data from this study is the first 

to demonstrate that CMV seropositivity is linked with elevated CD8+ TANG cells in a 

young and middle-aged population. CMV seropositivity is also associated with an 

attenuated decline in CD31+ T-cells with age, via CD8+ TANG mechanism, thus potentially 

offering a protective effect on the cardiovascular system. The elevated CD8+ TANG cell 

number and attenuated decline of these CD8+CD31+ T-cells may be due to the observed 

maintained or elevated CD8+ cytotoxic T-cells within CMV seropositive individuals 

(Turner et al., 2010; Simpson, 2011), however, without further analysis of cell surface 

markers on these cells, we cannot confirm this hypothesis. 

Interestingly, CD8+ T-cells expressing CD31 displayed a greater decline with age in the 

CMV seropositive individuals than CMV seronegative individuals. However, it is 

proposed that the decline in CD8+CD31+ T-cells with CMV seropositivity may not be so 

large as to accelerate the decline in total CD31+ T-cells due to the maintenance of the 

CD4+ subset in this cohort, as it was seen that total CD31+ T-cells in CMV+ individuals 

showed an attenuated reduction with age compared to CMV- individuals. 

Pistillo et al. (2013) documented similar elevation in γδ T-cells in young individuals who 

are CMV seropositive compared to seronegative individuals. As addressed in Chapter 5, 

around 15% of the total CD3+CD31+ TANG cells do not express either CD4 or CD8, which 

would suggest that some of the TANG cells might in fact belong to the γδ T-cell group. 

These γδ T-cells rapidly expand upon primary CMV infection (Fornara et al., 2011), and 

the elevations observed are not apparent in those who have CMV infection for 5yrs+. This 
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would suggest that the expansion of these γδ T-cells is acute, and would fit with the 

elevations observed in young individuals, and not in the older group observed by Fornara 

et al. (2011). The lack of difference observed in the older group in both TANG and γδ T-

cells could be attributed to the speculation that older individuals may have harboured 

CMV for a longer time. 

Unsurprisingly CXCR4 expression was unaffected by CMV serostatus. Some reports 

suggest that cell migration may be affected by CMV in trophoblasts and monocytes 

(Warner et al., 2012; Varani and Frascaroli, 2013), however no data currently exists for 

lymphocyte migration. This is an area of research in the future. 

 

Conclusion 

CMV seropositivity is associated with an attenuated ageing effect on TANG cells, with 

maintained CD31+ T-cells with age compared to CMV seronegative individuals. This 

may be due to attenuated CD4+ T-cell loss of CD31 expression. However CMV 

seropositivity is also associated with an accelerated ageing loss of CD31 expression on 

CD8+ T-cells. CMV serostatus differentially affects CD4+ and CD8+ T-cells expressing 

CD31. The potential impact of this on the cardiovascular system is unknown. 

 

 

 

 

 

 

 

 

 

 

 



	

193 
	

 

 

 

 

 

 

 

 

 

 

 

Chapter 9: General Discussion 
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The studies that comprised this Ph.D thesis aimed to investigate the effects of 

chronological age, CRF, sedentary behaviours, exercise and viral serology on various 

circulating cells shown to be involved in vascular growth and repair, and thus play a very 

important role in CVD prevention. Data was collected from healthy men of various ages, 

physical activity and sedentary lifestyle behaviours. The analysis of circulating progenitor 

cells and CD31+ and CD31- T-cells were performed using four-colour flow cytometry.  

 

 

9.1 Main Findings 

 

The aim of this thesis was to address the impact of chronological age, CRF, exercise and 

sedentary behaviours on circulating progenitor cells and CD31+ T-cells (CACs) and 

cardiometabolic risk factors. Many novel findings have resulted from the various studies 

presented within this thesis. The main findings of the studies described within the thesis 

are: 

 

Aim 1: Examine the effect of chronological age and CRF (as measured by estimated 

!O2max) on circulating CD34+ progenitor cells and the cell surface expression of a key 

migratory and mobilisation factor, CXCR4, in apparently healthy men (Chapter 4). 

 

Main Findings: 

 

(1) Chronological age was inversely associated with CD34+ progenitor cells and 

CD34+CD45dimVEGFR2+ EPCs. In addition, progenitor cells expressing CXCR4 

were also negatively affected by advancing age. 

(2) CRF had no effect on these progenitor cell subsets after correcting for age.  

(3) The greatest predictor for circulating EPCs were SDF-1α levels in circulation, 

which itself demonstrated an age-related decline, potentially offering mechanistic 

effect of advanced chronological age on these progenitor cell subsets. 

 

Hypothesis: advancing age is associated with reduced number of CD34+ progenitors and 

CXCR4 cell surface expression (Accept), which can be attenuated by increasing CRF 

(Reject). 
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Aim 2: Examine the effect of chronological age and CRF (as measured by estimated 

!O2max) on circulating CD31+ T-cells and the cell surface expression of CXCR4 in 

apparently healthy men (Chapter 5). 

 

Aim 3: Investigate any effects of age and/or CRF on CD4+ and CD8+ T-cells expressing 

CD31. 

 

Main Findings:   

 

(1) Advancing age was associated with a decrease in CD31+ T-cell number and 

CXCR4+ TANG cells. 

(2) CRF is linked with increased numbers of TANG cells. 

(3) The benefit of higher CRF levels on CD31+ T-cells was due to increased 

number of CD4+ TANG cells. 

 

Hypothesis: advancing age is associated with reduced number and proportion of CD31+ 

T-cells with concomitant decline in CXCR4 cell surface expression. CRF attenuates the 

effect of age on these cells either through CD4 or CD8-dependent mechanism (Accept). 

 

 

Aim 4: The primary aim of this study was to examine the effect of sedentary behaviours 

on both CD34+ progenitor cells, CD31+ T-cells and other cardiometabolic risk factors, 

such as BMI, waist circumference, fasting glucose and inflammatory cytokines (Chapter 

6). 

 

Aim 5: The secondary aim of this study was to assess if CRF attenuates any deleterious 

effect sedentary behaviours have on any CAC subset or cardiometabolic risk factors 

(Chapter 6). 

 

Main Findings: 

 

(1) An increase in sitting time was associated with a decrease in CD31+ T-cells. 

(2) The decrease in CD31+ T-cells with sedentary behaviours is potentially linked to 

a decrease in CD31 expression on CD4+ T-cells. 
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(3) After correcting for CRF, the association between sitting time and CD31+ T-cells 

no longer existed. 

(4) Increased sitting time appears to be also linked with a decreased CXCR4 

expression on CD34+ progenitors and CD34+CD45dimVEGFR2+ EPCs. 

 

Hypothesis: Increasing sitting time and screen time will be associated with reduced 

number of CD34+ progenitor cells and CD31+ T-cells, which will be attenuated by 

increasing CRF levels (Accept). 

