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Abstract 

In this thesis the application of autonomous control concepts to logistics networks is 

studied by means of a simulation model. This simulation model is based on an actual 

outbound bulk product supply network of a commodity company.  

Logistics planning and operation is facing growing challenges, such as increasing 

complexity and distribution, driven by Megatrends such as globalisation and integration. 

Decentralisation through autonomous control seems to offer to a promising approach to 

address these challenges.  

The idea for the supply network at hand is therefore, to enable individual transportation 

units to autonomously take operational decisions, thus shifting control of the supply 

network from a central to a local perspective. 

In surveying the literature and the academic discussion on autonomous control in 

logistics, software agents are identified as a suitable and well-studied approach to 

implement such a concept. Therefore, a multi-agent-based simulation model of the 

supply network is constructed to execute and test the solution. The model is built using 

data based on empirical observations and offers a full-scale simulation of the actual 

supply network. 

In the model, software agents represent the individual transportation units, allowing 

them to communicate and interact autonomously, effectively decentralising operational 

control. 

A comparative simulation experiment is designed and carried out, contrasting several 

different control scenarios. 

The simulation results obtained show, that autonomous control can positively impact the 

performance of this supply network. Autonomous control scenarios require a lower 

number of trucks to achieve full order delivery and help to increase robustness of the 

supply network regarding the impact of environmental factors. Additionally, the more 

efficient use of transportation capacity may lead to a reduction in cost for transportation. 

The findings are verified with an industry subject matter expert and potential barriers on 

the path towards implementation are described. 
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1. Introduction 

 

1.1. Research Rationale 

Global megatrend drivers such as globalisation and digitalisation drive the demand for 

transportation services and logistics (Kunze, 2016). Globalisation and the reduction of 

trade barriers allow production sites to be shifted to the location offering the best 

conditions (Gleißner & Femerling, 2008). At the same time, economic power shifts from 

mature to emerging economies, creating new markets (Jain, 2006).  

Digitalisation has removed physical barriers and enabled the rise of e-commerce which, 

along with the trend to more individualised products and on-demand delivery (Klaus & 

Kille, 2008), increases the number of deliveries and requires different services and 

concepts. Both globalisation and digitalisation drive megatrends, such as mobility which 

subsumes a wide range of aspects from personal, to object as well as social mobility 

(Urry, 2012). In the context of transport research, it addresses the rising demand as well 

as the challenges for transport and traffic (Handke & Jonuschat, 2013). Similarly, other 

megatrends, such as the connected consumer or circular economies (Boumphrey & 

Brehmer, 2017), show the need for a new logistics ecosystem which are highly 

integrated and fully digitised (Chang, West, & Hadzic, 2006).  

These ubiquitous trends (Horx, 2007) lead to an expected growth of the global logistics 

market from 54.6 billion tons in 2015 up to 92.1 billion tons in 2024 (Transparency 

Market Research, 2016).  

Simply increasing the capacity of one’s supply network may not be feasible, as the 

environmental conscience of consumers is growing and the public will not willingly 

tolerate growing environmental pollution and traffic (Bazzan & Klügl, 2014). Aside 

from the negative impact on sustainability (Abbasi & Nilsson, 2012) the further increase 

in traffic may negatively affect reliability and cost of delivery operations (Golob & 

Regan, 2002).   

As a result, competition is shifting to the level of supply networks, with the ability to 

respond rapidly and flexibly to demand, or in other words the agility of the supply chain, 

becoming a key differentiator, to competing in the global market (Christopher, 2016). 

This is a challenge as decisions regarding planning and operating the supply chain need 
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to be taken under a high degree of uncertainty and with incomplete information (Fischer, 

Chaib-Draa, Muller, Pischel, & Gerber, 1999). Additionally, as the number of actors and 

services increases, integration and coordination activities rise, leading to more complex 

supply networks (Ellinger, Beuermann, & Leisten, 2013). Established methods of 

planning and controlling supply chains such as combinatorial mathematical and heuristic 

methods seem to have reached their limit, particularly with regard to execution speed 

and application in practice (Skobelev, Budaev, Laruhin, Levin, & Mayorov, 2014). The 

growing dynamic and the high uncertainty, as not all individual constraints are known, 

lead to constant adaptations and re-planning.  

While the above observations and challenges are true for most supply chains, they 

particularly affect bulk supply networks. For bulk products, transportation costs are a 

significant factor, often accounting for up to 25% of the product cost, caused by the 

relation to the typically low product price itself (UNCTAD, 2015). Additionally, return 

transport vehicles are often empty due to the unidirectional design of the transport 

network, further increasing the cost burden (Prentice, 1998). 

At the same time, demand for bulk transportation is constantly rising, in line with the 

global bulk seaborne market, which has increased from 448 Mio. tons in 1970 to 3172 

Mio. tons in 2016 (Statista, 2018). While bulk transportation is often associated with sea 

or train freight, Mehmann & Teuteberg (2016) point out, using an example from the 

German agricultural sector, that as much as 76% of bulk products are transported by 

lorry trucks. This combination of large quantities with a high number of individual 

transport vehicles while operating at low margins, shows how bulk supply networks are 

in need for innovative solutions, helping them to address the challenges faced in 

planning and controlling their operations (Kunze, 2016). 

In the search for such innovative solutions, autonomous control seems to be an 

interesting approach. Based on concepts of self-organisation observed in nature, such as 

ant hills or bee hives (Hölldobler & Wilson, 2009), autonomous control offers benefits 

for distribution and complex systems (Prigogine, Stengers, & Prigogine, 1984). In the 

mobility context, autonomous control is being applied to a wide range of topics, 

enabling autonomous spatial mobility (Kellerman, 2018). Autonomous control for 

example, improves urban traffic control (Roozemond, 1999), manages traffic lights and 
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traffic flow at intersections (Campos, Falcone, Hult, Wymeersch, & Sjöberg, 2017) or 

autonomously manages the coordination of mobility on demand services and public 

transport (Salazar, Rossi, Schiffer, Onder, & Pavone, 2018).  

Looking at logistics, autonomous control seems to provide benefits for the planning and 

operation of supply networks as well. One of the central aspects of autonomous control 

which can be brought to logistics, is the decentralisation of decision-making (Windt & 

Hülsmann, 2007). As decisions are shifted to the level of the individual logistical entities 

(Freitag, Herzog, & Scholz-Reiter, 2004), the flow of information can be simplified, 

removing central control instances that may act as bottlenecks (Freitag et al., 2004). 

Additionally, by delegating decisions to local entities, global problems are decomposed 

into local subproblems, thus reducing their complexity substantially (Windt, 2008). This 

decomposition may introduce faster problem solving to logistics planning and increase 

the flexibility of the supply chain (Fischer et al., 1999).  

While these concepts seem promising to address the challenges faced by supply 

networks as described above, the question remains as to how autonomous control can 

improve the performance of logistics networks over conventional control methods.  

 

1.2. Research Area 

 

1.2.1. Simulation 

To achieve the research aim stated above, a simulation experiment, which compares 

different control methods using a model of an actual bulk supply network, is conducted. 

Simulation offers a wide range of benefits, most notably the ability to address the “what 

if” question (Happach & Tilebein, 2015, p. 249). Further, simulation can be described as 

a computational laboratory (Davis, Eisenhardt, & Bingham, 2007) which allows 

experimentation on a computer model of a system (Pidd, 2004). This allows to safely 

test changes or configuration which might disrupt business operations or otherwise pose 

a risk to the system (Greasley, 2008). In addition, simulation allows  time to be 

compressed by simulating “weeks, month or years in seconds of computer time” (Pidd, 

2004, p. 9). Simulation further offers the flexibility to repeat experiments with different 

settings of control variables in the same environment (Berends & Romme, 1999). This is 

particularly useful when aiming to compare the effects of different configurations on a 
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system as in the simulation experiment at hand. Simulation and the underlying model 

can also serve as a communication tool (Greasley, 2008). Having visual representations 

of systems and results greatly contributes to comprehensibility and facilitates the 

communication across disciplines and with non-experts (Happach & Tilebein, 2015). 

 

1.2.2. System Under Investigation 

The simulation experiment in this study will be conducted by creating a model of a real-

world supply chain. The logistics network under investigation is the outbound supply 

chain of a company that is producing and distributing fertiliser products. The system is a 

good representation of a bulk supply network as it is facing similar challenges as listed 

before. Transportation in the network is primarily outbound from plants to ports with no 

significant return transports. As most products are shipped via sea freight, the network 

constitutes a business-critical part of the company’s supply chain. While rail service is 

available to one port, the majority of the transport is carried out by lorry trucks. This 

results in a high number of individual transportation units which operate independently. 

Accordingly, transportation capacity is fluctuating and information flow on available 

capacity and transportation status back to planners is poor. At the same time, demand is 

growing while transportation lead times are shrinking as competition intensifies. As a 

result, the cost of transportation is rising due to frequent short-term re-planning and 

inefficiencies, causing an operational risk for the company under study.  

Taking a closer look at how planning and control of the supply network is executed, 

further underlines the need for innovation. Currently, most of the planning tasks are 

done manually on paper and spreadsheets, relying on the tacit knowledge and experience 

of the planner (Nonaka, 2008). Previous implementation efforts of an Advanced 

Planning System and similar IT systems have failed. This situation has been witnessed 

by the author across many production companies. Transportation is often only 

understood as a cost generating necessity. Outside of the major freight forwarding 

companies, very little system-based distribution and transportation planning is done. 

Where there is system support, trust in the results obtained is often not very high and 

results are adjusted manually afterwards.  
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The observed implementation gap has been described in literature as well. Bell, Bradley, 

Fugate, & Hazen (2014) point out, that while investing in IT solutions for supply chain 

management, many companies fail to benefit from their investment, creating a 

significant business risk. While several reasons can be identified for this, a lack of 

understanding and a missing process focus do play a significant role (Fawcett, Wallin, 

Allred, Fawcett, & Magnan, 2011). 

These observations further highlight the need for innovative solutions that help to 

address the complexity and the challenges bulk supply networks face.  

 

1.2.3. Software Agents and Innovation  

When looking for ways to implement autonomous control, software agents seem to offer 

a promising approach. Software agents have been applied to a wide range of problems 

from the mobility domain, most notably to traffic control and transportation planning 

(Azevedo et al., 2016). Chen & Cheng (2010) provide a survey study of application in 

that area. 

Looking at software agents in logistics, agents are used to represent logistical entities in 

a software system and act on its behalf (Schuldt, 2011). These entities can be individual 

delivery trucks (Fischer et al., 1999) or tug trains in production supply (Borucki, 

Pawlewski, & Chowanski, 2014) but also entire logistics functions such as an order 

agent (Mishra, Kumar, & Chan, 2012). Software agents can bring significant benefits for 

systems that are geographically distributed, exist in dynamic environments and where 

their subsystems need to interact flexibly with on another (Adler & Blue, 2002). This list 

of properties closely describes logistics networks and their challenges. Therefore, 

software agents seem to offer a promising approach to addressing planning and control 

of logistics networks.  

While software agents have been used to address a wide range of topics, the survey 

studies by Davidsson, Henesey, Ramstedt, Törnquist, & Wernstedt, (2005) and Louis & 

Giannakis (2016) show, that the area of bulk transportation networks has not been 

covered. This thesis aims to close this gap by demonstrating how software agents can be 

applied to and used to plan and control transportation in an outbound bulk supply 

network on truck level.  
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Software agents may seem to be a dated technology in the light of the current discussion 

around the benefits of the internet of things and blockchain for logistics (Meinel, 

Gayvoronskaya, & Schnjakin, 2017). Looking at these technologies in the context of 

innovation helps to put them into perspective. The latest priority matrix for supply chain 

execution technology published by Gartner (2018) provides the necessary framework for 

this. 

 

Figure 1.1 - Priority Matrix Supply Chain Execution Technology (Gartner, 2018) 

The matrix indicates mainstream adoption for blockchain in logistics to be more than 10 

years out. While there are interesting use cases that apply blockchain to supply chains 

(Gonzalez Aces & Kleeberger, 2018) or global trade (IBM & Maersk, 2018), again there 

is a significant implementation gap. In the same time range, the topics supply chain 

convergence and transport forecasting are placed. These topics best capture the issues to 
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be addressed in this thesis, improving planning and resource allocation in the supply 

network.  

All these technologies are clearly radical innovations requiring new technological 

competences (Pisano, 2015). Putting this into context with the observed implementation 

gap regarding supply chain planning and control systems, both in the client example and 

across the industry, these innovations harbour considerable risk. 

Software agents, while still being a technological innovation (Tidd, Bessant, & Pavitt, 

2005), can help to incrementally improve existing processes. Such incremental or 

routine innovations are central in creating and capturing value (Pisano, 2015) and to 

sustain business success, particularly in the logistics sector (Flint, Larsson, 

Gammelgaard, & Mentzer, 2005). 

This thesis will show how software agents can help to achieve these long-term 

technological goals, while realising more attainable short-term targets. By improving 

logistics visibility and offering an easy implementation for mobile technologies, 

software agents pave the road towards more ambitious supply chain technologies, 

narrowing the implementation gap for IT solutions in supply chain management. 

 

1.3. Aim and Objectives 

As explained in the research rationale, the aim of this study is to investigate how 

autonomous control can improve the performance of logistics networks when compared 

to conventional control methods.  

To better understand the steps necessary to achieve this aim, it is helpful to break them 

down into individual research objectives. To understand the developments and 

challenges to logistics as well as the resulting need for innovative control methods, such 

as autonomous control, a critical investigation of the literature is required. Therefore, the 

first objective will be: 

Objective 1: Understand the challenges of logistics networks and the need for 

autonomous control 

Having established the need for autonomous control in logistics, an investigation by 

which means it can be applied, will follow. Therefore, the second research objective is: 
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Objective 2: Investigate how autonomous control can be applied to bulk 

transportation networks 

To move from the theoretical realm towards implementation, an agent-based model will 

be created to demonstrate the application of autonomous control to the bulk truck 

transportation network under investigation. Therefore, the next objective is:  

Objective 3: Create an agent-based simulation model of a bulk truck 

transportation network 

To understand the effect autonomous control has on this supply network, the simulation 

model is then used to execute a simulation experiment comparing autonomous control 

with the currently used control method. Consequently, the final research objective is: 

Objective 4: Conduct a simulation experiment to compare the performance of 

autonomous control over existing control methods 

The research aim and the four objectives required to achieve it are documented in Figure 

1.2. The figure will be completed with the missing information throughout the course of 

this thesis, portraying its underlying research structure.  

 

Figure 1.2 - Research Structure 

Regarding the contribution to knowledge, this thesis demonstrates how autonomous 

control can improve the performance and robustness of a bulk supply network when 

compared to conventional control methods. As a means to do so, a comparative 

simulation experiment will be conducted, using an agent-based model of an actual bulk 
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supply network. This will provide a showcase of how autonomous control can be 

applied on level of individual transportation unit in a bulk supply chain using software 

agents. Such a showcase can help narrow the gap regarding the implementation of 

software in supply chain planning and operation.  

This aspect is also relevant from a practical point of view, as this lack of system support 

was observed in the client example at hand and across the industry.  

Further, practitioners will benefit from having a full-scale simulation study which can 

serve as a proof of concept and demonstration for other clients as well as application 

areas. Finally, a reusable agent-based simulation model will be available for use by other 

practitioners, contributing to easier access to and faster deployment of agent technology.  

 

1.4. Methodology  

The thesis applies a quantitative research design which has its roots in the author’s 

positivistic worldview and is influenced by the research area, the author’s experience as 

an industry consultant and opinions and views of stakeholders (Creswell, 2014). 

Following this quantitative approach, an experimental research design is applied in the 

thesis to address the research aim and objectives.  

The research method enabling the experiment is simulation. Simulation has been defined 

as a method in which computer software is used to model real-world processes, systems 

or events (Law & Kelton, 1991). Several benefits of simulation have been listed above. 

Most notably, the use of simulation enables the comparative study as simulation runs 

can be repeated in the same environment using different variables (Berends & Romme, 

1999). This allows a comparison of the performance of autonomous control with the 

existing conventional control methods using a model of the actual supply chain.  

While there are many types of simulation available, agent-based simulation has been 

selected for this simulation experiment for a variety of reasons. Agent-based simulation 

models are uniquely equipped to model decentral control structures (Siebers, Macal, 

Garnett, Buxton, & Pidd, 2010) such as the proposed autonomous control approach. The 

research problem at hand further shows a natural division into agents (Macal & North, 

2014). Each truck can be represented as an agent which acts as an independent and self-

directed entity (Bernhardt, 2007). This bottom up approach, allows a more natural 

description of the system under observation by focusing on the individual units instead 
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of aggregated system behaviour (Bonabeau, 2002). The individual actions of agents and 

their interactions may lead to emergent behaviour (Bernhardt, 2007), allowing insights 

into the system beyond the sum of its parts (Bonabeau, 2002).  

This again shows how agent-based simulation is uniquely suited to enable the simulation 

experiment intended for this thesis, enabling the autonomous control approach under 

investigation.  

 

1.5. Structure of the Thesis 

This thesis consists of seven main chapters. This introduction provides a general 

overview of the thesis, laying out the research context, followed by the aims and 

objectives.  

Chapter two explores the literature relevant to the research area and develops the 

research questions. The chapter starts by providing an overview of the logistics and 

supply chain management domain along with current challenges before looking at 

autonomous control in logistics, followed by an in-depth examination of software agents 

in logistics and gaps identified before closing with the research questions.  

The research methodology followed in this thesis is addressed in chapter three. Based on 

the philosophical view it develops the research design, before explaining simulation as a 

research method and locating agent-based simulation. It closes with the description of 

the approach to formatting and testing this agent-based simulation model.  

Chapter four is dedicated to the design of the simulation model used. It offers insight 

into the system under investigation before describing the model entities and the relevant 

process flows in detail. It closes with explications on the test process for the model and 

the simulation tool used.  

Chapter five explains the simulation experiment, starting with an overview of the 

different scenarios, followed by a listing of the performance indicators, the experiment 

setup and the data obtained. 

Chapter six contains the discussion of the findings from the simulation runs. It offers 

insight into limitations and validation of the model and described in detail the relevant 

findings form the main simulation experiment.  
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Chapter seven provides the conclusion of this thesis. The findings are reflected in the 

context of the literature and their practical relevance is evaluated. Recommendations for 

future research are offered. 

Having established the research rational by describing the research problem and the 

academic context, this introduction has provided an explanation of the aims and 

objectives of this thesis along with the methodology chosen. As mentioned in the 

structure overview, the next chapter will start with a discussion of the relevant literature 

for this thesis.   
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2. Literature Review 

 

2.1. Overview Logistics and Supply Chain Management 

The following section will provide relevant definitions from the logistics domain and 

structure the main concepts. Section 2.1.2 will examine the primary logistical functions 

as necessary building blocks of any supply network in detail. The setup of supply 

networks and their main actors will be analysed in section 2.1.3, followed by current 

developments and trends impacting logistics networks and the resulting challenges. 

 

2.1.1. Defining and Structuring Logistics 

Logistics is commonly defined by its main objective, namely “providing the right 

quantity of the right objects in the right place at the right time in the right quality for the 

right price” (Jünemann, 1989, p. 18). Mallik (2010) further added “…in the right 

condition to the right customer” (p. 146) accounting for new demands and additional 

complexity is what logistics is faced with today. Together these objectives form what is 

often referred to as the “seven R’s” as depicted in Figure 1 (Gleißner & Femerling, 

2008, p. 5). 

 

Figure 2.1 - 7 R's of logistics (Gleißner & Femerling, 2008, p. 5) 

Offering another angle in defining logistics, Fleischmann (2008) states, that “logistics is 

the composition of logistical systems and the control of the logistical processes within 

them” (p. 3). Examining this definition, it is evident that it can be divided into two major 

parts. The first part, logistical systems can itself be categorised into macrologistics, 

micrologistics and metalogistics (Gleißner & Femerling, 2008). Macrologistics is 

concerned with the infrastructure that supports logistics such as, for example, traffic 

networks or waterways on a national or even global scale (Gudehus, 2012b). 

Micrologistics, on the other hand, looks at the different processes and steps within the 
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supply chain of a particular enterprise. A company’s supply chain can be subdivided into 

different types of logistics: procurement logistics, production logistics, distribution 

logistics and reverse logistics (Martin, 2006). While Fleischmann (2008) argues, that 

this division into subcategories is contrary to the idea of a holistic view on logistics, he 

admits that it can be helpful, as each category focuses on different objects and directions 

of material flow. For example, procurement logistics is concerned with procuring and 

receiving raw materials, looking at the inbound flow where in contrast, distribution 

logistics is concerned with outbound shipments of final products. Further, production 

logistics is concerned with internal movements between warehouses and the production 

line. Lastly reverse logistics has a different direction of movement altogether, bringing 

material from the customer back for recycling or refurbishment (Fernie & Sparks, 2014). 

The linear supply chain as described above and depicted in Figure 2 (Fleischmann, 2008, 

p. 5) is disappearing more and more as complex supply networks with large number of 

participants are formed.  

 

Figure 2.2- Linear supply chain adapted from (Fleischmann, 2008, p. 5) 

As these supply networks reach across the borders of individual enterprises and integrate 

different logistical objects (types of goods), subjects (companies, clients, logistics 

service provider) and modes of transport (train, ship, etc.) they form what can be 

considered as metalogistical systems (Gleißner & Femerling, 2008). 

Coming back to the definition of logistics offered above by Fleischmann, its second part 

focuses on control of logistical processes. Shifting the focus of logistics from executing 

operations to planning and controlling processes (Fleischmann, 2008), lead to the 

development of the term Supply Chain Management. First introduced by Oliver, Webber 

& others (1982) supply chain management has the task of combining and executing the 

relevant physical and informational transactions efficiently, to fulfil the logistical 

requirement at minimal cost (Gleißner & Femerling, 2008). Following Christopher 
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(2016), supply chain management is a wider concept than logistics, linking and 

coordinating processes between suppliers, customers and the organisation itself.  

The aim in any case “is to ensure an optimal flow of cargo” (Schuldt, 2011, p. 13). 

Within this thesis, the term cargo will focus on material logistics, leaving out persons or 

information logistics (Fleischmann, 2008). Within the area of material logistics, further 

distinction is necessary.  

Firstly, again material can be classified with regard to its position within the supply 

chain, separating raw materials from semi-finished and finished goods corresponding to 

purchasing, production or distribution logistics (Aberle, 2003). Reverse logistics in 

relation to refurbished or scrapped goods will be mentioned here to complete this list.  

The second distinction, that is commonly applied to categorise material in this context, is 

related to its physical properties. Material can be in a state of solid, liquid or gas having 

different requirements with regard to logistical operations (Martin, 2006). Looking at 

solid material, even further distinction between general cargo and bulk cargo can be 

made. General cargo is handled in pieces or packing units, whereas bulk cargo can be 

poured, pumped or shovelled during logistical handling. Commonly known examples 

are ore, coal, grain or waste (Martin, 2006). The distinct properties lead to different 

requirements and limitations in processing through the required logistical functions. 

 

2.1.2. Primary Logistics Functions 

Looking at the main objective of logistics stated above, another deconstruction helps to 

better understand the components of supply chains. To achieve the aforementioned 

objective, logistics carries out certain transformation operations with regard to materials, 

for example bridging of time and space (Schuldt, 2011). These main transformations can 

be represented on an operational level by logistical functions. Gudehus (2012a) 

identifies a set of four primary logistical functions, to which all logistical 

transformations can be reduced. These primary functions are: 

- Transport 

- Handling 

- Storage 

- Picking 
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These primary logistical functions constitute the building block of any supply chain and 

will therefore be examined in greater detail in the following sections.  

 

2.1.2.1. Transport 

Transport is required where supply and demand are physically distributed (Arnold, 

2008) bridging the spatial distance between sources and sinks.  

As this distances can vary greatly, a distinction between internal and external logistics is 

made (Gleißner & Femerling, 2008). Internal or intralogistics as it sometimes called, 

connects sources and sinks within one production site (Gudehus, 2012a), while external 

logistics is concerned with the transport between different physical sites and legal 

entities.  

Transport consists of the transport object and the means of transport (Gleißner & 

Femerling, 2008). Means of transport can be categorised according to the mode of 

transport they serve, typically road, rail, air, water, and pipeline are distinguished 

(Lambert & Stock, 1993). Each mode of transport offers particular advantages and 

disadvantages. For example, air transport is considerably faster than sea transport. 

However due to the weight of the cargo being a limiting factor and the resulting high 

shipping cost, typically only critical and valuable goods are shipped via air freight 

(Jünemann, 1989). Comparing train and truck transport, trains can move larger 

quantities of material at a lower price than trucks (Vastag, 2008). They are however 

restricted to certain routes due to their need for tracks. Trucks on the other side, can 

provide door-to-door services, offering higher flexibility for the additional cost (Aberle, 

2003). To combine the advantages of different modes of transportation, such as the cost-

benefit of trains with the flexible last mile transport of trucks, intermodal transport could 

be a solution (Vahrenkamp, 2007). Looking at transport in the context of bulk supply 

chains, it is noteworthy that the material flow is often only unidirectional whereas in 

other application areas return transport means have to be considered, impacting 

complexity and cost (Prentice, 1998). 
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2.1.2.2. Handling 

As transport covers the physical movement (Gleißner & Femerling, 2008) all tasks that 

alter the transportation object or are required to change the means of transport are 

subsumed as handling (ten Hompel, Sadowsky, & Beck, 2011). An example for this is 

unloading a container and distributing its content to different delivery trucks (Bretzke, 

2010).  

The handling operations involved, such as unloading, unpacking and reloading incur 

cost from resources needed, such as forklifts or trolleys and the personnel required 

(Fleischmann, 2008). Additionally, the holdup time of the transportation equipment 

which is being loaded or unloaded adds cost, which can be a significant factor, when for 

example, looking at berthing times for ships (Lun, Lai, & Cheng, 2010).  

To carry out handling operations as efficiently as possible (Fleischmann, 2008), 

automation is increased and operations are centralised (Gudehus, 2012a). Another 

common approach is to standardise packaging materials and sizes to increase handling 

efficiency (Lange, 2008) such as using standard sea freight containers 

 

2.1.2.3. Storage 

While transport is used to overcome spatial gaps in the material flow, storage is used to 

bridge temporal gaps (Gleißner & Femerling, 2008). Such gaps occur whenever inbound 

and outbound material flows are not synchronised (Schmidt & Schneider, 2008). Even 

though storage is typically not seen as a value adding function, it is required for a variety 

of reasons (ten Hompel et al., 2011) as it provides a buffering function, helps to increase 

utilisation of production equipment and is essential in avoiding shortages of raw material 

and ensures the ability to deliver customer orders (Martin, 2006).  

These storage functions are carried out in a storage system or warehouse (Schmidt & 

Schneider, 2008). Warehouses are typically categorised by the type of storage they 

provide or by their position in the supply chain. Gleißner & Femerling (2008) and ten 

Hompel et al., (2011) provide an extensive overview.  
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2.1.2.4. Picking 

Picking can be defined as the task of combining goods from a provided range of articles 

according to defined orders (Gudehus, 2012b). It can be further understood as the 

interface from storage to consumption of material (ten Hompel et al., 2011). Picking 

describes the switch from sorted storage in the warehouse to unsorted storage and 

handling by creating individual shipping or sale units (Gleißner & Femerling, 2008). 

A good illustration is the distribution process in a mail ordering business, where out of a 

wide product range, relatively small orders for individual customers have to be compiled 

(ten Hompel et al., 2011). However, picking is also used in internal logistical processes, 

such as supply of goods to production lines (Martin, 2006). 

Picking involves several steps, namely the provisioning of the goods, the movement of 

the picker followed by the removal of goods and the disposal of the picked goods 

(Martin, 2006) forming a picking system.  

The implementation of such a picking system varies greatly across industries and 

companies (Gleißner & Femerling, 2008; ten Hompel et al., 2011) as each network 

requires a combination of the primary logistical functions in different ways. 

 

2.1.3. Supply Chain Setup and Actors 

While the previous section offered a functional segmentation of the supply chain, when 

looking for influence factors driving supply network complexity, the organisational 

perspective has to be considered as well.  

The starting point is the simplest scenario in which a company has the capability to 

execute all relevant primary logistical functions by itself. For example, operating the 

company’s own warehouses and delivery trucks as required. With the trend that started 

in the 1990s, by focusing on a company’s core competencies (Prahalad & Hamel, 2006) 

this traditional logistical operation model started to disappear. Even though Bretzke 

(2010) cites a few examples where self-supplied logistics provided economic or strategic 

advantages, the trend to outsource logistical activities is unbroken.  

As a result, the first level of integration is to procure individual logistical services, such 

as transportation or warehousing services from so-called second-party logistics providers 

(2PL) (Gudehus, 2012b). 2PL can be defined by their ability to carry out primary 
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logistical function without invoking services by other companies (Scholz-Reiter, 

Toonen, & Windt, 2008). This definition serves as distinction to the third-party logistical 

providers (3PL) which represent the next level of integration. 3PL, or system providers, 

can take over defined parts or the complete supply chain of companies (Gudehus, 

2012b). They offer a wide range of logistical services, either with their own resources or 

by integrating additional service providers into their network, making most 3PL 

providers 2PL at the same time (Vahrenkamp, 2007). Good examples of this are freight 

forwarding companies in retail industry, which operate the complete distribution 

network, from warehousing to commissioning and transportation to and from the 

individual stores (Bretzke, 2010). By making logistics their core competency, 3PL 

benefit from cost effects due to economies of scale and higher specialisation but also 

sector arbitrage, due to lower labour cost in the logistics sector (Gleißner & Femerling, 

2008). 

As differentiation and, particularly, vertical integration continue to grow, the next level 

of service providers, named 4PL or lead logistics service providers can be identified 

(Klaus & Kille, 2008). 4PL are typically described as pure integrators, not possessing 

any logistics resources themselves, but rather procuring and combining logistical 

services acquired on the market (Gudehus, 2012b). While the integration can be 

observed, the term 4PL is discussed somewhat controversial. In practice, many 

companies claiming to be 4PL are often well established 3PL companies, owning 

logistical resources and offering additional services. Similarly, in literature, Scholz-

Reiter et al., (2008) note that serving customers without owning logistical resources may 

become a challenge, particularly with regard to the strategic design and leadership of a 

supply chain. Additionally, Gudehus (2012b) doubts the logistics competence of 

companies that do not offer any logistical services themselves and have no experience 

on an operational level. 

Nevertheless, the continued differentiation and the growing demand for integration 

clearly illustrate the increasing complexity within supply networks highlighting the need 

for advanced control methods. This is further aggravated by the trends and developments 

discussed in the following section. 
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2.1.4. Current Developments and Underlying Trends in Logistics 

The increase in number of participants in modern supply chains and the resulting 

demand for integration as described above, can be considered a result of certain effects 

or trends affecting supply networks. Klaus & Kille (2008) identified a total of eight 

megatrends, four of which affect the demand for logistics. They overlap to a 

considerable extent with a list of effects proposed by Aberle (2003) and will be 

evaluated in detail below.  

The first megatrend is the ongoing globalisation which allows companies to build global 

production and value-adding networks by allocating production steps freely to locations 

with the best conditions (Gleißner & Femerling, 2008; Klaus & Kille, 2008). This, 

together with easier access to customers in foreign markets, leads to an increase in 

demand for transportation as supply chains are spread out across the globe. Aberle 

(2003) describes this as integration effect and cites the continuing market expansion in 

the European Union as an example of the increase in logistical demand due to economic 

integration. To address this increase in complexity and dynamics new approaches and 

technologies for logistics are required (Fischer et al., 1999). 

The second megatrend affecting logistics, is the shift to a post-industrial society (Klaus 

& Kille, 2008). This shift entails a change in type and properties of goods consumed and 

can therefore also be described as goods structure effect (Aberle, 2003). In industrial 

societies there is a high demand for bulk transports of raw materials driven by mass 

production. These transports could be well served with train or inland waterway moving 

large quantities of similar goods. With increasing demand for individualisation served 

by mass customisation and the shift from a vendor to a buyer market, the number of 

shipments increases rapidly while volumes per shipment decline (ten Hompel et al., 

2011). This new demand structure requires different logistical capabilities which lead to 

a shift from bulk freight transports towards parcel and express services (Vahrenkamp, 

2007).  

The third observed megatrend can be described as on-demand logistics (Klaus & Kille, 

2008) or simply as logistics effect (Aberle, 2003). It describes a rising expectation of the 

availability of products and a decreasing tolerance for lead times. It goes hand in hand 

with the aforementioned trend of mass customisation. Customers demand individual 
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products and expect them to be available right away. To be successful in such market 

conditions, companies must show what is described as a temporary advantage (Fine, 

2010). To achieve this advantage, more flexible logistics processes and a better 

coordination of logistical activities are key. In a way, one might say that the high 

availability and quality of logistical services today create additional demand for logistics 

(Schuldt, 2011). 

Concerning the fourth trend, the previously mentioned authors take different points of 

view. Abele (2003) describes a substitution effect, due to an ongoing individualisation of 

transports, which leads to a shift in the transport modal split. Aside from the increase of 

road freight traffic, due to the aforementioned good structure effect, it can be observed 

that transports which were previously carried out by train or barge are increasingly 

switched to truck transports as well. This can be attributed to the particular properties 

associated with road freight traffic, namely flexibility and end-to-end transport 

capabilities (Gleißner & Femerling, 2008). The down side to road transportation, namely 

the negative environmental impact (Eisenkopf, 2008) is at the centre of the fourth 

megatrend described by Klaus & Kille (2008). 

These authors describe the increasing environmental awareness as the fourth megatrend 

which impacts logistics (Klaus & Kille, 2008). With an growing public awareness 

around environmental issues, increasing pollution and traffic caused by logistics will not 

be tolerated by the public anymore, requiring logistics to provide new solution 

approaches to, for example city logistics (Wittenbrink, 1995) or last mile deliveries. At 

the same time, this situation offers new opportunities as recycling businesses and closed 

loop supply chains require elaborate logistical solutions, further driving demand and 

complexity. 

In summary, all these factors increase the challenges faced by supply networks and 

logistics operations. 

 

2.1.5. Resulting Challenges for Logistics 

As Fischer et al., (1999) observe, the logistics domain is generally described as highly 

dynamic, as decisions often have to be made under condition in which there is a high 

degree of uncertainty and incompleteness. The trends described in the previous section 
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further aggravate these properties. Together with the increasing number of actors, they 

provide significant challenges to planning and controlling supply chain operations. 

