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Abstract— Awareness of electric energy usage has both societal 

and economic benefits, which include reduced energy bills and 
stress on non-renewable energy sources. In recent years, there has 
been a surge in interest in the field of load monitoring, also 
referred to as energy disaggregation, which involves methods and 
techniques for monitoring electric energy usage and providing 
appropriate feedback on usage patterns to homeowners. The use 
of unsupervised learning in Non-Intrusive Load Monitoring 
(NILM) is a key area of study, with practical solutions having wide 
implications for energy monitoring. In this paper, a low-
complexity unsupervised NILM algorithm is presented, which is 
designed toward practical implementation. The algorithm is 
inspired by a fuzzy clustering algorithm called Entropy Index 
Constraints Competitive Agglomeration (EICCA), but facilitated 
and improved in a practical load monitoring environment to 
produce a set of generalized appliance models for the detection of 
appliance usage within a household. Experimental evaluation 
conducted using energy data from the Reference Energy Data 
Disaggregation Dataset (REDD) indicates that the algorithm has 
out-performance for event detection compared with recent state of 
the art work for unsupervised NILM when considering common 
NILM metrics such as Accuracy, Precision, Recall, F-measure, 
and Total Energy Correctly Assigned (TECA). 
 

Index Terms—Home Energy Management, Non-Intrusive Load 
Monitoring, Unsupervised Learning, Appliance Modeling 
 

I. INTRODUCTION 

NDERSTANDING the way people consume electric 
energy has a number of widespread benefits. From the 

viewpoint of consumers, they can tell exactly how their daily 
activities are contributing to their energy bill, and what they can 
do to improve their energy usage. On the side of the energy 
suppliers, the provision of such electric energy consumption 
information can enable them to better align their electric energy 
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generation and transmission with the requirements of 
consumers. Given the increasing need for electric energy with 
the continued growth of IoT technologies and the growing 
inclusion of individuals who previously had no access to 
electricity to the national electricity grid, it is important to 
ensure the optimal usage of this resource. While a number of 
nations, mainly developed nations, have begun to widely adopt 
renewable sources of energy, quite a number still rely on coal-
powered electricity generation which has a significant effect on 
the environment, both on local and global scales. In summary, 
understanding how people utilize electric energy can be 
beneficial to both financial standing and also well-being. 

Modern approaches to energy management utilize smart 
home technologies to enable energy efficiency and 
conservation [1]-[3]. While these approaches are extremely 
beneficial, the required infrastructure presents a barrier for 
adoption. The work presented in this paper takes into 
consideration home environments that are resource constrained 
but require a means to monitoring energy usage nonetheless. 

Achieving the goals of energy efficiency and energy 
conservation first requires the ability to monitor electric energy 
usage. This is done via smart meter technology which has seen 
a surge in deployments in recent years. Smart meters are able to 
capture the electric energy signal and transmit it to networked 
devices in order to offer further analysis and data mining. Such 
a process is referred to as load monitoring or alternatively 
energy disaggregation. Load monitoring is categorized as either 
intrusive, semi-intrusive, or non-intrusive. Intrusive Load 
Monitoring (ILM) monitors energy usage via smart meters that 
are attached to each appliance or device that needs monitoring. 
Semi-Intrusive Load Monitoring (SILM) utilizes a subset of 
smart meters to capture a subset of the electric energy usage and 
infers the rest. Lastly, Non-Intrusive Load Monitoring (NILM) 
makes use of a single smart meter which captures the 
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aggregated electric energy signal. The goal is then to discover 
the appliances that are contributing to the aggregated signal. 
NILM is the preferred approach for real-world solutions due to 
the fact that it has a reduced financial cost and lessens the 
burden of involvement for the energy monitoring process on the 
user or homeowner. Equation (1) presents a summary of the 
NILM problem. 

 𝑃𝑃(𝑡𝑡) = ∑ 𝑃𝑃𝑖𝑖n
i=1 + 𝑒𝑒(𝑡𝑡) (1) 

where 𝑃𝑃(𝑡𝑡) is the total power load as seen at time 𝑡𝑡, 𝑃𝑃𝑖𝑖  is the 
individual power contribution of appliance  𝑖𝑖 , and 𝑒𝑒(𝑡𝑡)  is a 
small noise or error term. 