 

Aim 6: The primary aim of this study was to evaluate the changes in CD31+ and CD31- 

T-cells to an acute bout of strenuous exercise (Chapter 7). 

 

Aim 7: The secondary aim of this study was to assess the relationship between changes in 

circulating SDF-1α and the changes in CXCR4+ T-cells expressing CD31 (Chapter 7). 

 

Main Findings: 

 

(1) Strenuous exercise mobilised CD31+ T-cells into the blood. 

(2) CD31- T-cells were preferentially mobilised into circulation as a result of 

acute strenuous exercise. 

(3) This preferential mobilisation is due to greater ingress of CD8+CD31- T-cells. 

(4) CXCR4+ TANG cells mobilise to greater extent than CXCR4- TANG cells as a 

result of acute endurance exercise, suggesting a role for SDF-1:CXCR4 axis 

in the TANG cell response to exercise. 

 

Hypothesis: Strenuous exercise causes an ingress of CD31+ T-cells (Accept), more so than 

CD31- T-cells (Reject) and this ingress is associated with CXCR4 expression on the cell 

surface of these cells (Accept). 

 

 

Aim 8: The primary aim of this study was to evaluate the impact of persistent viral 

infection (cytomegalovirus; CMV) on CD31+ T-cells (Chapter 8). 

Aim 9: The secondary aim of this study was to assess the CD4+ and CD8+ TANG cell 

differences between CMV seropositive versus seronegative individuals (Chapter 8). 
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Aim 10: The final aim of this study was to assess the impact CMV plays in the age-related 

decline in CD31+ T-cells (Chapter 8). 

Main Findings: 

 

(1) CMV seropositivity is associated with attenuated ageing of TANG cells 

(2) CMV seropositive individuals appear to have greater circulating number of 

CD8+CD31+ T-cells compared to CMV seronegative individuals. 

(3) CMV seropositive individuals have reduced CD31 expression on cell surface 

of CD4+ T-cells compared to CMV seronegative individuals. 

 

Hypothesis: CMV is linked with reduced number of CD31+ T-cells as a result of CD4+ 

and CD8+ T-cell changes within CMV seropositive individuals. In addition, CMV will be 

linked with accelerated ageing of the CD31+ T-cell pool (Reject). 

 

9.2 Ageing 

 

Advanced chronological ageing is associated with increased CVD risk (Lozano et al., 

2012). Reduced endothelial function (Taddei et al., 2001; Muller-Delp, 2006; Soucy et 

al., 2006; Black et al., 2008; Black et al., 2009) and angiogenic capacity (Rivard et al., 

1999; Sadoun and Reed, 2003; Reed and Edelberg, 2004; Wang et al., 2011; Gunin et al., 

2014) of individuals with advancing age are reported to be two factors contributing to the 

age-related risk of CVD onset and/or progression. Muscle capillary content is also 

reduced in metabolic syndrome (Frisbee et al., 2006) indicating that angiogenesis may 

play a role in attenuating disease processes. CACs play an important role in maintenance 

of tissue capillarity and endothelial function (Hur et al., 2007; Sibal et al., 2009; Kushner 

et al., 2010b; Weil et al., 2011; Bruyndonckx et al., 2014), through promotion of 

angiogenesis, either by paracrine means or by differentiating into mature endothelial cells. 

EPCs (Heiss et al., 2005; Thijssen et al., 2006; Hoetzer et al., 2007; Thum et al., 2007; 

Xia et al., 2012a; Xia et al., 2012b; Williamson et al., 2013; Yang et al., 2013) and TANG 

(Kushner et al., 2010c) have been shown to be reduced or dysfunctional with increasing 

age. The reduced number and function of these cells may contribute to the increased CVD 

risk with age. 
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Data from Chapter 4 and Chapter 5 show that a selection of these CACs, namely CD34+ 

progenitor cells, EPCs and TANG cells are reduced with advancing age. Additionally, 

CXCR4-expressing CACs were also reduced with advancing age, which may be linked 

to the reduced circulating SDF-1α, which was found in older individuals compared to 

their younger counterparts. The data presented confirms reports by previous studies 

showing reduced number of EPCs (Thijssen et al., 2006; Thum et al., 2007) and TANG 

(Kushner et al., 2010c) cells with advancing age, however, this is the first study showing 

reduced number of CXCR4+ CACs (CD34+, CD34+CD45dimVEGFR2+, CD3+CD31+). 

Although many studies have shown reduced EPCs with age, this is also the first study to 

show that CD45dim EPCs are diminished with age. As these are the cells reported to 

directly participate in endothelial repair via differentiating into mature endothelial cells 

(Case et al., 2007; Timmermans et al., 2007), these cells may reflect endothelial repair 

capacity more specifically than total CD34+VEGFR2+ cells that have been reported 

previously in the literature.  

 

We failed to observe any effect of age on CD4+ or CD8+ TANG subset, probably due to 

these cell surface markers of T-cells only being measured in participants within the 31-

50yrs and 51-65yrs group, and as we observed significant reductions in total TANG in the 

31-50yrs and 51-65yrs group vs. 18-30yrs, and not between the 31-50yrs and 51-65yrs 

groups, then we would expect to find no changes. Junge et al. (2007), Gomez et al. (2003) 

Kilpatrick et al. (2008) demonstrated that CD4+ cells reduce their CD31 expression with 

age in humans, and the loss of CD31 expression was greater from birth to age 20 

compared to 21-80 yrs, yet there was still a trend of CD31 loss between 20-80 yrs (Junge 

et al., 2007). These cells were predominantly naïve CD4+ T-cells with high telomerase 

activity, indicating a low replicative history. The loss of CD31 on these CD4+ T-cells may 

be explained in part due to the increased activation of CD4+ T-cells with age. Further 

studies are required to elucidate the effect of ageing in both CD4+ and CD8+ TANG cells. 

 

The reduced CXCR4 cell number within the CD34+ progenitor and TANG cell subsets may 

reflect an impaired function of this cell pool. CXCR4 cell surface expression is linked to 

migratory capacity of various cell subtypes, including CACs (Walter et al., 2005; Hur et 

al., 2007; Bryant et al., 2012; Xia et al., 2012a; Xia et al., 2012b; Adams et al., 2013; 

Mao et al., 2014), emphasising its importance in CAC function. However Xia et al. 

(2012b) failed to observe a reduction in CXCR4-expressing cells or CXCR4 cell surface 

expression intensity, but rather found a reduction in CXCR4:JAK-2 signalling, as 
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identified by reduced phosphorylation of JAK-2 under stimulation with SDF-1α with 

older men compared to younger men. The reduction in CXCR4+ progenitor cell subsets 

may be a direct result of the overall reduction in the progenitor cell pool, rather than 

specific CXCR4+ cells. Yet our data further shows that the proportion of these progenitor 

cells expressing CXCR4 also reduced progressively from 18-30yrs to 51-65yrs. In 

addition, the CXCR4 expression intensity, although not affected by age in the total CD34+ 

progenitor cell group, was significantly reduced in the 51-65yrs group compared to the 

18-30yrs and 31-50yrs group, further suggesting a negative impact of age on these cells. 