Orchestrating the combination of the primary functions across all participants in the 

supply chain is vital for its success (Ellinger et al., 2013). This endeavour is, 

nevertheless, challenging as logistical processes typically demonstrate the following 

three properties (Schuldt, 2011): 

- Complexity 

- Dynamics 

- Distribution 

The impact of these properties and the limits imposed will be discussed in the following 

subsections. 

 

2.1.5.1. Complexity 

As previously mentioned, supply networks are increasingly complex as they consist of 

many actors that carry out different logistical functions. Aligning and coordinating them 

is a demanding task. Conventional approaches to model supply networks and to compute 

optimal configurations include approaches from operations research or mathematical 

models such as mixed integer programming (Ellinger et al., 2013). While analytical 

methods offer useful results, they often rely on major simplifications to account for the 

complexity of the problem (Nikolopoulou & Ierapetritou, 2012). Complexity in this 

context refers to the computational complexity of an algorithm and the computational 

effort required to solve it. Complexity as a property of an algorithm is measured by the 

relation of the input and the computational effort required under a worst-case scenario 

(Arora & Barak, 2009). To allow comparison they are typically assigned to complexity 

classes (Saake & Sattler, 2013). Commonly known complexity classes are logarithmic, 

quadratic, exponential or factorial complexity. A good example for logarithmic 

complexity is binary search. When doubling the number of entries in an array, the effort 

to find a given value will only increase by one iteration. For an algorithm with quadratic 

complexity computational effort increases quadratic, for a logarithmic algorithm 

however, it increases logarithmic with each input.  
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To understand the computational demands of complex logistics networks, it helps to 

look at simpler standard problems first.  

For example, a classical standard logistical problem, the transport problem, deals with 

allocating transports to particular transport lanes between suppliers and consumers 

(Hitchcock, 1941). It describes a scenario where suppliers provide, and consumers 

demand an item, asking how to completely satisfy demand while minimising total cost. 

The transport problem can be solved by the simplex algorithm (Dantzig, 2016). When 

compared to real life logistical problems, the transportation problem is quite simply 

structured, placing no restrictions on delivery time and considering only a single type of 

goods to be delivered. However, the complexity of the simplex algorithm is exponential, 

meaning that by adding one more consumer the complexity rises exponentially. 

Another classical logistical problem is the travelling salesman problem (Lawler, Lenstra, 

Kan, & Shmoys, 1985). It describes a combinatorial problem finding the optimal route 

through a transport network. The selected example for this problem is a salesman who 

must visit several customer locations and subsequently return to a home location. The 

question is, how to choose the order of his visits to minimise the distance travelled. Even 

though the question seems simple at first glance, the problem is complex due to the 

number of permutations of the locations being �� − 1� (Applegate, Bixby, Chvatal, & 

Cook, 2007). This means that with each additional location the effort to solve the 

equations is multiplied, making this problem highly demanding regarding computational 

effort.  

These two basic logistical problems help to gain an understanding, why mathematical 

solution of planning questions in logistics networks quickly reach limitations regarding 

complexity.  

 

2.1.5.2. Dynamics 

As described above, planning for logistical networks can be very complex and solving 

the required equations can be very costly in computational time. This is especially 

relevant as calculations for logistical processes often need to be carried out frequently. A 

good example is material requirement planning (MRP), which considers all requirements 

for raw materials, planning production and procurements activities for a given time 
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horizon. As the task is quite complex, the calculations are mostly executed overnight, 

providing a daily plan. This is sufficient in an optimal case; nonetheless disruptions, 

such as breakdowns or delays, requiring deviations from the plan, are inherent to 

logistical processes (Bearzotti, Salomone, & Chiotti, 2012). For example, a delay in 

delivery by one supplier may lead to further delays downstream in the supply chain as, 

in turn, announced production and delivery dates cannot be met (Bretzke, 2010). This 

leads to a need to reschedule e.g. execute another planning run with the changed 

parameters. As calculations are time consuming, such a delay would not be reflected 

until the next day. It can be argued that daily planning is acceptable and sufficient, 

however, leaving out of consideration the possibilities offered by dynamic re-planning. 

Or in other words, “…being competitive in logistics and transport means increasingly 

being able to use information more intelligently, and with less latency.” (Dullaert et al., 

2009, p. 10281). 

To give an example, delays in delivery may be compensated by switching modes of 

transport, from sea to air for parts of a shipment. Or, it may be advantageous to 

participate in spot markets for transportation services where prices might be significantly 

lower, as carriers try to fill vessels prior to departure. 

In short, it would be beneficial to act dynamically at any point in time on changes and 

opportunities within the supply network. The question as to whether this is possible is 

again closely connected to the complexity of logistical problems and the computational 

time associated. High complexity makes frequent recalculations impossible, leading to 

situations where results may already be obsolete the moment they are obtained, as 

parameters have changed during the time of calculation. Bretzke (2010) notes in this 

context, that not only frequency but also scope of the planning may prove challenging. 

This thought provides an interesting path forward, hinting that conventional, centralised 

planning might not be the solution for the required dynamics in logistics planning.  

 

2.1.5.3. Distribution 

As noted before, logistics networks are often widely distributed, both spatially and 

across legal entities (Schuldt, 2011). The main impact on supply chain control resulting 

from this fact, concerns the flow of information. To control such a supply chain from a 
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central point requires all information to be transmitted to this control instance and 

instructions to be distributed back. This is expensive and at times inefficient as such a 

central control unit poses a bottleneck and introduces a potential single point of failure.  

The second impact on supply chain planning and control results from distribution across 

legal entities. As explained above, it is common to outsource tasks within the supply 

chain to logistics service providers. The exchange of data across company boundaries, 

however, is not without challenges. Technical impacts such as communication protocols 

etc., may be addressed by using industry and global standards (EDIFACT, VDA etc.,). 

More importantly though, confidential business data needs to be protected (Cardeneo, 

2008), particularly when logistical service providers, offer similar services to 

competitors. As a consequence, not all information necessary to obtain a globally 

optimal result may be available for central planning and control. Bretzke (2010) even 

states, that to obtain a global optimum within a given supply network, it is necessary for 

that supply network to have sharp boundaries. Sharp boundaries in this context means, 

that a particular company can only pertain to a specific supply network and to no other 

(Schuldt, 2011). In reality there are very few supply networks with sharp boundaries as 

most logistics service providers serve several companies. If, nevertheless, partners in a 

supply chain are reluctant to share data among each other, centralised modelling and 

planning of that supply chain becomes effectively impossible (Stadtler, 2005). As most 

advanced planning systems (APS) available today require information to be centrally 

available, this challenge of modern logistics networks provides an opportunity for 

autonomous control. 

 

2.2. Autonomous Control in Logistics 

Complexity in supply networks is increasing, driven by the growing number of actors 

and further fuelled by the megatrends described in section 2.1.4. As a result, modern 

supply networks are characterised by frequent dynamic changes and high uncertainty, as 

not all individual constraints are known, and constant adaptations of planning are 

required.  

These properties illustrate why simply adding transportation capacity to supply networks 

will not address the challenges that logistics is facing. Adding, for example, more 



Page | 25  

 

transportation units will further increase complexity instead of reducing it (Golob & 

Regan, 2002). Considering the economic, environmental and social impact that further 

increases of transportation capacity would entail, such as increasing traffic volume and 

pollution, this may be hard to justify (Bazzan & Klügl, 2014). A solution must, rather, 

make better use of existing capacity and infrastructure, planning and allocating resources 

more efficiently. 

These requirements for modern logistics show the demand for new approaches to 

planning and controlling supply networks. Considering the properties previously 

outlined, more self-reliant and distributed control methods seem to offer interesting 

possibilities and potential. 

Described in the next section are approaches to autonomous control in logistics, 

establishing first the necessary definitions before looking into the opportunities offered 

and discussing limitations. 

 

2.2.1. Defining Autonomous Control in Logistics 

Autonomous control is based on the concept of self-organisation. Self-organisation 

“refers to the fact that a system’s structure or organisation appears without explicit 

control or constraints from outside the system” (Di Marzo Serugendo et al., 2004, p. 2). 

Structure in a self-organising system arises, therefore, intrinsically from the interaction 

between local components (Bartholdi III, Eisenstein, & Lim, 2010). A popular example 

for self-organising systems are colonies of social insects, such as ants or bees 

(Hölldobler & Wilson, 2009). Autonomous control has been successfully applied in the 

mobility area to topics such as traffic control (Campos et al., 2017) or the coordination 

of mobility on demand services (Salazar et al., 2018). 

Applied to logistics, self-organisation is understood as autonomous control which can be 

defined as: “processes of decentralised decision-making in heterarchical structures. It 

presumes interacting elements in non-deterministic systems which possess the capability 

and possibility to render decisions” (Windt & Hülsmann, 2007, p. 8). 

In simpler terms, the idea behind autonomous control is to enable logistical entities to 

take decisions individually. Logistical entities in that context can be understood as all 

materials and facilities that provide or consume logistical services (Freitag et al., 2004). 
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Depending on the application scenario, a logistical entity can be anything from an 

individual sales unit, a whole container or even the provision of an entire service. 

According to the concept of autonomous control, every logistical entity in a supply 

network is responsible for achieving its individual logistical objective. To achieve this it 

is necessary to allow communication and cooperation between the individual entities 

(Hellenschmidt & Wichert, 2007). An example of this can be a sea freight container, 

which, based on outside conditions, determines to change its shipping route (Schuldt, 

2011) or a part in production, which feeds back information on the production process to 

the following units (Armbruster, de Beer, Freitag, Jagalski, & Ringhofer, 2006). 

The definition above further states, that logistical entities interact in a heterarchical 

environment. That means, that no hierarchy or structure between the logistical entities 

has been predefined (Freitag et al., 2004) or the structure can change at runtime. 

Importantly, this implies that no central instance is required to control execution of the 

logistical tasks.  

 

2.2.2. Opportunities through Autonomous Control  

The most promising opportunity autonomous control offers for logistics, is the 

decentralisation of control. In a centrally controlled network, all relevant information has 

to be provided to the central entity that makes the decision which, in turn, has to be 

communicated back to the entities (Freitag et al., 2004). This does not correspond well 

to the distributed structures naturally found in logistical networks. Autonomous control 

allows passing the decision-making process to the individual logistical entities (Freitag 

et al., 2004). The approach follows concepts from self-organisation and can be observed 

in other distributed systems in nature (Prigogine et al., 1984). Decentralising control 

does not only make the decision process more efficient and the network more robust, it 

also helps to reduce complexity.  

The observed increase in complexity of organisations and systems makes it “” (Fischer 

et al., 1999, p. 531)This holds particularly true for logistical systems and supply 

networks which can benefit from the “power of decentralisation” (Van Dyke Parunak, 

1999, p. 379). By delegating decisions to local entities, autonomous control significantly 

reduce complexity by decomposing global problems into local subproblems (Windt, 
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2008). With a reduced number of input parameters to be considered, computational 

complexity of the algorithm necessary to solve the particular subproblem is greatly 

reduced. This reduction in computational complexity may introduce faster problem 

solving and the ability to react rapidly and with more flexibility to supply networks 

(Fischer et al., 1999). 

As only local input data is considered, the distributed approach also helps to address the 

privacy issues mentioned above. With decisions being taken by local entities, data does 

not have to be distributed across the global network, thereby better addressing concerns 

of data privacy and confidentiality.  

Finally, through decentralisation autonomous control may also help to address the 

increase in dynamics logistics networks face. As complexity of decisions is reduced, the 

time required to compute solutions also reduces, thus making more frequent re-planning 

feasible. This in turn helps, to address the challenges in ever more dynamic and 

distributed logistical networks.  

The main criticism to the concept of autonomous control results from the problem 

decomposition. Local entities will try to find a locally optimal solution for the logistical 

problem they are facing, using the input parameters available to them. 

Nonewithstanding, these various local optima may, in summary, not result in a globally 

optimal solution. This is a natural consequence of distributed decision-making (Ellinger 

et al., 2013). However, to address the challenges mentioned it seems reasonable to work 

with obtainable local optima instead of failing to find a global optimum. 

 

2.2.3. Limitations of Autonomous Control 

While the concept of passing the decision-making process to the individual logistics 

units (Freitag et al., 2004) seems promising from a planning and controlling point of 

view, the implementation still holds some challenges.  

To take decisions locally, the individual logistics units need to be equipped with 

computing and communication functions. At first glance, this seems to be a feasible 

task, as technologies such as RFID are becoming cheaper and readily available (Lampe, 

Flörkemeier, & Haller, 2005). With computing power still following Moore’s law, and 

doubling roughly every 18 to 24 months (Moore, 1998) the reduction in size of 
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microprocessors and circuit boards is digitising increasingly more areas of life, making 

the internet of things a reality (Bullinger & ten Hompel, 2007).  

However, while these technologies can help to enable autonomous control in logistics, 

they are subject to technological, economical and legal limitations (Schuldt, 2011). 

The most relevant technological limitation relates to power consumption. While low-

power hardware designs (Flynn, Aitken, Gibbons, & Shi, 2007) have become available, 

energy consumption is a limiting factor for embedded systems in logistical entities. As 

battery development is not progressing at the same rate as processing power (Mattern, 

2005), electrical energy is a scarce commodity for embedded systems. This limits 

processing power and operating time of such devices and also affects communication, as 

particularly transmitting activities consume considerable power (Kopetz, 2011).  

Communication functions and protocols therefore need to be carefully tailored towards 

implementation scenarios, using for example, passive RFID tags, which only transmit 

data when activated by a receiver’s magnetic field, over active, battery powered tags 

(Franke & Dangelmaier, 2006).  

Looking at economical limitations, finding the right level of granularity (Windt, 2008) 

when implementing autonomous control, is most relevant. The question regarding which 

logistical entities need to be capable of autonomous control (Schuldt, 2011) is necessary 

to consider, as prices for hardware required, such as RFID transmitters, are a relevant 

cost factor (Franke & Dangelmaier, 2006).  

Aside from cost for devices, IT infrastructure and implementation costs for software 

need to be considered as well (Kim & Sohn, 2009). When looking at operation cost, the 

aspect of how much autonomy is granted to the logistical entities should also be 

considered. The economic impact becomes clear when looking at the example offered by 

Schuldt (2011), who describes a shipping container representing an autonomous 

logistical entity that realises it may arrive late at its final destination. Consequently, it 

might consider changing its mode of transport from sea to air. However, the cost 

incurred with this change is significant, therefore, its autonomy may have to be restricted 

in this case, requiring alerting a human dispatcher first. 

The question on the level of autonomy leads right to legal limitations which have to be 

regarded. As logistical entities are granted freedom in their decision, questions arise 
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whether these decisions and the resulting contracts are legally binding (Nitschke, 2006). 

Additionally, questions on data security and privacy need to be addressed, clarifying 

liability in case of misconduct (Weber & Weber, 2010).  

As this section has shown, while holding much promise, the implementation of 

autonomous control in logistics still must overcome certain limitations.  

 

2.3. Implementing Autonomous Control in Logistics 

The question as to how concepts of autonomous control can be implemented in logistical 

networks links directly into the limitations described before. As there still are certain 

technological, economical and legal constraints to overcome, it may not be feasible to 

equip each logistical entity with the required hardware. However, the concepts of 

autonomous control still can be implemented by abstracting away from the physical 

devices. A promising approach seems to be software agents, that represent individual 

logistical entities in a software system, and act on its behalf (Schuldt, 2011).  

This section provides an overview of applications of software agents in logistics, along 

with necessary definitions and limitations of the technology.  

 

2.3.1. Definitions of Software Agents  

There is no universally accepted definition of the term software agent as discussions in 

the literature show (Nwana & Wooldridge, 1997). However, there are several definitions 

available that offer different perspectives on what seems to define a software agent. In 

an early definition Bradshaw, Dutfield, Benoit, & Woolley (1997) describe agents as 

“objects with attitudes” (p. 382). They aim to contrast agents in their agent-based system 

architecture with objects from the realm of object-oriented programming in computer 

science. What they refer to as attitude can be understood as characteristic and properties 

that are attributed to the software agent. Consequently, most definitions available today 

describe software agents by their characteristics.  

A frequently cited definition stems from Wooldrige (2009), who describes a software 

agent as “…a computer system that is situated in some environment, and that is capable 

of autonomous action in this environment in order to meet its design objectives.” (p. 21). 

This definition highlights autonomy as a key characteristic of an agent.  
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Autonomy is understood as the agent’s ability to operate without direct intervention and 

to control its actions and internal states (Wooldridge & Jennings, 1995). Macal & North 

(2014) describe an agent as autonomous, when it is self-directed and functions 

independently in its environment. Besides autonomy, they further list modularity, 

sociality and conditionality as defining characteristics for software agents.  

Modularity in this context means that an agent is an identifiable, discreet and self-

contained entity with clear boundaries. In other words, it is clearly defined as to which 

agent a certain functionality or property belongs.  

These discreet entities interact socially with each other, meaning they communicate, 

exchange information or influence one another, called sociality in this context.  

The final characteristic, conditionality, refers to agents having different states that can 

change over time. A simple example can be an activity or loading status of a transport 

unit.  

There are several similar definitions available, listing different characteristics or 

properties. Stadtler (2005), for example, describes agents as “…self-interested, 

autonomous, rational entities having their own objective(s) and being in charge of a 

certain sub-task of an overall decision problem. To solve their sub-tasks, agents have to 

communicate and to coordinate their decisions.” (p. 584).  

Adding a purpose-based view to the discussion, he describes agent as self-interested and 

being responsible for a certain sub-task. This definition is interesting in the context of 

this work, as it describes the delegation and decomposition of tasks and responsibilities 

to individual entities, which constitutes one of the key concepts of this thesis.  

Dullaert et al., (2009) offer yet another point of view, as they list ‘intelligent’ along with 

the aforementioned key properties ‘autonomous’ and ‘communicative’ for agents (p. 

10283). This additional characteristic raises the question of what intelligence in the 

context of software agents means and whether it is a mandatory property. To answer 

this, the relation of the two academic fields of multi-agent systems and artificial 

intelligence (AI) must be considered. To illustrate the ongoing debate on differentiating 

these fields, two quotes will be used. Representing the multi-agent side, Etzioni (1996) 

states that “Intelligent agents are ninety-nine percent computer science and one percent 

AI” (p. 1323). Examining this from the artificial intelligence side, Poole, Mackworth & 
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Goebel (1998) define computational intelligence as “…the study of the design of 

intelligent agents” (p.1).  

The two quotes make clear that there certainly is an overlap between these two research 

areas, though there may be disagreement on the extent of the same. Coming back to the 

question on how intelligence is defined for an agent and whether it is a mandatory 

property, Dullaert et al., (2009) understand this as the agent having some form of 

‘business intelligence’ (p. 10283). They cite an example of a transportation unit that 

knows its maximum capacity and uses that information to decide whether to accept new 

orders. Looking at this explanation from an AI point of view, it does not necessarily 

constitute intelligence. AI requires an intelligent agent to display rationality, learning 

and autonomy (Russell & Norvig, 2003). Following that definition, learning is a 

mandatory requirement for an intelligent agent. Russel et al., even question whether an 

agent can be really autonomous when it lacks the ability to learn and adapt its behaviour 

accordingly (Russell & Norvig, 2003). The author would rather follow a conditional 

approach as suggested by Macal & North (2014): “An agent may have the ability to 

learn and adapt its behaviours based on its experiences.” (p. 9). 

To summarise this section, agents are defined by their characteristics, with the most 

relevant being autonomy, modularity, sociality, conditionality. They are further self-

interested, responsible for a particular sub task and can be intelligent. 

 

2.3.2. Benefits of Software Agents 

Software agents as described above seem to offer great potential to address a variety of 

research problems from computer science and beyond. They have been described by 

some as “the most important new paradigm for software development since object-

oriented design” (Luck, 2004, p. 199).  

Software agents have been applied to wide range of research domains from economics 

(Bookstaber, 2012) to social sciences (Smith & Conrey, 2007) and biomedical research 

(Folcik, An, & Orosz, 2007), and also to model air traffic controllers (Conway, 2006), to 

create MRP controllers (Turgay, Kubat, & Taskin, 2007) or to support crime analysis 

(Malleson & Birkin, 2012). Macal and North (2010) offer a broad overview of areas 

where software agent-based approaches have been investigated.  
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Even though software agents are not constrained to a certain scientific domain, agent-

based solutions seem to be suitable for a distinct group of problems.  

Agent-based computing seems to be particularly suited for the development of complex 

and distributed systems (Zambonelli & Van Dyke Parunak, 2003). This can be seen as a 

result of their own inherent distribution and decomposition into individual entities. The 

agent-based problem decomposition offers an effective way of partitioning the problem 

space of a complex problem (Jennings, 2001). Van Dyke Parunak (1999) further 

mentions, that applications which are modular, decentralised, changeable, ill-structured 

or complex benefit from agent technology. The property ill-structured refers to, that at 

the time of design of a system not all information, particularly not with regard to 

interfaces and information sharing between entities, is available (Davidsson et al., 2005). 

Such a system, where properties and connections arise out of the interaction of the 

individual entities is also described as showing emergent properties (Axelrod & 

Tesfatsion, 2006). Software agents are particularly useful in addressing the design 

challenges such systems present. 

Taking a slightly different angle, Adler & Blue (2002) propose the following three 

conditions under which agent technology can significantly aid in the design and analysis 

of problem domains:  

1. The problem domain is geographically distributed 

2. The subsystems exist in a dynamic environment 

3. The subsystems need to interact with each other more flexibly (p.441) 

This list of properties is particularly interesting as it closely resembles the list of the 

challenges to logistics defined in section 2.1.5. As established there, logistics networks 

are often widely geographically distributed. They face growing complexity and reside in 

dynamically changing environments, making them an ideal candidate for agent-based 

solutions (Chen & Cheng, 2010). 

Bazzan & Klügl (2014) see it as “well established that agent-based approaches suit 

traffic and transportation management” (p. 375). This can be extended to most areas of 

logistics as they profit similarly from the autonomy, collaboration, and reactivity of 

agents as well as their ability to operate without direct human intervention (Chen & 

Cheng, 2010). As mentioned before, the natural decomposition (Jennings, 2001) of 
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complex problems and the “local perspective” (Bazzan & Klügl, 2014, p. 376) to 

problem-solving are strong arguments for the use of agent-based solutions in logistics.  

 

2.3.3. Limitations of Software Agents 

As with any technology, certain limitations apply to software agents and their 

application to logistics. Similar to the criticism on autonomous control, the local 

perspective offered by agents Kikuchi, Rhee, & Teodorović (2002) may not contribute 

to reaching a global optimum. However, the author would follow Bernhardt (2007) who 

states, that this can be understood as a strength of and a reason to use agent technology. 

Being able to calculate local optima and thus gain a better understand of a system may 

be preferable to forever trying to approximate an impossible-to-reach global optimum.  

Bernhardt (2007) himself lists a few more limitations for agent-based modelling, 

mentioning that agent-based models may require substantial amounts of data and be 

computationally intensive. In terms of data, Bernhardt examines behavioural data, to 

explain the decisions of individuals. While the author agrees, that such data may be hard 

to obtain, he would argue that this holds true for any kind of model, if the same degree 

of accuracy is to be achieved. Regarding the computational demands, simulating large 

numbers of individual agents may indeed increase the calculation time required. 

Notwithstanding, as this thesis will show, the available computer power is, in the 

meantime, sufficient to model and simulate agent networks of real world scale even on 

desktop computers.  

This last limitation ties into what Bonabeau (2002) described as finding “the right level 

of description” (p. 7287) for any agent-based model. When trying to identify the 

required level of detail to produce the results intended, available computational power 

may be factored into the decision. 

A final limitation raised by Bernhardt (2007) addresses the emerging behaviour agents 

may demonstrate. In the previous section this has been described as agent intelligence 

(Dullaert et al., 2009) or agent learning (Russell & Norvig, 2003). These properties may 

lead to agents showing unplanned or unpredicted behaviour. As discussed before, 

whether this is desirable or not depends on the implementation scenario. Bernhardt 

(2007) makes the point, that agent-based models showing emergent behaviour may be 
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hard to validate, as pre-established rules or performance indicator may not account for 

such behaviour. This is indeed a factor to consider when choosing agent-based 

modelling and learning agents. However, this limitation, applies to the whole area of 

artificial intelligence and needs to be balanced against the potential insights that can be 

gained by intelligent agents.  

 

2.3.4. Agents in Complex Adaptive Systems 

When discussing agents and their application, the area of complex adaptive systems 

should be mentioned as well. Complex adaptive systems (CAS) can be defined as 

“systems that have  large numbers of components that interact and adapt or learn” 

(Holland, 2006, p. 1).  

CAS operations has been observed in a wide range of examples from nature such as 

prebiotic chemical reactions, the immune system or the flocking behaviour of animals 

(Gell-Mann, 1994). Meanwhile, complex adaptive theory has been applied to a wide 

range of research areas, ranging from economics (Tesfatsion, 2003) to organisational 

change (Dooley, 1997) to socio-ecology (Levin et al., 2013). Pathak, Day, Nair, Sawaya, 

& Kristal (2007) provide a recent overview.  

Looking closer at complex adaptive systems, the components that constitution a CAS are 

frequently described as agents (Holland, 2006). The concept of agency in complex 

adaptive systems differs however from software agents, as described in the previous 

sections (Niazi, 2013). Complex adaptive systems are characterised by emergence, 

meaning that new and unexpected patterns, properties or processes emerge as the system 

evolve (Goldstein, 2008). This emergence is driven by the interaction of the individual 

components of the CAS (Gershenson & Niazi, 2013). The components or agents have 

the ability to change and reorganise to adapt to their surroundings (Holland, 1992). CAS 

may even change the boundaries of the system as they evolve by including or excluding 

agents (Choi, Dooley, & Rungtusanatham, 2001).  

In order to enable this behaviour, agents in CAS must possess certain properties, most 

importantly modularity along with adaption and evolution (Holland, 2006). Modularity 

in this context, refers to the ability of an agent to freely recombine existing subroutines 

within its own set of operations to address new problems. Adaption and evolution refers 
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to the ability of an agent “to produce new rules that are plausible in terms of the agent’s 

experience” (Holland, 2006, p. 2).  

Linking back to the discussion on intelligent agents in section 2.3.1, both the afore- 

mentioned properties make it evident that agents in CAS must be intelligent agents as 

defined by Russel & Norvig (2003). To enable the emergent properties desired on 

system level in a CAS, the individual agents must be able to adapt and learn.  

As mentioned before, the agents used in this study are currently not equipped with 

learning functionality, leaving the application of complex adaptive theory for further 

research.  

Looking at existing research in this area, supply networks can be understood as complex 

adaptive systems (Choi et al., 2001). Supply chain management can benefit from a 

complex adaptive systems perspective, particularly when taking a macro level view 

(Pathak et al., 2007). CAS, therefore, may, in the context of the theoretical problem of 

this thesis, offer an approach to applying concepts of autonomous control at the level of 

mobility problems, providing another opportunity for further research.  

 

2.3.5. Literature on Agents in Logistics 

 

2.3.5.1. Survey Studies 

There seems to be agreement that the use of agent technology can bring benefits to 

logistics. This section will provide an overview of the research work done in that area. 

As a starting point, four papers offering literature surveys have been identified. The first 

three pertain to the traffic and transportation domain, which is closely related to 

logistics, particularly to the transportation functions which play a central role in this 

thesis. The fourth study provides an overview on agents in supply chain management. 

No study on agents across all logistics functions has been effected so far. 

Davidsson et al., (2005) focused on logistics and freight transportation, creating a 

framework to organise the existing literature according to various dimensions. These 

dimensions include, among others, the domain, the mode of transport along with the 

control method and the agent attitude. This allowed several papers to be identified with a 
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focus on research areas relevant to this thesis, such as the transport domain and road-

based traffic. 

Another important criteria Davidson et al., (2005) introduced into their framework is a 

maturity indicator. The indicator is based on an earlier approach by Van Dyke Parunak 

(2000) categorising research work in the agent field with regards to its implementation 

status, from purely conceptual work up to actually deployed systems hinting at the 

significant implementation gap in this area. 

The second literature survey was undertaken by Chen & Cheng (2010) focusing on the 

application of agent technology to traffic and transportation systems. Even though the 

authors indicate a split between traffic and transportation and offer chapters on both 

areas, there is clearly a focus on the traffic subdomain. The study provides an overview 

on agent-based traffic control and management systems before looking at traffic 

modelling and simulation. Traffic modelling and simulation includes research papers on 

topics such as modelling driver behaviour (Burmeister, Doormann, & Matylis, 1997), 

route guidance systems (Adler, Satapathy, Manikonda, Bowles, & Blue, 2005), lane-

change model (Hidas, 2002, 2005), demand bus simulation (Liu, Ishida, & Sheng, 2005) 

or pedestrian flow (Kukla, Kerridge, Willis, & Hine, 2001).  

From the transportation side, systems for roadway and railway transportation are 

examined. While there is some relevant work on the railway transportation side, such as 

transportation scheduling (Burckert, Fischer, & Vierke, 1998; Lind & Fischer, 1999) and 

one paper on freight train traffic management (Cuppari, Guida, Martelli, Mascardi, & 

Zini, 1999), when looking at the roadway transportation side, again the traffic topics 

dominate. The studies listed include agent-based approaches to urban traffic signal 

control (Chen, Chen, & Lin, 2005), bus fleet management (Belmonte, Pérez-de-la-Cruz, 

Triguero, & Fernández, 2005) or holistic solutions for urban public transportation 

management (Balbo & Pinson, 2001).The majority of the studies do not offer any 

relevant insight for the scope of this thesis. Aside from general ideas and concepts, there 

are only a few selected findings, for example different agent platforms such as the 

Matsim traffic simulator (MATSim, n.d.) and the AGENDA tool used by Fischer et al., 

(1999). 
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When looking at the third literature survey, a similar picture emerges. While 

contributing some insights to the logistics domain, the paper created by Bazzan & Klügl 

(2014) focuses primarily on agent-based traffic and transportation simulation. The 

authors divide their work into two areas, showing that agent technology can be used both 

for modelling and simulation as well as on the operational side, for control and 

management of traffic. This operational aspect is another important argument for the 

selection of software agents for this thesis. Bazzan & Klügel (2014) stress again, how 

agents are uniquely suited for modelling and simulation in the traffic area, as they 

inherently address topics such as emergence, spatial distribution and heterogeneous 

populations The survey on traffic modelling and simulation shows how agents are used 

to reproduce human decision-making and behaviour such as route choice (Chmura & 

Pitz, 2007), intersection behaviour (Doniec, Mandiau, Piechowiak, & Espié, 2008) or 

traffic flow simulation (Nagel & Schreckenberg, 1992). 

The survey on control and management offers some interesting ideas on distributed 

control and decision-making. However, the focus of the work analysed is again on the 

traffic domains. Concepts such as controlling traffic lights by self-organising networks 

(Oliveira & Bazzan, 2009) are described, moving on to collaborative driving 

(Desjardins, Laumônier, & Chaib-draa, 2009) where agents represent live vehicles and 

eventually influence them in their behaviour (Wang, 2008).  

The fourth survey identified is significantly shorter. Louis & Giannakis (2016) list 

agent-based approaches to supply chain management.. The focus of the individual 

studies is on strategic planning and decision making. Agent are primarily used to 

functionally decompose supply chains, with each agent representing one particular 

function (Mishra et al., 2012), such as an order agent or a scheduling agent (Fox, 

Barbuceanu, & Teigen, 2001). Other studies in the survey focus on collaboration and 

information sharing (Kwon, Im, & Lee, 2007) or price negotiations (Li & Sheng, 2011). 

While these studies do demonstrate the relevance and applicability of software agents to 

supply networks and logistics, they do not address the level of detail investigated in this 

thesis. Only Mattia (2012, p. 2) describes agents representing individual logistical units, 

calling them “Directive Decision Devices (DDD)”(p. 2) that can take decisions 
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autonomously on an operational level. However, no implementation or simulation is 

conducted, leaving room for further investigation.  

The following section will examine literature related to the core research problem, 

allowing for a more detailed analysis on the state of research in that area. 

 

2.3.5.2. Agents in Freight and Logistics 

The transportation subdomain can be further divided into research related to 

transportation of humans such as public transportation and transportation of freight and 

cargo, with the latter one being the most relevant to address the research problem at 

hand. 

Sandholm (1993) focused on the negotiation between agents for load assignment by an 

improved version of the contract net protocol. The contract net protocol is a protocol 

developed for the communication and negotiation between nodes in distributed problem 

solving such as in sensor networks (Smith, 1980). In Sandholm’s (1993) 

implementation, agents represent delivery centres, each aiming to optimise their own 

delivery schedule. His contribution is to allow agents to exchange or trade orders, as 

their responsibility areas overlap. Sandholm (1993) is able to show that a reduction in 

transportation cost can be achieved by following the agent-based approach.  

The focus of this research paper is clearly on the negotiation process and its 

implementation. Some interesting insights regarding communication between agents can 

be taken, as the concept of passing orders on to other agents is relevant for the 

simulation in this thesis as well. From an application point of view, this paper does, 

however, fall short, as order allocation within one delivery centre relies on static 

algorithms only, not making use of agent technology. While the cited constraints in 

computing power and the TRACONET framework were certainly valid at the time of 

publication, later research by, for example, Skobelev et al., (2014) was able to overcome 

them. 

A second paper identified is by Fischer et al., (1999) describing a multi-agent simulation 

(MAS) approach for a road delivery scenario. These authors model a road transportation 

network constituted out of several shipping companies and trucks. Both companies and 
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trucks are implemented as agents, dynamically receiving transport orders and planning 

and executing transports.  

This study is highly relevant as it contains several central ideas, applied to this thesis. 

First and foremost, it shows the general applicability of MAS for the freight transport 

domain and highlights the benefit of multi-agent simulation. On the design side, it 

presents the idea to represent trucks by individual software agents. This is done with 

similar intentions, as mentioned above, e.g., moving planning and scheduling from a 

central instance to the local entity. The result of this can be summarised as “one very 

complex plan is replaced by several smaller and simpler plans, allowing one to react 

quickly and without global re-planning to unforeseen events” (Fischer et al., 1999, p. 

534). 

On the implementation side, simulations are carried out for a comparatively small 

number of orders only, placing the focus clearly on theoretical approaches to 

optimisation. While the ideas presented in this paper are of valuable input and the 

concepts are sound, the focus on the negotiation aspect, along with a very particular 

software testbed consisting of AGENDA and MARS, leaves room for additional 

investigation. 

Schuldt (2011) addresses these shortcomings by offering a comparative simulation to 

describe an agent-based approach to logistics. He uses software agents to represent 

shipping containers and selected logistical entities such as ports and warehouses. 