Unsupervised learning has recently gained popularity in 
NILM work. The main benefit of unsupervised learning is the 
removal of the dependence on a set of training data. This results 
in solutions that can be deployed and learn according to the 
environment where they operate, and therefore greatly 
simplifies the entire process. One of the major challenges with 
the application of unsupervised learning in NILM is minimizing 
the computational complexity as solutions will be deployed in 
resource constrained environments such as homes. In this work, 
a fuzzy clustering algorithm is proposed for NILM to address 
this challenge. An unsupervised approach is therefore presented 
to provide a low-complexity NILM solution, and a practical 
approach to offering informative feedback to homeowners.  

The rest of the paper is structured as follows: Section II 
provides a review of recent research work on NILM. Section III 
introduces the proposed algorithm and provides a walkthrough 
of its sub-components. The evaluation of the algorithm is 
presented in Section IV with additional discussion on the 
outcomes of experimental evaluation processes. Lastly, Section 
V presents a summary of the research work and a discussion on 
possible future extensions. 

II. RELATED WORK 
NILM was first proposed by Hart in the 1990s [4]. Since then 

numerous research work has been published with 
improvements to the initial design and different approaches all 
with the goal of achieving the same objectives. The typical 
NILM workflow consists of the following steps: 1) Power 
Signal Acquisition, 2) Event Detection, 3) Feature Extraction, 
and 4) Learning & Inference. The first step involves acquiring 
aggregated energy measurement at an adequate rate so that 
distinctive load patterns can be identified. Low sampling rates 
of 1Hz are typically used for NILM as they can be captured by 
smart meters without modification. High-frequency sampling 
rates require sophisticated hardware which can introduce 
additional costs to the energy monitoring process. With the 
aggregated energy having been acquired, the next step is then 
to detect the operating states of appliances. The current NILM 
approaches can be classified as event-based or state-based, 
depending on the event detection strategies that are utilized. 
Event-based approaches focus on state transition edges 
generated by appliances and use change detection algorithm to 
identify the start and end of an event [5]-[6]. All appliance types 
have a unique energy consumption pattern often termed as 
appliance signatures. This unique energy consumption pattern 

has been used to uniquely identify and recognize appliance 
operations from the aggregated load measurements [7]. There 
are two main classes of appliance signatures used by NILM 
researchers for appliance identification, namely, transient 
features and steady-state features. Transient features are short-
term fluctuations in power or current before settling into a 
steady-state value. These features have uniquely defined 
appliance state transitions by extracting features such as shape, 
size, duration, and harmonics of the transient [7]. Steady-state 
features are related to more sustained changes in power 
characteristics when an appliance changes its running state. An 
example of such changes can be seen in Fig. 1, with the edges 
possibly indicating the result of an appliance switching from 
one operation state to another. Steady-state features include 
commonly cited active power, reactive power, current, and 
current and voltage waveforms. The final step of the NILM 
process is then to analyze the extracted appliance signatures and 
learn a set of appliances models that can be used to infer the 
electric energy consumption. 

 
Several state of the art unsupervised NILM algorithms have 

been proposed using different approaches including variants of 
Hidden Markov Models (HMMs), and most recently Graph 
Signal Processing (GSP), and deep learning. 

Several HMM-based NILM algorithms for energy 
disaggregation at low sampling rate have been proposed in the 
literature. Kim et al. [8] proposed an unsupervised technique for 
energy disaggregation using a combination of four FHMM 
variants. The authors used low-frequency real power feature 
and assumed a binary state of appliances (ON and OFF state 
only). The approach used the Expectation Maximization (EM) 
algorithm to learn model parameters, and employed the 
Maximum Likelihood Estimation (MLE) algorithm to infer 
load states. The performance of the technique was limited to a 
few number of appliances, required appliances to be manually 
labelled after disaggregation, and suffered from high 
computational complexity, making it unsuitable for real-time 
applications [9]. 