Interestingly, the percentage of CD8+ TANG cells expressing CXCR4 was significantly 

reduced in the 51-65yrs vs. 31-50yrs group, with no change in the CD4+ population. This 

is the first study to demonstrate this, and may imply a selective negative functional impact 

of age on CD8+ TANG cells. 

 

The exact mechanisms for the age-related decline in CAC number and potentially 

function are yet to be fully elucidated. The data presented shows that the reductions in 

circulating SDF-1α with age may contribute to the reduced progenitor cell number, 

however it is highly likely that this is not the single causative factor. Many studies have 

demonstrated the role that oxidative stress may play in age-related decline in progenitor 

cells and their functional capacities (Mandraffino et al., 2012; Rimmelé et al., 2014; 

Wang et al., 2015). High circulating levels of ROS are greater in aged humans and this is 

accompanied by a reduction in EPC SIRT1 content (Mandraffino et al., 2012). SIRT1-

depletion in endothelial cells causes reduction in vasculogenic ability of endothelial cells, 

as well as reduced gene expression of CXCR4 (Potente et al., 2007). SIRT1 protects 

against ROS-induced cellular apoptosis (Donato et al., 2011; Wang et al., 2015), and 

SIRT1 expression and activity is reduced in aged endothelial cells (Donato et al., 2011), 

therefore there may be a potential loss of SIRT1 activity/content within these progenitor 

cells with age. In addition to oxidative stress, shortening of telomeres (Kushner et al., 

2009) and an increased susceptibility to apoptosis (Kushner et al., 2011) may also account 

for the reduction in progenitor cell number observed in the study presented (Chapter 4).  

 

Reductions in the TANG population are most likely due to several factors, such as declining 

thymic output of T-cells (Fagnoni et al., 2000; Simpson, 2011). However our data shows 

that the percentage of T-cells expressing CD31 reduced also, thus other mechanisms must 

be responsible. As with EPCs, telomere shortening has been observed in these cells 

(Kushner et al., 2010c), but may or may not be linked with CD31 loss. CD31 expression 
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on T-cells has been linked with non-activated status of the T-cells (Zehnder et al., 1992), 

and so with increasing age and exposure to viruses over the lifespan, it would not be 

surprising that we get an expansion of activated T-cells with age (Simpson, 2011). 

 

Some of these populations (CD34+, EPCs) have previously been shown to be affected by 

exercise, both acute (Rehman et al., 2004; Van Craenenbroeck et al., 2008; Ross et al., 

2014) and long-term exercise training (Ajijola et al., 2009; Choi et al., 2014), yet no 

investigations have been performed thus far into how exercise modulates TANG cells, 

although there is clear evidence for exercise attenuating expansion of cytotoxic T-cells 

with age (Spielmann et al., 2011) Therefore the role of CRF in age-related changes in 

CACs were investigated. 

 

 

9.3 Cardiorespiratory Fitness 

 

Regular exercise is heavily associated with reduced mortality rates in those with CVD 

(Wisløff et al., 2006; Aijaz et al., 2008; Sakamoto et al., 2009). This could be due to, in 

part, to the maintenance or improvement in endothelial function seen with exercise 

training (Black et al., 2009; Ades et al., 2011; Ashor et al., 2015). The improvements in 

endothelial function are as a result of direct effects on the endothelium, such as increased 

NO bioavailability (Hambrecht et al., 2003; Miyaki et al., 2009) and reduced oxidative 

stress (Goto et al., 2003; Moien-Afshari et al., 2008; Durrant et al., 2009; Mitranun et al., 

2014), as well as reported improvements in CAC number and/or function (Laufs et al., 

2004; Steiner et al., 2005; Hoetzer et al., 2007; Van Craenenbroeck et al., 2010a; Schlager 

et al., 2011; Sonnenschein et al., 2011; Fernandes et al., 2012; Xia et al., 2012a). CACs 

are important for the maintenance of endothelial health (Sibal et al., 2009; Bruyndonckx 

et al., 2014), and reductions in CAC circulating number and function are observed in 

CVD patients compared to age-matched healthy controls (Hill et al., 2003; Fadini et al., 

2005; Walter et al., 2005; Fadini et al., 2006; Xiao et al., 2007; Sibal et al., 2009; Rouhl 

et al., 2012; Shantsila et al., 2012; Teraa et al., 2013; Barsotti et al., 2014; Castejon et al., 

2014), implicating a loss of CAC number and/or function in the CVD process. As shown 

by data presented within the thesis (Chapter 4 and Chapter 5) several subpopulations of 

CACs are reduced with age, and this has been corroborated by previous studies (Thijssen 

et al., 2006; Thum et al., 2007; Kushner et al., 2010c). CRF, through improving the 
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number and function of these cells may help attenuate the ageing decline in these cells, 

and thus provide an ‘anti-ageing’ effect on the vasculature, thus reducing CVD risk. 

 

Data from Chapter 4 and Chapter 5 show that those with higher levels of CRF display 

greater number of TANG and CXCR4-expressing TANG, but appeared to have no effect on 

circulating progenitor cells. Those with higher levels of CRF displayed on average 7% 

greater circulating TANG cells, and 6% higher percentage of T-cells expressing CD31 than 

those with low CRF. However this appeared to be an age-dependent effect, as our data 

showed that those in 31-50yrs group were not affected by CRF in terms of TANG cells. 

The young group appeared more sensitive to the effects of higher CRF levels, with those 

individuals in the 18-30 yrs group reporting 24% greater circulating number of TANG cells 

in those with high CRF than low CRF levels. The beneficial effect of CRF on these cells 

in the older age group was potentially due to the greater number of CD4+ T-cells 

expressing CD31, and there was no effect on the CD8 subpopulation, or interestingly, 

CXCR4 expression on these cells.  

 

The effect of CRF on TANG observed (specifically CD4+ TANG), may be a result of 

maintenance of a high proportion of naïve CD4+ T-cells through the lifespan. CD31 is 

reported to be lost upon T-cell activation (Zehnder et al., 1992) and differentiation 

(Demeure et al., 1996), and thus may be used as a marker for unactivated T-cells with a 

low replicative history. CRF has previously been shown to attenuate the age-related 

increase in senescent CD4+ T-cell pool, as well as having a beneficial impact on CD8+ 

naïve T-cells with increasing age (Spielmann et al., 2011). Therefore by maintaining 

levels of CD4+ naïve T cells through regular exercise training may subsequently maintain 

CD4+ TANG cells throughout the lifespan. 