Additionally, a case study to demonstrate effectiveness of the proposed autonomous 

control approach is presented. The case study models the inbound supply chain of a 

consumer products company, representing their sea freight container-based import 

business from port of origin to their distribution centres.  

Even though the industry and the logistical units differ from those in this thesis, the 

study provides significant insight into to designing and modelling a multi-agent network. 

Despite being an inbound supply chain, there are certain similarities such as a 

comparatively small number of transportation lanes and fixed logistical entities, such as 

ports and warehouses. At the same time, a high number of individual units frequent 

theses transport lanes -in Schuldt’s (2011) study these units are containers - in this thesis 

they are trucks. 
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As mentioned, Schuldt (2011) offers a comparison between multi-agent simulation and 

the current centralised process control. He shows that the agent based, autonomous 

control approach can perform better than the centralised human controlled approach 

regarding speed of decisions, reliability and adherence to logistical objectives. Schuldt 

(2011) proposes several advanced concepts, such as team formation between agents with 

similar properties which is intended to reduce coordination effort. These ideas may be 

relevant for future implementations of the simulation model at hand.  

Looking closer at the implementation side, the papers by Hoffa & Pawlewski (2014) and 

Borucki, Pawlewski, & Chowanski (2014) offer relevant input. Both show how agent-

based simulation (ABS) and discreet event simulation (DES) can be combined in one 

simulation model. While the distinct properties of these simulation types will be 

discussed in greater detail in section 3.4, both studies offer a new perspective on agent 

technology in logistics.  

Hoffa & Pawlewski (2014) use agents to model disturbances in supply chains. They 

model both individual transportation units as agents as well as a disturbance itself. This 

allows the enhancement of disturbances with properties, such as the duration of a road 

closure or the area impacted by a thunderstorm. These disturbance agents can 

communicate with a truck agent to announce themselves. The remainder of the model 

such as the unloading and loading is modelled as a classic discreet event simulation 

model. While this is another interesting application of agent-based technology to 

logistics, aside from the representation of transportation units as agents, little more is 

relevant for the problem modelled in this thesis.  

Borucki et al., (2014) describe a simulation model of a production supply scenario in an 

automotive plant. They represent tug trains that carry out replenishment deliveries to the 

production line as agents along with a central control agent. Control remains with the 

central agents which push orders to the tug trains. The tug train agents control their 

activities such as loading, unloading or waiting for new orders via internal states. The 

approach is interesting as it shows how agent-based modelling can also be applied to 

internal logistics. The technical implementation of agents representing transport units 

and the usage of state transition models to represent the inner processes of one agent are 

close to what is being implemented in the simulation model of this thesis. However, 
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from a control scenario point of view, no decentralisation can be observed, leaving great 

parts of the potential of the agent technology unused. 

 

2.3.5.3. Agents in Vehicle Routing Problems 

Looking for studies that apply multi-agent technology to the logistics domain, several 

papers addressing the vehicle routing problem can be found. Vehicle routing problems 

(VRP) can be described as “the problem of designing optimal delivery or collection 

routes from one or several depots to a number of geographically scattered cities or 

customers” (Laporte, 1992, p. 345). The VRP is typically modelled and solved using 

methods from operations research (OR). As it is of the NP-hard type, exact methods are 

limited with regard to the size of the network. However, there is a large number of 

metaheuristic approaches available (Kumar & Panneerselvam, 2012). As it was first 

described as a truck dispatching problem (Dantzig & Ramser, 1959) it naturally bears 

some resemblance to the logistical problem described in this thesis. Looking at the 

subsets of the vehicle routing problems, the so-called pickup and delivery problems, 

seem to correspond best to the supply network at hand.  

Pickup and delivery problems (PDP) can be described as a “class of vehicle routing 

problems in which objects or people have to be transported between an origin and a 

destination” (Berbeglia, Cordeau, & Laporte, 2010, p. 8). An example of a PDP is the 

dial-a-ride-problem, where the door-to-door transport for elderly or disabled people must 

be arranged (Cordeau & Laporte, 2007). There are different subtypes of the PDP 

available, such as one-to-many and one-to-one PDP. 

The supply network under examination in this study could be modelled as a dynamic 

one-to-one PDP. It is important to point out the distinction between static and dynamic 

routing problems. A routing problem is considered static, if all information on demand 

and supply is known before start of execution (Berbeglia et al., 2010). Even though a 

large share of the available algorithms and heuristics only consider static VRP, this 

constraint cannot be satisfied in most practical implementations (Skobelev et al., 2014). 

Particularly for open dynamic scheduling problems and in the presence of uncertainty, 

classic algorithms from operations research and centralised approaches have failed 

(Bouzid, 2003). 



Page | 42  

 

As a result, there have been several studies on addressing VRP and related problems 

with agent-based approaches. 

The most relevant ones are listed below, starting with Kohout, Erol, & Robert (1999) 

who describe an agent based online optimisation system for a vehicle routing problem. 

They model and simulate an airport pickup & delivery service with the intention of 

using agents to address the shortcoming of OR algorithms for this dynamic VRP. This 

study is interesting for two reasons: firstly, it again uses agents to represent the 

individual transportation units, effectively decentralising control of the system. 

Secondly, the study is designed as a comparative simulation, contrasting an established, 

central control algorithm with the newly devised agent-based approach, similar to what 

is intended for this thesis. In their study, Kohout at al. (1999) are able to show that, 

under certain conditions, the agent based approach can outperform the central control 

algorithm.  

Even though this study gives additional validity to the approach chosen for this thesis, 

the study itself cannot be applied directly to the problem at hand. Aside from the 

different scenario and industry certain problems, such as time slotting for example, are 

not relevant for the model at hand, limiting the applicability of the study described.  

Looking at further applications of agent technology to VRP, Sitek, Wikarek, & 

Grzybowska (2014) describe a multi-agent modelling approach for a multi-echelon 

vehicle routing problem. Multi echelon vehicle routing problems are an extension of the 

classical vehicle routing problem. They describe routing for cases where the transport is 

not directly executed from a depot to the customer but is routed through distribution 

centres, requiring planning for each leg of the journey. The research project is described 

as an optimisation problem using an integrated approach of constraint programming and 

mixed integer programming. Agents are used to reduce the combinatorial problem. 

According to the computational tests provided, this contributes to faster solution times 

for complex problems and improves modelling of constraints.  

Even though this study offers another beneficial application of multi-agent technology to 

the logistics domain, in the context of this thesis it has only limited relevance. The first 

limiting factor is the layout of the supply network itself. The network under 

investigation in this thesis does not require any multi-echelon routing as all relevant 
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transports are carried out as “direct shipping” (Sitek et al., 2014, p. 123) which is a quite 

common setup for bulk transports. The second factor is related to what has been called 

identifying “the right level of description” (Bonabeau, 2002, p. 7287). The agents 

employed in the study by Sitek et al., (2014) do not represent the individual 

transportation units as intended in this thesis, offering only limited applicability to the 

problem at hand.  

Sawamoto, Tsuji, & Koizumi (2002) look at the delivery scheduling problem, which is 

closely related to the previously described vehicle routing problem. The practical 

example they provide is creating schedules and assigning orders to a fleet of delivery 

trucks. They propose an agent-based approach as existing algorithms fall short, 

particularly when integrating dynamic rescheduling. They make use of problem 

decomposition and the local perspective offered by agents, dividing the delivery area 

into subsections and assigning a separate agent to each area. A mobile component is 

added as delivery trucks can report back on road conditions and disturbances. The model 

is simulated in a proving system, showing that the proposed approach produces 

meaningful results. 

Reviewing this study in the context of this thesis, the question arises as to why the 

decomposition was not carried out to the fullest extent, meaning modelling the 

individual trucks as independent agents. The way the agents are proposed to be 

implemented by Sawamoto et al., (2002), it could be argued, still constitutes a central 

control approach as all information is fed back to central control agents. Hence no 

decentralised, “bottom up” (Skobelev et al., 2014, p. 3) decision-making is implemented, 

leaving room for the simulation model proposed in this thesis. 

Continuing to look at agent-based approaches for scheduling problems, Bouzid (2003) 

describes an approach to online transportation scheduling using agents. Transport 

scheduling can be viewed as a partial problem of the above mentioned VRP. The 

interesting aspect from this study is the concept, that trucks evaluate their own location 

relative to the order pickup and delivery location, calculating its utility in accepting an 

order. Parts of the order allocation function implemented later in this thesis will build on 

that concept. The paper describes only a theoretical model and does not offer any actual 

implementation or application results.  
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The final study addressing scheduling problems was conducted by Skobelev et al., 

(2014) showing an adaptive scheduling solution by applying a multi-agent approach. 

They equip each agent with an individual cost function, which the agent wants to 

optimise e.g., either reduce cost or avoid penalties, for example. Agents can interact with 

each other, forming effectively a virtual market where they offer their services or buy 

other agents’ services. This generalised approach allows application of the multi-agent 

technology to a variety of scheduling or resource allocation problems.  

The concept of the cost function, or more abstract equipping agents with measurable 

goals, is picked up for the model used in this thesis. Agents will aim to maximise their 

own utility function, deciding for each interaction whether it is beneficial to them.  

 

 

2.4. The Research Questions 

 

2.4.1. Key Literature Overview 

This section serves to provide an overview of the key literature discussed in the 

previous sections. Table 2.1 lists the key papers identified in the literature review along 

with a short summary and the main insights which have contributed to the progress of 

this study. Further, the papers are linked to the relevant literature gaps which will be 

discussed in the section below.  
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Authors Title Summary Key Insights Gap identified 

Davidsson, 
Henesey, 
Ramstedt, 
Törnquist & 
Wernstedt, 
2005 

An analysis of 
agent-based 
approaches to 
transport 
logistics 

Survey study on 
agent-based 
simulation with 
focus on logistics 
and transportation 

Several relevant 
papers identified. 
Implementation of 
maturity index 

Objective gap,  
Implementation 
gap 

Fischer, 
Chaib-Draa, 
Muller, 
Pischel, & 
Gerber, 1999 

A simulation 
approach based 
on negotiation 
and cooperation 
between agents: 
a case study 

Order allocation 
and route 
optimisation for 
road delivery 
scenario 
 

Agents represent 
delivery trucks and 
other logistics 
functions 

Simulation gap 

Sitek, 
Wikarek, & 
Grzybowska, 
2014 

A multi-agent 
approach to the 
multi-echelon 
capacitated 
vehicle routing 
problem 

Agent based 
approach to multi 
echelon VRP. 
Dispatching multi-
customer 
deliveries out of 
central delivery 
centres 
 

Complexity 
reduction through 
problem 
decomposition by 
using agents 

Objective gap, 
Simulation gap, 
Implementation 
gap 

Schuldt, 
2011 

Multiagent 
coordination 
enabling 
autonomous 
logistics 

Coordination of 
inbound supply 
chain of retail 
business 

Agents represent 
sea freight 
containers;  
Comparative 
simulation 

Objective gap 

Kohout, 
Erol, & 
Robert, 1999 

In-time agent-
based vehicle 
routing with a 
stochastic 
improvement 
heuristic 

Agent based 
optimisation 
system for VRP. 
Model based on 
airport pickup & 
delivery service 
company 

Comparative 
simulation, 
contrasting agent-
based with 
established, central 
control approach 

Objective gap, 
Implementation 
gap 

Table 2.1 - Key Literature Overview 

 

2.4.2. Literature Gaps 

To identify the relevant gaps in literature, it is helpful to look back at the research 

objectives as stated in chapter 1 and shown again in Figure 2.3. 
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Figure 2.3 - Research Structure 

The first objective, to understand the challenges to logistics networks and the need for 

autonomous control was clearly evident in the literature and the relevant factors were 

explained above. Considering the second objective, software agents were identified as a 

suitable and accepted way to apply autonomous control to logistics networks. A wide 

overview of studies applying agent technology to the logistics and transportation area 

was provided, addressing this objective.  

Looking however more closely at the research area, as done for Objective 3, the first 

gap in literature, the objective gap can be identified.  

To further explain the research objective gap, it helps to look at the detailed view of 

studies provided in the previous chapter. Even though the studies presented in the 

previous sections provide good general examples of how agent technology can be 

applied to logistics and transportation, they fail to address the problem at hand. Several 

of the papers look at entirely different industries, such as Borucki et al., (2014) showing 

an application from internal logistics or Kohout et al., (1999) demonstrating their 

approach to an airport shuttle problem.  

Others such as Sitek et al., (2014) or Fischer et al., (1999) apply agent technology to 

road freight transportation. However, the subject of their studies is to optimise routes 

and dispatching of multi-customer deliveries out of central delivery centres. No study 

has been identified that applies agent technology to a bulk transportation scenario. 
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Hence, the particularities of that industry, such as high-volume shipments and short-term 

substitutions such as for train transports, for example, are not addressed.  

As the industry differs, the problem addressed also varies. Several studies around 

vehicle routing and delivery scheduling have been identified, such as Bouzid (2003) and 

Sawamoto et al., (2002). However, most offer little input to optimise order and resource 

allocation as required for the problem at hand. Skobelev et al., (2014) and their approach 

based on individual cost functions looks promising, however, again no application to 

logistics has been provided so far. 

Hence, the gap regarding the research objective includes lacking the industry and 

problem focus. However, it is important to include “the right level of description” 

(Bonabeau, 2002, p. 7287) as well, which, as pointed out before, is critical when 

building simulation models. The level of description varies greatly in the papers 

examined, ranging from agents representing whole delivery centres (Sandholm, 1993) to 

individual transport units. As this thesis aims to examine the shift of control to 

individual units, the last level seems to be the ‘right’ level for this purpose. Given that 

most studies listed did not create models at this level of detail, it is important to highlight 

the two studies that did. Schuldt (2011) uses agents to represent individual sea freight 

containers while Fischer et al., (1999) modelled delivery trucks as software agents. 

While both studies prove that the chosen approach is feasible, again they leave enough 

room for the thesis at hand, as they do not address the bulk load and decentralised 

control aspect of the supply network under investigation. 

Summarising the research objective gap, none of the studies presented before addresses 

the right problem, in the right industry context using the right level of description at the 

same time. 

The second gap identified, the simulation gap, results from the fourth objective. 

Objective 4 does not only aim to conduct a simulation experiment but also to compare 

the results side by side to the currently applied control methods in order to validate the 

performance gain. Looking again at the studies listed before, not all of the studies ran 

simulations to apply and verify their concepts. Out of those that did, only two offered 

comparative simulation experiments. A comparative simulation was executed by Kohout 

et al., (1999) and Schuldt (2011). Even while addressing a vehicle routing problem, 
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Kohout et al., (1999) focus on an application out of the public transportation domain by 

simulating an airport pickup and delivery service. Schuldt (2011) offers an example 

from the logistics by simulating inbound container transports. However, this inbound 

supply chain differs significantly from the outbound bulk shipping scenario under 

investigation in this thesis. This leaves room for a comparative simulation of the 

outbound bulk supply network investigated.  

The simulation gap links right to the third and largest gap observed, the implementation 

gap and is connected to both objectives listed before. The gap has been observed by 

several authors of the previously cited studies. Chen and Cheng (2010) for example, 

observed “Most agent-based applications, however, focus on modelling and simulation. 

Few real-world applications are implemented and deployed.” (p.494). Davidsson et al., 

(2005) highlighted a lack of implementation and maturity in their study. They 

considered this important enough to develop a maturity index to rate agent-based studies 

with reference to their implementation status. The maturity index is based on work by 

Van Dyke Parunak (2000) and was extended by Davidsson et al., (2005) to include the 

four categories shown below. 

Maturity level Data quality Implementation scale 

1. Conceptual proposal   

2. Simulation experiment 2.1 Artificial data 2.1.1 Limited scale 

2.2.2 Full scale 

2.2 Real Data 2.2.1 Limited scale 

2.2.2 Full scale 

3. Field experiment  3.1 Limited scale 

3.2 Full scale 

4. Deployed system   

Table 2.2 - Maturity level index by Davidsson et al., (2005). 

According to this definition, a deployed system is understood as an agent-based system 

that is used in a productive environment. A field experiment is distinguished from a 

simulation experiment by the fact that it has been deployed and executed in the actual 

environment where the application is meant to be implemented.  
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Applying this index to the papers analysed before in detail, none of the studies has 

reached actual level 3 or 4. For the survey study conducted by Davidsson et al., (2005) 4 

out of 56 papers analysed achieved such a status, representing 7.1%. Simulation studies 

based on actual data and full-scale account for about 10.7%.  

These numbers help to point out how large the implementation gap in the area of agent 

technology is and how much a study based on real-world structure and data can 

contribute to the further advancement and understanding of that technology.  

Looking beyond agent-based modelling, Taylor, Eldabi, Riley, Paul, & Pidd (2009) 

report similar findings for simulation studies overall. Conducting a survey study in the 

logistics and manufacturing sector, only 6.8% of all papers are motivated by real-world 

problems and 5% demonstrate a benefit if they are implemented. These numbers further 

stress the need for simulation studies with a practical connection and contribution.  

Having identified three gaps in the relevant literature, namely the objective, the 

simulation and the implementation gap, the following section will present the resulting 

research questions required to achieve the aim of this study. 

 

2.4.3. Research Questions 

To achieve the research aim stated in chapter 1, a total of four objectives were identified. 

As shown in the previous section, the first two objective could be achieved by analysing 

the literature presented. At the same time three gaps were identified, relating to the two 

remaining research objectives. The identified gaps lead to the formulation of two 

research questions which are provided below.  

The objective gap concluded, that considering the supply network under observation, no 

study was addressing the right problem, in the right industry context using the right level 

of description at the same time. Therefore, the first research question to be answered in 

this study is as follows: 

RQ1: Can agent-based modelling be used to apply autonomous control to an 

actual bulk truck transportation network? 

The first research question will at the same time help to reduce the identified 

implementation gap by creating a simulation model using data from an actual supply 

network and enabling a full-scale simulation experiment.  
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The second research question relates directly to the fourth research objective and the 

underlying research aim, intending to show a that autonomous control can improve the 

performance of logistics networks. The second research question is therefore: 

RQ2: Can autonomous control improve the performance of bulk supply 

networks over existing approaches? 

To evaluate the performance, a comparison between autonomous control and the 

currently used control methods is essential. This comparison will address the final gap 

listed above. The simulation gap stated, that very few studies were identified in 

literature, that offered a comparative simulation approach, allowing a grounded 

understanding of the performance of autonomous control in logistics.  

The following chapters will aim to answer these research questions, starting by 

describing the underlying research methodology. 

 

 Figure 2.4 - Research Structure incl. Research Questions 
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3. Research Methodology 

 

3.1. Philosophical View 

The intent of this chapter is to explain and justify the research methodology chosen for 

this DBA work. According to Creswell (2014), the research methodology or research 

approach can be broken down into three main components: the philosophical worldview, 

the research design and the research method. Following this division, this first section 

provides insight on the philosophical viewpoint of the author and this research work.  

The philosophical viewpoint or epistemology (Crotty, 1998) can be described as “a basic 

set of beliefs that guide action” (Guba, 1990, p. 17). As this hidden philosophical idea 

(Slife & Williams, 1995) influences the research work it should be openly discussed to 

put the research in context of the philosophical underpinning. The author’s philosophical 

viewpoint is shaped by the research area, the authors own experience as well as opinions 

from advisors, mentors and similar stakeholders in the research (Creswell, 2014). The 

research area of logistics and transportation planning does not dictate or favour a 

particular research approach and underlying philosophy. Looking at the previously cited 

survey study on agent-based models in logistics, both quantitative and qualitative studies 

can be found. However when looking for studies addressing or measuring performance, 

a strong tendency towards quantitative research can be reported (Davidsson et al., 2005). 

Along with the authors professional background and actual and assumed expectations, 

this has had an influence on the philosophical viewpoint adopted in this thesis. Coming 

from a world of facts and figures, the positivistic research philosophy feels natural to the 

author to a considerable extent. Statements such as scientific knowledge being the only 

valid form of knowledge (Larrain, 1979) and facts being the only possible objects of 

knowledge (Egan, 1997) resonate well with the author. Positivism is rooted in the 

empirical approach of the natural sciences. It is based on a realist and foundationalist 

epistemology (Guba & Lincoln, 1994), viewing the world as existing independently of 

our knowledge of it (Grix, 2010). This objectivity leads to the concept that truth can only 

consist of what can be observed and experienced. This notion leads to a focus on 

quantitative methods, aiming to measure and explain phenomena with numerical data. 

This philosophical position is clearly reflected in the research approach chosen for this 

thesis. As laid out above, the research questions at hand revolve around measuring and 
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improving performance of logistical networks, which suggest a quantitative design 

rooted in a positivistic worldview. 

However, there are aspects of a purely positivistic viewpoint, such as the above 

described concept of truth that conflict with the research approach at hand. Looking at 

the complete research string, the author is clearly rooted in an objectivistic ontology, 

believing that there is an absolute truth which can be obtained by observation and 

empirical methods. Applied to the logistical models described before, this signifies that 

there is an optimal configuration for each control method and scenario, maximising 

overall network performance. However, finding this optimal solution for a given 

network configuration may be arguably infinitely complex based on currently available 

methods and their limitations such as lacking computational power. Asking the question 

‘what can be known’ leads to a slightly different philosophical viewpoint. Post-

positivism acknowledges that reality can never be fully known and efforts to understand 

it are limited by the capabilities of human beings (Guba, 1990). Post-positivism 

developed as a response to the challenges arising from positivism, particularly the focus 

on knowledge to be erected on an absolute secure foundation. By assuming an objective 

reality but at the same time recognising that it is imperfect (Dias & Hassard, 2001) post-

positivism provides an answer to the previously mentioned dilemma, that there is an 

optimal solution but it cannot be found with the current methods or resources. Post-

positivism would also accept that, as knowledge evolves, there will be new solutions 

available and old ones will potentially be rejected. Therefore, the post-positivistic stance 

would recommend to continue researching and testing (Phillips & Burbules, 2000). In 

other words, post-positivistic research accepts the researcher’s fallibility, meaning that it 

is possible to approximate but the researchers may never fully know reality (Trochim & 

Donnelly, 2001). 

Another interesting aspect of post-positivism is, that unlike under a pure positivistic 

research philosophy, observations made do not have to directly support a particular 

theory (Grix, 2010). This approach is beneficial for this research work as software-

agents may show emergent behaviour as mentioned above (Bernhardt, 2007; Macal & 

North, 2014). This holds true for the whole area of artificial intelligence and machine 

learning, where unplanned or unpredicted behaviour is not only a possibility but rather a 
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desired outcome of the autonomous data analysis. Results may yield the desired benefits 

and are reproducible; however, the mechanisms behind these results are not completely 

understood. These data-driven discoveries (Waller & Fawcett, 2013) are, however, vital 

to advance knowledge and understanding of this research area and should not be 

dismissed just because they currently cannot be explained by natural science in a 

positivistic sense. Hence post-positivism offers some opportunities for the thesis at hand. 

The research approach for this thesis is clearly rooted in an objectivistic ontology, 

adapting the above-mentioned aspects of a post-positivistic worldview to widen the 

philosophical horizon of the research approach while addressing key areas of the 

underlying research topic. 

 

3.2. Research Approach & Design 

Having explained the philosophical viewpoint underlying this thesis, the research design 

and methods will be discussed next in order to formulate the research approach 

(Creswell, 2014). Considering the strong objectivistic tendency in the researcher’s 

philosophical worldview, it will not come as a surprise that a quantitative research 

design was chosen to conduct this thesis. The thesis applies an experimental research 

design to answer the proposed research questions. The experiment compares the effect 

of different control strategies on the supply network at hand. The control method will 

thus represent an independent variable, influencing several dependent variables, such as 

the rate of order completion or the reliability of the service provided (Creswell, 2014). 

The research method enabling this experiment is a simulation. As simulation allows to 

execute the experiment several times with the exact same parameters, hence enabling 

randomisation and providing complete control over all variables, the research design 

fulfils the criteria for a true experiment (Walliman, 2006). 

While for the main part of the study a quantitative research approach has been chosen, 

elements and methods from qualitative research are applied when required. For example, 

interviews were being conducted with subject matter expert from the client side. These 

interviews helped to establish face validity by asking, whether the model and its 

behaviour are reasonable (Sargent, 2013). Close interaction with the client and SME is 
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vital to a successful simulation study, be it to transfer knowledge and data (Robinson, 

2008b) or to ensure understanding and acceptance of results (Robinson & Bhatia, 1995).  

The qualitative means, such as interviews and workshops used to enable this 

communication do not, however, shift the research approach towards the qualitative end 

of the continuum (Newman & Benz, 1998) but are rather a part of a sound quantitative 

design (Robinson, 2008b).  

 

3.3. Simulation as Research Method 

Simulation can be described as a virtual experiment (Carley, 2001), allowing 

“experimentation on a computer-based model of some system” (Pidd, 2004, p. 10). In 

this study, simulation enables the experiment to compare the effect of different control 

methods on the supply network at hand. Simulation has been defined as a method to use 

computer software to model real-world processes, systems or events (Law & Kelton, 

1991). Highlighting further the execution aspect of simulations, Bratley, Fox, & Schrage 

(2011) describe simulation as “Driving the model with certain inputs and observing the 

corresponding outputs” (p. 2). This execution is controlled by variables that can be 

manipulated (Berends & Romme, 1999). Birta & Arbez (2013) help to better define the 

relationship between modelling and simulation, calling the model an object which serves 

as a vehicle for experimentation. This experimentation is the simulation activity, which 

makes simulation a suitable method for experimental research.  

Simulation as a research method has been chosen for a variety of reasons. One of the 

primary motivations was its ability to generate data, which can be analysed subsequently 

(Axelrod, 1997). The company serving as real-world example did not have an integrated 

IT system, when the study was conducted. As a result, no end-to-end empirical data 

model of the supply chain was available for analysis.  

In such situations, where sufficient empirical data is hard to acquire, simulations can 

offer significant benefits (Happach & Tilebein, 2015). Along with this ability comes the 

flexibility to repeat experiments with different settings of control variables in the same 

environment (Berends & Romme, 1999). This would be difficult in a real-world 

environment as each change may disrupt actual business operations (Greasley, 2008), 

posing a potential economic risk for the organisation. Simulation experiments provide 
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benefit whenever experimentation with the actual system is too dangerous, too 

disruptive, too costly or irreversible (Birta & Arbez, 2013). Additionally, input 

parameters and environmental factors would inevitably vary between individual 

experiment runs, impacting the comparability of results obtained (Axelrod, 1997). 

Davis, Eisenhardt, & Bingham (2007) describe simulation as a computational laboratory, 

which allows for the study of the effect of certain variables on the output. The flexibility 

simulation offers in manipulating input parameters and control variables paves the road 

to the “what if” (Happach & Tilebein, 2015, p. 249) question. This ability to not only 

explore new configurations but also test existing ones (Schultz, 1974) represents a 

significant and distinct benefit to scientific investigation and business. Axelrod (1997) 

even claims that simulation can be seen as a third research method besides induction and 

deduction. On the application side, the ability to validate existing control concepts and 

associated assumptions provides substantial benefit as documented in the subject matter 

expert interview in section 7.3 shows. Closely associated with the ability to experiment 

is the simple fact that simulation allows to compress time (Cohen, 1960; Shubik, 1960). 

As shown in this thesis, processes that take several weeks to execute can be simulated 

within minutes, given there is enough computational capacity available. In addition, 

Cohen (1960) describes how simulation can help to facilitate communication between 

different research areas by providing a common and easily accessible language. It helps 

to abstract underlying theoretical concepts and improve the transparency thereof 

(Sterman, 2000). The author would like to add that this is particularly true for the 

communication with stakeholders outside academia, such as in the case of this DBA 

thesis, the business partners involved. Having visual representations and graphs from 

simulation (Happach & Tilebein, 2015) greatly contributes to comprehensibility of 

communication between these groups.  

As with any research method, simulation faces certain challenges and shows distinct 

weaknesses that need to be addressed. Happach & Tilebein (2015) offer a list, naming 

data validation, parameter estimation, the need for assumptions and the precision in 

formulation as the most important ones. As most of these challenges need to be 

accounted for during the design phase of the simulation model, the details and necessary 

countermeasures in this simulation study will be laid out in sections 4.1 and 4.4.  
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To summarise, simulation emerges as a research method for the research problem at 

hand, as it manages to address the issue of limited data availability while providing the 

ability to execute comparable experiments.  

 

3.4. Types of Simulation  

 

3.4.1. Classification of Simulation Types 

When trying to categorise simulation, the structured overview introduced by (Berends & 

Romme (1999, p. 578) provides a good starting point: 

 

Figure 3.1 - Simulation categories (Berends & Romme, 1999, p. 578) 

Figure 3.1 depicts the evolution of simulation. The first distinction is between physical 

and mathematical simulations, where physical simulations refers to experimentation 

with real objects (Berends & Romme, 1999). An area where this is quite common is with 

simulators, where at least a part of the physical system is replicated to enhance realism 

(Birta & Arbez, 2013). Mathematical simulation models, on the other hand, describe the 

simulation model using mathematical equations (Banks, Carson II, Nelson, & Nicol, 

2005). These equations can be classified into analytical and numerical formulas. 

Analytical simulation models aim to provide single optimal solutions whereas numerical 

models focus on describing system behaviour (Forrester, 1971). As Banks et al., (2005) 

point out, analytical models use mathematical reasoning to solve the model whereas 
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simulation models employing numerical methods are not solved but ‘run’ using 

computational procedures.  

Deterministic models have a known set of input variables which lead to a unique set of 

outputs (Banks et al., 2005). Unlike stochastic simulation models, no random aspects, 

such as random interarrival or service times are considered (Birta & Arbez, 2013). Due 

to these random events, outputs from stochastic simulation models must be treated as 

statistical estimates (Banks et al., 2005), meaning that simulations experiments need to 

be carried out several times in order to collect and aggregate sufficient data to arrive at 

meaningful results (Birta & Arbez, 2013). 

Aside from the above introduced classification, there are other approaches to 

categorising models or systems. Some are not particularly relevant for simulation 

models, such as the distinction between linear and non-linear systems, as the 

simplifications based on the mathematical property of linearity have no consequence in 

simulation (Birta & Arbez, 2013). The distinction between static and dynamic models, 

on the other hand, is interesting. Static models do not evolve over time (Birta & Arbez, 

2013) whereas time is a central aspect in dynamic models. While both static and 

dynamic models can be found in simulation, the majority and, particularly, the 

simulation model built for this thesis are dynamic models. 

A far more important distinction between types of simulation models is the classification 

into discreet and continuous models. Discrete event simulation (DES) models are 

described as models of systems where the state variables change only at discreet points 

in time (Banks et al., 2005). In these simulation models time advances in discrete 

intervals which are unequal (Birta & Arbez, 2013). As random phenomena play a central 

role in discreet event models (Birta & Arbez, 2013), a very common field of application 

are queuing models with random interarrival times, such as the model of a service 

counter in a store, where new customers arrive in random intervals. The state of this 

model would then change each time a customer arrives or leaves the queue to be served 

for example.  

In continuous time dynamic models on the other hand, the state changes occur 

continuously (Birta & Arbez, 2013). 
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It is important to point out, that when looking at real-world systems, this distinction is 

not clear cut. Most systems show properties of both discreet and continuous behaviour, 

however, typically one will dominate, allowing the proposed classification (Law & 

Kelton, 1991). In that context, system dynamics has to be mentioned as another 

approach to simulation modelling. System dynamics focuses on the interaction of 

elements that form a system over time (Forrester, 1971). Relying on mechanisms such as 

feedback loops, stocks and flows, it is particularly suited to model continuous and non-

linear systems (Sweetser, 1999). However, as Ossimitz & Mrotzek (2008) point out, 

even though system dynamics is commonly associated with continuous time, it can be 

applied to both discreet and continuous system.  

Similarly, there are simulation models that apply and combine both discreet and 

continuous elements in the same model (Birta & Arbez, 2013).  

While system dynamics has been used in logistics and supply chain modelling (Tako & 

Robinson, 2012), it is often associated with strategic level decision making by taking a 

holistic view of the enterprise (Rabelo, Helal, Jones, & Min, 2005). Looking at the 

research problem at hand, the local perspective of the individual transportation units, 

along with their behaviour, is the focus of this simulation model. For this level of low 

abstraction, system dynamics is not considered the best choice as confirmed by 

Borshchev & Filippov (2004). 

The following section will introduce agent-based simulation and list its advantages over 

DES for the simulation model build in this thesis.  

 

3.4.2. Agent-Based Simulation 

During the 1990s, a third type of simulation emerged alongside discreet event and 

continuous time simulation, named agent-based simulation (ABS) (Siebers et al., 2010). 

Agent based simulation can be understood as “a modelling and computational 

framework for simulating dynamic processes that involve autonomous agents” (Macal & 

North, 2014, p. 6).  

Siebers et al., (2010) offer another definition, highlighting the relationship between ABS 

and agent-based modelling (ABM): “ABS is the process of designing an ABM of a real 

system and conducting experiments with this model” (p. 206). ABM and ABS have 
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gained widespread popularity across a variety of scientific areas and practical 

applications (Bonabeau, 2002; Macal & North, 2007), as they have the ability to 

effectively address the increasing complexity and distributed character of systems and 

organisations (Fischer et al., 1999). Macal and North (2007) add, that with increase in 

computing power and availability of micro-level data, ABM allows problems to be 

addressed that could not have been modelled with previous methods. Picking up on that 

micro-level argument, Bonabeau (2002) argues, that “ABM is a mindset more than a 

technology” (p. 7280), meaning the concept to model a system from the perspective of 

its units, applying a bottom-up point of view. This approach allows a more natural 

description of systems, describing the behaviour of individual entities, such as 

employees or shoppers directly instead of relying on equations or averages to abstract 

behaviour (Bonabeau, 2002). At the same time it allows to capture the complexity 

arising from the interactions of these entities (Siebers et al., 2010). The ability of the 

agents to take individual actions and interact with one another when appropriate may 

lead to emergent behaviour (Bernhardt, 2007). This is another benefit offered by ABS, 

which offer an inductive approach (Axelrod, 1997) by allowing insights into and 

knowledge about the system, beyond the sum of its parts (Bonabeau, 2002). As a result, 

ABM are frequently used to model decision-making and social and organisational 

behaviour.  

Finally, ABS offer a high degree of flexibility, due to its setup of individual agents, 

which can quite easily be extended or modified (Van Dyke Parunak, 1999). This, 

together with an “ease of implementation” (Bonabeau, 2002, p. 7280) provides good 

reasons to use ABS and contributes to its increasing popularity. The benefits and 

limitations of ABS correspond to a large extent to the list provided for individual agents 

in section 2.3.2. 