Kolter and Jaakkola [10] introduced a new inference 
algorithm for unsupervised energy disaggregation called 
Additive Factorial Approximate MAP (AFMAP) that was 
computationally efficient and did not suffer from local optima. 
The AFMAP algorithm was used to perform approximate 
inference over the additive FHMM. However, the model 
required appliances to be manually labelled after off-line 
disaggregation and had a low performance for electronics and 

 
Fig. 1.  Rising and falling edges possibly indicating changes in state of 
appliances and therefore significant events of energy usage. 
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kitchen appliances. 
Parson et al. [11], researched an approach that used a 

different HMM from the work done by Kolter and Jaakkola [10] 
as a Bayesian network for disaggregation of active power with 
60s sampling rate. To perform inference, the authors used an 
extension of the Viterbi algorithm and proposed an EM training 
process to build a generic appliance model for learning the 
model parameters. This generic model was then tuned to 
specific appliance instances using only aggregate data from a 
house in which NILM was being applied. 

Jia et al. [12] presented a fully unsupervised NILM 
framework based on non-parametric FHMM using low-
frequency real power feature. They used the combination of 
slice sampling and Gibbs sampling to perform inference that 
simultaneously detected the number of appliances and 
disaggregated the power signal from the composite signal. 
However, the inference algorithm became a limitation for larger 
disaggregation problems as it had the possibility of getting 
stuck in local optima [13]. 

Makonin et al. [14] proposed an NILM algorithm for low-
frequency sampling rate that used a super-state HMM in which 
a combination of modeled appliances states was represented as 
one super state. The authors developed a new variant of Viterbi 
algorithm called sparse Viterbi algorithm which performed 
computationally efficient exact inference instead of relying on 
approximate inference method like in the FHMM based 
approach. 

Despite the fact that HMM-based NILM approaches have 
been widely used in energy disaggregation they require expert 
knowledge to set a-priori values for each appliance state. Their 
performance is therefore limited by how well the generated 
models approximate true appliance usage [15]. 

Graph Signal Processing (GSP) or signal processing on graph 
is an emerging field that extends classical signal processing 
theory to data indexed by general graphs [16]. GSP represents 
a dataset using a graph signal defined by a set of nodes and a 
weighted adjacency matrix [17]. 

The first GSP-NILM approach that was neither state-based 
nor event-based was presented by Stankovic et al. [18]. The 
authors, leveraged the work done by Sandryhaila et al. [19] in 
order to perform low-complexity multi-class classification of 
the acquired active power readings without the need for event 
detection to detect appliance changing states. However, this 
approach was supervised and employed GSP only for data 
classification [17]. 

Zhao et al. [15]-[17] proposed a blind, low-rate and steady 
state event-based GSP approach that did not require any 
training. The proposed GSP-NILM disaggregated any 
aggregate active power dataset without any prior knowledge 
and relied upon the GSP to perform adaptive threshold, signal 
clustering and pattern matching. 

Different deep learning architectures such as Recurrent 
Neural Network (RNN) [20], Convolutional Neural Network 
(CNN) [20]-[22], Auto Encoder [20] and a combination of deep 
learning and HMM [22]-[24] have been employed to the energy 
disaggregation problem. While deep learning approaches have 
achieved success in NILM with regards to accuracy, the 

dependence on large amounts of data in order to be well 
generalized is a hindrance for real-world applications. 

Alternative techniques have also been widely researched for 
NILM. These approaches have included the use of fuzzy sets 
[25]-[26], decision trees [27]-[28], support vector machines 
[29]-[30], sparse coding [31]-[32], and metaheuristics [33]. 
While these approaches have had wide ranging success for 
experimental evaluation, their practical use is limited as they 
are typically supervised in nature. However, literature indicates 
that the utilization of fuzzy logic has great value due to the 
multi-class nature of the NILM problem. 

Another subset of the research work has focused on 
considering the fact that multiple appliances can switch states 
when a change in power occurs. Amongst the most recent 
research, two of the promising techniques are based on integer 
programming (IP) [34]-[35], and cepstrum-smoothing [36]. 
Further review of approaches in the NILM are presented in 
[37]-[39]. 