 

With no changes in CXCR4 expression on these TANG cells, it may be postulated that 

exercise affects these TANG cells by maintaining their number through the ageing process, 

rather than modulating their function. However, function may not be related to CXCR4 

cell surface expression, as migratory function in EPCs in previous studies were associated 

with CXCR4:JAK-2 signalling rather than CXCR4 cell surface expression  (Xia et al., 

2012a; Xia et al., 2012b). The effect of CRF on potential effects on TANG function, such 

as migration and pro-angiogenic cytokine release are yet to be investigated, therefore 

further studies are needed. 
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Interestingly, the data shown in Chapter 4 shows no effect of CRF on CD34+ progenitor 

cells or EPCs, either age-dependent or independent. Previous studies have shown the 

beneficial impact of regular exercise and CRF on these CACs (Laufs et al., 2004; Steiner 

et al., 2005; Hoetzer et al., 2007; Sarto et al., 2007; Manfredini et al., 2009; Van 

Craenenbroeck et al., 2010a; Sonnenschein et al., 2011; Fernandes et al., 2012; Xia et al., 

2012a), yet our data shows no effect. This however, is in line with several studies 

demonstrating no effect of an exercise training program, or CRF on these cells (Thijssen 

et al., 2006; Witkowski et al., 2010; Luk et al., 2012). The study presented within this 

thesis is the first study to investigate the role of CRF on the CD34+CD45dimVEGFR2+ 

population of EPCs, reported to have endothelial differentiation capacities (Case et al., 

2007), whereas the CD45bright population do not (Case et al., 2007; Timmermans et al., 

2007), and may instead exert beneficial effects on the endothelium by acting in a more 

paracrine manner by secreting pro-angiogenic cytokines (Hur et al., 2004). Van 

Craenenbroeck et al. (2013b) published guidelines on measuring and quantifying 

endothelial precursors in circulating blood, and promoted the use of CD45dim within the 

flow cytometric panel, and such the data presented is in line with these recent guidelines.  

 

The study, being cross-sectional in nature, may not be ideal for such investigations into 

rare cell populations, and thus requires more controlled longitudinal studies. The clear 

effects of BMI (Bellows et al., 2011; Graziani et al., 2014; Ruszkowska-Ciastek et al., 

2015), smoking history (Lamirault et al., 2013), epigenetics (Rajasekar et al., 2015), 

stress (Rocha et al., 2015), and diet (Yue et al., 2011; Vafeiadou et al., 2012; Turgeon et 

al., 2013; Bruyndonckx et al., 2015) on these rare cell populations mean that it is difficult 

to compare effects of lifestyle factors in a cross-sectional study. 

 

Rather than maintaining high levels of CRF through regular exercise bouts, it has been 

proposed that simply refraining from sedentary behaviour, and living an active lifestyle 

may promote endothelial health. Therefore, the effect of sedentary behaviours on these 

CACs was investigated. 
 

9.4 Sedentary Behaviours 

 

Sedentary behaviour, such as prolonged periods of sitting, is linked to increased CVD 

risk (Laufs et al., 2005b; Hamilton et al., 2007; Katzmarzyk et al., 2009; van der Ploeg 

et al., 2012; Wilmot et al., 2012; Stamatakis et al., 2013; Chau et al., 2014; Gibbs et al., 
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2014; Staiano et al., 2014; Young et al., 2014; Chau et al., 2015). Prolonged periods of 

inactivity are also linked to an increase in systemic pro-inflammatory cytokines (Fischer 

et al., 2007). Sitting time is negatively related to endothelial function (Nosova et al., 

2014), however the mechanism is unclear. These effects may be attributable to direct 

effects on the endothelium through the observed increase in pro-inflammatory cytokines 

and/or oxidative stress, or reduced eNOS activity. Long periods of inactivity may also 

exert a deleterious effect on CACs, which may have a knock-on effect on the endothelium. 

 

Data presented in Chapter 6 suggests that sedentary behaviour is associated with CD31+ 

T-cells, with an increase in sitting time being correlated with a loss of TANG. As with CRF, 

the effect of this lifestyle behaviour appears to be attributable to its effects on CD4+ T-

cells, with a loss of CD31 expression with increasing sitting time. The data also suggests 

that increasing sitting time may have a negative impact on CXCR4 expression on CD34+ 

progenitor cells and EPCs. However, due to the dichotomy that exists, with those 

reporting high levels of sitting time may also be regular exercisers, the effects of sedentary 

behaviour on these cells were assessed after controlling for CRF, as data from Chapter 5 

strongly suggests that CRF beneficially modulates these TANG cells. After correcting for 

participants CRF levels, the negative impact of sitting time no longer existed. This data 

suggests that the negative impact of sedentary lifestyle may be attenuated by regular 

exercise training and maintaining high levels of !O2max. This is the first study to show 

the impact sitting time may have on CACs. However further study is required to elucidate 

the in vitro and in vivo function of these cells as a result of physical inactivity.  

 

The data presented represents self-reported sitting time, and thus is limited in its accuracy. 

Although the questionnaire used to quantify sedentary behaviour has been recently 

validated in a large cohort (Wijndaele et al., 2014), the use of accelerometry and global 

positioning systems data would provide clearer results, with the potential to further 

determine domain-specific sedentary behaviour and their effects on vascular health. In 

addition, interventions used to either increase or decrease physical activity can be utilised 

in further controlled investigations.  
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9.5 Acute Exercise and Mobilisation of CD31+ vs. CD31- T-Cells 

 

As data presented within this thesis demonstrates a positive effect of CRF on CD31+ T-

cells (Chapter 5 and Chapter 6), it was hypothesised that these cells are also responsive 

to an acute bout of strenuous exercise. T-cells typically respond to exercise, demonstrated 

by a large ingress into the peripheral circulation (lymphocytosis) followed by a large 

egress from the circulation (lymphocytopenia) (Simpson et al., 2007; Turner et al., 2010; 

Witard et al., 2012; Ingram et al., 2015). Although a large proportion of the exercise-

induced ingress is due to both shear stress and ß2-adrenergic mechanisms (Simpson et al., 

2007), the ingress could be also due to chemotactic factors within the blood which are 

known to be increased in the circulation with exercise, such as SDF-1α (Van 

Craenenbroeck et al., 2010b; Wang et al., 2014b). SDF-1α is known to mobilise CXCR4+ 

CACs into the blood (Aiuti et al., 1997; Moore et al., 2001) as well as play a role in the 

homing of these cells to ischaemic tissue (Yamaguchi et al., 2003). SDF-1:CXCR4 axis 

may play an important role in the chemotaxis of T-cells into the blood as a result of 

strenuous exercise. This has yet to be investigated.  