As with any new approach there is discussion about the delineation from existing 

approaches and potential overlaps. For ABS the discussion is particularly strong with the 

DES research community, some of which go as far as to claim that ABS may be 

redundant to DES modelling (Siebers et al., 2010). While there certainly is some 

overlap, Siebers et al., (2010) provide a quite comprehensive list of differences between 

DES and ABS modelling. The most relevant aspects are the difference in focus. DES 
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focuses on top-down modelling of the system, while ABS are able to model individual 

entities and their interactions. Another difference is in the level of control, with DES 

being commonly being organised in a central control thread, while ABS models enable 

decentralised control which resides with each agent. The entities in DES models are 

typically passive, while “something is done to them” (Siebers et al., 2010, p. 207) 

whereas in ABS the agents, possess intelligence and take actions themselves.  

Having explained the benefits of agent-based simulation in detail, the question remains 

as to why ABS was selected for this thesis.  

Following “good modelling practice” (Siebers et al., 2010, p. 206) the research method, 

or more precisely the type of simulation, was chosen with the research questions in 

mind. Looking at the research questions, the two key phrases influencing model 

selection are “autonomous control” and its application to a “logistics network”. As 

indicated before, agent-based simulation models are uniquely equipped to model 

decentral control structures (Siebers et al., 2010), with each agent acting as independent, 

self-directed entity showing complex behaviour (Bernhardt, 2007). By representing the 

trucks entities, the research problem shows a natural division into agents (Macal & 

North, 2014). Beyond that, ABS are particularly suited for spatially distributed problems 

(Axtell, 2000) where the location of agents is not fixed (Bonabeau, 2002) which is 

clearly the case for the truck agents. Van Dyke Parunak, Savit, & Riolo (1998) refer to 

both the physical space as well as the interaction space, which refers to the agent’s 

ability to communicate across distance. This includes all the remaining agents in the 

network at hand, which all interact across distances, forming dynamic relationships 

(Macal & North, 2014). These interactions are complex, non-linear and discreet, 

fulfilling another requirement for ABS (Bernhardt, 2007).  

The benefits of software agents for logistics have been extensively discussed above. 

When looking for applications for ABS, Siebers et al., (2010) list once more explicitly 

supply chains as natural application areas for ABS particularly for their ability model 

dynamic processes and adapt quickly to changing requirements. Bernhardt (2007) 

mentions in this context disaggregated systems such as transportation systems benefit 

from ABS.  
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This list of characteristics shows the “intimate connection” between the model and the 

nature of the problem which is to be solved (Birta & Arbez, 2013, p. 4). Hence in this 

case, the capabilities of agent-based models, make it a perfect match for the system 

under investigation.  

 

3.5. Formatting and Testing an Agent-Based Simulation Model 

 

3.5.1. How to Build a Simulation Model 

The process of creating and testing agent-based simulation models follows the general 

steps of model creation with the addition of some agent-related activities (Macal & 

North, 2014).  

First the general steps to create a simulation model will be outlined, before focusing on 

the particularities of agent-based models. There are several approaches and guides 

available on how to create a simulation model, such as Shannon (1975), Law & Kelton 

(1991), Banks et al., (2005) and Birta & Arbez (2013). As Robinson (1997) points out, 

there is much similarity across these approaches, with each one describing a series of 

steps to be executed in some logical sequence. There is a level of agreement that not all 

steps must be carried out strictly sequentially and that iterations are required (Robinson 

& Pidd, 1998). Exemplarily for the individual approaches, Figure 3.2 shows a frequently 

cited model by Law (2003) which is used to explain the basic steps and contrast relevant 

differences. 
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Figure 3.2 - Seven step approach for conducting a successful simulation study (Law, 2003) 

The first step is to formulate the problem that is to be addressed by the simulation 

model. Also described as project description, this initial step helps to set the scope (Law, 

2003) and provide the objectives for the simulation project at hand (Banks et al., 2005). 

This activity is highly relevant, as “it is not meaningful to undertake any modelling 

study without a clear understanding of the purpose for which the model will be used” 

(Birta & Arbez, 2013, p. 7). It is important to mention that this step may require 

considerable work, as the initially stated problem descriptions by project sponsors or 

SME may lack the clarity and precision required to create a meaningful model (Law, 
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2003). Additionally, the problem and the understanding of it may change during the 

course of the simulation study, highlighting the importance of an iterative approach to 

simulation modelling (Robinson, 2008b). In this thesis, the research questions serve as 

problem formulation.  

For the second step some authors choose to separate the tasks of data collection and 

model conceptualisation (Banks et al., 2005) while other follow Law’s example and 

combine them. Data collection and building the conceptual model are closely interlinked 

(Shannon, 1975), both depending on and influencing one another throughout the 

construction phase of a model. For both activities, close interaction with the client is 

vital. The data and information required to create the conceptual model is collected from 

subject matter experts on the client side (Robinson, 2008a). Ideally, this is an iterative 

process with the conceptual model serving as a means of communication between the 

modeler and the client (Pace, 2002). The conceptual model can be understood as a 

formalised and abstracted version of the system under investigation (SUI) (Birta & 

Arbez, 2013). Constructing any model of a system is sometimes characterised “as much 

art as science” (Banks et al., 2005, p. 14). With a model being defined by Shannon 

(1975) as “a representation of an object, system or idea in some form other than itself” 

(p. 7), the challenge arises on the right level of detail of the representation. As a 

consequence, Law (2003) states, that “a simulation model should be a simplification or 

abstraction of the real system, with just enough detail to answer the questions of 

interest” (p.68). The reason for this focus on the level of detail is that too much detail 

increases complexity while not enough detail may render the simulation useless with 

regard to the effects to be demonstrated (Birta & Arbez, 2013). While there is no silver 

bullet to achieve the right level of detail, it is important to keep the goal of the 

simulation study in mind (Birta & Arbez, 2013) when collecting data and involve model 

users and experts early on to verify the model (Banks et al., 2005). 

This leads directly to the third step in the diagram above, which describes the validation 

of the conceptual model before moving on to program the simulation model in the next 

step. As validation and verification are two essential tasks in any model design it is 

important to clearly distinguish these tasks. Verification asks whether the conceptual 

model has been correctly translated into the simulation model, e.g., if the software 
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product was built right (Sargent, 2013). Whereas validation asks the question, whether 

the right product has been built or, in other words, whether the model is an appropriate 

representation of the SUI (Law, 2003). Again, these questions can only be answered in 

the context of the simulation study’s objective as no model has “universal applicability” 

(Birta & Arbez, 2013, p. 49). Validation and verification should therefore happen as 

early as possible in the simulation study and continue as a reoccurring activity, to ensure 

the model’s accuracy (Banks et al., 2005). Both verification and validation build the 

client’s confidence in the model (Greasley, 2008) and thus help to establish the 

credibility of the model (Birta & Arbez, 2013). Credibility can be understood as validity 

of the model from the perspective of the client (Robinson, 2008a). It indicates whether 

the results of the simulation are accepted by SME or sponsors of the simulation study 

(Law, 2003). It is important to point out that a credible model may still be invalid, while 

on the other hand a valid model may not be considered credible. 

Once credibility is established and both the modeller and the client are satisfied that the 

model is valid, experimentation may begin (Robinson & Bhatia, 1995). The results from 

experimentation are documented and presented to the client. To consider the simulation 

study successful, the results should be understood and accepted by the client (Robinson 

& Pidd, 1998).  

Taking a look at the overall simulation model creation process, two aspects can be 

observed. The first one is that the process contains several feedback loops which make it 

necessary to acknowledge that iteration is a natural and required element of simulation 

modelling (Robinson & Bhatia, 1995).  

The second aspect is the central role of the client in the modelling and simulation 

process. The client can be understood as “people for whom the project is performed” 

(Robinson & Pidd, 1998, p. 200). These people may take on different roles, from 

sponsor to subject matter expert to model user (Greasley, 2008). They are required 

throughout the course of the project as they provide information and serve to validate the 

model.  

Engaging them early and frequently in the model creation and simulation process helps 

to increase confidence in the model and its results (Greasley, 2008). 
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These observations are true for any simulation study, even while the individual steps 

may vary, as the next section on agent-based simulation modelling will show.  

 

3.5.2. Approach to Agent-Based Simulation Modelling 

While the general steps in creating a simulation model are similar, tasks on agent design 

and agent behaviour need to be considered. While the list of approaches and 

development models is considerably shorter, two approaches will be highlighted here.  

The first is the approach by Macal & North (2014) who offer a development process for 

agent based models, that accounts for agent related activities, as shown in Figure 3.3. 

 

Figure 3.3 - Agent based model development process (Macal & North, 2014) 

While differing significantly from the previously described approach, it offers two 

aspects, that the author believes serve well in the context of this thesis. First, the process 

starts at a prototype, which is in line with the approach chosen for this simulation study 

and reflects well the current state of art in software and product development (Schwaber 

& Beedle, 2002). Secondly, the development process is iterative, looping from the 

prototype across all relevant activities to the validation and verification tasks and back 

again. This highlights the previously mentioned need for constant validation and close 

interconnection to users and SME of the model.  

The second design approach is the ODD protocol proposed by Grimm et al., (2010). The 

ODD (Overview, Design concepts and Details) protocol was introduced to provide a 

standardised and more complete way to describe agent-based models (Grimm et al., 

2010). While the standardisation effort and its success are not within the scope of this 
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thesis, the protocol offers a valid framework of steps to describe and build agent-based 

models. The main elements of the protocol are: 

1. Purpose 

2. Entities, state variables, scales  

3. Process overview and scheduling 

4. Design concepts  

5. Initialisation  

6. Input data 

7. Sub-models 

An in-depth analysis of the framework can be found in Grimm et al., (2010). Looking at 

the sequence of steps, certain similarities to the general approach to modelling can be 

found. Again, the first step highlights the importance of clearly identifying the problem 

at hand (Grimm et al., 2010). The next step targets the particularities of agent-based 

models, addressing the identification and description of entities in the model. This 

explicitly includes both agents and the environment along with spatial units followed by 

a dedicated step describing the processes and scheduling mechanisms used in the model 

(Grimm et al., 2010).  

These steps together with ideas from the previously shown approaches led to the model 

creation approach depicted below in Figure 3.4. The approach is based on the seven 

steps approach shown earlier while incorporating central elements relevant for the 

creation of agent-based models. This approach is followed in the creation of the 

simulation model for this thesis. 
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Figure 3.4 - Integrated simulation model creation approach 

The approach starts again with a clear formulation of the model’s purpose and 

objectives, which is reflected in this thesis by the research questions. Next, a conceptual 

model as abstraction of the system under investigation (Birta & Arbez, 2013) is created. 

The difference to the approach described before lies in the tasks required to create this 

conceptual model. The three tasks, data collection, agent and environment design and 

process overview are closely linked in a feedback loop. The tasks can and will happen in 

parallel with the outcomes of one task influencing the others. Data collection being a key 

task for the reasons listed before. The second task, agent & environment design is 

unique to agent-based simulation models. As agents play a central role in ABS models, 
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identifying the entities which are to be represented as agents in the model is crucial 

(Macal & North, 2014). This task is closely related to the level of granularity chosen for 

the model. While this is important in any model, it is even more critical in agent-based 

models. Agents act as decision makers in an ABS model (Macal & North, 2014) driving 

models by their behaviour and interactions. Therefore, not having the right level of detail 

(Bonabeau, 2002) may render a model useless for its purpose. Along with the agents, the 

environment in which they reside, and its properties need to be defined. This can be 

physical representations such as GIS models but also populations or organisations and 

their boundaries (Grimm et al., 2010). The third important task in creating and refining 

the conceptual model is the process overview. This task aims to answer the question 

“which entity does what and in what order” (Grimm et al., 2010, p. 2764). Again, the 

process flow is relevant in any simulation. In a DES model for example, the process is 

explicitly built into the model. In an ABS model, agents are allowed a range of 

behaviour. The individual agent may then decide how to interact leading to emergent 

behaviour, e.g. behaviour that was not explicitly built into the model. This is a strength 

of ABS but makes it even more important to clearly describe and test the desired 

processes when creating a model. 

Testing is an important aspect of building any model. Therefore, the next step after 

having built a conceptual model is to create a prototype. In the approaches above this 

step is described as translating the conceptual model (Banks et al., 2005). The author 

chose to name the task ‘create prototype’ instead, to emphasise the temporary and 

iterative nature of the activity. The prototype is developed based on the conceptual 

model and then verified against the SUI. As indicated by the arrows in the figure above, 

findings from verification and validation activities are fed back into the conceptual 

model, improving the model and leading to a refined version of the prototype. This loop 

is carried out until the prototype has the desired quality and represents adequately the 

system under investigation. Only then has this prototype become the model to be used in 

the simulation experiments designed. 

The next chapter will therefore describe the creation and validation of the simulation 

model using the approach described above. It will start with the data collection on the 

system under investigation, followed by the agents and the environment before offering 
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an overview on the processes. The prototype created and the verification of the same 

will complete the chapter.  
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4. The Simulation Model 

 

4.1. Data Collection on the System Under Investigation 

According to Greasley (2008) data collection is “one of the most important and 

challenging aspects of the simulation modelling process”(p.39). While simulations may 

be able to generate data from simulation runs, they do require input data to build the 

simulation model and output data to validate it (Robinson & Bhatia, 1995). 

For the system under investigation, data collection was particularly challenging. The 

company under investigation did not have in integrated IT system at that point in time, 

meaning that data was highly compartmentalised and distributed in information silos. 

Data was stored in individual spreadsheets and databases across different departments 

and functional areas. As very little data was readily available in a reusable format, the 

author needed to collect much of the required information first hand from a wide range 

of data sources (Greasley, 2008). This included expert interviews, observations on-site 

and through participation in meetings, as well as disaggregation and analysis of 

historical data. Fortunately, as this thesis was being created alongside the author’s work 

as a consultant, access to both logistics sites and personnel was provided frequently. To 

give an example, the author took part in weekly transportation planning meetings held 

by the client, allowing first hand insight into the order allocation process and validation 

of quantity structures.  

However, as much data was gathered through interviews and interactions with subject 

matter experts, data validation was a critical factor in the data collection process. 

Deviations are to be expected when interviewing SME, as each expert may have a 

different view of a particular process or problem (Robinson, 2008b). Therefore, data was 

tested for plausibility and accuracy by cross referencing it with other sources and 

validating it with other experts, particularly for extreme values or outliers (Sargent, 

2013). For example, the loading and unloading times at the plants are based on 

discussions with plant managers and were validated against first hand observations 

during site visits. Nevertheless, during validation of the prototype modelled, significant 

deviations were observed by other SMEs. That led to another round of interviews, 

during which a legacy database from one of the weighing systems was identified. This 
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historical data could be used to further validate and adjust the distributions employed for 

the model, leading to credible results. 

This demonstrates that data collection, again, was an iterative process, as data 

requirements and understanding changed as the model evolved (Greasley, 2008).  

A positive aspect that can be derived from the extensive data collection and validation 

process for this model, is the resulting close interaction with a wide range of SMEs and 

stakeholders from the client side. The need for close collaboration and frequent 

exchange of information led to the establishment of structures and forums where the 

author presented his progress and collect valuable feedback, such as, for example, a bi-

weekly simulation status meeting. The close cooperation between client experts and the 

author in the role of modeler, not only facilitated the validation process as described in 

section 4.4, it also helped to achieve credibility of the simulation model and its results 

(Greasley, 2008). 

 

4.1.1. Supply Network Structure 

The simulation model created for this research project is based on a real-world example. 

The system under investigation is the outbound supply chain of a company that is 

producing and distributing fertiliser products. The supply chain for the distribution of 

these final products can be divided into three major parts, commonly referred to as 

transportation legs: land transport from production plant to the port of export, ocean 

transport to destination harbour and onward land transport to the final customer. The 

company produces and distributes three main product groups, namely dry bulk material, 

liquid bulk material and packed material which is transported in standard sea freight 

containers. The dry bulk materials are both directly sold to customers as well as being 

used in several downstream products manufactured by the company itself. 

For this thesis the focus is on the first leg of the supply network, the inland 

transportation from the production plant to the ports of export as this part seems to offer 

the greatest potential for improvement by autonomous control.  

The inland transports are executed using both road and rail transport capacities. Rail 

transportation is preferred over truck transports as it offers greater volumes at a 

significantly lower price. However, at the same time the dependency on train transports 
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constitutes a large part of the problem at hand. The execution of the train service is 

highly unreliable, as a result causing massive fluctuation in the demand for truck 

transports, which are used to substitute missing train capacity. 

Hence the primary area of interest for this thesis will be the road transports carried out 

by lorry trucks. There are a large number of individual transport units that can and need 

to be coordinated. In the current setup in the real world, trucks are ordered and 

dispatched centrally according to a given production plan. This constitutes a classical 

central control setup, which will be modelled as a reference and serves as baseline to 

compare performance of the autonomous control methods. 

The idea for implementing autonomous control in this context is that each truck 

constitutes an individual logistical unit. Each logistical unit can make decision, such as 

which transport order to accept or which route to take. The trucks as logistical 

transportation units will be represented as individual software agents in the simulation 

model. As laid out during literature review, this concept has been successfully applied to 

the logistics area (Fischer et al., 1999). 

Only dry bulk transports will be studied. Transports for liquid bulk are not considered as 

they constitute only a comparatively small portion of the overall transport volume. 

Further, the transport medium used (both train and truck) require specific liquid 

chemical containers, offering very little potential for interchangeability of transport units 

and thus limited room for improvement through autonomous control.  

Container transports are ignored in the model as well for the following two reasons. 

Again, the volume is significantly smaller when compared to the bulk business, 

signifying that business impact of an optimisation here is comparatively smaller. The 

second reason considers the contribution of this thesis to theory. Autonomous control in 

container transport scenarios has been extensively studied by Schuldt (2011), for 

example.  

Hence the simulation model reflects the inland part of the outbound supply chain, which 

is tasked with moving finished goods from the production sites to the port locations. As 

dry bulk products have a low unit price, they need to be moved in large quantities to 

allow sale on level of vessel loads.  
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Most products shipped are non-toxic and not susceptible to weather conditions such as 

rain or exposure to sun light. Therefore, the inland transport is carried out by regular 

lorry trucks or bulk train cars not requiring special or custom transportation equipment. 

These properties positively affect the other primary logistical functions (Gudehus, 

2012a) as well. For example, storage of the product on the production sites is not a 

major concern as sufficient space is available and material can be stored in the open or 

in large covered bulk warehouses. At the port facilities, however, warehouse capacity is 

limited as the space requirement for storing significant amounts of the products together 

with the high land cost at most commercial ports create a significant constraint.  

The demand situation typical to commodity markets represents a further challenge to the 

supply network. Even though long-term framework contract exists, fluctuating market 

prices and spot markets (Seifert, Thonemann, & Hausman, 2004) lead to frequent last 

minute order closures. This is aggravated by the fact that bulk sea freight relies largely 

on so called tramp transports, meaning that individual contracts for each port to port 

connection are negotiated (Lun et al., 2010). In this market, large last-minute discounts 

are often granted to avoid unused capacities on vessels. From a supply chain point of 

view, these two properties of the bulk shipping market, reduce lead times and increase 

pressure on planning accuracy.  

This planning effort is frequently foiled by fluctuation in transport capacity caused by 

unreliable train services putting additional strain on the inland transportation network.  

In the context of the unique properties of this supply chain, most importantly, the limited 

port storage together with short-term demand situations and fluctuating transport 

capacity, providing the right quantity of the products at the right place in the right time 

becomes a challenge. Effectively addressing this challenge is vital to the enterprise 

under investigation as this outbound inland supply network is at the very core of its 

operations. 

 

4.1.2. Supply Network Layout 

The geographical layout of the supply chain modelled for this study is shown in Figure 

4.1. To comply with demands regarding confidentiality of business information of the 

company examined here, the plant and port locations shown on the map below do not 
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correspond to the actual locations. The model itself has been built using the exact 

locations and distances from the real-world example, ensuring the highest possible fit 

and level of accuracy. Only the graphical representation generated by the simulation tool 

has been modified to protect critical business information. 

 

Figure 4.1 - Geographical model layout 

The supply network consists of two production plants and three port locations. One of 

the port locations is connected via train lines to both the production plants. The 

remaining ports can only be served by truck. Both truck and trains are loaded at the plant 

using automated loading equipment. Weighing is required before and after loading to 

determine the actual quantity loaded and avoid overloading of the transportation units. 

This weighing task and malfunctions of the loading equipment used can cause waiting 

times for both truck and rail cars at the plants. The train cars are typically loaded 

overnight and are scheduled to leave once a day from each plant location. Trucks are 

loaded around the clock at both plants and move from the plant directly to the port. The 

trucks have a central depot location where they are dispatched from and return for 
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maintenance. As observed in reality, only full truck loads are shipped as everything else 

is not economically viable in this large quantity bulk business.  

Product flows only in one direction through the network, meaning that the trucks deliver 

material to the ports and return empty. Occasionally return transports are encountered by 

the trucks but the occurrence is very rare as the region where the business is situated 

primarily exports bulk material with most import happening in containers, creating a 

large discrepancy between required outbound and inbound bulk truck capacity. For the 

model at hand, return transports are therefore ignored.  

When comparing truck to train transports, trains generally offer significantly lower cost 

per ton and provide larger overall transport capacity (Heidmeier & Siegmann, 2008). 

However, as mentioned early, trains are less flexible than trucks as they are destined to a 

particular port only and have to adhere to an exact schedule. In addition, in this case, 

trains are unreliable as a consequence of trains sharing railway tracks with passenger 

trains which are prioritised over freight trains. This is not uncommon but has severe 

impact on the reliability of the freight train schedule in this case. Additionally, the train 

cars and engines used have a high failure rate, so while cost of train transports are low, 

they often need to be substituted or supported by unplanned truck transports, 

demonstrating the aforementioned substitution effect (Aberle, 2003) in reality. As the 

capacity difference is significant (a train carries about 1800 tons compared to 20 tons for 

a single truck) this has high impact on the number of trucks required and is a significant 

challenge to capacity planning of the supply network. 

 

4.1.3. Quantity Structure 

For the supply network under investigation, most transport planning is done on a weekly 

basis and this timeframe also serves as baseline for the numbers provided. The total 

capacity of the supply network for a week is deduced from the number of ships to be 

loaded. This number was given to be between 2 and 3 ships each week, with each ship 

being considered to carry 30000 tons of load. This would suggest a total average 

transport capacity of between 60000 and 90000 tons per week. Observation shows, 

however, that the range is smaller, varying between 50,000 and 70,000 tons per week, 

equalling from 1.7 to 2.3 ships a week. The reason for this being primarily, that during 
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the observed period not all ships required the full 30,000-ton load, as there were mixed 

cargo ships being loaded as well. Therefore, the observed weekly capacity will be used 

for this study. To supply the required quantity of material, a total of 12 train transports 

are scheduled each week. Each train provides a maximum loading capacity of 1,800 tons 

due to length restrictions allowing maximum number of 30 rail cars each carrying 60 

tons. As mentioned before, the train transport is as vital as unreliable in this supply 

network, hence instead of the theoretical weekly capacity of 21,600 tons, the observed 

train capacity ranged between 17,000 and 20,000 tons. This equals 9.4 to 11.1 trains per 

week, underlining the perceived fluctuations in availability of this transport medium. As 

truck transports are used to partially compensate the shortfall in train transports, the 

number of these transports varies accordingly. The observed values range from 1,900 to 

2,200 individual transports per week. The initially reported values indicated an even 

wider range of 1,500 to 2,500 truck transports to correspond with the overall quantity 

levels. However, the study will assume the observed range as baseline for the later 

verification of the model. An overview of the values is provided in the table below.  

 

Table 4.1 - Supply Network Quantity Structure 

The observed numbers of transport and associated tonnage where used as input for the 

simulation model at hand. The model was constructed to replicate observed values as 

accurately as possible, using random distributions to account for fluctuations in order 

levels and timing. The implementation is described below in the section on model 

entities and the order process respectively. Further, the model is built to allow the user to 

influence number of transports at runtime.  

 

4.1.4. Assumptions and Constraints 

As pointed out by Law (2003) a simulation model will always be a simplification and 

abstraction of the real-world system. While these simplifications are necessary to reduce 

Transports Tonnage

Reported 3 - 4 60,000 - 90,000

Observed 1.7 - 2.3 50,000 - 70,000

Reported 12 21,600

Observed 9.4 - 11.1 17,000 - 20,000

Reported 1500 - 2500 30,000 - 50,000

Observed 1900 - 2200 38,000 - 44,000
Truck

Train

Ships
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complexity and make the task of model creation feasible, they entail certain constraints 

and assumptions creating boundaries for the model. To maintain the credibility and 

applicability of the model, it is, however, vital to make these assumptions and 

constraints transparent and clearly document them (Birta & Arbez, 2013). 

Therefore, this section serves to document the differences between the system under 

investigation and the model at hand, capturing the assumptions and constraints necessary 

to depict the supply network described in the simulation model. 

The model only considers the dry bulk supply network and container and liquid bulk 

shipments are omitted, as the number of transports required is significantly lower. 

Further, in the real-world system, between two and six different dry bulk products are 

produced and transported simultaneously using the same network. The difference 

between the products is mostly related to purity and chemical characteristics, hence there 

is no cleaning or setup time when loading vehicles with different products. In the model, 

this differentiation between products of the dry bulk product group is not considered. 

The demands for the product groups are combined and, in this way, the total transport 

capacity of the supply network is being used. The reason being, that the focus is on 

optimising the supply network performance overall instead of production planning and 

scheduling. No substitution effects in the plants supply planning need to be considered, 

avoiding competitive planning scenarios. Capacity at the plant is also not an issue 

considered in this model. As mentioned before, even in reality the plants have significant 

storage capacity. By further eliminating the interdependencies caused by different 

products, the assumption is that the plants can always satisfy the demand created by the 

orders in the model. Therefore, the only constraint to delivery capacity is the 

transportation network itself, which is at the centre of this investigation. 

In the real-world example, orders are received on a vessel basis, meaning that at 

intervals, orders for ship size quantities are received. These orders are placed at a port 

which then, in turn, will place orders with the plants considering its own stock situation. 

The plants will subsequently integrate the order into their respective demand plan and 

allocate it to individual transport units. In the model, the actual vessel order is not 

modelled. Instead, the orders are placed directly from the port to the plant in truck size 

units. The allocation to individual transport units happens at the plants, taking into 
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consideration the different control methods for each scenario. Again, as the focus is on 

the inland transportation and allocation of orders, the ports’ own supply and demand 

planning operation are not modelled explicitly, setting a clear limit to the model. 

The trucks operate on a 24/7 basis in the model. While the around-the-clock operation is 

accurate, certain restrictions to truck availability, such as national holidays, apply. As 

this is only applicable on a very small number of days each year, it was decided to 

account for that variation by choosing a timespan for observation with no holiday and, 

additionally, calculate performances on a daily basis to compare the simulation results. 

Breakdowns and planned maintenance are modelled via distributions in the model at 

hand, using historical availability rates obtained from sample data available.  

Both in the model, as in reality, each truck carries same quantity as the trailers used are 

similar in size, aiming to maximise loading capacity under the given legal limits. Small 

differences in weight due to overloading or loss that occur in reality are, however, not 

accounted for in the model, the reason being, that they cannot be planned. In reality, a 

slightly larger material quantity is supplied to the port to ensure full delivery of the 

required order quantity. For the overall performance of the network these small 

deviations are regarded as unimportant. As they would, however, increase modelling 

complexity, they are not considered for the simulation model used in this research 

project. Less than full trucks were only observed in exceptional cases and are, therefore, 

not considered in the model either.  

Loading and unloading capacity at the plants is modelled via delay times (varying via 

distributions) that it takes for the loading to complete. 

The trucks choose and follow their own route across the GIS space of the supply 

network both in reality and the model. For simulation purposes however, fixed route 

alternatives have been established. Real time traffic is available for the model but is not 

considered due to a strong negative impact on model runtime. Traffic jams and detours 

are, therefore, accounted for via the average truck speed, which is recalculated for each 

journey individually. 
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4.2. Model Entities and Estimation of Empirical Variables 

Following the previously described approach to agent-based modelling, all relevant 

entities in this model are represented as agents (Siebers et al., 2010). This includes 

stationary agents, representing physical locations, such as plants or ports, as well as 

mobile agents, representing the transport units or even agents that represent abstract 

objects, such as an order. As it is one of the central benefits of agent based models, all 

agents have the ability to interact (Bonabeau, 2002). Based on these interactions, 

different topographies can be defined (Macal & North, 2014). The model pertains to the 

group of geographic information systems (GIS) where agents move or interact with 

realistic geo-spatial landscapes. Agents have an actual location (e.g. geospatial 

coordinates) in that landscape. The GIS space is vital to the functionality of the model at 

hand, as it provides the ability for the truck agents to move from point to point using 

road network information and even traffic data. This functionality allows for the 

accurate simulation of transportation tasks as required for this study. However, not all 

agents are linked to a physical location, hence to a certain degree the model at hand can 

also be categorised in the group of network-based topologies. In this topology, agents 

are defined by their role and linkage to other agents. For example, the order agent 

‘travels’ along edges from port to plant to truck nodes, without physically moving 

through GIS space at that moment in time. Accordingly, the model described here can be 

understood as being a hybrid with regard to agents’ social interactions, applying both 

concepts from GIS and network topologies. 

All individual agents and their respective functions are described in detail in the 

following sections. The detailed code for each agent is provided in the appendix. 

 

4.2.1. Port Agent 

Each port is represented by an agent. The main functionality of the port agent is to create 

orders that transfer the demand for material to the plant agents. For that purpose, the port 

agents are equipped with an event that triggers the createOrder() function in intervals. 

This interval is influenced by a Poisson distribution, reflecting the random placement 

interval of orders in reality. The lambda values are dependent on the order level chosen 

and can be controlled via parameters for each simulation run. The order levels used in 
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the experiment are described in greater detail in section 6.1.1.2. Each port generates 

random orders for each plant, indicating the loading plant in the order. This is done to 

reflect the transport demand situation of the network accurately, where certain orders are 

allocated to a particular plant, depending on factors, such as availability or plant 

capacity. 

 

4.2.2. Order Agent 

The ports generate orders reflecting their demand for material. These orders are 

represented by an agent in the model. Each order agent is sent as a message from the 

port to the plant agent, as described in the process flow below.  

The following parameters are stored in each order agent:  

- Order ID (a unique identifier) 

- Destination Port (the name of the port that placed the order) 

- Loading plant (name of the plant the order is addressed to) 

- Order rate (price offered per km for transport of the order) 

The order rate is determined during order generation by the port agent. The rate reflects 

the price that is paid to the carrier for transportation of the product from the production 

plant to the port. As in the customer example, the rate is set on a per km basis to account 

for different distances to the different ports. From a model point of view the order rate 

reflects to a certain extent the different price levels paid by customers for orders. More 

importantly the fluctuating rates try to capture the differences in price resulting from the 

priority of deliveries. Delivery times demanded by customers leave often very little lead 

time for inland transportation, requiring quite frequent shifts of priorities. The unreliable 

train connection aggravates that situation even more. Typically higher prices are paid for 

such rush orders, to compensate carriers for the change in plan or to attract additional 

capacity. For the model an exponential distribution was found to depict the fluctuation in 

order rate.  

��	
 = exp�2, 0.2� 

The order rate serves as an important element to simulate fluctuation in demands for 

transportation. Orders are not only placed at random intervals but are also of varying 

economic interest for the carriers, creating the demand side of the market in the model. 
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The order agent contains additional variables for order value and trip length. They are 

initialised on order creation by the port and will be filled by the plant agent upon order 

arrival. 

 

4.2.3. Plant Agent 

The orders generated are sent as message to the plant agent specified in the loading plant 

parameter. Like the system under investigation, the model contains two production 

plants, hence two plant agents are active in the model at runtime. Both plants are able to 

produce the single product in sufficient quantities.  

In reality, loading capacity is limited by availability of loading equipment. This is 

modelled as delay in the loading process step and is described in greater detail in the 

delivery process flow below. The plant has two main functions in the model. It first 

calculates for each received order the order value variable. The formula used in the 

model is the order rate multiplied with the distance from loading plant to destination port 

in kilometres. This formula could be adjusted to cover more complex customer scenarios 

in future implementations of the model. The second central function executed by the 

plant agent is the allocation of orders to trains. Both plant locations are connected via 

train lines to port B. As mentioned, train transport is the preferred option for all orders 

that are destined to go to port B. Therefore, the plant has a functionality to check train 

availability for all relevant orders. That includes both the train operational status and its 

capacity. If the train is operating and has free capacity, the order is allocated to the next 

free train. If the train availability check returns with negative result, the order is 

forwarded to the central order registry. The same is true for all orders on routes where 

there is no train service available.  

 

4.2.4. Truck Depot Agent 

The order registry is one core function of the truck depot agent. It contains an unsorted 

list of all orders placed by all destination ports and to all loading plants. The central 

registry is a technical requirement for the model function. For reasons related to program 

architecture, it was placed in the truck depot agent. The technical realisation of the order 

registry has no impact on the control scenario. It both supports central and decentral 
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control scenarios. In decentral control scenarios trucks poll the order registry for a new 

order and then decide whether to accept the order offered or not. In the central control 

scenarios, such as the scenario currently used in the SUI, the orders are assigned by the 

plant agents to their trucks, using the order registry as backlog. The process of order 

allocation is described in section 4.3.1. 

The truck depot agent serves as a start and return location for the trucks in the model. 

Therefore, the truck depot has a physical location on the GIS map in the model. Trucks 

without orders will return to the truck depot as will trucks that require maintenance. This 

closely reflects behaviour in reality, where trucks use central dispatch points in close 

vicinity of the plants to wait for orders. Trucks will not always start their trip from there 

and return to this lot. As these trips are not compensated by the company and do not 

affect planning they are not considered in the model.  

 

4.2.5. Train Agent 

The model offers two transport mediums for the orders received: trains and trucks. Both 

are modelled as agents in the simulation model at hand. They are, however, 

implemented differently to account for their role in the model.  

There are two train agents available, each one representing one train connection from 

plant to port. Each train has a parameter to indicate their operation status and a capacity 

counter. The maximal capacity can be set for each simulation run from the simulation 

control screen. Each train agent further has an event that is triggered periodically, setting 

the train’s operational status. In the simulation model this event uses a random 

distribution to determine the running status of the train. The probability value can be set 

from the simulation control screen via the train breakdown probability parameter. 