In summary, the research work conducted in NILM has 
attained varying levels of success with regards to the NILM 
metrics, nonetheless a majority of them are limited in use due 
to the lack of consideration on their practicality for in-home 
usage. Therefore, the aim of this work is to help fill this gap in 
the NILM research by presenting a possible solution to the 
NILM problem with practical implications. 

The work presented here is an extension of our previous work 
[40]-[41] which introduced an unsupervised NILM algorithm 
based on Competitive Agglomeration (CA) [42] and 
subsequently Entropy Index Constraints Competitive 
Agglomeration (EICCA) [43]. In this paper we present our 
modified unsupervised NILM algorithm which provides an 
approach to learning appliance models without any reliance on 
prior information or data, with the goal of providing 
informative feedback to homeowners. The ability to learn the 
appliance composition of a house’s aggregated energy without 
prior knowledge while using a low-complexity technique 
makes the proposed algorithm a suitable solution for in-home 
monitoring of energy usage. 

III. PROPOSED WORK 
The proposed algorithm is subdivided into a set of modules, 

each focusing on a single aspect of the NILM process. Due to 
the ease of installation and minimal cost we only consider the 
use of a single smart meter which captures the data at a low-
sampling rate of 1Hz. We further consider the use of the active 
power (P) appliance signature due to the fact that it can be 
extracted from the energy signal using a simple process. 

A. Architecture 
The proposed algorithm is envisioned to function as part of a 

wider framework encompassing the NILM process in a 
household. This framework requires a minimal architecture 
which includes a smart meter and a low-power energy device 
for processing the data and disseminating information to 
homeowners. This architecture can be seen in Fig. 2. 
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B. Algorithm Overview 

1) Data Acquisition 
The initial step is to get the necessary data required by the 

algorithm. This process begins by acquiring the aggregated 
energy data via a smart meter attached to the mains of the 
household. This data is then transmitted to a low-power energy 
device that handles the processing of the data and further 
communication to the homeowner. 

2) Event Detection and Feature Extraction 
The initial step in the processing pipeline is detecting the 

usage of appliances given the aggregated energy data and 
extracting features that can be used to model appliances. This is 
done by recognizing events which denote significant changes in 
power which could be attributed to an appliance changing from 
one state to another. The assumption made in this step is that 
only a single appliance will change its state during the time 
interval. To extract the features we first need to establish a 
significance threshold which will be used to filter out those 
events that do not provide useful information. In this work we 
utilize a significance threshold of 5W. The choice of this value 
enables the algorithm to additionally model and detect the usage 
of low-power devices such as phone chargers, which are 
commonly used within homes and therefore contribute to the 
aggregated load. The feature extraction process is summarized 
in (2).  

 ∆𝑃𝑃𝑡𝑡𝑖𝑖 =  𝑃𝑃𝑡𝑡𝑖𝑖+1 −  𝑃𝑃𝑡𝑡𝑖𝑖 (2) 

where ∆𝑃𝑃𝑡𝑡𝑖𝑖  is the difference in active power between two 1 
second intervals 𝑃𝑃𝑡𝑡𝑖𝑖+1  and 𝑃𝑃𝑡𝑡𝑖𝑖 . If ∆𝑃𝑃𝑡𝑡𝑖𝑖  ≥ 5𝑊𝑊then the event is 
denoted as being significant and the difference is stored as a 
feature for further use. 

The extracted features consist of both negative and positive 
transitions. Given that a negative transition will likely have a 
corresponding positive transition of similar magnitude and 
vice-versa we simplify the features by transforming them into 
an invariant form which is done by converting them to their 
absolute form. This similarity between positive and negative 
transitions can be seen in Fig. 3 which displays the distribution 
of a set of features extracted from single day energy usage in a 
household. 

 
Once the features have been extracted they are then reduced 

to a generalized form via clustering. In order for this process to 
be unsupervised the number of feature clusters need not be 
fixed. We therefore make use of an adaptation of the EICCA 
which is a clustering technique that begins with an over-
specified number of clusters, and gradually reduces this number 
by making cluster members compete for membership among 
the clusters. Clusters with low cardinality are eliminated upon 
every iteration until the clusters stabilize. This trait makes an 
adapted EICCA suitable to discover potential appliance types 
in the aggregated energy data. Such an approach also avoids 
additional steps required to specify the number of appliance 
types upfront. 