 

T-cells expressing adhesion molecules, such as integrins (Shephard, 2003; Simpson et al., 

2006) and CD56 (Goebel et al., 2000; Simpson et al., 2006) have been shown to be 

preferentially mobilised into the circulation during exercise. The preferential ingress of 

T-cells expressing adhesion molecules may be explained by the demargination of T-cells 

from the endothelium. The response to exercise of T-cells expressing CD31, however, 

has yet to be documented. 

 

Data from Chapter 7 shows that CD31+ T-cells are mobilised into the peripheral 

circulation in response to a strenuous exercise bout. The observed increase was greater 

for CXCR4+ TANG cells compared to CXCR4- TANG, implicating the potential for the SDF-

1:CXCR4 axis in mobilisation of T-cells to exercise. Our data also shows an increase in 

systemic circulating SDF-1α, which may be responsible for the greater ingress of 

CXCR4-expressing cells compared to CXCR4-deficient cells. However, in contrast to 

several studies which found a preferential mobilisation of T-cells expressing adhesion 

molecules (Goebel et al., 2000; Shephard, 2003; Simpson et al., 2006), the CD8+ T-cells 

which did not express CD31 showed a greater ingress and egress pattern in response to 

the exercise stressor compared to CD8+ T-cells expressing CD31 (233% vs. 162%). CD8+ 
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T-cells which express markers of senescence and differentiated status show similar 

preferential response to exercise as the CD31- subset (Campbell et al., 2009). The 

significance of this preferential ingress of CD8+CD31- T-cells to exercise is not yet known, 

but may lie in the exact phenotypic definition of these CD31+ and CD31- T-cells. 

 

The data shows that there was a 140% ingress of CD3+CD31+ T-cells into the peripheral 

circulation of healthy active males as a result of the strenuous exercise bout. The 

vasculogenic nature of these cells could contribute to post-exercise vascular adaptation 

through the secretion of pro-angiogenic growth factors and cytokines (Hur et al., 2007; 

Kushner et al., 2010b). Regular exercise may promote the benefits associated with 

improved endothelial health through regular mobilisations of these vasculogenic cells. 

 

The acute exercise bout did not affect CXCR4 cell surface expression on these CD31+ T-

cells. This is in contrast to reports suggesting that the exercise-induced increase in cortisol 

can augment the T-cell CXCR4 expression (Okutsu et al., 2005), or data showing 

increased CXCR4 cell surface expression on NK cells post-exercise (Okutsu et al., 2014). 

Interestingly, participants may turn out to be cortisol responders or non-responders to an 

exercise stressor (Shinkai et al., 1996). Our study did not include measure of cortisol 

response to the exercise bout, so different cortisol responders and non-responders to 

exercise may explain the lack of change in CXCR4 cell surface expression in this small 

cohort. There was a trend for increased CXCR4 expression on the CD8+CD31+ T-cells 

but this failed to reach statistical significance. Therefore the possibility of increased 

CXCR4 cell surface expression on these CACs due to acute exercise cannot be discounted 

until statistically more powerful data arises and circulating cortisol is taken into account. 

 

 

 

9.6 Viral Serostatus and CD31+ T-cells 

 

Cytomegalovirus (CMV) exerts significant effects on the human T-cell pool, with an 

expansion of senescent and highly differentiated T-cell subsets (Ouyang et al., 2003; 

Simpson, 2011; Simpson et al., 2012; Wang et al., 2014a; Di Benedetto et al., 2015). 

CMV has therefore been strongly linked to premature ‘immuno-ageing’. However, recent 

evidence may suggest that CMV may simply be a bystander rather than participant. CMV 

has also been tenuously linked with CVD (Arasaratnam, 2013; Courivaud et al., 2013; 
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Courivaud and Ducloux, 2013; Haeseker et al., 2013). Some studies have linked CMV 

with endothelial dysfunction in mice (Khoretonenko et al., 2010; Gombos et al., 2013) 

but as yet no evidence for the link in humans. With the previous data chapters (Chapters 

5-7) focusing on various lifestyle factors on T-cells expressing CD31, we sought to 

investigate the role CMV may have in regulating the number of these cells. Young CMV+ 

individuals (aged 18-40 years) appeared to display greater levels of CD31+ T-cells 

(however not significant) and greater percentage of CD8+ T-cells expressing CD31 

compared to their age-matched CMV seronegative counterparts. This effect was not 

observed in the older (41-65 years) individuals. These results for these CD31+ T-cells are 

similar to those reported for γδ T-cells (Pistillo et al., 2013), and with a small percentage 

of these CD31+ T-cells not expressing CD4 or CD8, there is a high likelihood that the 

CMV infection may be driving not just increases in CD8+ TANG cells seen in the data 

presented, but also total CD31+ T-cells. This has yet to be investigated and is a limitation 

of the study (see 9.7.2 Phenotypic Quantification of Circulating Angiogenic Cells). The 

significance of our data has yet to be addressed, but CMV may drive an increase in 

CD8+CD31+ T-cells and total CD31+ T-cells (some of which are likely to be γδ T-cells) 

after primary infection (Fornara et al., 2011), an effect which appears to dampen in later 

life as evidenced by no difference in our T-cell subsets between CMV seropositive and 

seronegative individuals within the 41-65 year age bracket. 

Our data also implies that if there is a link between CMV and CVD and endothelial 

dysfunction, then it is likely not due to any effect on TANG number, however function has 

yet to be assessed in these cells from CMV seropositive and seronegative individuals. In 

addition, there appears to be subset-specific effects, with the CD8+ T-cell subset 

appearing most affected. This research investigating CMV and ‘angiogenic’ T-cells is at 

a preliminary stage, with much scope for future research. 

 

9.7 Limitations of the Studies Presented in this Thesis 
 

9.7.1 Submaximal Exercise Test for #O2max Prediction 

 

In Chapters 4, 5 and 6, CRF was estimated using a submaximal graded exercise protocol 

(YMCA) (Golding et al., 1989). Submaximal exercise tests have been used widely to 

estimate or predict !O2max (Akalan et al., 2008; Faulkner et al., 2009; Spielmann et al., 
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2011). Gellish et al. (2007) demonstrated that using HRmax predictions can underestimate 

HRmax, and thus using these equations can be a limiting factor when using submaximal 

exercise tests to predict !O2max. The YMCA submaximal cycling graded exercise tests 

used in Chapters 4, 5 and 6 has been validated by Garatachea et al. (2007), who showed 

that in healthy men, !O2max predicted from YMCA submaximal exercise test was not 

significantly different from, ! O2max measured during a maximal exercise test to 

exhaustion. Unpublished data from our laboratory confirm that the YMCA submaximal 

exercise test is a suitable test to use for predicting !O2max in a healthy male population, 

however the spread of age groups was narrow. 