In a potential operational implementation of the model, this event would constitute a 

suitable spot for an interface to an online service of the train company, providing 

availability information directly to the agent environment. This possibility to connect 

outside or legacy software into a simulation model, by “wrapping” its functionality in an 

agent is another advantage offered by multi-agent environments (Bazzan & Klügl, 2014, 

p. 376). 
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In this model, trains are not modelled individually as, unlike trucks, they are not to be 

controlled on an individual unit level. 

 

4.2.6. Truck Agent 

Trucks are modelled individually as agents. They form a population of agents sharing 

similar functionalities and parameters. As the truck agents are at the core of this 

simulation model, they contain a wide range of functions and controlling parameters. 

The most important parameters are listed below: 

- Cost rate driving (cd) 

- Cost rate waiting (cw) 

- Markup factor (mf) 

In all but the fixed assignment scenarios, a market is formed between the transport 

demand and the transport services offered by the transportation units. It is assumed that 

all market participants aim to maximise their economic utility in that market. Therefore, 

the truck agents have not only parameters representing their cost rates for driving and 

waiting, but also a markup factor that reflects their intended profit margin (Bouzid, 

2003). All three parameters are individually determined for each truck agent via 

distributions on model start-up. Both cost rates are approximated in the model using 

truncated exponential distributions. The formulas are as follows: 

�� = exp�0.2, 0.5, 0, 1� 

�� = exp �0.03, 0.1,0, 0.05� 

The markup factor is dependent on a general markup parameter that can be set via the 

simulation control screen. Based on that markup parameter an individual markup factor 

for each truck is determined using a truncated normal distribution with the following 

formula: 

�� = ��������� − 10, �� + 10, ��, 10� 

Truck cost parameters and markup factor are essential for the truck agents’ 

CalculateUtility() function. It is among the list of the central functions each truck agent 

incorporates: 

- FindNextOrder() 
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- CalculateUtility() 

- ClosestTruck() 

In the autonomous control scenarios the FindNextOrder() function is essential in the 

process of order allocation. It will request a new order from the central order registry 

whenever the truck is in an idle state and ready to accept new orders. The different states 

of the trucks agent are described the section covering the delivery process. Upon receipt 

of an order the CalculateUtility() function is invoked to decide whether to accept the 

order or request a new one. The CalculateUtility() function determines in a first step, the 

variable cost incurred for this order using the cost parameter mentioned above based on 

this formula: 

�� = 	��� 
�!	ℎ ∗ �� + ��$	���
 ∗ �� 

Trip length being a variable of the order agent providing the distance via road from the 

loading plant to the destination port. This value is filled for each order by the plant agent 

as described earlier. The distance variable is calculated by the truck agent in real time 

and indicates the distance via road from the truck’s current physical location to the 

loading plant.  

In the next step, the CalculateUtility() function will determine the price p the truck is 

willing to accept by applying the markup factor using the following formula:  

� = �� + �� ∗ �� 

Finally, the CalculateUtility() function will compare price p to the order value offered 

by the current order. If the value is equal or higher, it will accept the order.  

If cooperation is active in the scenario, the ClosestTruck() function will be called before 

accepting the order. Its primary responsibility is to determine whether there is a truck 

that is better positioned and willing to accept the order. The idea behind this function is 

to improve overall performance, trying to move from locally optimal solutions to a 

global optimum, addressing the concern, that agents may not be able to achieve a 

globally optimal solution, but rather only find local optima (Kikuchi et al., 2002). In 

order to achieve this, the ClosestTruck() function will act as a temporary broker for this 

order. It polls all trucks to determine whether they are in a state that allows them to 

accept an order. All trucks on this list are asked for their current distance to the loading 

plant. All trucks that have a shorter distance than the truck agent acting as broker are 
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considered. If no truck is closer than the truck agent itself, the closestTruck() function 

terminates and the truck itself starts delivery execution. If there are trucks that have a 

smaller distance to the loading plant, these trucks are polled for their price. That means 

that all these truck agents in turn run their own calculateUtility() function to determine 

their offer price. If there is a truck that asks a price lower or equal than the order value, 

the order is sent as a message to this truck. In case there is more than one truck, the first 

truck agent to respond will receive the order. As this situation only occurs in rare 

instances, no further optimisation to find the optimal price was implemented here. If 

there is no truck that is willing to accept the order value offered, the truck agent 

executing the closestTruck() function will carry out the delivery itself. Allocating the 

order to the closest truck may fall short with respect to achieving a global optimum  with 

regard to the cost incurred (Bouzid, 2003). As implemented, the closestTruck() function 

may select a truck which is better located, but charging a higher price. However, this 

behaviour is accepted, as the focus of this model is rather on better usage of the 

transportation capacities available, than on cost minimisation. Additionally, the price 

charged is limited by the order value; hence it will never exceed the cost deemed 

acceptable by the ordering party. If required, selection criteria beside distance to the 

loading plant and price can be implemented into these functions for future 

implementations. 

In the model, data is easily shared between the truck agents as this function is part of a 

cooperative scenario, assuming that trucks are benevolent towards each other 

(Castelfranchi, 1995). However, the model does support a strict separation of 

information and can be configured to share only minimal data to address concerns of 

privacy.  

The truck agent further contains a speed variable which is re-determined before each 

delivery. The variable indicates the average speed the truck will drive on its delivery 

run. It is used to simulate the impact of traffic on the model’s performance. The GIS 

space configuration and the simulation tool offer interfaces to integrate traffic data and 

automatic route planning into the simulation run. However early simulation runs during 

prototype phase have shown, that this adversely affects the execution speed of the 

model, significantly increasing runtime of simulations with larger numbers. This could 
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be addressed with more powerful hardware and faster internet connections when 

implementing the agent model as control instance. For the purpose of this simulation 

experiment, the distribution below was used to approximate average truck speed for each 

delivery run 

�	 =  %
	��20, 4, 30, 65� 

Another important variable controls the operational status of the trucks. As with any 

technical equipment, trucks require planned and unplanned maintenance and may, 

therefore, become unavailable for transport services. This is modelled via a breakdown 

variable which indicates the operational status of the truck represented by this agent. To 

account for unplanned events such as breakdowns, the variable is set via a breakdown 

event that is executed daily and uses a random function to determine the operational 

status. The probability value can be passed from the simulation control screen as 

parameter. If the breakdown variable is set to non-operational, the truck will return to 

the truck depot after completing its current delivery. Only once it arrives at the depot, 

the breakdown variable can be reset, considering the truck depot functions as a repair 

shop. 

The update utility event is another important function that is implemented as an event in 

each truck agent. This event is triggered periodically as soon as a truck is waiting at the 

truck depot for new orders. The purpose of this function is to decrease the markup factor 

over time. Trucks incur cost for waiting time, such as personnel or financial cost. This is 

expressed in the model by the waiting cost variable mentioned above. At the same time, 

the trucks’ income depends on having orders assigned for delivery. The function, 

therefore, assumes that with increasing waiting times truck agents would be willing to 

accept a less favourable offer instead of waiting for an order that returns their target 

price. As the markup factor expresses the trucks’ expected gain, it is assumed that the 

truck would, after a waiting period, reduce its expected return. The lower limit is 

constituted by a markup factor of 1 which effectively signifies that the truck agent is 

aiming to recover its cost only, accepting zero profit. The reduction itself is based on the 

cost of waiting. This process is described in greater detail as part of the delivery process 

in the following section. 
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4.3. Process Flow 

The focus of this section is on elaborating the process flow within the model. When 

looking at the end–to-end process that is reflected in this model, it becomes evident that 

it can be separated in two process areas. The first one being the order process, focusing 

on assigning orders to the transportation unit. The second area is the delivery process 

and the necessary steps executed by each truck agent. Both areas are linked together at 

order allocation, which depends heavily on the execution scenario. The scenarios are 

described in greater detail in section 5.2. 

This section will first describe the order process, followed by the truck agent’s state 

chart diagram illustrating the delivery process. 

 

4.3.1. Order Process 

This section serves to provide a complete view of the order process flow, placing the 

individual agents functions outlined above into context. The Figure 4.2 offers an 

overview of this process. 

 

Figure 4.2 - Order process flow 

The starting point for this process is the order agents created by the different port agents 

at random intervals. As laid out above, the orders reflect the demand for transportation 

in the model. The orders are sent as a message to the plant agent for processing. The 

messaging between agents is one of the core functionalities of agent frameworks 

(Bradshaw et al., 1997). The plant agents will determine the length of the transportation 

route and use this information to calculate the order value, which is the product of the 

trip length and the order rate parameter. Both variables are updated in the order agent. 
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Next, the plant agents will check whether the order can be transported by train, meaning 

that the plant and port are connected via train, the train is operating, and it has sufficient 

capacity for this order. If this is the case, the order is sent to the train agent for further 

processing. Any order sent there is not relevant for truck transportation anymore 

reflecting the real situation, where train wagons will typically not be unloaded, even 

though the train may have undergone significant delay. 

If train transportation is not available for the order, it is again sent as a message to the 

truck depot agent, which hosts the central order registry in the model. As mentioned 

before, the placement of this order registry within the truck depot agent has primarily 

technical reasons, as it facilitates the integration of the different control methods in one 

simulation model.  

The next step, the order allocation differs significantly depending on the control scenario 

chosen for the simulation run. In the pre-assignment scenarios, the plant agents take their 

orders from the order registry on a first in, first out basis and allocate them to trucks 

assigned to their plant as soon as a truck is marked as free. This order allocation 

behaviour can be described as a push strategy (Adler & Blue, 2002; Bretzke, 2010), as 

the truck agents are not involved in the order selection process. On the other hand, pull 

strategies (Klaus & Kille, 2008) can be found both in central and autonomous control. In 

the central broker scenario, the truck depot agent acts as broker by selecting the next 

order from the order registry and offering it to all free truck agents, asking for their 

respective price (Sandholm, 1993). The truck agents use their calculateUtility() function 

to determine whether to bid for this order or not. If a truck decides to bid for the order, it 

returns its price to the central broker. The broker then picks the lowest price offered and 

sends the order as message to the winning truck. If no truck bids on the order, the order 

is placed back into the order registry and the next order is offered. 

In the autonomous control scenarios, each truck agent polls the order registry for an 

order upon becoming free. It receives the next order from the order registry. The truck 

agent will then calculate its utility and decide whether to accept the order or wait for a 

better order. Additionally, in the cooperative scenario, before accepting a suitable order, 

the truck agent will check whether other trucks are in a better position to fulfil this 

transportation request using the closestTruck(). As described above, the truck acts as 
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temporary broker, aiming to find a truck which is better located and willing to accept the 

order. The order is then either allocated to the truck with the shortest distance to the 

loading plant or if no truck is in a better position, the polling truck itself will start the 

delivery. The delivery process is described in the following section. 

 

4.3.2. Delivery Process 

The second process area is the delivery process carried out by the trucks for each order. 

This process is represented by a state chart diagram that controls the various steps, from 

order receipt until delivery for each truck agent. The state chart diagram is shown in 

Figure 4.3. 

 
Figure 4.3 – Delivery process flow 
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State chart diagram as introduced by Booth (1967) consist of states and transitions that 

lead from one state to the next. Transitions can be conditional, requiring a certain trigger 

or guard conditions to be fired and moved to the next state. State chart diagrams are 

quite commonly used in agent modelling because, while being easy to create and 

understand, they can be executed at runtime and even be used to generate code 

(Cossentino, Gaud, Hilaire, Galland, & Koukam, 2010). The entry point represents the 

starting point of any state chart diagram. It is connected to the ‘Ready for order’ state in 

this case, which at the same time is the end state, that truck agents enter after completing 

delivery of an order. Whenever a truck is in that state it is available for new orders. As 

illustrated in the previous section, depending on the control scenario it will either request 

or be assigned a new order while in that state. The transition leaving this state is 

triggered by a message of the type order. As described above, this order is sent by the 

central order registry as a message. The transition has a threshold implemented, that 

again verifies the utility of an order. This threshold is in effect, for all but the fixed 

assignment scenario, where the utility function is not active.  

This transition terminates in the state ‘Accept order’ which serves several purposes. 

Primarily it determines a route from the trucks’ current location to the order’s loading 

plant using the GIS space road network, similar to any GPS route planning service. As 

mentioned before, the ability to integrate real-time traffic data into this route 

determination process was deactivated for performance reasons. Instead, the function to 

determine the average truck speed for this delivery run is executed in this state, updating 

the speed variable. In addition, on exiting the ‘accept order’ state, several tracker 

variables that support process control and result documentation are updated. For 

example, timer and distance tracker variables are initialised to document this delivery 

run. Finally, an acknowledgement message is returned to the truck depot agent to 

confirm the order receipt. Having completed all functions in the ‘Accept order’ state, the 

truck will start moving through GIS space along the previously determined route 

towards the loading plant.  

The following transition is triggered by the arrival of the truck agent at the plant. It 

serves as a guard to the ‘At loading plant’ state. This state indicates the completion of 

the first leg of the journey and documents the arrival of the truck at the loading plant. 
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The state updates the relevant tracker variables and determines the loading time required 

for this truck. As mentioned, the differences in loading time encountered in reality due 

to external factors, such as availability of equipment, number of trucks etc are 

represented by the following distribution: 
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Applying the distribution above, about 70% of the loading times observed lie in an 

interval of 1 to 3 hours, which reflects quite accurately the loading times observed in 

reality. The loading via wheel loader itself takes up only a small portion of this time 

span. The trucks spent most of the time waiting for their turn at loading and the 

weighing station, which has to be passed before and after loading to get an exact 

measurement of the load weight. The chosen Weibull distribution at the same time helps 

to introduce a desired level of uncertainty, producing rare cases with significantly longer 

waiting times that reflect breakdowns of equipment or personnel shortage for example.  

The loading time is calculated in the ‘At loading plant’ state and applied as guard to the 

transition leaving that state. This means that this transition will fire once the previously 

calculated time has passed, effectively simulating the previously mentioned loading 

process in the model.  

The transition leads to a state named ‘Loading complete’ which has been introduced to 

effectively track completion of the loading process. The state is left via a transition that 

uses the native agent function moveTo() to trigger the start of the trucks journey to the 

destination port. Again, the truck will find its way via the route functionality provided 

by the GIS space network.  

The truck’s journey towards the destination port is represented by the state ‘Moving to 

Port’ in the state chart diagram. Similar to the trip to the loading plant, the arrival of the 

truck at the port location triggers the transition that connects the ‘moving to Port’ state 

with the state ‘unloading’. The time required to perform the unloading is again modelled 

by a distribution with the following parameters: 
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The results of this distribution have been verified against the observed unloading and 

waiting times. Unloading occurs slightly faster than loading, as trucks typically just 

dump material into underground pits from where it is transported via conveyor belt into 
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the storage areas. In the diagram, the unloading state also serves to update several 

tracker variables. As it concludes the end of the delivery, time and distance variables are 

updated at this point. The ‘unloading’ state is left once the unloading time determined by 

the distribution above has passed.  

When reaching the ‘unloading complete’ state, the delivery of an order is understood to 

be completed. Thus, the truck assumes a ‘free’ status making it available for new orders. 

The truck agent will now request new orders from the central order registry. Even 

though the structure of the state chart diagram is identical, the model behaviour differs 

depending on the control scenario.  

Technically in the model, in all cases the findNextOrder() function is called. In 

autonomous control scenarios the function requests an order from the central order 

registry and evaluates whether to take it as described in the previous section. In central 

control scenarios the function reports the truck’s state as ‘free’ to the central broker 

agent which, in turn, considers it for the next order to be tendered or, in the fixed 

assignment scenario, assigns the next corresponding order to the truck.  

Under any scenario, the function returns a Boolean value, depending on whether a 

suitable order has been provided or not. This is reflected in the state chart diagram as a 

conditional transition.  

If a suitable order has been found, the truck agent will move directly to the ‘Ready for 

order state’. The new order will be received as a message as part of the next execution 

cycle of the state chart diagram. As part of this execution cycle, the truck will directly 

move to the loading plant. The loading plant and any other order related information is 

passed as attribute of the order agent.  

If the findNextOrder() function returns with a negative result, the second fork of the 

conditional transition will be executed instead. It leads to a state called ‘move to depot’ 

representing the return journey of the truck back to the truck depot. The state is used to 

trigger that journey, again invoking the moveTo() function and providing the truck depot 

as destination. The state chart diagram will, however, directly transition to the state 

‘Ready for order’ thus placing the truck into the right state to receive new orders. While 

in that state, the truck agent will periodically execute the findNextOrder() function to 

announce itself and request new orders. This is triggered by a periodic event that is 
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scheduled to be executed in time intervals every 20 minutes of simulation time. Once the 

truck arrives back at the truck depot and has not yet found a new suitable order, in 

addition to searching for an order every 20 minutes, it will enter the waiting state at the 

same time interval. The state ‘Waiting’ forms a loop with the ‘Ready for order’ state. 

The periodic event used to trigger the search for a new order also triggers the transition 

leading to the ‘Waiting’ state. This transition has a guard that checks for the truck 

location being equal to the truck depot location. If this is the case, the waiting state is 

reached. The primary functionality provided in this state is the update of the truck’s 

markup value. As mentioned before, the underlying assumption is, that after a waiting 

time, the truck will be willing to accept an economically less rewarding offer. As the 

expected gain in the model is expressed by the markup that trucks calculate on top of 

their cost, the markup factor is consequently decreased over waiting time. Technically, 

this is realised as a function within the state ‘Waiting’. Each time the truck enters this 

state, the function below is executed.  
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The reduction is realised as a function of the waiting cost. The idea behind this is that 

waiting cost expresses mostly fixed cost such as cost for capital bound, personnel cost 

and maintenance cost. The model assumes that the higher the fixed cost, the higher the 

motivation of the truck to find a new order.  

The linkage is based on observations, where a correlation of age of the trucks and their 

willingness to accept orders at lower prices was evident. Newer trucks had a notably 

higher tendency to accept offers below their asking price. This could be linked to their 

higher fixed cost, which was mostly driven by cost of capital.  

As a result, each time the truck agent enters the ‘Waiting’ state the aforementioned 

function is executed and reduces the markup factor. This is done until either the truck 

receives an order and the markup factor is restored to its initial, truck specific, start value 

or the markup factor reaches a value of 1. The lower limit signifies that the truck agents 

in the model will always aim to recover at least the cost incurred during an order run. 

There is no distinction made between short and long-term profit expectations, meaning 

that truck agents will not accept temporarily a price below their cost threshold to invest 

in the relationship with their customer. In the current implementation the trucks have no 
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memory, meaning that each delivery is a new start for them, which is also expressed by 

resetting the markup factor. While this could be an interesting area for future research it 

is not considered here. 

 

4.4. Testing the Model 

When talking about testing in the context of simulation modelling, the terms verification 

and validation are commonly used to describe the relevant activities in that area. As 

mentioned in chapter 3, verification asks the question, whether the model was build 

right, whereas validation aims to answer the question whether the right model was built 

(Sargent, 2013). Both verification and validation are vital tasks in order to establish 

credibility of a model (Birta & Arbez, 2013). Credibility is a relevant property of any 

model, describing whether results and conclusion reached by simulation will be accepted 

by sponsors and SME (Law, 2003). 

Verification and validation are integral parts of the model creation process. As indicated, 

this process follows the state of art in software development, using an iterative and agile 

approach. Agile development aims to break down large development cycles into smaller, 

iterative units and produce working software early on (Beck et al., 2001; Cohen, 

Lindvall, & Costa, 2003). This idea is applied to the model creation process at hand, by 

building a prototype early on and feeding back verification and validation results to 

incrementally improve this prototype in the direction of the final simulation model.  

The above described close interaction with client SMEs, such as through the regular 

simulation review meetings, enabled this feedback to be gathered and integrated into the 

next version of the model. This way validation and verification became a continuous 

process, performed alongside each iteration in the model creation process (Robinson, 

1997). 

The prototype approach further proves to be a great advantage in the area of model 

verification. Using the graphical capabilities offered by the simulation tool, visual 

debugging greatly reduces time and effort required, enabling efficient step-by-step 

analysis of the process (Law, 2003). In addition, for validation of the model, the 

prototype provides an accessible communication basis for conversations with SMEs and 

stakeholders. The prototype enables structured walkthroughs and provides 
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understandable results early on, thus helping to ensure the simulation model is an 

accurate representation of the SUI (Law, 2003).  

While there was constant feedback and an ongoing validation process throughout the 

model’s built phase, the final validation step was carried out as a detailed pilot study. 

The pilot study is split up in two steps, with the first one focused on identifying 

limitations and validating assumptions taken (Birta & Arbez, 2013). The second step, 

however, serves as a final “assessment of accuracy”(Balci, 1990, p. 25), ensuring the 

model is close enough to the real-world example to fulfil the purpose of the simulation 

study (Greasley, 2008).  

 

4.5. Ethical Considerations 

When discussing the credibility of a simulation model the ethical aspect must be 

considered as well. Being a powerful tool, simulation brings great responsibility to the 

researcher regarding usage and application (Kruger, 2003). To address this issue Oren, 

Elzas, Smit, & Birta (2002) introduced a code of ethics for simulation researchers. While 

this code of ethics addresses a wide range of behaviours, two aspects seem particularly 

relevant in the context of this thesis.  

The first one demands to “Provide full disclosure of system design assumptions and 

known limitations and problems to authorised parties.”(Oren et al., 2002, p. 1). This has 

been realised in this thesis by explicitly documenting assumptions and constraints in the 

relevant sections and validating them through proper testing. Additionally, as mentioned 

above, subject matter experts and stakeholders were involved throughout the model built 

and simulation phase, providing input and feedback on limitations and constraints of the 

simulation model. Closely connected is the second behaviour to be highlight which asks 

to “Assure thorough and unbiased interpretations and evaluations of the results of 

modelling and simulation studies.”(Oren et al., 2002, p. 2). This is demonstrated for this 

study by thorough and detailed testing as documented in the thesis as well as by 

reflecting and validating results with experts and stakeholders, such as the SME 

interview, to ensure understanding. 
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One additional aspect regarding ethics is the aforementioned concerns around 

confidentiality of business data. This has been noted and taken seriously for this research 

process, evident, for example, in the concealed locations or omission of names. 

Another area with ethical implications is the aspect of consequences brought by new 

technologies (Langheinrich & Mattern, 2002) such as the proposed autonomous control 

approach. Consequences such as the impact of the solution on the workforce and 

external partners have to be considered during an implementation project. 

A final ethical consideration is regarding the choice of simulation method and tool.  

Van Dyke Parunak et al., (1998) mention, that the researcher’s responsibility is to select 

the method and tool offering the best fit for the research problem and area and withstand 

influence by stakeholder interests, funding or similar. The selection of the simulation 

method and tool for this thesis was based on purely functional considerations, as 

documented in the following section. 

 

4.6. The Simulation Tool 

There is a wide range of simulation tools available, both for general simulation as well 

as specifically for agent-based simulation. Agent-based simulation software can be 

categorised into multi-purpose software and programming languages on the one hand 

and specially designed agent simulation software on the other (Macal & North, 2014). 

Multi-purpose software can be as straight forward as using Microsoft Excel and VBA 

scripts to generate agents, or it can be about relying on more sophisticated modelling and 

simulation tools such as MATLAB, for example. Software specifically designed for 

agent-based simulation can be grouped according to functionality and size or along the 

lines of open source versus commercial simulation tools.  

A third approach is to develop software agents and their simulation environment entirely 

from scratch using object-oriented programming such as Java or Python. Looking at the 

literature surveyed, it becomes evident that this third approach has been used frequently. 

Several authors or research groups have created their own simulation tools and agent 

environments for their research work. Prominent examples are the AGENDA tool 

(Fischer et al., 1999), TRACONET (Sandholm, 1993) or MATSIM (Bernhardt, 2007). 

Weiß & Jakob (2006) provide an extensive overview and comparison of agent 
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simulation tools and platforms available, while Tobias & Hofmann (2004) focus on 

Java-libraries for agent-based simulation.  

While a custom developed simulation tool can potentially be tailored more closely in the 

direction of the specific research purpose, it is often difficult to extend its functionality 

beyond the initial scope. This was found true for the PLASMA framework as introduced 

by Schuldt & Werner (2007), which was used for the first modelling attempts. 

Unfortunately, the PLASMA tool, as with many others of the above cited custom 

developed simulation tools, is poorly documented beyond the publication scope. Further, 

no continuous support is offered for these tools and experts on the usage and 

development of these tools are hard to find. 

Therefore, it was decided to use a commercial grade simulation tool for this thesis. 

Among the available commercial simulation tools, AnyLogic (AnyLogic, 2018) was 

chosen for several reasons. The most important one is its unique ability to implement 

and simulate different simulation methods in one environment (Macal & North, 2014). 

The methods are discreet event, agent based and system dynamics simulation, allowing 

to model and simulate object, process, continuous world views in the same model 

(Greasley, 2008). For the thesis at hand, having discreet event simulation and agent-

based simulation available in the same simulation model, allows for direct comparison 

of established and proposed control methods.  

AnyLogic has been successfully used in a wide range of professional and academic 

research projects. For example, in modelling supply chain disturbances (Hoffa & 

Pawlewski, 2014), container loading (Mustafee & Bischoff, 2011) or vehicle scheduling 

(Merkuryeva & Bolshakovs, 2010). 

Being a Java based tool, AnyLogic, on the one side, provides unlimited flexibility by 

offering a complete system development kit allowing the option of invoking any Java 

libraries desired. On the other side it offers an easy-to-use graphical user interface, 

lowering the entry barrier for new users. This graphical user interface further enables the 

creation of visual representations of models and simulation, such as the GIS landscape 

model used in this thesis. Having a visual representation of the model available at 

runtime greatly facilitates communication with non-technical stakeholders and advances 

understanding.  
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Having described the model layout, its design and the implementation in the simulation 

tool, the following chapter will show how the simulation experiments using this model 

were set up and executed. 
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5. The Experiment 

 

5.1. Purpose of the Experiment 

To understand the purpose of the experiment at hand, it helps to recall the research 

structure and the questions as repeated below. 

 

Figure 5.1 - Research Structure 

Looking at RQ1, the application of autonomous control to the logistics networks under 

investigation has been described in the previous chapter. To provide an answer to the 

remaining question is the primary purpose of this simulation experiment. 

The experiment is designed to compare the performance of different control methods 

when applied to the simulation model. These methods have been assigned to different 

scenarios which are explained in the following section. The experiment consists of 

several simulation runs, with the control method being the independent variable 

(Creswell, 2014). To enable a comparison of performances, several key performance 

indicators are identified later in this chapter. These KPIs are applied to the model and 

are recorded for each simulation run.  
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5.2. Scenarios 

 

5.2.1. Overview 

The simulation model at hand is built to support a variety of configurations relating to 

supply chain control methodology. To structure the comparison of simulation results, 

five scenarios are defined. Shown in Figure 5.2 are the scenarios and the control method 

they belong to: 

 

Figure 5.2 - Scenario overview 

As indicated by the research questions, the main comparison is between the proposed 

methods of autonomous control and established central control methods. These central 

control methods are further subdivided into pre-assignment and central broker. While 

the pre-assignment method aims to closely reflect the control method applied to the SUI, 

the central broker method is introduced to offer another option and to control for 

effectiveness of the proposed autonomous approach.  

The following sections are grouped by control method and serve to describe the 

contained scenarios in greater detail.  

 

5.2.2. Pre-Assignment Scenarios 

The pre-assignment scenarios aim to reflect the observed situation in the supply 

network. The group consists of two scenarios. In both scenarios trucks are assigned to 

the vehicle pool of a production plant. Orders are assigned to these trucks in the same 

sequence as they are received from the ports e.g. first in, first out. The trucks are 

assigned to the plant, signifying that the plants can freely dispatch the trucks as required. 

On the other hand, this means that all cost incurred by these trucks is to be covered by 

the plant they are assigned to. In the fixed assignment scenario, the number of trucks 

assigned to a plant is fixed.  
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In the market under examination, all trucks have been outsourced to a service provider. 

However, contracts indicate that trucks need to be preordered on a weekly basis, with 

fixed cost rates for both driving and idle times. This implies that adjustments to number 

of trucks and assignment to plants can be done once a week only. These conditions are 

reflected in scenario called ‘Rebalancing’. In this scenario, the trucks again are firstly 

assigned to one of the plants. Once a week however, the distribution of trucks between 

the plants is adjusted. In the model two constraints apply to this scenario. In reality, 

trucks may leave the network or join late, while in the model the total number of trucks 

remains constant for the whole simulation. This technical constraint has however little 

effect on the overall results, as confirmed during validation of the model in section 6.1. 

The reason being, that the number of trucks is barely adjusted at all. As the outsourcing 

contract is with one company only, there are hardly any additional trucks available to be 

added to the truck pools. This close dependency on one key supplier is among the 

concerns leading to this DBA study. The same holds true for the opposite case: under 

normal circumstances the contracts offer little leeway to significantly reduce the number 

of trucks. Therefore, shifting trucks between plants is the tool used to optimise the 

supply network. The basis for the shifting of truck capacity constitutes the second 

constraint for the rebalancing scenario in this model. A weekly transportation demand 

forecast is created based on the demand situation of the ports. As this forecasting is a 

highly manual process, relying primarily on tacit knowledge by the planners, the model 

relies on a simpler approach to execute the rebalancing each week. The model uses the 

current order backlog for each plant and divides the trucks proportionally based on the 

number of orders waiting for transport at each plant. As shown in the model validation 

section, this approach produced satisfyingly accurate results.  

 

5.2.3. Central Broker Scenario 

The third scenario applies a central control approach as well. While order allocation is 

still executed by a central instance as in the two scenarios above, the main difference is 

that trucks are not pre-assigned to a particular plant anymore. Instead, a central broker 

instance which is responsible for assigning orders to transportation units is installed. It is 

implemented in the model as a function of the truck depot agent. This does not 
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necessarily reflect any association of this central broker with the logistics service 

provider itself. It is done in the model for practicality as the order registry has been 

implemented in the truck depot agent as well. The functionality could also be assumed 

by a different agent as required. The broker function of the truck depot agent assigns 

orders to trucks, taking into consideration the price demanded by them and the order 

value offered, acting as a market maker (Bonabeau, 2002). In the model, the broker 

agent cannot see the truck agent’s price. It rather offers an order to all available trucks 

and the truck agents will respond with their offer. The central broker then sends the 

order to the truck with the lowest price offered. In future implementations of the model, 

more advanced price determination strategies such as sealed bid auctions could be 

implemented here (Mes, Van Der Heijden, & Van Harten, 2007; Schepperle & Böhm, 

2007). 

For the scope of this study accepting the lowest price offer is sufficient as the central 

broker scenario serves to showcase an easy transition from the fixed assignment of 

trucks towards a market-based allocation approach. In the context of the simulation 

experiment, the central broker scenario is intended to control the result of autonomous 

control strategies for the effect of price based allocation. 

 

5.2.4. Autonomous Control Scenarios 

The remaining two scenarios both belong to the group of decentral and more precisely, 

autonomous control. A distinction is made with regard to the trucks’ behaviour towards 

each other. In scenario four the truck agents show competitive behaviour, each 

individual truck aiming to maximise their respective utility. In the cooperation scenario 

number five, the trucks behaviour is benevolent (Davidsson et al., 2005; Nwana, 1996), 

meaning the trucks are willing to forgo individual benefit, hence working towards a 

more globally optimal solution (Bazzan & Klügl, 2014). In both scenarios trucks will 

request orders from the central registry and decide, based on their respective utility 

function, whether to accept the order or to reject it. In the cooperation scenario, trucks 

will additionally check if there is another truck that is both willing to take the order 

(meaning its utilisation function is fulfilled) and is better positioned with regards to 

distance to the plant location. The truck agent will therefore poll all other trucks acting 
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as a temporary broker for the particular order. The process flow follows the description 

provided in the previous chapter. 

 

5.3. Performance Indicators 

Looking at the literature, several authors offer approaches to categorising and structuring 

logistics performance indicators. At the same time there seems to be agreement that 

there is no universally applicable logistical controlling framework (Gleißner & 

Femerling, 2008). The reason for this being the large variety of logistical activities and 

different requirements across industries and even companies. An example to illustrate 

this, is the supply readiness KPI, which aims to express how many deliveries were 

supplied within the agreed timeframe (Schmidt & Schneider, 2008). By varying the 

measurement baseline from delivery line items to full deliveries only, Bretzke (2010) 

demonstrates how difficult it can be to find meaningful and comparable logistics KPI 

even between companies in the same industry.  

Gleißner & Femerling (2008) distinguish structural, productive, economic and 

qualitative KPI while Hellingrath (2008) differentiates between performance, cost and 

service KPI. An example for a structural KPI is the number of trucks owned by the 

company, which, according to Hellingrath’s (2008) definition, is a cost KPI. The number 

of orders delivered per day is listed as productive KPI (Gleißner & Femerling, 2008) or 

performance KPI (Hellingrath, 2008). Hellingrath (2008) does include absolute and 

relative KPIs in this category, such as the number of orders delivered in relation to the 

total order number. Examples for both the category named economic or cost, are 

delivery or personnel cost. Naturally there is a conflict between the cost KPI and the 

performance KPI, as lower cost may lead to reduced performance and quality (Schuh, 

Stich, & Schmidt, 2008), however this conflict is an inherent issue of logistics. The final 

category named qualitative KPI is a subset of the service category offered by Hellingrath 

(2008). It contains indicators such as the customer service, flexibility or product quality. 

While having an impact on the customer satisfaction, these KPI are typically hard to 

quantify. In addition, quantitative service KPI, such as supply readiness or delivery 

delays can be summarised in this category.  
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Considering these categories and the performance indicators provided as examples 

above, the KPI selected for this simulation model fit well within the defined categories. 

Below the relevant performance indicators are listed and described with regard to their 

functionality and meaning. Aside from the theoretical categorisation, the indicators have 

been aligned with the business under observation to ensure they are meaningful and 

relevant with regards to applicability to practice as well. 

- Number of orders delivered 

This KPI is the adaption of the supply readiness indicator introduced above, providing 

the absolute number of orders that have been delivered to the port location. It can be 

measured on a total level or per port, truck or plant agent for example. 

- Order completion rate 

The order completion rate is a relative service KPI putting the number of orders 

delivered in relation to the total number of orders placed, again similar to the supply 

readiness rate indicators found in literature (Hellingrath, 2008). For the model, a rate of 

>99.5% has been defined to constitute full order delivery, as determined during the 

prototype run. As the SUI operates in a continuous mode, no cool down period has been 

foreseen for the model. As a result, at the cut-off date for the simulation, there will 

inevitably be open or in-transport orders. Because of this fact, an order completion rate 

of 100% is never reached. 