3) Model Learning and Inference 
The output of the Event Detection and Feature Detection step 

is a set of generalized features. These features can be used to 
attribute the energy usage to a group of commonly recognized 
power states. In order to better inform homeowners of their 
energy usage, these features need to be transformed into 
appliance models which are a composite of features. The 
appliance models can then better describe the energy usage to 
the homeowner. 

Appliance models can be broadly categorized as those with 
two states (ON/OFF), and those with multiple states. 
Appliances with ON/OFF states are referred to as Type I in 
NILM. Multiple state appliances covers finite states, constantly 
ON, and continuously variable states, which are referred to as 
Type II, Type III, and Type IV respectively. To define the 
appliance models we consider two scenarios: 

a) Two State Appliance Models 
Given that the features represent both positive and negative 

transitions with the same magnitude, they are each expanded 
into two-state appliance models, with the positive transition 
representing the ON state and the negative transition 
representing the OFF state. 

b) Multi-State Appliances Models 
To define multi-state appliance models we further examine 

the aggregated energy signal and try to match a pattern of usage 
where two significant events occur subsequently. This is done 
in two phases where we consider significant events that occur 

 
Fig. 2.  Overview of energy disaggregation framework. Energy data is 
acquired at rate of 1Hz using a smart meter, and then sent to a low-power 
device for further processing. The low-power device processes the data and 
provides feedback to the homeowner enabling them to be better informed 
about their electric energy usage.  

Fig. 3.  Feature distribution from a single day of energy usage. 
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immediately after one another, and those that are separated by 
a single time window of steady-state. The defined appliance 
models are then stored for further use in inferring their usage. 

The final step is to recognize the usage of appliance models 
in the aggregated energy signal. As the features are generalized, 
exact matches to significant events are not possible, we 
therefore considered a significant event as being recognized if 
the feature matched it within a 5% error margin and within 5W 
of the magnitude of the significant event. The latter condition is 
introduced to cater for small variations that exceed the 5% error 
margin but are actually within 5W of the actual event. These 
conditions are imposed in order to increase the accuracy of the 
event matches. Furthermore, given that the algorithm needs to 
also be able to track the usage of low-power devices, large 
differences in the magnitude of these variations can have 
adverse effects on the feedback provided to homeowners. The 
process for the model inference is two-fold, and is as follows: 

a) Evaluation of Feature and Appliance Model 
The first task is to evaluate the features and appliance models 

to verify whether they are suitable for further use in appliance 
usage recognition. This considers common NILM metrics such 
as Accuracy, Precision, Recall, F-measure, and Total Energy 
Correctly Assigned (TECA), which will be further discussed in 
Section IV-A. 

b) Recognition of Appliance Model Usage 
The second task is to detect significant events and attribute 

the energy consumption to the defined appliance models. This 
is done by monitoring the aggregated energy signal and 
comparing each significant event to the existing appliance 
models. Each matched significant event is tied to the operation 
of an appliance model, which can be used to denote patterns of 
energy usage in a household, and to identify periods of high 
energy consumption during the day. 

IV. EXPERIMENTAL EVALUATION 
To validate and evaluate the proposed work, a set of 

experiments have been conducted making use of energy data 
provided by the six houses in the Reference Energy Data 
Disaggregation Dataset (REDD) [44]. The REDD consists of 
power consumption data from real homes, inclusive of energy 
readings at whole house level as well as for each individual 
circuit in the house. Each house consists of a mixture of 
appliances in use including lighting, dishwasher, stove, 
refrigerator, smoke alarm, and air conditioning, etc. This 
variety of appliance usage makes the REDD suitable for testing 
our proposed algorithm. 

The experiments were setup to validate the performance of 
the algorithm in accordance to commonly cited NILM metrics, 
and most importantly the feasibility of the algorithm for 
practical implementation. In Context 1 we considered the 
disaggregation of energy data from the six REDD houses for 
both a single day period and over a three day period. In Context 
2 we focused on the feasibility of the algorithm using single day 
energy data from REDD House 2. We further evaluated our 
approach to model learning and inference in this context. 