 

It cannot be discounted however, that there may be population specific accuracies and 

inaccuracies when using the test utilised in these chapters, with the effects of training 

status and age (Grant et al., 1999) needing to be considered for further validation studies. 

 

 

9.7.2 Phenotypic Quantification of Circulating Angiogenic Cells 

 

Quantification of CACs measured in this thesis has been performed using a 4-colour flow 

cytometer (FACSCalibur, BD Biosciences, USA). Due to the measurement of CXCR4 

on the TANG panel, it was not possible to measure expression of typical naïve (CD45RA+, 

CD28+) and senescent (CD57+, KLRG1+, CD28-) T-cell markers (Simpson, 2011; 

Spielmann et al., 2011) to fully identify the CD31+ T-cell subset further. With regard to 

previous changes in CD31+ T-cell subsets with age and exercise, it was suggested that the 

changes seen were likely due to changes in the CD4+ naïve T-cell population (Chapter 5 

and Chapter 6), as CD31 is reported to be lost upon T-cell activation (Zehnder et al., 

1992) and differentiation (Demeure et al., 1996). However this cannot be confirmed by 

the data shown. The use of larger panels within flow cytometry are required to measure 

the co-expression of naïve and senescent markers to fully explain the changes seen within 

the data shown.  

 

Flow cytometric analysis of EPCs can be problematic, and is littered with limitations 

(Brandes and Ushio-Fukai, 2011; Van Craenenbroeck et al., 2013b; Rose et al., 2014). 

The rare nature of these cells (0.0001-0.01% of MNCs) means flow cytometric detection 

is difficult, and can result in as few events as <5 being detected within the flow cytometric 

assay performed. Further expression of CXCR4 on these progenitor cells is therefore 
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difficult, and even more difficult to interpret. The flow cytometric assay utilised within 

the thesis for quantification of circulating EPCs was that used and recommended by Van 

Craenenbroeck et al. (2013b), and the CD45dim phenotype is reported to represent the 

endothelial precursors within the CD34+VEGFR2+ population (Case et al., 2007; 

Timmermans et al., 2007). Some have previously isolated MNCs by density gradient 

centrifugation to quantify EPCs (Liu and Xie, 2012), yet this could result in the loss of 

some progenitor cells through human error or through the density gradient (Van 

Craenenbroeck et al., 2013b). Due to the 4-colour limit on the panel, apoptosis was not 

assessed by using the labelling with Annexin-V, therefore it is likely that the resulting 

EPCs quantified may contain non-viable cells. In addition, there is a high risk of false 

positives due to difficulty with isotype control. There was no isotype control used in the 

methodology detailed in Chapter 4 and Chapter 6, with negative samples for both 

VEGFR2 and CXCR4 instead being used (CD34 and CD45 did not require negative or 

isotype controls due to high relative expression of these proteins on the MNCs of interest). 

Future studies investigating the effects of exercise or lifestyle on these cells should instead 

be focused on isolating these cells from whole blood, using magnetic beads and 

measuring EC-CFU and in vitro/in vivo cellular functions. 
 

 

9.7.3 CXCR4 Cell Surface Expression as Putative Marker of Cell Function 

Analysis of EPCs, although problematic, has still been repeatedly shown to be a risk 

factor for CVD (Fadini et al., 2005; Fadini et al., 2006; Barsotti et al., 2014; Berezin and 

Kremer, 2014; Castejon et al., 2014) and endothelial function (Sibal et al., 2009; 

Bruyndonckx et al., 2014), as have the CD31+ T-cells (Weil et al., 2011; Rouhl et al., 

2012). These cells are clearly reduced with age, as seen with other reports (Thijssen et al., 

2006; Thum et al., 2007; Kushner et al., 2010c), but may also be dysfunctional with age 

and disease states, as suggested by previous reports (Kushner et al., 2010c; Xia et al., 

2012b). CXCR4, although reduced with age, may not accurately or sensitively reflect 

functional properties of these cells, despite being heavily linked with migratory function. 

Functional impairments have been shown irrespective of CXCR4 expression on EPCs 

isolated from young and old human participants (Xia et al., 2012a; Xia et al., 2012b) and 

thus in vitro and in vivo experiments of cellular function, for example cell migration, pro-

angiogenic cytokine release, gene expression and tube formation assays, need to be 

performed to fully understand how CAC function changes with age and exercise. 
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9.7 Future Areas of Research 

 

Data presented within this thesis have shown that chronological age can negatively impact 

on circulating CAC number (CD34+ progenitor cells, EPCs, and TANG), and maintaining 

high level of CRF may attenuate certain subsets of these cells (Chapter 4 and Chapter 5).  

 

In respect to these observations, it is suggested that future studies address the following 

research questions: 

 

1. What are the in vitro and in vivo effects of age and regular exercise on TANG cells? 

2. The CD31+ T-cells contain a heterogenous T-cell pool, with ~43% (6-69%) are 

CD4+ T-cells and ~42% (16-67%) are CD8+ T-cells. What are the specific 

phenotypes of these CD4+ and CD8+ T-cells? Are CD4+ or CD8+ T-cells 

expressing CD31 predominantly naïve phenotype as reported previously? What 

are the subset-specific pro-angiogenic functions of these cells, if any? Are there a 

proportion of these CD31+ T-cells which are γδ T-cells? 

3. Does age and CRF have a similar impact on biomarkers of endothelial damage as 

measured by circulating endothelial microparticle (EMP)? 

 

In Chapter 6, we have demonstrated that sedentary behaviour may negatively affect CAC 

number. Some of these effects can be lost when correcting for CRF, indicating that regular 

exercise may negate the harmful effects of sedentary behaviour.  

 

In light of these observations, further study is required to address the following research 

questions: 

 

1. What are the effects of prolonged periods of bed rest on CAC number and function, 

and does any effect correspond to changes in endothelial function? 

2. Can regular breaks in sitting time attenuate the harmful effects of sitting time on 

CAC number and/or function? 

3. Are older individuals at greater risk of the harmful effects of sedentary behaviour 

than younger individuals, and if so can targeting these individuals with 

interventions to reduce sitting time affect the observed deleterious effects on 

CACs and endothelial function? 
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In Chapter 7, we have demonstrated that acute strenuous exercise is a powerful stimulus 

for mobilising CD31+ T-cells into the peripheral circulation, thus offering a window for 

T-cell-mediated vascular adaptation. It appears that the SDF-1:CXCR4 axis may play an 

important  role in mobilising T-cells as a result of an increase in circulating SDF-1α from 

ischaemic contracting muscle.  

 

Future research should aim to address the following research questions: 

 

1. What are the phenotypes of these CD31+ T-cells that mobilise as a result of acute 

exercise? 

2. Are circulating number changes accompanied by functional changes, such as 

increased pro-angiogenic cytokine release or expression? 