- Number of trucks 

The number of trucks is understood as a performance indicator in this model as it 

expresses the number of trucks required to achieve full order delivery, e.g. an order 

delivery rate of >99.5%. This KPI is used in this way as fewer trucks required, translates 

to a more efficient use of resources in the network which can be translated into a 

performance and cost advantage. 

- Price per ton  

This relational cost KPI puts the total price charged by the individual transportation units 

in relation to the total quantity of material delivered. This indicator expressed the cost 

incurred by the ordering party in this logistics network, showing cost advantages of one 

scenario over the other. It is measured at an aggregated level only.  

- Total cost 
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This absolute cost KPI captures the cost incurred by each transportation unit. It 

considers both the fixed and variable cost components. It is captured both on an 

individual unit and global level.  

- Total earning 

This KPI also is part of the cost category and captures in absolute values the earnings of 

each truck as well as an aggregated total earning value. Together with the total cost KPI, 

it serves to provide insight into the profitability of the individual transportation units and 

facilitates understanding of their economic interest and motivation to participate in the 

supply network under investigation.  

All the above listed KPI are quantifiable indicators but are used to measure both 

quantitative and qualitative aspects of the transportation performance in the model. For 

example, the flexibility of the network and the reliability are deducted by comparing 

order completion rates, hence offering a qualitative performance measurement 

(Hellingrath, 2008). 

There are many other performance indicators that can be captured by the model such as 

service times of trucks or distances driven. However, they are not relevant to this thesis 

and will therefore not be explained in detail in this section.  

 

5.4. Experiment Setup  

 

5.4.1. Overview  

As mentioned above, a two-phase approach was taken to testing and running this 

experiment.  

The first phase being the pilot study, which serves both as a proof of concept and a 

validation of the model against the actual system under investigation. The pilot phase 

verifies the accuracy of the model and the configurations applied, creating and ensuring 

a valid basis (Law, 2003) for the second phase. At the same time, it is necessary to 

determine boundaries and limitations of the model to ensure applicability and validity 

(Birta & Arbez, 2013). 
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The second phase constitutes the main experiment of this simulation study. It is broken 

down into a set of simulation runs, serving different individual experiments and 

comparisons of performance indicators and control methods.  

 

5.4.2. Simulation Modes and Parameters 

The model built allows for two different simulation modes, namely individual 

simulation and parameter variation. The individual simulation mode provides a graphic 

representation of the model’s GIS space and shows the movement of the truck agents in 

that space. To allow for simulation of different configurations and scenarios, for both 

modes, several parameters of the model can be controlled via a user interface before 

each run. The possibility to control the parameters described below from a simulation 

user perspective without having to change the code of the model offers strong scalability 

and makes the model more flexible and versatile.  

When using parameter variation mode, additionally a subset of these parameters can be 

provided as value ranges, allowing automated simulation runs with varying parameters 

such as, for example, the number of trucks.  

The control screen layout is shown in Figure 5.3 

 

Figure 5.3 - Simulation Control Screen 

The parameters available on the screen are listed below with their range. They can be 

grouped into three main areas, namely model environment, control method and order 
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occurrence parameters. Parameters controlling the model environment provide the 

necessary limits for the simulation to execute. They are independent of the control 

method used. The control method parameters are used to select and configure the 

scenario which is to be simulated. Not all parameters are available for all scenarios. The 

third group, order occurrence, allows order occurrence parameters to be set for each 

port-plant relation. The parameters are pre-set for each order level but may be adjusted 

individually as required. A more detailed explanation on the functionality of each 

parameter is provided in Table 5.1. 

Parameter  Value range Parameter variation 

Model environment 

Number of trucks Range 1-300  Range 

Order level Single values, 1-6  Fix 

Markup factor Range, 0-100 Range 

Train Breakdown Probability Range, 0-1 Range 

Truck Breakdown Probability Range, 0-1 Range 

Control method 

Central broker Yes/no Fix 

Tendering Yes/no Fix 

Cooperation Yes/no Fix 

Fixed assignment  Yes/no Fix 

Truck assignment Value entry per plant; total is 

verified against total number of 

trucks 

Fix 

Rebalancing Yes/no Fix 

Order occurrence 

Lambda per port-plant relation Range, 0-9 Fix 

Table 5.1 – Simulation Parameter Overview 

The model environment parameters help to set the environment that the agents encounter 

during the simulation. The first parameter allows the number of trucks available in the 

model to be set. It can be set in a range between 1 and 300 truck agents for each 

simulation run. The number of trucks has, of course, a great impact on the available 

transport capacity. Varying the number via a parameter allows for a fast way to create 

situations of over or under capacity, enabling the evaluation of the behaviour and 
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effectiveness of the different control methods under these circumstances. The truck 

number can be varied automatically during parameter variation runs. The next parameter 

from the model environment group sets the order level for the simulation run. This 

parameter cannot be varied during parameter variation runs, requiring individual 

simulation runs for different order levels. The order level represents a set of order 

occurrence parameters for each port-plant relation. It, therefore, relates to the individual 

lambda parameters found in the order occurrence group. Setting an order level will 

automatically pre-set the corresponding mean and standard deviation values for each 

relation. As outlined above, the order placement follows a Poisson distribution in the 

model. Each port has its individual distribution for placement. The lambda parameters of 

the order occurrence group represent the rate parameter value for each of those 

individual distributions. The next parameter from the model environment group is the 

markup parameter. The markup parameter serves as seed value to calculate the 

individual markup factor each truck uses as part of its utility function, as explained 

above. This markup parameter is set for each simulation run via the control screen and 

can be varied in parameter variation simulation.  

The final parameters that help set the model environment are breakdown rates for both 

trains and trucks. These parameters serve again as input values for distributions used to 

calculate the probability of a breakdown for the transport vehicles. A separate parameter 

and, hence a separate calculation of the probability, is done for truck and train agents as 

explained in the individual agent’s section. 

The second group of parameters mentioned above is related to the control method used. 

These parameters depend on the scenario which is to be simulated in the current run. 

The parameters enable or disable certain functionalities required for the particular 

control method. Enabling particular parameters excludes others and vice versa. Given in 

Figure 5.4 is an overview of the settings applied in this research project. Following the 

figure, the parameter settings for each scenario are discussed in more detail. 
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Figure 5.4 - Control Method Parameters 

- Fixed assignment 

For the fixed assignment scenario, the corresponding parameter is active. Additionally, 

the entry fields for the number of trucks assigned to each plant are available. If no input 

is provided, the available trucks are split evenly between the plants. At the same time, 

the parameter for central broker, cooperation and tendering are deactivated.  

- Rebalancing 

In addition to the settings described above for the fixed assignment, the rebalancing 

scenario requires the rebalance parameter to be active. The distribution of trucks 

represents the initial distribution. After each week, the trucks are automatically 

redistributed between the plants based on the current order load (e.g. the more orders a 

plant has pending, the more trucks it gets assigned). 

- Central Broker 

To execute the simulation for the central broker scenario, the parameter with the same 

name is activated. At the same time the parameter for fixed assignment and rebalancing 

are not available as these functions are not applicable for the central broker scenario. 

The parameters for tendering and cooperation can be adjusted. For the central broker 

scenario as described here, the tendering parameter is activated. Cooperation, however, 

is not applied, as the functionality of finding the agent best suited for the order at hand is 

largely covered by the central broker function itself. 
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- Autonomous control  

For the autonomous control scenario to be executed, the central broker parameter needs 

to be deactivated. This will automatically disable the tendering parameter as well. The 

parameters for fixed assignment and rebalancing are also disabled as these functions do 

not apply. The cooperation parameter is deactivated for this scenario. By executing the 

simulation model with those parameters, order selection and assignment will be 

executed by the truck agents decentral and autonomously as described in the section on 

the technical model. 

- Autonomous control with cooperation 

The parameter settings for the autonomous control scenario including cooperation 

between the truck agents are the same as above except for the cooperation parameter. 

Activating this parameter provides the functions for truck agents to pass orders to better 

positioned trucks as described above. 

The third group of parameters, called order occurrence, provide the order rate input for 

each port-plant relation. They are primarily controlled by setting the order level. 

However, to support the initial process of finding the relevant order levels and to allow 

for further investigation, the order rate can be adjusted directly via the simulation control 

screen. 

 

5.4.3. Pilot Simulation Study 

Being an integral part of the DBA approach, the pilot study serves as a proof of concept 

and helps in validating the chosen research method. Regarding the simulation model 

built as part of this thesis, the primary purpose of the pilot study was to validate the 

model against the logistics network under investigation.  

To achieve this, the pilot phase is subdivided into two steps. The first step aims to 

identify and understand limitations and constraints of the model. Relevant parameter 

settings, order levels, required simulation duration and the number of trucks will be 

identified. Along with that, the distribution rates applied in the model will be verified.  

The second step of the pilot study contains the actual validation experiment, comparing 

the simulation model against real-world observations and data. Focus during the pilot 

will be on the pre-assignment scenarios as they reflect the control method and setup 
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encountered in the system under investigation. Using the “rebalancing” scenario 

introduced in the previous section, the simulation model is driven under identical input 

conditions as the real-world system (Balci, 1990). The model behaviour and output data 

is then compared to the system under investigation, aiming to establish the validity of 

this simulation model.  

 

5.4.4. Main Simulation Study  

The second phase of the simulation experiment contains the simulation runs required to 

compare the different control methods and document their respective performance. The 

main simulation study is structured along the relevant key performance indicator. All of 

the scenarios described above will be simulated. The relevant parameter settings for 

order level, markup factors and breakdown rates identified in the pilot phase will be 

applied. Each configuration will be run repetitively, making use of the modelling tool’s 

randomisation functions. This repetition will produce relevant results, accounting for 

observed variations.  

The aim of this phase is to produce the simulation results required to answer the research 

questions listed above. 

 

5.5. Running the Experiment 

To address the different simulation phases previously described, several simulation runs 

were carried out. For the pilot study, several individual simulation runs with different 

parameter were executed as described in the corresponding section in chapter 6.  

For the main simulation phase three full scale simulation experiments were executed to 

provide the data required for analysis. Each of these experiments consisted of four 

individual simulations, one for each scenario. Within each simulation the parameter 

variation functionality was used to vary the number of trucks. The number of trucks was 

increased by 10 in an interval from 150 to 300. To account for variations each step was 

executed 10 times. 10 repetitions proofed to offer a good compromise between accuracy 

and runtime as validated during the pilot study. As a result, each full-scale simulation 

experiment consists of a total of 640 individual simulation runs. Table 5.2 provides an 

overview of the experiments carried out: 
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Table 5.2 - Experiment overview 

The first experiment was executed with a markup factor of 50, providing data for order 

completion rate as well as cost and price comparisons. To support the discussion of the 

impact of the markup factor, the second full scale run included the markup factor as an 

additional variation parameter. This means that the 640 individual runs were executed 

four more times to cover the required markup factors of 0, 25, 75 and 99. The third and 

final full-scale experiment used the same variation parameters as the first one. It was 

however executed with an increased train breakdown probability rate to support the 

discussion on the impact of train failure on the network performance.  

Counting individual simulation runs, the main simulation experiment required a total of 

3,840 individual simulation runs, plus the runs required for validation and verification 

during the pilot study. 

 

5.6. Data Obtained 

Given the large number of simulation runs necessary to obtain relevant data for analysis 

and discussion, an automatic form of data capturing was required. Therefore, an output 

procedure was developed which produces a spreadsheet of results for each individual 

simulation run, listing a wide range of performance indicators and documented 

parameter settings. Additionally, the most relevant KPI, such as number of orders 

placed, orders delivered, order values, cost and price were automatically added to a 

central spreadsheet file serving as database for each run. 

Simulation 

Experiment 1

Simulation 

Experiment 2

Simulation 

Experiment 3

Number of 

individual runs: 640 2560 640

Simulation 

Parameters:

Markup 

parameter 50 0, 25, 75, 99 50

Train Breakdown 

Probability 0.3 0.3 0.7

KPI - Order completion rates

- Cost price comparison

- Impact of markup   

   factor

- Impact of train failure

varying

Main Simulation StudyPilot Simulation Study

12 week duration

150 - 300 trucks

10 truck step

10 iterations / step

4 scenarios

various
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Usage of a dedicated database was considered but not deemed necessary at that stage, as 

most data processing was done locally by the researcher himself. 

Below is an example of the individual result sheet generated is provided to illustrate the 

content. As mentioned, a wide range of performance indicators are recorded. Not all 

values are used in the study but were requested by the business sponsors or added for 

technical reasons.  

 

Figure 5.5 - Sample Individual simulation result sheet 

  

Simulation Parameters

Number of Trucks: 290

Markup Boundary: 50

Order Level: 6

Central Broker: no

Tendering: no

Cooperation: no

Fixed Assingment: no

Rebalancing: no

Trucks R Plant: n/a

Trucks S Plant: n/a

Simulation Results Total B Port T Port V Port

Total Orders placed: 36398 15578 11810 9010

Total Orders Plant R: 24655 9212 9366 6077

Total Orders Plant S: 11743 6366 2444 2933

Orders Delivered Total: 31069 10395 11749 8925

Orders Delivered %: 85.359

Orders Delivered Plant R: 21240 5903 9318 6019

Orders Delivered R Plant %: 86.149

Orders Delivered Plant S: 9829 4492 2431 2906

Orders Delivered S Plant %: 83.701

Orders Delivered Train Total: 5133

Orders Delivered Train R: 3259

Orders Delivered Train S: 1874

Outages Train R (days): 55

Outages Train S (days): 59

Orders Delivered incl. train %: 99.462

Orders Delivered R Plant incl. train %: 99.367

Orders Delivered S Plant incl. train %: 99.659

Total Order Value placed: 444585775.4

Total Order Value placed Plant R: 334240213.7

Total Order Value placed Plant S: 110345561.7

Sum Order Value Delivered: 391944743.5

Sum Order Value Delivered Plant R: 290536515.7

Sum Order Value Delivered Plant S: 101408227.8

Sum Order Value Delivered Train R: 40989967.63

Sum Order Value Delivered Train S: 8261855.637

Price Total: 143928959.7

Price Sum Plant R: 105498128.1

Price Sum Plant S: 38430831.6

Price for Order Value Ratio: 0.367

Price charged per Ton delivered: 231.63

Price offered (Value) per Ton delivered: 630.76

Order Value Mean: 12214.566

Order Value Mean Plant R: 13556.691

Order Value Mean Plant S: 9396.71

Delivered Order Value Mean: 12615.3

Delivered Order Value Mean Plant R: 13678.744

Delivered Order Value Mean Plant S: 10317.248

Delivered Order Rate Mean Plant R: 0.702

Delivered Order Rate Mean Plant S: 0.7

Truck Data

Truck ID: 12247 12248 12249 12250 12251 12252 12253 12254 12255 12256 12257 12258 12259 12260 12261 12262 12263 12264 12265

Cost waiting parameter: 0.09 0.08 0.08 0.08 0.05 0.05 0.05 0.04 0.03 0.06 0.06 0.03 0.06 0.05 0.03 0.1 0.07 0.08 0.07

Cost driving parameter: 0.38 0.47 0.46 0.41 0.34 0.23 0.43 0.39 0.23 0.46 0.32 0.29 0.45 0.4 0.36 0.34 0.38 0.44 0.46

Markup Constant: 58.068 44.563 41.23 58.72 47.385 56.008 56.128 40.849 43.767 57.728 55.483 54.874 41.474 46.909 50.493 54.555 54.236 58.745 41.609

Markup Average: 55.653 41.911 39.508 56.102 46.037 54.818 54.54 39.388 42.891 55.754 53.707 53.561 39.756 44.996 49.54 51.014 51.853 56.434 39.727

Cost waiting: 378.21 480.32 274.55 446.92 193.67 141.81 211.38 243.1 114.06 309.71 278.64 173.94 294.44 342.12 111.66 681.53 415.11 382.19 328.13

Cost driving: 15825.59 18539.68 19628.8 17456.59 13997.03 10404.94 18102.6 15714.92 9906.89 20021.23 13687 12321.13 19047.21 17321.88 16823.34 13371.55 15333.73 18872.74 20735.31

Total price earned: 899932.59 796836.79 796972.34 997071.51 661637.65 583789.99 1011413.87 636806.45 434965.19 1139823.62 751464.87 672623.19 777272.25 800091.27 851641.65 697105.58 815411.06 1092957.91 853361.52

Total order value transported: 2481598.75 2075222.05 1895316.02 2427730.81 2039697.93 1912460.76 2360532.39 1769816.53 1940747.03 2462446.8 2183873.87 1862678.48 2230028.52 2089609.88 2329666.53 1774678.63 1832587.78 2284700.35 2164736.7

Average Winning Price: 6817.67 6177.03 5994.94 7979.85 5056.09 4324.37 8156.56 5057.93 3242.2 9029.52 5860.46 5454.35 5844.15 6159.85 6702.68 5403.92 6230.24 8346.79 6616.46

Last Winning Price: 7812.95 6810.73 6350.13 8389 5765.63 4564.21 8412.23 5551.12 5974.19 15954.93 10395.5 9170.71 10985.55 6848.58 6301.79 5995.08 6980.41 8817.95 6778.77

Average Accepted Order Rate: 0.986 0.844 0.801 0.969 0.799 0.699 0.905 0.729 0.722 1.011 0.828 0.739 0.87 0.833 0.834 0.671 0.772 0.876 0.818

Total KM driven (complete orders only): 58464.128 56837.889 58448.234 58382.874 57843.701 60196.48 57952.008 56573.156 58869.727 58721.413 57008.378 58178.468 58677.406 58302.816 60605.734 57587.611 58089.484 58601.593 58930.07

Average speed KMH: 59.13 59.38 58.99 59.32 58.96 59.39 59.31 59 59.35 59.05 59.05 58.92 59.09 59.03 59.05 59.29 59.29 59.14 59.17

Total Time waiting (min): 4020 6000 3520 5660 3960 2820 4100 6700 3480 4780 4700 5080 4580 6700 3420 6860 5820 4560 4880

Total Time driving (min): 116180 114080 117160 114780 116600 116900 115980 113980 117000 115300 116100 115360 115020 113980 117020 113340 114860 116360 115920
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6. Findings and Discussion 

 

6.1. Pilot Simulation Study 

The pilot study is a central element of this thesis as it served the verification and 

validation of the model. It was conducted once all relevant logistical objects and 

transportation routes were coded into the model. The pilot study can be grouped into two 

main steps, with each of the steps being documented in a separate section below. 

The first section focuses on identifying limitations and constraints of the model as well 

as to validate assumptions taken (Birta & Arbez, 2013). 

The second section described the model validation against the system under 

investigation.  

 

6.1.1. Limitations and Constraints of the Model 

This section documents limitations and boundaries of the simulation model along with 

identifying required settings and ranges for the main simulation experiment. It starts 

with the simulation time, before looking at order levels and the number of trucks 

required. On closing a detailed examination of limitations identified in the tendering 

scenario is provided.  

 

6.1.1.1. Model Time Duration 

When considering time in a simulation model it is important to distinguish three 

different notions of time (Fujimoto, 2000). The first one being physical time, or model 

time as it is sometimes referred to (Perumalla, 2006). Physical time describes the time in 

the simulation model, such as the start date of each simulation model. In the simulation 

experiment at hand, each simulation run starts at physical time April 4th, 2016. This date 

was chosen based on availability of comparison data from the SUI. The simulation runs 

for a total of 12 weeks from that start date. This time span is denoted as simulation time. 

Simulation time can be understood as “an abstraction used by the simulation to model 

physical time” (Fujimoto, 2000, p. 27). Simulation time and physical time have a linear 

relationship, meaning that intervals of simulation times correspond to durations in 

physical time. The third concept of time in a simulation is called “wall clock” time. This 
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is the time that elapses in reality while the simulation is being carried out (Perumalla, 

2006). Typically, simulation time elapses faster than wall clock time, allowing the 

simulation to compress time. Only in special cases simulation and wall clock time are 

synced, for example in simulators, such as a flight simulator (Birta & Arbez, 2013). 

Generally, the ability to compress simulation time is one of the intended benefits of 

simulations. In the simulation at hand, the 12 weeks of simulation time can be executed 

in the range of minutes to a few hours, depending on model load and computing power 

available. This allows several simulation runs to be executed in limited time and enables 

such a comparison experiment as described here.  

Both start date, as well as duration, were chosen with regard to availability of real data 

from the SUI. The 12 week time span further proved during initial validations to offer 

sufficient time to account for variations in demand while at the same time being long 

enough for short-term effects (traffic obstructions, down times of either truck or train) to 

have no disproportional effect on the model performance. Longer periods of simulation 

time showed little to no effect on the results observed. The simulation is cut off after 

completion of 12 weeks or, more accurately 2016 hours. No cool down period is 

considered, as no such period was observed in reality. Stopping the simulation abruptly 

on that given date naturally leads to a small number of orders still being transported or 

otherwise in process. However, the same is observable from the real system data 

available and has little impact on the overall results as numbers of in process orders are 

comparatively small.  

 

6.1.1.2. Order Levels 

One of the central parameter settings influencing the model’s performance is the order 

rates for each of the port-plant relations. As the average number of orders placed by each 

port to each plant were available on a weekly and monthly basis from observation of the 

real-world supply network, the approach was to approximate these rates using the 

previously described distributions. 

Particularly during the build phase of the model, it was necessary to execute the model 

with lower load levels as well. Therefore, different order levels were determined and 

configured. The approach was to take proportional rates from the before established full 
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load setup. Meaning that order level 6 sets all individual order rates to account for the 

full order load observed, whereas order level 4 accounts for 25% of the order load. The 

predefined order levels and the resulting order rate parameter are shown in Table 6.2. It 

further provides the average number of orders observed in the real-world supply network 

for each plant-port relation. The baseline for the number of orders is one calendar week.  

 

Table 6.1 - Order levels and rate parameters 

The usage of these pre-set order levels provides a convenient way to change order rates 

with one central setting and to set up lower load levels when required. It also serves to 

validate specific effects observed in over/under-load situations as demonstrated later. To 

allow for additional variations, the individual order rates can still be adjusted via the 

before described parameters from the central control screen. 

To verify the accuracy of the order rate parameters introduced above, the order levels 

generated by the model were compared with the data observed. The rates were obtained 

through 50 runs of the model in fixed assignment mode for the selected standard 

simulation duration of 3 months. The mean value measured is with 36557.39 orders 

slightly above the observed mean. The distribution of the generated order rates follows a 

normal distribution which was verified by applying an Anderson-Darling test (Anderson 

& Darling, 1954; Razali, Wah, & others, 2011). The measured standard deviation is 

231.972 with p=0.769. Displayed in Figure 6.1 is the resulting probability distribution 

for the number of orders generated during each run. 

Order Level Load Level S -> B S -> T S -> V R -> B R -> T R -> V Total Max Train Capa

6 100% No. of Orders 540 210 250 750 750 500 3000 180

Rate parameter 3.24 1.24 1.47 4.6 4.6 3

5 50% No. of Orders 270 105 125 375 375 250 1500 90

Rate parameter 1.54 0.6 0.7 2.2 2.2 1.47

4 25% No. of Orders 135 53 63 187 187 125 750 46

Rate parameter 0.8 0.35 0.37 1.1 1.1 0.7

3 10% No. of Orders 54 21 25 75 75 50 300 20

Rate parameter 0.35 0.13 0.15 0.4 0.4 0.3

2 5% No. of Orders 26 11 13 37 37 26 150 10

Rate parameter 0.16 0.06 0.07 0.2 0.2 0.16

1 1% No. of Orders 5 3 3 7 7 5 30 2

Rate parameter 0.03 0.01 0.01 0.04 0.04 0.03
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Figure 6.1 - Order rate validation 

 

6.1.1.3. Full Order Delivery 

When identifying boundaries of the simulation model at hand, another important fact is 

to understand the total transport capacity. Full order delivery is reached, when all orders 

placed during a simulation run are delivered. This value is put into relation with the 

number of trucks required. To determine this number a simulation experiment is set up. 

As the aim is to both identify boundaries in the model and validate it against the real-

world example, the order level chosen for this experiment is order level 6, the 100% load 

configuration. Following that line of thought, the simulation will first consider only the 

pre-assignment scenarios. Model execution time was set to the standard 12 week 

duration as described above. The result of this simulation is exhibited in Figure 6.2.  
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Figure 6.2 - Order completion percentage - Order Level 6 

The results shown above were obtained using the parameter variation functionality of 

the model. The parameter varied is the number of trucks, starting at a lower limit of 10 

trucks and increasing the number by an increment of 10 trucks for each simulation run 

until the upper limit of 300 trucks has been reached. This experiment was carried out 

once for the rebalancing and once for the fixed assignment scenario. The result 

measured is the order completion rate, comparing the number of orders delivered to the 

number of orders placed in each simulation run. The completion percentage is shown on 

the y-axis of the diagram while the number of trucks is indicated on the x-axis. In 

addition to the full order completion rate, the dashed lines provide the order completion 

rate without the orders delivered by train.  

The central observation is, that 100% order completion is never achieved. As mentioned 

before, this is due to the fact that the experiment stops exactly after the 12 week time 

period is over with a number of orders still in delivery. For the scope of this research 

project order completion rates above 99.5% are, therefore, defined as full delivery to 

capacity. When looking at the diagram above, it becomes evident that for the 

rebalancing scenario this rate is reached for roughly 200 trucks whereas for the fixed 

assignment the trucks required number closer to 260 units.  

The irregularities in the graphs above are due to the variation introduced by distributions 

such as the train availability and breakdown rates for instance. To account for these 

variations several simulation runs would be necessary at the same truck level. While this 
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will be done for the model validation run and the main simulation experiment, it was not 

deemed necessary during this phase of the pilot, as the focus was on identifying relevant 

ranges and limits.  

 

6.1.1.4. Number of Trucks  

In the previous section the number of trucks required to achieve full order delivery in 

pre-assignment scenarios was identified and validated against observed values. To better 

understand the number of trucks required and to identify the relevant range for the main 

simulation phase, the same experiment as before is carried out for all control methods. 

The experiment uses a fixed seed value across the scenarios, to create comparable 

results. Figure 6.3 shows the results of this simulation run. 

 

Figure 6.3 - Number of trucks 

The diagram again shows the order completion rate on the vertical axis while the 

number of trucks is denoted on the horizontal axis. As before, the number of trucks is 

increased by a step of 10 for each simulation run. The number of trucks required to 

achieve an order completion rate above 99.5% for the fixed and rebalancing scenario are 

260 and 200 units respectively. 

Interesting is the performance of the autonomous control scenarios. The cooperation 

scenario appears to require with 210 units a slightly higher number of trucks than the 

rebalancing scenario. The competition scenario on the other side seems to achieve full 

order completion with an even lower number of trucks, crossing the 99.5% mark with 
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about 180 units. These values need to be validated in repeated simulation runs, of 

course, but they help to determine a range of interest regarding the number of trucks, 

setting it between 150 and 300 units. This helps to significantly reduce the number of 

simulation runs for the following experiments, allowing a saving in computing time to 

be made and a better resolution of results within that range.  

Looking at the graph for the tendering scenario, it seems to be able to deliver only a 

maximum of 45% of the orders placed, irrespective of the number of trucks. As this 

behaviour contrasts the other scenarios, it is examined in detail in the next section. 

 

6.1.1.5. Limitations Tendering Scenario 

To better understand the low order completion rate displayed by the tendering scenario, 

another simulation is carried out. It uses the same input parameters as above, however, it 

has a step of 1 for the parameter variation of the number of trucks, offering a better 

resolution of the issue. Also, the maximum number of trucks is set to 100 as the effect 

seems to stabilise at larger truck numbers. The results are displayed in Figure 6.4. 

 

Figure 6.4 - OL6 Tendering; 1 truck step 

When considering only the truck performance, the figure above shows that the order 

completion rate only increases up to around 50 trucks. Beyond that, the value decreases 

and stabilises at a lower level.  

There are two potential explanations for this behaviour, both connected to the 

complexity of the tendering algorithm in finding the most cost-efficient solution. On the 
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one hand, the cause for the limitation could be due to the available computing power. On 

the other hand, it could be that the implementation of the tendering algorithm limits the 

performance of the model. To further narrow the cause for the observed behaviour 

another simulation with a lower number of orders will be conducted.  

The order level parameter is used to set order level 3 which correspond to 10% of the 

original order load. This will both reduce the number of orders and, as a consequence, 

the number of truck agents required to achieve full order delivery. By significantly 

reducing the number of orders and trucks it should become evident whether computing 

power or inefficiencies in the algorithm are causal for the observed behaviour.  

In Figure 6.5 the result of a simulation run at order level 3 are portrayed. The number of 

trucks was again varied in steps of 1 up to a level of 30 trucks. The simulation was 

carried out twice to account for different markup factors. 

 

Figure 6.5 - OL3 Tendering, M=0 & M=50 

From the above diagram it also becomes evident that with significantly reduced order 

load completion rates are falling short of full order delivery. Including train capacity, the 

model is not able to deliver significantly more than 90 % of the orders placed (observed 

maximum at 91.63% for M=0 and 91.99% for M=50). This observation leads to the 

conclusion, that the tendering algorithm, as implemented, has limitation regarding 

effectiveness when tasked with large numbers of orders and truck agents. As the focus of 

this study is on the evaluation of autonomous control methods, more detailed 

examination as to how to improve performance of the tendering algorithm will be left 
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for future research. The tendering scenario will not be investigated in greater detail in 

the main simulation study. 

 

6.1.2. Model Validation 

This section describes the validation of the simulation model against the real-world 

system under investigation. It is based on the scenario called ‘rebalancing’. The reason 

for this being that this scenario setup reflects most closely the observed control 

approach. As laid out before, the planning of the supply network serving as an example 

for this simulation model, is carried out on a weekly basis. Trucks are assigned to a 

particular plant and deliver orders in the sequence in which they are received. Each 

week, based on the current demand situation, trucks are redistributed between the plants.  

To account for variations introduced by the various distributions used in the model, the 

experiment is carried out repeatedly with the same setting. A total of 100 replications 

was chosen for this particular experiment, as this provided a good compromise between 

result variation and runtime. The number of trucks was fixed to the 200 trucks required 

for full order delivery as determined above. Model execution time was again the 

standard 12 week duration. The results of this experiment are visualised in the following 

figures. 
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Figure 6.6 - Orders completed absolute – distribution Figure 6.7 - Orders completed trucks - distribution 

The first diagram above shows the distribution of the total number of orders completed 

for each simulation run. The average number of orders delivered was 36326.45 with a 

standard deviation of 204.61. As Figure 6.6 shows, the obtained values follow a normal 

distribution according to the Anderson-Darling test. The order completion rate was on 

average 99.33% with standard deviation of 0.35. Isolating the number of truck transports 

without the transportation capacity of the train, the second diagram shows that the mean 

number of orders delivered by trucks was 25131.27. Again, values follow a normal 

distribution, deviating by 535.55 orders.  

To compare these results to the situation observed, the quantity structure described in 

section 4.1.3 will serve as baseline. The values observed are on a weekly basis. To allow 

comparison with the simulation results, they need to be multiplied with the standard 

duration of 12 weeks for the simulation run. The simulation results are compared to the 

observed values in Table 6.2:  
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Table 6.2 - Comparison observed values vs. simulation results 

When considering the table above it becomes evident that the mean values of the 

simulation experiment conducted fit accurately within the observed value ranges of the 

real-world example. When considering deviations, the measured simulation results for 

the tonnage transported stay well within range of the observed values, and within no 

more than 3 standard deviations as Figure 6.8 shows. 

 

Figure 6.8 - Tonnage transported by truck - simulation result validation 

When looking at the train, the aberration for the tonnage transported still stay within the 

3 standard deviation range. They do however for a small number of instances violate the 

range observed from the system under investigation as apparent in Figure 6.9. 

Ø Orders

delivered Ø Transports Ø Tonnage

Transports Tonnage 12 weeks 1 week 1 week

Total - 50,000 - 70,000 36,326.45 - 60,551.40

Train 9.4 - 11.1 17,000 - 20,000 11,195.18 10.37 18,666

Truck 1,900 - 2,200 38,000 - 44,000 25,131.27 2,094.27 41,885.40

Observed values Simulation results
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Figure 6.9 - Tonnage transported by train - simulation result validation 

In summary, both comparisons above suggesting a high match of the simulation model 

with regards to the average simulation results as well as standard deviations. Following 

the idea that if these values corresponded to a significant extent (Banks et al., 2005) the 

model can be understood as an accurate representation of the SUI for the purpose at 

hand (Birta & Arbez, 2013). Passing the mathematical inspection, the simulation results 

were additionally verified with business stakeholders to ensure validity with regard to 

application in practice.  

 

6.1.3. Summary Pilot Study 

The pilot simulation study was of great significance to the model creation process, as it 

served as validation point for the model (Birta & Arbez, 2013). However, it also 

provided valuable insight and learning into limitations and boundaries of the model. By 

identifying relevant ranges and parameter values, such as the model duration and the 

number of trucks required or by defining the limit for full order delivery, it helped to 

prepare the main simulation study. It also enabled to focus on experiments relevant to 

answer the research questions, by identifying and excluding the tendering scenario. 

 

6.2. Main Simulation Experiments 

This section discusses the findings from the main simulation study. The section is 

constructed along the executed experiments with each experiment focusing on a key 
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performance indicator. The first indicators examined are the order completion rates 

compared across different scenarios. This is followed by a cost to price comparison. The 

final section investigates the impact of environmental factors on order completion rates.  

 

6.2.1. Order Completion Rates - Scenarios Comparison 

To answer the research question, whether methods of autonomous control can improve 

the performance of the logistics network under investigation, the first simulation 

experiment compares order completion rates across the different scenarios. The number 

of trucks required serves as a performance indicator. The fewer trucks required to 

achieve an order completion rate of 99.5%, the better for the logistical network. This 

assumes that a lower number of trucks signifies a more efficient use of resources. More 

efficient use of transportation resources is typically associated with a cost advantage, 

due to scale effects and fixed cost degression (Gudehus, 2012b). The economic aspects, 

such as cost, incurred and prices charged under the various scenarios will be investigated 

later. For now, a lower number of trucks required to complete delivery of all orders 

placed is considered an advantage of one control method over the other.  