Context 3 verifies the performance of the algorithm when run 
on a low-power energy device. The main focus of the 
experimentation was data from House 2 of the REDD due to its 
common use for additional experimental evaluation outside of 
the NILM performance metrics in literature, and sufficient level 
of appliance complexity for evaluating energy disaggregation. 

The parameters of the adapted EICCA were set as follows: 
the initial number of clusters Cmax was set to 100, the initial 
value of η was set to 5, the time constant τ was set to 10, the 
iterative threshold ε was set to 10-3, and the competition 
threshold ε1 was set to 0.05. 

The algorithm and experiments were implemented using 
Python 3.6 and made use of the NumPy and Pandas libraries. 
The experiments were conducted on a 64-bit computer running 
a dual core 2.50GHz processor with 8GB RAM, and 1TB 
storage. Context 3 was performed on a 64-bit single-board 
computer running a quad core 1.2GHz processor with 1GB 
RAM, and 2GB storage.  

A. NILM Metrics 
NILM has a number of metrics that are used to evaluate 

different approaches used by researchers. For our experiments 
we considered a subset of the commonly cited metrics namely, 
Precision (3), Recall (4), F-measure (5), Total Energy Correctly 
Assigned (TECA) (6), and Accuracy (7), in order to evaluate 
the performance of the algorithm. 

 Precision (P)  = 𝑇𝑇𝑃𝑃
𝑇𝑇𝑃𝑃+𝐹𝐹𝑃𝑃 (3) 

 Recall (R) = 𝑇𝑇𝑃𝑃
𝑇𝑇𝑃𝑃+𝐹𝐹𝐹𝐹 (4) 

 F − measure (𝑓𝑓1) = 2· 𝑃𝑃·𝑅𝑅
𝑃𝑃+𝑅𝑅

 (5) 

 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 = 1 −  
∑ ∑ �𝑦𝑦�𝑡𝑡

(𝑖𝑖)−𝑦𝑦𝑡𝑡
𝑖𝑖�𝐾𝐾

𝑖𝑖=1
𝑇𝑇
𝑡𝑡=1

2∑ 𝑦𝑦�𝑡𝑡𝑇𝑇
𝑦𝑦=1

 (6) 

 Accuracy (𝑇𝑇𝐴𝐴𝐴𝐴. ) =  𝑇𝑇𝑃𝑃+𝐹𝐹𝐹𝐹
𝑇𝑇𝑃𝑃+𝐹𝐹𝑃𝑃+𝑇𝑇𝐹𝐹+𝐹𝐹𝐹𝐹

 (7) 

where Precision is the positive predictive values, Recall is the 
true positive rate or sensitivity, TP is true-positives (correctly 
predicted that the appliance was ON), FP is false-positives 
(predicted appliance was ON but was OFF), and FN is false-
negatives (appliance was ON but was predicted OFF). F-
measure is the harmonic mean of Precision and Recall, and 
TECA measures the amount of energy that was correctly 
classified. In (6), 𝑇𝑇 is the time sequence, 𝐾𝐾 is the number of 
appliances, 𝑦𝑦�𝑡𝑡

(𝑖𝑖) is the estimated state of appliance 𝑖𝑖 at time 𝑡𝑡, 
and 𝑦𝑦𝑡𝑡𝑖𝑖  is the ground truth state. 

B. Experiments 

1) Context 1: Algorithm Performance 
The evaluation process of the algorithm considered single 

day and three energy data gathered from REDD houses 1 to 6. 
The first step was to validate the chosen method for event 
detection and feature extraction. Fig. 4 presents the distribution 
of the features given their original form and after transformation 
by the feature extraction process from both single day and three 
day energy usage. The transformed features can be seen to 
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retain their magnitude while taking on a positive only form. 
This indicates that our chosen approach is valid and ensures that 
the feature space is reduced which further simplifies future 
processing given a resource constrained environment. 

 
With the features having been extracted and transformed, the 

next step was to generalize them using the clustering algorithm. 
The results of this process for features from REDD House 2 can 
be seen in Fig. 5. 