3. Viral serology plays an important role in determining the lymphocyte response to 

exercise. Thus does viral serostatus affect CD31+ T-cell kinetics with acute 

strenuous exercise? 

 

In Chapter 8, we detected differences in CD8+CD31+ T-cell population between CMV 

seropositive and seronegative young individuals. There was also a trend for increased 

total CD31+ T-cells in the CMV seropositive group. Future research should aim to address 

the following research questions: 

 

1. Are the changes in CD8+CD31+ population seen in our cohort as a result of 

differentiation or senescence status as typically observed in CMV seropositive 

individuals? 

2. Are changes seen in these TANG cells accompanied by changes in function (for 

example, pro-angiogenic growth factor and cytokine content/secretion, migration)? 

 

 

Conclusions 

 

The findings of this thesis demonstrate that CACs are reduced with chronological ageing 

and sedentary lifestyle, but may be partly rescued by regular exercise or maintaining high 

levels of CRF. Indeed acute exercise can briefly increase the number of TANG cells 
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offering a potential window of vascular adaptation. In addition, viral serology affects the 

number of a subpopulation of CACs, with potential significance not yet known. 

 

With an increasing aged population, the beneficial effects of regular and acute exercise 

and understanding of the mechanisms driving these effects will prove to be useful for care 

givers and clinicians in the prevention of age-related increased CVD risk. This may have 

large implications for reduction in CVD risk, morbidity and mortality associated with 

CVD and vascular-related disorders. 
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Information	Sheet	for	Potential	Participants	

The Influence of Age, Aerobic Fitness, Cardiovascular Risk Factors and 

Cytomegalovirus Infection on Angiogenic T Cells and Endothelial Progenitor 

Cells 

My name is Mark Ross and I am a postgraduate PhD student from the School of Life, 
Sport and Social Science at Edinburgh Napier University.  As part of my degree course, 
I am undertaking a research project for my PhD thesis. The title of the project is: The 
Influence of Age, Aerobic Fitness, Cardiovascular Risk Factors and Cytomegalovirus 
Infection on Angiogenic T Cells and Endothelial Progenitor Cells. 

The endothelium makes up the inner layer of all blood vessels and is now know to 
perform a range of crucial functions related to cardiovascular health.  Endothelial 
progenitor cells (a type of stem cell) and angiogenic T cells (a subset of immune cells) 
aide in the process of cardiovascular repair. Thus these cells are very important for 
cardiovascular health. Age, aerobic fitness, cardiovascular risk factors and 
cytomegalovirus infection may all impact on the level of these cells circulating in the 
blood, as well as their function to help grow new blood vessels and repair damaged 
endothelium.  
 
This research is being funded by Edinburgh Napier University. 

I am looking for volunteers to participate in the project.  Inclusion criteria are: 

Males and females between ages of 18 and 65 years old 

The exclusion criteria are: 

• Body Mass Index of more than 35 (measured in the laboratory through height 
and weight measurements) and smokers 

• Alcohol intake >14 drinks per week 
• Taking medication affecting the immune system 
• Routinely using ibuprofen and/or aspirin, anti-depressants, and/or medications 

designed to alter blood pressure or cardiovascular function and hormone 
replacement therapy will be excluded from the participant population, as these 
may affect results of the study 

• Participants also reporting major affective disorders, HIV infection, hepatitis, 
chronic/debilitating arthritis, central or peripheral nervous disorders, previous 
stroke or cardiac events, were bedridden in the past 3 months, suffer from known 
cardiovascular disease or autoimmune diseases will all be excluded from the 
study. 

• Participants must also be free from infectious disease for 6 weeks prior to study. 
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As a participant in this project, you will be asked to refrain from any strenuous exercise 
1 day prior to any exercise testing. You will also be asked to refrain from ingesting any 
caffeine and alcohol the day prior to exercise testing. You will also be asked to attend 
the exercise laboratory in the morning after an overnights fast 

You will be asked to give informed consent prior to any procedures. Once this is obtained, 
you will be asked to give blood sample from your arm. You will also be asked to fill out a 
questionnaire regarding health and family disease history, through which we will 
determine whether you can take part in the study (see inclusion and exclusion criteria). 
You will also be asked to complete a set of questionnaires designed to assess how much 
time you spend sitting. You will also be asked to take part in a 9-12 minute light-to-
moderate exercise test to determine aerobic fitness on a cycle ergometer. 

There is a risk that you will experience muscle discomfort during the exercise test, 
however the procedures will all take place in a controlled environment, and first aid-
trained personnel will be in attendance to ensure safety, as well as a defibrillator in the 
laboratory at all times. You may also experience some fatigue as well as some delayed 
soreness in the muscle as a result of the exercise bout. There is also a risk of some slight 
bruising where blood will have been taken. However every caution will be taken to ensure 
minimal bruising.  The whole procedure should take no longer than 1 hour.  You will be 
free to withdraw from the study at any stage; you will not have to give a reason.  

All data will be anonymised as much as possible. Your name will be replaced with a 
participant number or a pseudonym, and it will not be possible for you to be identified in 
any reporting of the data gathered. All data collected will be kept in a secure place (data 
will be stored on a password protected laptop and pc) to which only the main investigator 
(Mark Ross) has access. These will be kept until the end of the research process, 
following which all data that could identify you will be destroyed.  

The results may be published in a journal or presented at a conference, again with your 
results being completely anonymous. 
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If you would like to contact an independent person, who knows about this project but is 
not involved in it, you are welcome to contact Dr Mick Rae.  His contact details are 
given below. 

If you have any questions or concerns regarding the research project, you may contact 
one of the following: 

 

Principal Researcher 

Mark Ross 

 

 

Director of Studies 

Dr. Geraint Florida-James 

 

 

 

Independent Advisor 

Dr Mick Rae 
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Informed	Consent	Form	

The Influence of Age, Aerobic Fitness, Cardiovascular Risk Factors and 

Cytomegalovirus Infection on Angiogenic T Cells and Endothelial Progenitor 

Cells 

Project Title:  

Influence of age, aerobic fitness, cardiovascular risk factors and cytomegalovirus 

infection on angiogenic T cells and endothelial progenitor cells. 

Introduction to this study:  

The endothelium makes up the inner layer of all blood vessels and is now know to 

perform a range of crucial functions related to cardiovascular health.  Endothelial 

progenitor cells (EPCs; a type of stem cell) and angiogenic T cells (a subset of immune 

cells) are circulating cells which aide in the process of new blood vessel growth and 

vascular repair. Thus these cells are very important for cardiovascular health. Age, 

aerobic fitness, cardiovascular risk factors and infection may all impact on the level of 

these cells circulating in the blood, as well as their function to help grow new blood 

vessels and repair damaged blood vessels. 
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I am being asked to participate in this research study. The study has the following 

purposes: 

1. To determine the influence of different factors (age, aerobic fitness, 

cardiovascular risk, sedentary behaviours and CMV infection) on circulating 

levels cells involved in maintaining cardiovascular health in the general 

population. 