In the experiment, the truck number is varied within the above determined range of 150 

to 300 trucks with steps of 10 trucks. To allow for grounded comparison each simulation 

run is replicated 10 times, reflecting the observed variation. The chosen order level is 

level 6, simulating the full observed order load. The markup factor is set to 50. The 

impact of this factor is analysed in a later experiment. The figures on the next page show 

an overview of the obtained results. 
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Figure 6.10 - Overview Scenarios 

Each of the diagrams above shows the results for a particular scenario. The line connects 

the mean values obtained in the 10 replication runs for each truck number. The vertical 

lines displayed show the range between minimal and maximal values obtained for each 

number of trucks.  

In the first two charts in Figure 6.10, the clear difference between the rebalancing and 

the fixed scenario becomes visible with regard to number of trucks required. The 

rebalancing scenario manages to reach an order completion rate of 99.5% between 200 

and 220 trucks. In the fixed assignment scenario, the number of transportation units 

required to achieve the same performance varies between 260 and 280 trucks.  

To facilitate the comparison of the different scenarios, the figure below offers an overlay 

of the 4 scenarios. To retain readability, only the graphs of the mean values are 

compared in this diagram. 
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Figure 6.11 - Order Completion Rates - Scenario Comparison - Mean values 

The clear difference between rebalancing and fix assignment scenario has already been 

discussed before. More importantly, the diagram above shows that both autonomous 

control scenarios require fewer transportation units than the rebalancing scenario to 

achieve full order delivery. As this difference is at the core of the investigation in this 

research project, it is analysed in greater detail below.  

The diagram above only compares the mean values obtained. The figures in the 

following sections will also contain the value ranges resulting from each individual 

simulation run. To ensure readability only two scenarios will be compared at a time as 

the range indicators tend to overlap.  
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6.2.1.1. Comparison: Competition and Rebalancing Scenario 

Shown in Figure 6.12 is a direct comparison of the rebalancing and the competition 

scenario. The simulation parameters are unchanged as the results are from the same 

simulation run. 

 

Figure 6.12 - Comparison Competition vs. Rebalancing Scenario 

The figure above clearly shows that in the competitive autonomous control scenario a 

smaller number of trucks is required to achieve full order delivery when compared to the 

rebalancing scenario. Considering the mean values captured, the competition scenario 

requires on average between 190 and 200 truck units to achieve full order delivery 

whereas the rebalancing scenario reaches that point only when applying at least 220 

trucks. When looking at the maximum results obtained in the 10 individual runs, in the 

competition scenario, 180 trucks were sufficient to achieve an order completion rate of 

99.697%. The rebalancing scenario required even in the best case 200 truck agents to 

deliver a total of 99.659% of the orders placed. When looking at the lower limit, results 

range close to the limit of 99.5% missing it by less than one standard deviation even for 

high truck numbers. This exemplifies again, why this lower boundary was chosen as 

limit to define order completion. Comparing the scenarios, the competition scenario 

reaches the area of 1 standard deviation of the full order completion limit with 210 truck 

units whereas the rebalancing scenario requires a total of 260 trucks.  
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6.2.1.2. Comparison: Cooperation and Rebalancing Scenario 

Compared in Figure 6.13 are the rebalancing scenario and the cooperation scenario. As 

described before, in the cooperation scenario, truck agents show benevolent behaviour 

towards one another by forwarding orders to better positioned trucks.  

 

Figure 6.13 - Comparison Cooperation vs. Rebalancing Scenario 

From this comparison it becomes evident that again the autonomous control method 

achieves higher order completion rates, than the rebalancing scenario particularly for 

lower number of trucks. When, however, identifying the number of trucks required to 

cross the threshold of 99.5% for full order completion, both scenarios require on average 

220 transportation units. Similarly, comparing the best-case values out of the 10 

replication runs, both scenarios cross the threshold with about 200 trucks each. 

However, a better performance for a smaller number of trucks, may hint at a more 

efficient use of resources for the cooperation scenario. This will be analysed in greater 

detail in the section cost-price comparison.  

 

6.2.1.3. Comparison: Competition and Cooperation Scenario 

As mentioned above, there are two scenarios based on autonomous control methods. In 

the competition scenario trucks would compete for orders to maximise their own utility 

function, whereas in the cooperation scenario, trucks aim to reach a more globally 
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optimal solution by passing on orders. Therefore, the initial expectation was, that the 

cooperative scenario would produce a better overall result, requiring fewer trucks. The 

diagram below compares those two scenarios to verify that expectation.  

 

Figure 6.14 - Comparison Cooperation vs. Competition Scenario 

Interestingly when looking at the mean values, the diagram shows that for all truck 

numbers, the competition scenario outperforms the cooperation scenario, achieving a 

higher order completion rate with the same number of transportation units. That is in line 

with what was observed when comparing the cooperative scenario to the rebalancing 

scenario. There the number of transportation units required to achieve full order 

completion was about equal, even though the gradient of the completion rate graph was 

slightly higher, hinting at a higher efficiency of the cooperative scenario.  

As a result of the above comparison, the competition scenario seems to outperform the 

cooperative scenario. This observation is somewhat surprising as the collaborative 

element was introduced with the intent to even better allocate orders to trucks and 

further reduce transportation costs. It will, therefore, be analysed in greater detail in the 

following section.  

Overall, the above experiment clearly shows that, under the given settings, an 

autonomous controlled scenario performs better with regards to resources usage, than 

the rebalancing scenario, representing the currently used real-world best practice. 



Page | 132  

 

In the following section, the focus will be on evaluating the impact of the scenarios on 

cost and price structure, aiming to gain a deeper understanding and validate the 

previously observed effects. 

 

6.2.2. Cost and Price Scenario Comparison 

The previous simulations comparing order completion rates showed a measurable and 

significant advantage for the autonomous control scenarios with regard to the number of 

trucks required. Compared in this section is the financial impact of the different control 

methods. The comparison will consider two main areas, first looking at the price per ton 

required under each control method before looking in greater detail at the economic 

situation of the individual transportation units, evaluating their cost and earning situation 

in the different scenarios. 

 

6.2.2.1. Price per Ton Comparison 

A performance indicator capturing the price per ton delivered was created and 

implemented in the simulation model. The indicator accumulates the final price charged 

by the individual transportation units and divides this value by the total quantity of 

material delivered as described by the formula below. 
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Only completed deliveries are taken into consideration. All financial indicators are 

measured in US Dollars (USD).  

The simulation results shown were obtained in the same simulation experiment as the 

order completion rates above, to ensure comparability. The diagram on the next page 

shows the price per ton performance indicator for all four scenarios.  
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Figure 6.15 - Price per ton delivered (mean) 

The diagram above indicates the number of trucks on the horizontal axis, while denoting 

the price per ton on the vertical axis. Looking at the graph, two observations can be 

made. The first is that for all control scenarios the cost per ton decreases with an 

increasing truck number. This result is to be expected as it demonstrates the well-known 

concept of economies of scales. While it is typically described in a production 

environment it applies as well to transportation scenarios (Koshal, 1972). With the 

increasing number of trucks, the fixed costs incurred are divided between a higher 

number of trucks and a larger transport quantity, decreasing the cost impact on each 

individual ton transported.  

The second observation drawn from the diagram above is that there is a clear difference 

in price per ton for each of the different scenarios. The comparison helps to further 

emphasise the case for autonomous control, as these scenarios offer a significantly lower 

price per ton delivered than the scenarios relying on central control. To verify this 

observation, the prices of the rebalancing and the competition scenario will be 

compared. Building on the insights obtained in the preceding section and to account for 

the previously described fixed cost degression, the price per ton will be compared for the 

corresponding number of trucks where full delivery was reached. As identified above, 

the mean value crossed the defined threshold of 99.5% of orders delivered at 220 trucks 

for the rebalancing scenario, whereas in the competition scenario only 200 trucks were 

required. The respective price per ton was $69.02 for the rebalancing scenario versus 
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$65.12 in the competition scenario. Again, the mean value out of the 10 individual 

simulation runs was taken for this comparison. This comparison of absolute values 

shows that the autonomous control scenario offers a price advantage of 5.65% per ton at 

full order delivery. 

Considering the remaining scenarios, similar to what was observed for the order 

completion rates, the fixed assignment scenario does not perform well in comparison to 

the other scenarios. It requires a mean price per ton of $71.31 when reaching full order 

delivery at 280 transportation units, asking for the highest price in this comparison. 

The graph for the price per ton in the cooperative scenario indicates that for any number 

of trucks greater than170, decentral control with cooperation seems to offer the lowest 

price per ton. This is noteworthy, as with regards to order completion rates shown in the 

previous section, the cooperation scenario seemed to fall short in performance when 

compared to the competition scenario. It reached full order delivery only for 220 trucks, 

similar to the rebalancing scenario but requiring 20 trucks more than the competition 

scenario. When looking at the price per ton however, the mean price asked for is $56.17 

at 220 trucks. Comparing this to both the prices for the competition and the rebalancing 

scenario, the price is significantly lower. The cooperation scenario offers a price 

advantage of 13.74% over the competition and 18.62% over the rebalancing scenario. 

Even when comparing the price per ton at equal number of trucks, a price advantage 

remains for the cooperative scenario. At 200 trucks, the cooperative scenario requires 

only $60.60 as mean price per ton, still offering a 6.94% reduction to the above cited 

$65.12 for the competition scenario. 

Looking at the findings, the cooperative approach to autonomous controls appears to be 

the most promising control method, as the slightly higher truck number is balanced by 

the cost savings.  

Whether these savings can be realised in real-world application remains however subject 

to concern and will be analysed in more detail in the following section. 

 

6.2.2.2. Cost to Earnings Comparison  

The lower price per ton in the autonomous control scenarios translates to lower cost for 

the company contracting the transportation services. However, at the same time, the 
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lower price per ton signifies a reduction in income for the transportation service 

providers. This is particularly relevant in the cooperation scenario, as the success of this 

control method relies on the cooperation of the truck agents and their willingness to 

share information. As described before, the truck agents will poll other agents, to 

determine whether they are better located to carry out a given order and pass orders to 

better positioned trucks. As shown above, this behaviour leads to a globally more 

optimal solution by making more efficient use of the resources available in the supply 

network. However, it may mean that individual transportation units have fewer orders to 

deliver, so reducing their income. While this solution may be preferable from a global, 

cost optimisation point of view it does not constitute a pareto optimal solution (Petrie, 

Webster, & Cutkosky, 1995).  

As this fact may impact the successful implementation of this control method, it is 

worthwhile taking a closer look at the effect of the different scenarios on the economical 

profitability of the individual transportation units. As no real-world implementation 

experience is available, the results from the simulation runs executed before will be 

used. To understand the economic profitability of each truck agent, its cost incurred, and 

earnings realised will be compared. This profit that each transportation unit can make 

out of its participation in this supply network serves as indicator of the willingness or 

likelihood of a transportation unit to participate and adhere to a certain control method.  

The values will be plotted and analysed for each of the simulation control scenarios. The 

following diagrams provide a significantly different point of view than the previous 

charts. In this chart one individual simulation run out of the 10 repetitions is presented. 

To keep variation as small as possible, the simulation run with the smallest deviation 

from the mean order completion rate was chosen. Each data point in the diagram reflects 

the intersection between the total cost incurred on the horizontal axis and the total 

earnings on the vertical axis of an individual truck agent. 
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Figure 6.16 - Cost/Earning Comparison @ 200 trucks 

The first diagram shows the previously described comparison for all 4 scenarios at a 

number of 200 trucks. The high number of data points does not allow an easy distinction 

of individual values, but the plotting allows for a good overview of the distribution of 

the values. The first observation is that trucks which are able to realise higher earnings 

also incur higher cost, leading to the sloping form of the graph. That behaviour was to be 

expected, as the total cost indicator includes both fixed and variable cost. As more 

deliveries are carried out, variable cost increases proportionally for each truck.  

In the fixed assignment scenario, there is a significant number of trucks that can be 

found on the lower left spectrum of the diagram. These truck agents receive no or only a 

very small number of orders, providing them with little opportunity to generate earnings 

out of their participation in this supply network. On the other extreme, on the upper 

right-hand side of the diagram, several truck agents seem to be able to make large 

earnings by capturing a larger share of the overall order value offered. Considering the 

raw data, even under fixed assignment all trucks are able to recover their cost. However, 

the distribution shows a significant spread. The top 10% of trucks generate more than 51 

times the earnings of the lowest 10%. For all the remaining scenarios, this factor is 

between 3.5 and 3.7, varying slightly between simulation runs. 

It is fair to say that under fixed assignment, the profitability is distributed quite 

unequally among the individual transportation units. Even though, the fixed assignment 
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scenario is not suitable for implementation, it serves as a benchmark to understand the 

profitability of the remaining scenarios. 

Under all control scenarios with exception of the fixed scenario, most truck agents are 

able to realise a significant profit margin out of their participation in this supply 

network.  

The markup factor, which will be analysed in greater detail in the following section, has, 

of course, significant impact on the profitability. However, as all agents operate under 

the same environmental parameters, the comparison between the different scenarios can 

be executed on that basis. 

 

6.2.2.3. Cost to Earnings Comparison – Autonomous Control 

Having analysed the overall distribution of cost and earnings, the next diagrams focus on 

comparing the profitability of both autonomous control. The comparison will be done in 

two steps, with the first diagram offering a comparison at equal number of truck whereas 

the second one will compare the two scenarios at order completion rate > 99.5%. 

 

 

Figure 6.17 - Cost/Earning Comparison @ 200 trucks - Detailed View 

The diagram above uses the same data as the previous one, however, now only data 

points are shown for the competition and the cooperation scenario. In the previous 

section, the cooperation scenario seemed to offer a cost advantage over the competition 
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scenario, demanding a significantly lower price per ton transported. This raised the 

concern that the lower price may lead to an unequal distribution of income among the 

truck agents, making them less likely to cooperate with each other. At equal number of 

trucks, the mean profit for the cooperative scenario is with $157,915 about 1.22% lower 

than the mean profit of $159,873 made by the truck agents on average in the competition 

scenario. However, by looking at the previous diagram one can conclude that this 

distribution does not constitute a reason for any individual agent not to participate in a 

cooperative control model.  

Accounting for the different number of trucks required to achieve a delivery completion 

rate > 99.5%, Figure 6.18 compares the individual truck agent’s profit for 220 trucks in 

the cooperation scenario against 200 in the competition scenario.  

 

Figure 6.18 - Cost/Earning Comparison > 99.5% Orders Delivered - Detailed View 

It appears as a larger number of trucks in the cooperative scenario is located on the 

lower left side of the diagram than before. In absolute numbers, the mean profit per truck 

drops to $129,851, which constitutes a difference of 18.78% compared to the mean 

profit of $159,873 under competition. This large difference can be explained partially by 

the larger number of trucks dividing up the earnings. However, comparing the total 

earnings across the whole truck population, a decrease by 10.52% from competition to 

cooperative scenario can be observed. This means, that a significant part of the potential 

savings, due to the lower price per ton, is financed by the truck agents. This quite large 
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reduction in income may lead to acceptance issues when introducing such a control 

method. On the positive side however, the trucks seem to operate more effectively in the 

cooperative scenario, reducing the overall total cost by 4.63%, even though 20 trucks 

more are in use, contributing to a larger fixed cost base.  

To summarise the section on cost and prices, it is fair to say that autonomous control 

scenarios offer better economical results than the central control mechanisms. Whether 

the additional savings promised by the cooperative approach can be realised will have to 

be verified during actual implementation. To account for this uncertainty, a two-step 

approach may offer best results, first introducing decentral control, thus establishing the 

technology and building trust within the system while adding the cooperative component 

at a later stage to make additional savings. The technological base used for this model 

supports such a modular approach.  

The final section will discuss the impact of variations in selected environmental factors, 

establishing the adaptability of the model to changing circumstances.  

 

6.2.3. Impact of Environmental Parameters 

To control execution of each simulation run, a wide range of parameters can be 

modified. So far, the focus has been on parameters related to the control methods. This 

section will evaluate the impact of environmental factors on the model, looking at two 

distinct parameters and their effect on logistical performance.  

Continuing the investigation on the financial aspects of the model, the first section will 

explore the impact of the so called markup parameter on the model’s performance. The 

second section will then examine the effect of fluctuation of the transport capacity, as 

created by the unreliable railroad service, and analyse the model’s behaviour. 

 

6.2.3.1. Impact of the Markup Parameter 

As described before, the markup factor was introduced in the model to reflect the 

intention of each of the individual transportation units to generate an economic benefit 

out of their transport activities. The factor thus represents the trucks’ expectation of 

profitability. 
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Each truck has an individual markup factor which is derived via a normal distribution 

from a common seed value, the markup parameter.  

The markup factor changes during simulation execution, as external factors may reduce 

a truck agent’s expectations of profit. For example, a long waiting times for orders, may 

make the truck agent willing to accept orders that offer lower earnings. 

The markup parameter is set initially via the simulation control screen. It can be 

understood as an environmental parameter, as it controls the overall level of profit for 

the whole supply network. It is an artificial factor, not representing a certain monetary 

value.  

This section analyses its impact on the order completion rates and financial results of the 

simulation model. 

To cover the available range, simulation experiments with a markup parameter of 0, 25, 

50, 75 and 99 were carried out. All experiments use again steps of 10 trucks in the range 

from 150 to 300 trucks, executing 10 replications for each step. The comparison of the 

experiment is shown in Figure 6.19. 

 

Figure 6.19 - Comparison Markup Parameter - Order Completion – Pre-Assignment Scenarios 

The figure above compares the order completion rates obtained for the different markup 

parameters for both the rebalancing and the fixed scenario. The deviations of the 
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individual graphs are minimal, resulting only from the variations introduced by the 

distribution functions. This was expected and serves to prove the previously mentioned 

fact that in pre-assignment scenarios, the truck agents accept any order assigned without 

considering the economic benefit.  

The following figures illustrate the situation under autonomous control. 

 

Figure 6.20 - Comparison Markup Parameter - Order Completion - Competition Scenario 

 

Figure 6.21 - Comparison Markup Parameter - Order Completion - Cooperation Scenario 
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The diagrams above show the impact of the markup parameter for the competition and 

the cooperation scenario respectively. For both scenarios, the impact is similar in 

proportions between the different result graphs. For markup factors 75 and 99 the order 

completion rate is reduced significantly in both scenarios. This means that the profit 

expectations of the trucks exceed the value offered for a significant number of orders. 

Full order delivery is achieved later e.g. for larger number of trucks in these simulation 

runs. The reason for this being that waiting times for individual trucks increase as their 

utility functions choose to wait for orders offering a higher price more frequently. Full 

order completion rate is eventually achieved, as with a growing truck population the 

probability of having trucks with an initially lower individual markup factor increases. 

Additionally, as there are more trucks, truck agents spent more time waiting; hence the 

above described waiting() function takes effect, reducing their profit expectation. 

For markup parameter 50 and below, the simulation results again overlap to a large 

extent, showing that the impact of the markup parameters below this threshold is limited. 

This observation offers an initial explanation as to why the previous simulation 

experiments were carried out with a markup parameter of 50. To fully understand the 

impact of this parameter, the financial aspects will now be analysed. 

The data visualised in the diagrams on the next page was obtained in the simulation 

experiments previously described. As intended, the result range varies significantly for 

the individual markup parameters, not allowing for an overlap of the individual 

simulation results in a single diagram. Hence Figure 6.22 shows each of the results as an 

individual diagram. The simulation results for price per ton at markup parameter 50 have 

been presented in the previous section. 



Page | 143  

 

 

Figure 6.22 - Price per Ton Overview Markup Parameters 

By comparing the range of the vertical axis in the diagrams above, it becomes evident 

that the different markup parameters have an impact on the price per ton. With the price 

ranging from about 1.6 at markup 0 to 158 for a markup parameter of 99 the effect is 

clearly visible. The two values mentioned also show that the markup parameter works as 

a factor on the price per ton. This becomes even more evident when comparing the 

shape of the respective graphs for each scenario and their relation among each other. For 

each individual markup parameter, the cooperation scenario performs better than the 

competition while both outperform the rebalancing scenario. For all three scenarios, the 

shape of the graphs looks similar, showing a long tail as the initially steep negative 

gradient approaches 0.  

Exceptions can be observed for extreme values of the markup parameter. At a markup 

parameter of 99 the graphs for the autonomous control scenarios do not follow the 

observed pattern of reaching a plateau with a gradient close to 0 for a higher number of 

trucks. Instead they continue to decline steadily until the maximum number of 300 

trucks is reached, indicating that the minimal price per ton would be reached for an even 

higher number of trucks. However, reaching this point is not desirable from an overall 

optimisation point of view, as it would be achieved only with a large overcapacity of 

trucks, making participation in the supply chain unattractive for individual truck agents. 
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On the other side of the spectrum, for a markup parameter of 0, the behaviour of the 

graph for the cooperation scenario is noteworthy. While the competition and rebalancing 

scenario reach a similar minimal level, the cooperation scenario manages to offer a 

lower price per ton for instances with a number of trucks larger than 170. That means 

that even when looking at a pure cost comparison, assuming that trucks are not aiming 

for any profit, the cooperative scenario can achieve a lower price per ton. This reduced 

cost level shows, that resources are used more efficiently in this scenario, further helping 

to manifest the observed advantage autonomous control can provided for the logistics 

network at hand over the currently used control method.  

The markup parameter of 50, selected for the previous simulation experiments, offers 

balanced results, providing sufficient earnings potential for the individual truck agents as 

motivation to participate in the supply network while keeping overall cost at a 

reasonable level, even offering savings beyond the status quo. Having explained this 

choice and demonstrated the impact of this environmental factor, the next section will 

consider the impact of the train failure rate on the simulation model. 

 

6.2.3.2. Impact of Train Failure Rate  

A key concern to the logistics network under investigation is the low quality of service 

of rail transportation. Train transport is crucial to the operation as it offers large 

capacities at a significantly lower price than the truck transportation. However, the 

service is unreliable with trains being cancelled on short notice or not departing as 

planned. It is, therefore, important for this research project to show, whether 

autonomous control approaches could address this high variability in transportation 

capacity more effectively or at least do not further aggravate the situation. The model 

has been designed to address that requirement, modelling both truck and train 

transportation accordingly. As explained in the section on individual agent design, the 

train agent uses a random distribution to determine daily the operational status of the 

train, to model the fluctuation in availability of service. The probability value for this 

distribution can be adjusted via an environmental parameter named ‘Train Breakdown 

Probability’ on the simulation control screen. 
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To evaluate the impact of the train availability on the performance of the logistics 

network, a separate simulation experiment was executed.  

The experiment runs the model with a significantly higher probability of 0.7 for train 

failure. In a first step, the results are compared to the previous simulation run, which was 

carried out with the observed average train failure probability of 0.3. 

To allow for comparison, all remaining parameters remained unchanged. That means, 

again at order level 6, the number of trucks is varied within the range of 150 to 300 

trucks with a step of 10 trucks. Each simulation run is replicated 10 times. The markup 

factor is set to 50.  

Figure 6.23 shows the result for the simulation experiment with elevated train failure 

probability. For better comparison, Figure 6.24 directly below repeats the results 

obtained from the previous simulation experiment, using the same plot resolution. 

 

Figure 6.23 - Order Completion Rates - Scenario Comparison at 0.7 Train Breakdown Probability 
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Figure 6.24 - Order Completion Rates - Scenario Comparison at 0.3 Train Breakdown Probability 

From the comparison of the two figures it becomes evident that the increased failure rate 

of the train did affect the overall transport capacity of the logistics network. This 

reduction was expected, as the train capacity makes up a significant share of the overall 

transport capacity. Comparing the corresponding graphs, the shift to the right can be 

observed for all control scenarios. Looking at absolute numbers, previously the 

rebalancing scenario was able to achieve order delivery > 99.5% with 220 trucks on 

average, whereas with the higher train failure rate 270 trucks are required. Similar 

behaviour can be observed for the autonomous control scenarios, with the cooperation 

scenario now requiring 240 trucks instead of 220. 

Considering the minimal requirement stated above, to not aggravate the situation caused 

by fluctuations in train availability, it can be concluded, that all autonomous control 

methods perform better than the pre-assignment scenarios, even with an increased train 

breakdown probability.  

To answer the question, whether the autonomous control methods can improve the 

performance of the supply network with increased train breakdown probability, a 

separate analysis of the simulation data was realised. To see whether the autonomous 

truck agents can respond more flexibly to changes in the transport demand situation and 

compensate these accordingly it is necessary to compare the individual transportation 

rates for trucks and train. Therefore, it is necessary to look at the individual simulation 

runs, including the necessary repetitions. The diagram on the following page provides an 
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overview of the results obtained out of the competition scenario’s simulation run with 

increased train breakdown rate.  

 

Figure 6.25 - Competition Scenario Individual Results 

The diagram lists the train and truck order completion rates for each individual 

simulation run. The red marked, lower part of each column represents the train’s 

contribution to order delivery. The truck units’ total delivery rate is stacked on top of 

this, represented by the blue marked part of the column. As seen before in the diagrams 

on order completion rates, for lower truck numbers full order delivery is not reached, 

represented by the grey, top area of the columns. The train completion rate columns 

clearly show the fluctuation of the train capacity between the individual runs, proving 

that the train breakdown probability does affect the available transport capacity. The 

order completion rate varies between 10.23% and 17.48% with a mean value of 13.28% 

and standard deviation of 1.249.  

Based on these individual simulation results, a comparison of the contribution of the 

different means of transports and between the different control methods was created. As 

the competition scenario performed slightly better than the cooperation scenario, it was 

selected to represent the autonomous control scenarios. It is compared to the rebalancing 

scenario, representing the status quo of the supply network.  
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Figure 6.26 – Comparison of Order Completion Rates per Means of Transport across Scenarios 

Given in Figure 6.26 is a comparison of the order completion rate for trains and trucks, 

as well as the combined total rate of orders delivered. Each of these rates is provided for 

both the competition as well as for the rebalancing scenario. Looking at the dotted lines, 

representing the train order completion rates, the saw-shaped pattern of the graph strikes 

the eye. This pattern is the result of grouping the individual simulation replication runs 

by number of trucks and sorting them within their group in an ascending manner. This 

sorting is necessary to allow comparison between the different graphs, as each 

simulation run produces unique results and order rates. Therefore, comparisons within 

one group, e.g. the same number of trucks, can be considered valid. Comparing across 

groups would lead to distortions as higher truck delivery rates may result from higher 

number of trucks available and not from changing train transportation capacity. 

Considering these restrictions, the comparison shows that even though train 

transportation rates fluctuate similarly across the scenarios, there is an area in the graph 

where in the competition scenario the truck agents seem to achieve higher order 

completion rates than under the rebalancing scenario. 

To facilitate this examination, a more detailed view is given in Figure 6.27. 
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Figure 6.27 - Detailed View Comparison of Order Completion Rates per Means of Transport across Scenarios 

The diagram above displays the same data as before, however, it focuses on the above 

identified area. The reason for this focus can be explained by considering the previous 

figures on order completion rates. Below the chosen 190 truck agents, full order 

completion was not achieved, as transportation capacity in the supply network is not 

sufficient. In other words, the trucks have no free capacity to take over orders to 

compensate for failing trains. The area above 240 trucks is not of great interest for the 

comparison at hand as the number of trucks is greater than required, hence providing 

over-capacity. While offering trucks to take on missing train capacity, this additional 

capacity is bought at the expense of a decrease in efficiency, as this spare truck capacity 

would be only used in case of train failure.  

Hence these areas can be eliminated when trying to find out whether autonomously 

controlled truck agents can better use the existing resources in case of train failure. From 

Figure 6.27 it becomes evident, that while the graphs for train order completion only 

vary to a small extent, there is a significant difference between the order completion 

rates for truck agents when comparing the competition and the rebalancing scenario. It is 

clearly visible that truck agents in the competition scenario manage to deliver a higher 

number of orders in most simulation runs, smoothing variations caused by fluctuating 

train availability.  
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Considering these results, one can conclude, that autonomous control methods address 

the issue of high fluctuations in transport capacity more efficiently than the currently 

used control method.  
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7. Conclusion 

 

7.1. Reflection of Findings 

This section will provide an overview of the main findings from the simulation 

experiments and reflect on them by putting them into perspective with the research 

questions, as repeated in the figure below. 

 

Figure 7.1 - Research Structure 

Figure 7.1 contains the results obtained which will be set out in this section. 

RQ1 was primarily addressed in chapter 4 on the model and agent design along with 

input from the pilot study validation, which is explained in section 6.1. In these sections 

it was clearly demonstrated how the supply chain at hand was being reflected with the 

right level of detail in this simulation model. These details were validated with subject 

matter experts from the client side through several rounds of presentations and feedback, 

establishing credibility of the model. Carried out with the same control method as 

currently used in the world, the pilot study served as the validation point, ensuring the 

model was close enough to the real-world example to fulfil the purpose of the simulation 

study (Greasley, 2008). The model was built as a multi-agent simulation model, 

applying the concepts of autonomous control by representing all relevant logistical 

entities of the network and, most importantly, the individual transportation units, by 

software agents. The model created represents result R1 and at the same time answers 

RQ1. 
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This model was used to conduct the simulation experiment, producing the performance 

measurements discussed below. The experiment was setup as a comparative simulation 

with different scenarios, allowing for comparison of the results from the different control 

methods. This full-scale comparative simulation of an actual supply chain constitutes the 

result R2.  

The achieved performance improvements are certainly the central results achieved in the 

simulation above. The first finding is regarding the number of trucks required to achieve 

an order completion rate of 99.5% or greater. This performance indicator was used to 

measure the performance of the different control methods in terms of effectiveness and 

resource usage. As described in section 6.2.1, both autonomous control scenarios 

required a lower number of trucks to complete the delivery of this target percentage of 

orders. The competition scenario achieved the threshold with 180 trucks on average 

whereas the rebalancing scenario required 200. That constitutes a reduction of the 

number of trucks required by 9.1% to achieve the same transportation capacity. That 

saving value was determined by the difference between the mean values of the 

individual simulation runs. Looking at extreme values, the savings rate is even slightly 

higher at 10% for both comparisons of maximum and minimum delivery rates. Thus, the 

competition control scenario outperforms the established rebalancing method in this 

simulation. 

As indicated before, the difference is not as clear when comparing the rebalancing with 

the cooperative scenario. Looking at exact truck numbers for both mean and maximum 

values no difference is notable, each scenario requiring the same 220 and 200 trucks 

respectively to achieve full order delivery. For the minimum case, an advantage for the 

cooperative scenario can be reported, as 7.69% fewer trucks are required. This, together 

with the above observed better performance at lower truck numbers, still constitutes a 

small advantage for the cooperative scenario.  

These findings clearly indicate that autonomous control can improve operational 

efficiency of this logistics network when compared to the currently used control 

methods, contributing to the third result listed above.  

Looking for further proof that autonomous control can improve performance in logistics 

networks, a financial indicator was considered next. As explained in the findings, the 
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price per ton of product delivered was chosen to facilitate a comparison between the 

different scenarios and simulation runs.  

The result again shows a significant advantage for the autonomous control scenarios as 

the average price per ton asked is lower at comparable order completion rates. At full 

order delivery, the competition scenario required a mean price of $65.12, which equals a 

5.65% price reduction over the $69.02 required in the rebalancing scenario. Analysing 

the cooperative scenario, the price advantage becomes even more significant. For full 

order delivery at 220 trucks the cooperative scenario required an average price per ton of 

$56.17. This is a price advantage of 13.74% over the competition and 18.61% over the 

rebalancing scenario, also clearly manifesting the performance of the autonomous 

control scenarios with regards to financial performance.  

As mentioned above, logistical performance in this thesis is not only evaluated in a 

quantitative dimension, but also considers qualitative aspects, such as the reliability of 

the supply network and its participants. In this context, two aspects were examined: the 

cost to earnings comparison and the response of the supply chain to fluctuations in 

transport capacity.  

The cost to earning comparison is of interest, as the lower price per ton shown above, 

may translate to lower earnings for the individual truck agents. This reduction in income 

may, however, impact the willingness of trucks to participate in the supply network and 

pose a potential barrier to the introduction of a new control method. 

The main finding from this examination was ambiguous, as a comparison between the 

competition and the cooperation scenarios showed that the mean profit per truck drops 

by 18.78%. This translates to a 10.52% decrease in earnings across the whole truck 

population, confirming the concern that the cooperative scenario does indeed adversely 

affect the earnings situation of the truck agents. However, on the positive side, the 

experiment showed that the trucks seem to operate more effectively in the cooperative 

scenario reducing the overall total cost by 4.63%, even though 20 trucks more were in 

use.  

So even though the result is inconclusive for the cooperation scenario, as the truck 

agents’ income may reduce under the autonomous control method, it does positively 

impact the operational efficiency. To evaluate the impact of this decrease in earnings 
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regarding the acceptance of this control method, further studies involving the trucking 

companies would be required and are not part of this thesis. 

The second aspect of qualitative performance under evaluation was the ability of the 

logistical network to respond to frequent changes in transportation capacity. This is a 

critical ability for this supply chain, as the train service is described as unreliable. An 

additional simulation experiment with increased train failure rate was carried out. The 

experiment was able to show, that the truck agents in the competition scenario manage 

to deliver a higher number of orders in most simulations, smoothing variations caused 

by fluctuating train availability. In direct comparison to the rebalancing scenario, the 

autonomous control scenarios did manage to deliver a higher number of orders, as trucks 

were taking on orders that the train could not deliver due to failure. Considering these 

results, one can conclude, that autonomous control methods address the issue of high 

fluctuations in transport capacity more efficiently than the currently used central control 

method. 

The findings listed above show that concepts of autonomous control can improve the 

performance of the supply network at hand, thus answering RQ2. Looking at the results, 

they show a clear performance improvement over existing control methods, measuring 

the number of trucks required and price charged, constituting result R3. As laid out, the 

financial aspects have to be validated in a later implementation project. Beyond the 

quantitative improvements, the simulation was able to show, that autonomous control 

improves the robustness of the supply network and its ability to respond to change. 

While not directly addressing the research questions, result R4, the creation of an 

adjustable and reusable simulation platform, has been achieved through the simulation 

model created and offers a relevant contribution to practise. 

Having answered all research questions, the following section will put the results into 

the perspective of the gaps identified in the literature and describe their contribution to 

existing knowledge.  

 

7.2. Contribution to Literature 

This section aims to highlight the contribution to existing knowledge this simulation 

study provides. It is structured around the previously identified gaps in the literature on 
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agent-based modelling and simulation in logistics, namely the research objective gap, 

the simulation gap and the implementation gap.  