 
The results indicate that the proposed algorithm enables us to 

generalize the features and produce a set that can be considered 
for model learning. Given that this process has discovered the 
“optimal” set of features from the initial set, it can then be 
justified that the work presented utilizes an unsupervised 
learning approach to energy disaggregation. 

The final step of this section is to evaluate the performance 
of the algorithm using the generalized features and the subset 
of NILM metrics mentioned in Section IV-A. The results of the 
evaluation process for single day and three day energy usage 
can be seen in Table I and Table II respectively. 

The evaluation metrics provide an indication that the 
algorithm has good performance in terms of recognizing events 
that occurred in aggregated energy for each of the six REDD 
houses. The results for Accuracy, Precision, Recall, and F-
measure were generally good for both single day and three day 

energy usage. However, a dip in performance can be seen in 
these metrics for House 3 for three day energy usage, which 
could possibly indicate a period of increased complexity in 
terms of appliance composition. The TECA metrics varied 
across houses with lowest performance in houses 1, 3, and 6. 
These houses are known to have a larger number of appliances 
in use which could be a contributing factor to these results. 
However the performance for this metric is also generally good 
across houses and periods of energy usage. 

In summary, the algorithm performed generally well given 
energy with varying complexity. It can also be seen that the 
generalized features are able to detect quite a high number of 
the energy usage events occurring in the energy usage for the 
six REDD houses. This is further indicated in Fig. 6 which 
provides a comparison between the actual significant events 
(Fig. 6a and Fig. 6b) and the detected significant events (Fig. 6c 
and Fig. 6d). 

 
A comparison was made between this work and recent state 

of the art approaches which utilize similar metrics and energy 
data for evaluation. Given the wide variety of techniques used 
in NILM research work, direct comparisons between 
experimental results are not possible, as taken into 

 
Fig.4. (a) Single day actual feature distribution (b) Single day transformed 
feature distribution (c) Three day actual feature distribution (d) Three day 
transformed feature distribution, from REDD House 2. 

 
Fig.5. Generalized features from (a) single day energy usage (b) three day 
energy usage, from REDD House 2. 

 
Fig.6. Comparison between Actual significant events shown in (a) and (b) and 
Detected significant events shown in (c) and (d), from single day energy usage 
in REDD House 2. 

TABLE I 
NILM METRICS FOR SINGLE DAY ENERGY USAGE 

REDD 
House 

Acc.  
(%) P (%)  R (%) 𝑓𝑓1 (%) 

TECA 
(%) 

1 94.71 93.71  95.58 94.63 81.40 
2 98.36 98.58  97.80 98.18 91.73 
3 97.90 97.74  97.92 97.83 91.95 
4 98.98 99.02  98.86 98.94 93.65 
5 99.20 99.36  98.73 99.04 98.84 
6 97.93 97.69  98.14 97.91 83.25 

 
TABLE II 

NILM METRICS FOR THREE DAY ENERGY USAGE 
REDD 
House Acc.  (%) P (%) R (%) 𝑓𝑓1 (%) TECA (%) 

1 95.96 95.67 96.17 95.92 63.61 
2 98.90 98.97 98.60 98.79 93.89 
3 88.99 85.39 90.44 87.84 77.16 
4 97.80 97.32 98.22 97.77 90.82 
5 95.04 94.46 94.59 94.52 75.13 
6 97.37 97.01 97.61 97.31 83.10 
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consideration for this evaluation. The comparison between 
single day energy disaggregation and the state of the art work is 
presented in Table III. The comparison indicates that the 
proposed approach generally has better performance across 
metrics when compared to some of the similar recent state of 
the art NILM algorithms. 

2) Context 2: Modeling Learning and Inference 
Single day energy data from REDD House 2 was used in 

order to evaluate the chosen approach to model learning and 
inference. The energy usage for the single day can be seen in 
Fig. 7. 