2. To assess these factors’ influence on the biological aging of these cells. 

This research study will take place at Edinburgh Napier University, Sighthill 

Campus, Sighthill, Edinburgh 

This is what will happen during the research study: 

1. You will be asked to give a blood sample, which will be analysed for circulating 

angiogenic T cells, EPCs, cardiovascular risk factors, and to determine CMV 

infection status. Approximately 30mL of blood will be taken (equivalent to 2 

tablespoons). 

2. You will also be asked to fill out a questionnaire regarding health and family 

disease history. 

3. You will undertake initial measurements in the exercise laboratory that include 

height, weight, waist and hip measures, as well as assessment of aerobic fitness 

capacity. 

4. The assessment of aerobic capacity involves a moderate bout of exercise on a 

laboratory bicycle. The exercise will last approximately 9-12 minutes. 

5. You will be asked to refrain from exercise training 1 day prior to these 

assessments, and not to consume alcohol on the day prior to each exercise 

session.   
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There are certain risks and discomforts associated with participation in the study 

1. Strenuous exercise carries with it a very small risk of heart attack.  This risk only 

exists for a small number of individuals with pre-existing heart problems.  Every effort 

will be made through pre-exercise screening to identify individuals with heart and 

other conditions that could be made worse with exercise.  A defibrillator is always on 

site in the laboratory as well as there being first aid-trained individuals in attendance. 

2. Fatigue will be experienced during the exercise sessions. In addition, muscle soreness 

may be experienced for a day or two after exercise, particularly after the exercise 

test. 

3. A small amount of localized bruising can occur after a blood sample is taken.  Every 

effort will be made to avoid this by the individual taking the blood sample. The 

individual taking the blood sample will be a trained phlebotomist. 

My confidentiality will be guarded: 

Edinburgh Napier University will protect all the information about me and my part in this 

study.  My identity or personal information, will not be revealed, published or used in 

future studies.  The study findings will form the basis for preparation of a postgraduate 

thesis, academic publications, conference papers and other scientific publications. 

 

 

 

 

 



	

272 
	

 

 

 

 

 

If I have questions about the research project, I am free to contact the following: 

Principal Researcher: 

Mr Mark D. Ross 

 

 

 

Director of Studies: 

Dr. Geraint Florida-James 

 

  

 

Independent Advisor: 

Dr. Mick Rae 
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I have read and understood the information sheet and this consent form.  I have had an 

opportunity to ask questions about my participation. 

I understand that I am under no obligation to take part in this study. 

I understand that I have the right to withdraw from this study at any stage without giving 

any reason. 

I agree to participate in this study. 

Name of participant:  _____________________________________ 

Signature of participant: _____________________________________ 

Signature of researcher: _____________________________________ 

Date:   _________________ 
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Contact details of the researcher 

Name of researcher: Mark Ross 

Address: Graduate Teaching Assistant and PhD Student,  

 Faculty of Life, Sport and Social Science 

Edinburgh Napier University 

Sighthill Campus 

 

  

Email / Telephone:    
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Appendix 3: Physiological Screening Questionnaire 
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Physiology Screening Questionnaire 

Please read the following carefully and answer all the questions truthfully. Information 

will be treated with the strictest confidence. 

This is a strictly private confidential document. 

Name:   Gender: 

Date of Birth:  Age: 

 

 

Have you ever had a heart problem such as a heart attack, hypertrophic cardiomyopathy, 
congenital abnormality, heart valve defect, heart failure or heart rhythm disturbance? 

Yes/No 

Have you ever received treatment for a heart problem such as heart surgery, the fitting of 
a pacemaker/defibrillator, coronary angioplasty or heart transplantation? 

Yes/No 

Are you currently taking medication for your heart? (Please indicate if so, what you are 
taking) 

Yes/No 

 

 

How many units of alcohol do you take a week? 

N.B One alcohol unit is measured as 10ml or 8g of pure alcohol. This equals one 25ml 
single measure of whisky (ABV 40%), or a third of a pint of beer (ABV 5-6%) or half a 
standard (175ml) glass of red wine (ABV 12%). 
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Do you currently or have you ever suffered from any of the following: 
 
Arthritis, osteoporosis or any other bone or joint problem 
 

Yes/No 

Asthma, bronchitis or any other respiratory problem 
 

Yes/No 

Coagulation disorders 
 

Yes/No 

Diabetes (Type I or Type II) 
 

Yes/No 

Epilepsy 
 

Yes/No 

Hypertension (High Blood Pressure) 
 

Yes/No 

Liver or gastrointestinal problems 
 

Yes/No 

Kidney problems 
 

Yes/No 

Infectious disease such as HIV, hepatitis or glandular fever 
 

Yes/No 

Autoimmune disease 
 

Yes/No 

Any peripheral or central nervous system disease (e.g. Alzheimer’s, 
Meningitis, Huntington’s, Parkinson’s, Tourette’s) 

Yes/No 

 
 
Do you experience any of the following: 
 
Chest discomfort with exertion 
 

Yes/No 

Unreasonable breathlessness 
 

Yes/No 

Dizziness, fainting, blackouts 
 

Yes/No 

Palpitations or skipped beats 
 

Yes/No 

Unusual levels of fatigue 
 

Yes/No 
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Please indicate if any of the following are true 

You have a close blood male relative (father or brother) who has had a 
heart attack before the age of 55 or a close female relative (mother or 
sister) who has had a heart attack before the age of 65 
 

Yes/No 

You have elevated levels of cholesterol or are on lipid lowering 
medication 
 

Yes/No 

You are a cigarette smoker  
 

Yes/No 

You have elevated levels of blood glucose 
 

Yes/No 

You are completely inactive (do not take part in 20 minutes of moderate 
physical activity such as walking, 3 times per week) 
 

Yes/No 

You have suffered a stroke or major cardiac event 
 

Yes/No 

You have been bedridden in the past 3 months 
 

Yes/No 

You have suffered from an infectious disease in last 6 weeks 
 

Yes/No 

About how many hours in each 24-hour day do you usually spend sitting?             
 

 

Are you currently taking any medications? 

If Yes please give details: 

 

 

Have you any other conditions that may be relevant to an individual undertaking 
strenuous exercise? 

If Yes please give details: 
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Declaration: 

I have understood all of the questions put to me and that my answers are correct to the best of 

my knowledge. I understand that this information will be treated with the strictest confidence. 

Signed: 

(Participant) 

 Date:  

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

Signed: 

(Tester) 

 

 

   Date: 
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Appendix 4: SIT-Q -7d Questionnaire 
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Appendix 5: Published Papers and Communications 

Produced From Studies Presented Within Thesis 

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	




