 
The first step was to verify the multi-state appliance 

modeling process. As mentioned in Section III-A, the algorithm 
aims to define multi-state appliance models. The detected 
events were examined by the algorithm, and subsequently 
detected events were combined into multi-state models. A 
further step was taken to merge models based on commonalities 
in feature usage. Fig. 8 displays all the discovered appliance 
models and the interactions of their internal states for the given 
period of energy usage, and a subset of these appliance models 
is provided in Fig. 9. Fig. 8 and Fig. 9 indicate that there are 
some common patterns in the energy usage based on the 
internal state interactions of the appliance models. The patterns 
are more pronounced in Fig. 9 which shows that these 
interactions could possibly represent the usage of certain types 
of appliances. Given the large number of generated appliance 
models as seen in Fig. 8, the goal for future work will be to 
reduce them to a manageable set that represents operations that 

are similar to real-world devices. 

 

 
The final step was to use the discovered appliance models to 

provide insights on future energy usage. To achieve this the 
appliance models learnt from a single day of usage were used 
to track energy usage in the following day (Fig. 10). 

 
To limit complexity, the experiment was conducted using the 

two-state appliance models. To provide valuable feedback to 
the homeowner, the outcome of this step was to highlight events 
of high energy usage during the day. High energy usage was 
defined as any power usage over 350W, and the results are 

 
Fig.7. Single day energy usage from REDD House 2. 

 
Fig.8. Internal state interactivity for all discovered appliance models during 
single day energy usage from REDD House 2. 

 
Fig.9. Internal state interactivity for subset of discovered appliance models 
during single day energy usage from REDD House 2. 

 
Fig.10. Energy usage in subsequent day of REDD House 2. 

TABLE III 
COMPARISON WITH STATE OF THE ART 

Approach Acc.  
(%) P (%) R (%) 𝑓𝑓1 (%) 

TECA 
(%) 

FHMM 
[10] - 82.70 60.30 71.29 - 
HDP-

HSMM 
[45] 

- - - - 81.50 

DTW [46] - 91.24 81.77 86.16 - 
House 1 94.71 93.71 95.58 94.63 81.40 
House 2 98.36 98.58 97.80 98.18 91.73 
House 3 97.90 97.74 97.92 97.83 91.95 
House 4 98.98 99.02 98.86 98.94 93.65 
House 5 99.20 99.36 98.73 99.04 98.84 
House 6 97.93 97.69 98.14 97.91 83.25 
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displayed in Fig. 11, which shows that sporadic occurrences of 
high energy usage throughout the day with a majority of the 
occurrences happening late in the night. 

 
Additionally NILM metrics were used to evaluate the energy 

disaggregation for the new period, and these are shown in Table 
IV. The metrics indicate that the appliance models discovered 
in the previous day can be applied to subsequent periods of 
energy usage. Nonetheless, the results of the energy 
disaggregation, in particular the TECA metric indicates that 
new features need to be incorporated to ensure that previously 
unseen patterns of energy usage can be better detected. 

3) Context 3: Energy Disaggregation on Low-Power Energy 
Devices 

The final experiment was to verify the performance of the 
algorithm when run on a low-power energy device. We made 
use of the same energy data from REDD House 2 as in Section 
IV-B2. The algorithm performed the disaggregation within 
416s and produced the metrics shown in Table V. 

C. Discussion 
The results of the experimental evaluation indicate that the 

algorithm performs well given both single day and three day 
energy usage. This along with the ability to learn useful 
appliance models in unseen energy data indicates that it is 
feasible for the unsupervised NILM problem. It has been noted 
that further work is required in order to produce a set of well-
defined appliance models that can mimic real appliance usage, 
and this will form part of the future work. 

The results of further experimentation indicate that the 
algorithm can perform well when implemented on a low-power 

energy device thus showing that it can be implemented for 
actual use. 

V. CONCLUSION 
This paper presents a new approach to the unsupervised 

NILM problem with practical implications. Experimental 
evaluation using energy data from six houses of the Reference 
Energy Disaggregation Dataset (REDD) demonstrates that the 
proposed algorithm performs well with regards to energy 
disaggregation. Further experimentation also indicates that the 
algorithm can learn useful appliance models that can be used to 
provide insights on energy usage to homeowners. It has been 
noted that the chosen approach to appliance modeling requires 
some additional steps to provide a set of well-defined appliance 
models, and this will form part of the future research work. 
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