This study clearly shows how autonomous control can improve the performance and 

robustness of a bulk supply network when compared to conventional control methods. It 

demonstrates this by executing a comparative simulation experiment using an agent-

based model of an actual bulk supply network. This model sets out how autonomous 

control can be applied on the level of the individual transportation unit in a bulk supply 

chain using software agents, thereby addressing the objective gap.  

The research objective gap stated that in the literature review effected for this thesis, no 

study could be identified that, at the same time, addressed the problem at hand in the 

right industry context using the right level of description. The model built for this thesis 

represents the outbound logistical network of a representative client example from the 

bulk shipping industry. The problem described and modelled is centred on allocating 

bulk orders to transportation units using mechanisms of autonomous control. To 

implement these mechanisms, each transportation unit is represented by a software agent 

in the model. This level of detail was selected to present and validate the effects of 

decentralising control to the individual truck, showing the benefit of autonomous 

control. As a result, this thesis contributes an agent-based application of autonomous 

control on the level of individual transportation units in bulk shipping industries, 

effectively addressing the research objective gap. 

As noted before, a comparative simulation experiment was conducted, using an agent-

based model of an actual bulk supply network, addressing the second gap identified. The 

simulation gap described, that very few studies had been identified in the literature 

which offered comparative simulation, allowing the performance of autonomous control 

methods to be validated in contrast to other control approaches. Creating a comparison 

between the existing and the newly proposed, autonomous control approaches is one of 

the key contributions of this thesis. The side by side simulation and result comparison 

allowed to clearly show and measure the performance increase provided by autonomous 

control. As such studies still are rare, on academic side, this thesis helps to reduce the 

gap on comparative agent-based simulation. 
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As a means to do so, a comparative simulation experiment will be conducted, using an 

agent-based model of an actual bulk supply network. This will provide a showcase 

indicating how autonomous control can be applied on the level of the individual 

transportation unit in a bulk supply chain using software agents. Such a showcase can 

help narrow the gap regarding the implementation of software in supply chain planning 

and operation.  

The third research gap identified was related to the implementation maturity of agent-

based solutions in logistics. The study offers a full-scale simulation using an agent-based 

model of an actual bulk supply network. Even though this thesis is not able to present a 

full productive implementation of agent technology in the field of logistics, it still can be 

considered successful. As Robinson & Bhatia (1995) point out, implementation often 

depends on factors beyond the control of the modeler and should, therefore, not be 

included in the definition of success for a simulation study. Looking at the maturity 

index (Davidsson et al., 2005) as described above, this thesis reaches the level 2.2.2 

providing a simulation study using real-world data and offering a full-scale simulation 

experiment. Reflecting the figures provided above, in the survey study conducted by 

Davidsson et al., (2005) only 10.7% of all paper surveyed reached this or a higher level. 

Thus, this thesis contributes to this selected group of full-scale simulation studies, 

offering valuable insights by applying the theoretical concepts to an actual supply 

network. This is also relevant from the practical side, as this study provides a relevant 

showcase for the application of IT systems in supply chain management, helping to 

close the observed implementation gap in this area (Bell et al., 2014). 

The next section will continue this discussion by evaluating the contribution to practice 

of this study. 

 

7.3. Relevance for Practice 

When evaluating the relevance of this DBA work for practise, both the general 

applicability as well as the specific relevance for the system under investigation have to 

be considered. This section, therefore, first looks at the relevance of the study and its 

results to the client example at hand before discussing its contribution to the wider 

practice.  
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While the success of a simulation study may not depend on the actual implementation, it 

is vital that the results and recommendations are accepted by the client (Robinson & 

Bhatia, 1995). To achieve this, it is important to not only communicate the results but 

also to ensure and verify understanding thereof (Robinson & Pidd, 1998). 

The results of this simulation study, namely, strong evidence that autonomous control 

can improve the performance of the SUI were, therefore, presented to a group of key 

stakeholders and subject matter experts on the client side. While interaction with SME 

on the client side was close and frequent throughout the model creation and validation, 

this final step served to provide credibility to the results as well (Law, 2003). 

To ensure the understanding of the results and document their relevance, a final 

interview was conducted with a selected key stakeholder. The head of supply chain 

operations for Europe, Middle East and Asia was chosen, as he is both responsible for 

the supply network analysed and has worked previously for several years as local supply 

chain operations manager for this network, thus offering both a strategic as well as an 

operational perspective on the challenges faced.  

A semi-structured interview approach was chosen, with the questions of the interview 

grouped into four main areas, covering the motivation to participate in this research, 

validating the study’s approach before taking a closer look at the relevance of the results 

and finally, discussing the path and barriers towards implementation. 

While the main purpose of the interview was to validate whether the study, as such, and 

the obtained simulation results are relevant from a practical point of view, it helped to 

confirm that the study addresses an actual business problem. The main challenges faced 

by the supply network studied are the need for “constant re-planning” (JF2018) of truck 

assignment caused primarily by short term demand changes and unreliable train 

services. The motivation to participate in the study was therefore to “improve the 

allocation of vehicles” (JF2018). In the interview it became evident, that from the 

company’s point of view this improvement can be split up into two areas. On the one 

side the aim is to improve planning and execution of the transportation tasks while on 

the other side reducing the effort required for the allocation activities. Therefore, the 

proposed solution of shifting control to autonomous units is considered a highly 

interesting approach to address both focus areas. Additionally, the interview showed that 
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this approach is in line with an ongoing strategic initiative, which aims at “cutting out 

the middle man” (JF2018), effectively reducing dependency on the single logistics 

service provider by placing transportation orders directly with the truck operators. The 

points mentioned outline the motivation to participate in the study at hand and again 

confirm the observations and assumptions from the previous sections. 

Looking at the approach chosen, the interview aimed to verify whether the creation of a 

multi-agent simulation was perceived as a suitable method from a practical point of view 

as well. Considering the feedback, it can be clearly confirmed, that simulation was the 

right method to choose under the given circumstances. The subject matter expert 

confirmed that “it was extremely beneficial to see a simulation model of our supply 

chain in action.” (JF2018). Particularly, the ability to experiment and see “what happens 

if” (JF2018) was highlighted as a benefit from a practical application point of view. The 

comparative approach was further mentioned to help in understanding the difference 

between the current setup and the proposed solution and understanding the relationship 

of variables (JF2018). Ultimately, it was confirmed that having an executable simulation 

available “helped to better understand what is meant by autonomous control and also 

what the impact would is” (JF2018).  

These remarks clearly show that using a simulation model to conduct this study was a 

suitable and adequate choice from a practical view point.  

The next questions aimed to determine whether the results obtained are relevant 

contributions to practice as well. The results were presented in the form of a presentation 

prior to the interview, so the questions aimed to gather feedback on selected values. 

Primarily, the presented reduction of 10% in required truck capacity for equal delivery 

quantity was validated. It was stated by the expert that “10% fewer trucks is a significant 

reduction for our supply chain” (JF2018), showing that the results are within a relevant 

range for practical application. The argumentation provided is, that an increase in 

efficiency leads to better fixed cost distribution and thus a cost reduction. Similar to this, 

the second figure presented was the maximum 18% saving potential per ton which in the 

word of the expert “…is of course a huge number and as such of great interest” 

(JF2018). At the same time, concerns were raised, with regards to the ability to realise 

these savings in practice. The concerns are rooted in previous experiences with cost 
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reductions, where too low prices led to undesired side effects, such as trucks refusing 

service or organising strikes. As the expert phrased it, “there is a certain degree of co-

dependency here” (JF2018), referring to the relationship to the truck operators, which 

results from the limited transportation market due to the remote geographic location. 

These concerns have, however, been addressed by the study, as the arguments stated 

were raised in the early conception phases of both the study and the accompanying 

business project. The simulation analysed the distribution of cost to earnings and the 

impact on individual trucks, showing that while cost savings can be realised the 

concerns around the effect on the trucks cannot be entirely dismissed and has to be 

analysed in actual implementation. In that context an interesting remark was made 

during the interview, stating that “…the savings do not necessarily have to come out of 

the pocket of the trucks” (JF2018), meaning that, as indicated before, the autonomous 

control methods may help to cut out the logistics service provider, acting as middle man 

and thus enable a reduction of cost without affecting the earning situation of the truck 

operators.  

This discussion around the impact on the truck operators leads to the final aspect of 

validation of business relevance, namely the question if the proposed solution can be 

implemented. With regard to the reduction in number of trucks and the improved 

compensation of fluctuations caused by train services, this was clearly confirmed by the 

expert in the interview. Doubts were again expressed towards the extent of the cost 

savings for the reasons mentioned above. Given the positive estimate to the feasibility of 

implementing such a solution, the next question was why the solution is currently not 

being implemented. The expert listed commercial and financial constraints as the main 

reasons which inhibited an actual implementation project. To gain an understanding of 

potential implementation barriers, the expert was asked, which risks and limitations he 

perceives for a later deployment of the solution. Two focus areas emerged, namely, 

technology and acceptance of the solution by the end users. While both of these areas 

need to be addressed during an actual IT implementation project, the question was raised 

as to whether the simulation study did help to reduce these concerns. The following 

statement by the expert helps to underline the positive feedback received on this 

question “Before it was all quite abstract ideas and concepts but seeing the results first 
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hand in the model, really allowed me to better grasp and understand the concept” 

(JF2018).  

Finally, being asked whether this study increased the likelihood for implementation of 

autonomous control in his supply network, the SME answered he felt “Absolutely more 

inclined” (JF2018) towards implementation of such a solution.  

This statement again helps to establish the relevance of the simulation study conducted 

in this thesis for the business at hand.  

Looking at the contribution to practice beyond the specific client example under study, 

the aspect of implementation is also highly relevant. As mentioned earlier, there is a 

significant gap with regard to software implementation in supply chain management. 

The gap is reflected in the literature (Bell et al., 2014; Fawcett et al., 2011) and has been 

observed first hand by the author across several enterprises. From a practical point of 

view, the study at hand therefore offers a valuable showcase of how software can 

support decision-making and thus planning and control of supply networks. The study 

demonstrates how software agents can shift control to individual transportation units 

without large investments in software and high risk to operations. The executable agent-

based simulation model further serves as a communication tool (Greasley, 2008), greatly 

helping understanding of the proposed solution approach and making autonomous 

control more tangible. The executable simulation model can be understood as the second 

significant contribution to practice offered by this thesis.  

The model has been shared, along with the study’s results, within the expert community 

of the author’s organisation. In the meantime, the model has been used as a demonstrator 

in several proof of concept situations with different clients across industries.  

The final aspect that this study contributes to practice, is the reusable modelling platform 

created. It can be easily adapted to different client and industry scenarios with limited 

effort and training required. The simulation model has already been transposed to an 

intralogistics scenario, with the agents representing forklifts that supply material to a 

production line. This shows how versatile software agents and agent-based modelling 

can be applied to a wide range of areas and how practice benefits from its versatility.  

The aspect of generalisation will be further highlighted in the context of strength and 

limitations of this study in the following section.  



Page | 161  

 

7.4. Strength and Limitations of this Study 

While the quantitative research approach chosen for this study led to the intended 

measurable results, it certainly lacks the depth of insight into underlying motivations and 

reasons that qualitative approaches offer. The expert interview conducted compensated 

this limitation to a small extent, as did the insights gathered by the close interaction with 

SME and key stakeholder from the enterprise investigated. This limitation however is 

common to any quantitative work and accepted.  

The method chosen for this thesis, a simulation experiment using a model of the supply 

network under investigation, shows both strength and weaknesses. As set out in the 

previous section, the advantage of having an executable model of this supply chain is 

that it provided great benefits to facilitating understanding the network and 

communication and dissemination of findings. On the other hand, any model is always 

an abstraction of the real world (Law, 2003), naturally introducing constraints and 

showing limitations. The largest limitation was undoubtedly the focus on a single supply 

network. While this was the stated purpose of this study and necessary to conduct the 

study at this level of detail, it naturally limits general applicability of the study’s results. 

While this cannot be argued from a scientific point of view, there are two aspects to be 

mentioned in this context. Firstly, the literature overview provided shows a multitude of 

successful applications of agent-based simulation across various industries and 

enterprises, highlighting the general applicability of software agent-based solutions. 

Secondly, based on the author’s own experience as an industry consultant, the effects 

witnessed in this supply network and the results obtained show the potential to be 

applied to other supply chains. This claim can further be supported by the interest in the 

study’s results shown by the supply chain expert community in the author’s organisation 

and the application of the concepts to other client and industry scenarios in the 

meantime.  

The underlying idea of decentralised decision-making and control (Windt & Hülsmann, 

2007) and the following reduction of complexity is a powerful concept for any supply 

network. Looking back at the theoretical context provided in chapter 1, the concept is 

not limited to logistics and supply chains. Transportation networks that face similar 

challenges as the network under investigation can be found across the mobility domain. 
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Commuter choice simulation (Zellner, Massey, Shiftan, Levine, & Arquero, 2016) or 

public transport simulation (Fourie, Erath, Ordóñez Medina, Chakirov, & Axhausen, 

2016) are just two examples where a high number of individual and independent units 

coincide with a highly dynamic environment, thus requiring frequent re-planning. In this 

context, software agents and agent-based modelling can offer a viable approach to 

addressing this complexity and offer valuable insights, as this study has shown.  

Looking closer at software agents, they still offer great potential and can serve as a step 

towards more advanced technologies in the priority matrix (Gartner, 2018).  

Agents do not only help to decompose complex structures and problems (Jennings, 

2001), they enable supply chains to benefit from insights based on big data (Louis & 

Giannakis, 2016). 

Software agents further serve as a digital representation of physical objects, such as the 

trucks in this study. Agents can thus form the basis for “self-aware” machines or sensors 

(Lee, Lapira, Bagheri, & Kao, 2013) effectively creating what is now often called a 

‘digital twin’ (Rosen & Boschert, 2017). This self-awareness is enabled by equipping 

agents with the ability to learn (Foerster et al., 2017). To provide two examples, Fu & Fu 

(2015) apply self-aware and adaptive agents to improve cost collaborative management 

for supply chains whereas Wang, Wong & Wang (2013) rely on agents to create an 

ontology based negotiation scheme for supply networks. Thus, combining agents with 

machine learning (Jordan & Mitchell, 2015) is a promising way to benefit from artificial 

intelligence in logistics.  

Continuing to look at strength and limitation, the ethical dimension of the research 

method shall be considered as well. As Kruger (2003) points out, simulation can be a 

powerful tool, that also brings great responsibility, regarding its usage and application. 

Such an aspect can be found here with regards to the impact of the simulation results on 

the actors in the supply chain. Looking for affected parties, the truck drivers come to 

mind, as there is a power imbalance between the individual, small businesses owning 

mostly only one truck and the larger cooperation requiring the services. This potential 

imbalance can be considered a limiting factor when comparing simulation results to 

observed results, as the ethical consequences of technologies should be considered 

(Weber & Weber, 2010). 
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Considering the model itself, the limitations found largely coincide with the constraints 

mentioned in chapter 4. The most notable limitations are the assumption of a closed 

market and the focus on a single product. In the model no participants leave the market 

and no new transportation providers enter it. While this is a necessary constraint of the 

model, it does not accurately reflect the real world. Another limitation is the use of a 

single product which is being transported across the supply network. Those two aspects 

may limit the model’s applicability to a certain degree and should be considered when 

moving towards deployment of the solution. 

Considering the study as a whole, the largest limitation identified, is the missing 

implementation experience, as the solution proposed has not yet been deployed to the 

supply network under investigation. While this confines, strictly speaking, the 

simulation results to the theoretical realm, and thus poses a limitation, the author would 

like to point out that this simulation experiment is beyond a scientific testbed. As 

mentioned before, the simulation results have been used in practice, while the model 

itself has been transposed to addressing different problems from another industry. 

Further, if it is pointed out that the number of agent-based simulation models publicised 

that have reached the same level of maturity is quite small, this observation helps to put 

that limitation in context.  

 

7.5. Recommendations for Future Research 

While this thesis shows how autonomous control can be applied to and improve the 

performance of the logistical network under investigation, there remain various areas 

which offer options for further research. A total of three focus areas have been identified 

and are outlined below. 

The first area is naturally centred around moving towards actual implementation of the 

autonomous control approach. An actual implementation would offer additional insights 

both from academic and practical points of view, helping to verify assumptions made 

and confirm the results obtained by simulation. Implementation is not only interesting 

for the supply chain under study but may be adapted to a wide range of supply networks. 

A qualitative investigation of any implementation project applying autonomous control 

to logistics would help to verify known implementation barriers and identify new risks, 
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advancing knowledge in this area. For example, the previously mentioned uncertainty 

regarding the acceptance of the collaborative control method, due to a reduction in 

earnings for the individual trucks, could be addressed with a qualitative approach.  

The second area for further investigation can be summarised as extensions of the model 

and/or the simulation scope beyond the topics covered in this thesis. This could, for 

example, include different market participants or evaluations for different key 

performance indicators. Moreover, different methods for implementing autonomous 

control in logistics, such as pheromone-based control or queue length estimation 

(Scholz-Reiter, Görges, & Jagalski, 2011) and the comparison between them, holds 

much potential for further investigation. These extensions can be summarised as 

functional extensions. The most promising functional extension is perhaps the 

integration of artificial intelligence into the agent model. Looking at the current 

discussions in this area, it appears almost as a logical next step, to further empower the 

software agents by equipping them with the ability to learn (Russell & Norvig, 2003). 

By implementing machine learning capabilities, agents could, for example, adapt their 

prices based on experience (Chan, Son, & Macal, 2010) or change their cooperation 

behaviour based on strategies developed at runtime. The simulation model would allow 

for such an extension as it was built on an extendable framework using Java 

programming language. Suitable machine learning packages such as Deeplearning4J 

(Deeplearning4J, 2018) are available to provide the required function modules and data 

structures. The agents coding would need to be extended and additional computing 

resources may be required. Adding machine learning functionality to the simulation 

model warrants additional scientific investigation and holds much potential for 

application to practice. 

The third area that offers room for further scientific investigation can be described as a 

transposition of concepts within the logistics domain and beyond. This is interesting 

from the practical side because, as mentioned before this has already been carried out. 

To address a client scenario from a different industry, the model has been modified to 

represent an intralogistics scenario. The individual agents in this case represent 

individual forklifts which are assigned to complete delivery tasks within a production 
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plant. Again, the modular approach of the model built for this thesis allows for easy 

transition to the new application area.  

The listed areas cover only a small range of the opportunities available for further 

research in the context of autonomous control within the logistics domain. As shown in 

this thesis, the area still holds much potential both from academic and application sides 

and will continue to grow with the increased interest in artificial intelligence and 

machine learning.  

 

  



Page | 166  

 

References 

Abbasi, M., & Nilsson, F. (2012). Themes and challenges in making supply chains 
environmentally sustainable. Supply Chain Management: An International 

Journal, 17(5), 517–530. https://doi.org/10.1108/13598541211258582 

Aberle, G. (2003). Transportwirtschaft - 4th. Ed. München: Oldenbourg. 

Adler, J. L., & Blue, V. J. (2002). A cooperative multi-agent transportation management 
and route guidance system. Transportation Research Part C: Emerging 

Technologies, 10(5–6), 433–454. https://doi.org/10.1016/S0968-090X(02)00030-
X 

Adler, J. L., Satapathy, G., Manikonda, V., Bowles, B., & Blue, V. J. (2005). A multi-
agent approach to cooperative traffic management and route guidance. 
Transportation Research Part B: Methodological, 39(4), 297–318. 
https://doi.org/10.1016/j.trb.2004.03.005 

Anderson, T. W., & Darling, D. A. (1954). A Test of Goodness of Fit. Journal of the 

American Statistical Association, 49(268), 765–769. 
https://doi.org/10.1080/01621459.1954.10501232 

AnyLogic. (2018). AnyLogic: Simulation Modeling Software Tools & Solutions for 
Business. Retrieved August 21, 2018, from https://www.anylogic.com/ 

Applegate, D. L., Bixby, R. E., Chvatal, V., & Cook, W. J. (2007). The Traveling 

Salesman Problem: A Computational Study. Princeton: Princeton University 
Press. 

Armbruster, D., de Beer, C., Freitag, M., Jagalski, T., & Ringhofer, C. (2006). 
Autonomous control of production networks using a pheromone approach. 
Physica A: Statistical Mechanics and its applications, 363(1), 104–114. 
https://doi.org/10.1016/j.physa.2006.01.052 

Arnold, D. (2008). Außerbetriebliche Logistik. In D. Arnold, K. Furmans, H. Isermann, 
A. Kuhn, & H. Tempelmeier (Eds.), Handbuch Logistik (3rd ed., p. 727). Berlin 
Heidelberg: Springer. 

Arora, S., & Barak, B. (2009). Computational complexity: a modern approach. 
Cambridge: Cambridge University Press. 

Axelrod, R. M. (1997). The complexity of cooperation: Agent-based models of 

competition and collaboration. Princeton: Princeton University Press. 

Axelrod, R., & Tesfatsion, L. (2006). Appendix A A guide for newcomers to agent-
based modeling in the social sciences. In Handbook of computational economics 
(Vol. 2, pp. 1647–1659). Amsterdam: Elsevier. 

Axtell, R. (2000). Why agents? On the varied motivations for agent computing in the 
social sciences. Retrieved from 
http://www2.econ.iastate.edu/tesfatsi/WhyAgents.RAxtell2000.pdf 

Azevedo, C. L., Marczuk, K., Raveau, S., Soh, H., Adnan, M., Basak, K., … Ben-Akiva, 
M. (2016). Microsimulation of Demand and Supply of Autonomous Mobility On 
Demand. Transportation Research Record, 2564(1), 21–30. 
https://doi.org/10.3141/2564-03 

Balbo, F., & Pinson, S. (2001). Toward a multi-agent modelling approach for urban 
public transportation systems. In International Workshop on Engineering 



Page | 167  

 

Societies in the Agents World (pp. 160–174). https://doi.org/10.1007/3-540-
45584-1_11 

Balci, O. (1990). Guidelines for successful simulation studies. In 1990 Winter 

Simulation Conference Proceedings (pp. 25–32). 
https://doi.org/10.1109/WSC.1990.129482 

Banks, J., Carson II, J. S., Nelson, B. L., & Nicol, D. M. (2005). Discrete-Event System 

Simulation (4th ed.). London: Pearson. 

Bartholdi III, J. J., Eisenstein, D. D., & Lim, Y. F. (2010). Self-organizing logistics 
systems. Annual Reviews in Control, 34(1), 111–117. 
https://doi.org/10.1016/j.arcontrol.2010.02.006 

Bazzan, A. L., & Klügl, F. (2014). A review on agent-based technology for traffic and 
transportation. The Knowledge Engineering Review, 29(03), 375–403. 
https://doi.org/10.1017/S0269888913000118 

Bearzotti, L. A., Salomone, E., & Chiotti, O. J. (2012). An autonomous multi-agent 
approach to supply chain event management. International Journal of 

Production Economics, 135(1), 468–478. 
https://doi.org/10.1016/j.ijpe.2011.08.023 

Beck, K., Beedle, M., Van Bennekum, A., Cockburn, A., Cunningham, W., Fowler, M., 
… others. (2001). Manifesto for agile software development. Retrieved from 
https://moodle2016-
17.ua.es/moodle/pluginfile.php/80324/mod_resource/content/2/agile-
manifesto.pdf 

Bell, J. E., Bradley, R. V., Fugate, B. S., & Hazen, B. T. (2014). Logistics Information 
System Evaluation: Assessing External Technology Integration and Supporting 
Organizational Learning. Journal of Business Logistics, 35(4), 338–358. 
https://doi.org/10.1111/jbl.12075 

Belmonte, M.-V., Pérez-de-la-Cruz, J.-L., Triguero, F., & Fernández, A. (2005). Agent 
coordination for bus fleet management. In Proceedings of the 2005 ACM 

symposium on Applied computing (pp. 462–466). 
https://doi.org/10.1145/1066677.1066782 

Berbeglia, G., Cordeau, J.-F., & Laporte, G. (2010). Dynamic pickup and delivery 
problems. European journal of operational research, 202(1), 8–15. 
https://doi.org/10.1016/j.ejor.2009.04.024 

Berends, P., & Romme, G. (1999). Simulation as a research tool in management studies. 
European Management Journal, 17(6), 576–583. https://doi.org/10.1016/S0263-
2373(99)00048-1 

Bernhardt, K. (2007). Agent-based modeling in transportation. Artificial Intelligence in 

Transportation, 72. Retrieved from 
http://onlinepubs.trb.org/onlinepubs/circulars/ec113.pdf#page=78 

Birta, L. G., & Arbez, G. (2013). Modelling and simulation. London: Springer. 

Bonabeau, E. (2002). Agent-based modeling: Methods and techniques for simulating 
human systems. Proceedings of the National Academy of Sciences, 99(Suppl. 3), 
7280–7287. https://doi.org/10.1073/pnas.082080899 

Bookstaber, R. M. (2012). Using agent-based models for analyzing threats to financial 
stability. http://dx.doi.org/10.2139/ssrn.2642420 



Page | 168  

 

Booth, T. L. (1967). Sequential machines and automata theory. New York: Wiley. 

Borshchev, A., & Filippov, A. (2004). From system dynamics and discrete event to 
practical agent based modeling: reasons, techniques, tools. In Proceedings of the 

22nd international conference of the system dynamics society (Vol. 22). 
Retrieved from 
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.511.9644&rep=rep1&t
ype=pdf 

Borucki, J., Pawlewski, P., & Chowanski, W. (2014). Mixing ABS and DES Approach 
to Modeling of a Delivery Process in the Automotive Industry. In International 

Conference on Practical Applications of Agents and Multi-Agent Systems (pp. 
133–143). https://doi.org/10.1007/978-3-319-07767-3_13 

Boumphrey, S., & Brehmer, Z. (2017). Megatrend Analysis: Putting the Consumer at the 
Heart of Business. White Paper, Euromonitor International. Retrieved from 
https://go.euromonitor.com/white-paper-2017-megatrend-analysis.html 

Bouzid, M. (2003). On-line transportation scheduling using spatio-temporal reasoning. 
In Temporal Representation and Reasoning, 2003 and Fourth International 

Conference on Temporal Logic. Proceedings. 10th International Symposium on 
(pp. 17–25). https://doi.org/10.1109/TIME.2003.1214876 

Bradshaw, J. M., Dutfield, S., Benoit, P., & Woolley, J. D. (1997). KAoS: Toward an 
industrial-strength open agent architecture. Software Agents, 375–418. Retrieved 
from http://www.academia.edu/download/7586231/10.1.1.97.5033.pdf 

Bratley, P., Fox, B. L., & Schrage, L. E. (2011). A guide to simulation. New York: 
Springer Science & Business Media. 

Bretzke, W.-R. (2010). Logistische Netzwerke. Heidelberg: Springer-Verlag. 

Bullinger, H.-J., & ten Hompel, M. (2007). Internet der Dinge. Berlin: Springer-Verlag. 

Burckert, H. J., Fischer, K., & Vierke, G. (1998). Transportation scheduling with 
holonic MAS: The TeleTruck approach. In International Conference on the 

Practical Application of Intelligent Agents and Multi-Agent Technology (3rd: 

1998: London, England). PAAM 98: proceedings. Retrieved from 
https://trid.trb.org/view/652546 

Burmeister, B., Doormann, J., & Matylis, G. (1997). Agent-oriented traffic simulation. 
Transactions of the Society for Computer Simulation International, 14(2), 79–86. 
Retrieved from https://dl.acm.org/citation.cfm?id=271937 

Campos, G. R. de, Falcone, P., Hult, R., Wymeersch, H., & Sjöberg, J. (2017). Traffic 
coordination at road intersections: Autonomous decision-making algorithms 
using model-based heuristics. IEEE Intelligent Transportation Systems 

Magazine, 9(1), 8–21. https://doi.org/10.1109/MITS.2016.2630585 

Cardeneo, A. (2008). Straßengüterverkehr, Speditionen,  Logistik-Dienstleistungen. In 
D. Arnold, K. Furmans, H. Isermann, A. Kuhn, & H. Tempelmeier (Eds.), 
Handbuch Logistik (3rd ed., pp. 727–736). Berlin Heidelberg: Springer. 

Carley, K. M. (2001). Computational Approaches to Sociological Theorizing. In J. H. 
Turner (Ed.), Handbook of Sociological Theory (pp. 69–83). Boston, MA: 
Springer US. https://doi.org/10.1007/0-387-36274-6_4 



Page | 169  

 

Castelfranchi, C. (1995). Guarantees for autonomy in cognitive agent architecture. In M. 
J. Wooldridge & N. R. Jennings (Eds.), Intelligent Agents (pp. 56–70). Springer 
Berlin Heidelberg. 

Chan, W. K. V., Son, Y.-J., & Macal, C. M. (2010). Agent-based simulation tutorial-
simulation of emergent behavior and differences between agent-based simulation 
and discrete-event simulation. In Simulation Conference (WSC), Proceedings of 

the 2010 Winter (pp. 135–150). https://doi.org/10.1109/WSC.2010.5679168 

Chang, E., West, M., & Hadzic, M. (2006). A digital ecosystem for extended logistics 
enterprises. In e-Networks in an Increasingly Volatile World: Proceedings of the 

11th International Workshop on Telework (pp. 32–40). Retrieved from 
https://espace.curtin.edu.au/bitstream/handle/20.500.11937/13553/20079_downl
oaded_stream_67.pdf?sequence=2 

Chen, B., & Cheng, H. H. (2010). A review of the applications of agent technology in 
traffic and transportation systems. IEEE Transactions on Intelligent 

Transportation Systems, 11(2), 485–497. 
https://doi.org/10.1109/TITS.2010.2048313 

Chen, R.-S., Chen, D.-K., & Lin, S.-Y. (2005). ACTAM: Cooperative multi-agent 
system architecture for urban traffic signal control. IEICE Transactions on 

Information and Systems, 88(1), 119–126. https://doi.org/10.1093/ietisy/e88-
d.1.119 

Chmura, T., & Pitz, T. (2007). An extended reinforcement algorithm for estimation of 
human behaviour in experimental congestion games. Journal of Artificial 

Societies and Social Simulation, 10(2), 1–20. Retrieved from 
http://irep.ntu.ac.uk/id/eprint/33297 

Choi, T. Y., Dooley, K. J., & Rungtusanatham, M. (2001). Supply networks and 
complex adaptive systems: control versus emergence. Journal of Operations 

Management, 19(3), 351–366. https://doi.org/10.1016/S0272-6963(00)00068-1 

Christopher, M. (2016). Logistics & supply chain management (4th ed.). Harlow: 
Pearson UK. 

Cohen, D., Lindvall, M., & Costa, P. (2003). Agile software development. DACS SOAR 

Report, 11, 2003. Retrieved from 
http://users.jyu.fi/~mieijala/kandimateriaali/Agile%20software%20development.
pdf 

Cohen, K. J. (1960). Simulation of the Firm. The American Economic Review, 534–540. 
Retrieved from https://www.jstor.org/stable/1815056 

Conway, S. R. (2006). An agent-based model for analyzing control policies and the 
dynamic service-time performance of a capacity-constrained air traffic 
management facility. Retrieved from 
https://ntrs.nasa.gov/search.jsp?R=20060048296 

Cordeau, J.-F., & Laporte, G. (2007). The dial-a-ride problem: models and algorithms. 
Annals of Operations Research, 153(1), 29–46. https://doi.org/10.1007/s10479-
007-0170-8 

Cossentino, M., Gaud, N., Hilaire, V., Galland, S., & Koukam, A. (2010). ASPECS: an 
agent-oriented software process for engineering complex systems. Autonomous 



Page | 170  

 

Agents and Multi-Agent Systems, 20(2), 260–304. 
https://doi.org/10.1007/s10458-009-9099-4 

Creswell, J. W. (2014). Research Design (4th Edition). Los Angeles: SAGE 
Publications, Ltd. 

Crotty, M. (1998). The foundations of social research: Meaning and perspective in the 

research process. London: Sage. 

Cuppari, A., Guida, P. L., Martelli, M., Mascardi, V., & Zini, F. (1999). Prototyping 
freight trains traffic management using multi-agent systems. In Information 

Intelligence and Systems, 1999. Proceedings. 1999 International Conference on 
(pp. 646–653). https://doi.org/10.1109/ICIIS.1999.810360 

Dantzig, G. (2016). Linear programming and extensions. Princeton: Princeton 
University Press. 

Dantzig, G. B., & Ramser, J. H. (1959). The truck dispatching problem. Management 

Science, 6(1), 80–91. https://doi.org/10.1287/mnsc.6.1.80 

Davidsson, P., Henesey, L., Ramstedt, L., Törnquist, J., & Wernstedt, F. (2005). An 
analysis of agent-based approaches to transport logistics. Transportation 

Research Part C: Emerging Technologies, 13(4), 255–271. 
https://doi.org/10.1016/j.trc.2005.07.002 

Davis, J. P., Eisenhardt, K. M., & Bingham, C. B. (2007). Developing theory through 
simulation methods. Academy of Management Review, 32(2), 480–499. 
https://doi.org/10.5465/amr.2007.24351453 

Deeplearning4J. (2018). Deeplearning4j. Retrieved August 21, 2018, from 
https://deeplearning4j.org/ 

Desjardins, C., Laumônier, J., & Chaib-draa, B. (2009). Learning Agents for 
Collaborative Driving. Multi-Agent Systems for Traffic and Transportation 

Engineering, 240–260. https://doi.org/10.4018/978-1-60566-226-8.ch011 

Di Marzo Serugendo, G., Foukia, N., Hassas, S., Karageorgos, A., Mostéfaoui, S. K., 
Rana, O. F., … Van Aart, C. (2004). Self-Organisation: Paradigms and 
Applications. In G. Di Marzo Serugendo, A. Karageorgos, O. F. Rana, & F. 
Zambonelli (Eds.), Engineering Self-Organising Systems (pp. 1–19). Springer 
Berlin Heidelberg. 

Dias, M., & Hassard, J. (2001). From practice to theory, narrowing the gap: first year 

science teachers emerging from a constructivist science education program. 
Presented at the Annual Meeting of the Association for the Education of 
Teachers in Science, Costa Mesa, CA. 

Doniec, A., Mandiau, R., Piechowiak, S., & Espié, S. (2008). A behavioral multi-agent 
model for road traffic simulation. Engineering Applications of Artificial 

Intelligence, 21(8), 1443–1454. https://doi.org/10.1016/j.engappai.2008.04.002 

Dooley, K. J. (1997). A complex adaptive systems model of organization change. 
Nonlinear Dynamics, Psychology, and Life Sciences, 1(1), 69–97. 
https://doi.org/10.1023/A:1022375910940 

Dullaert, W., Neutens, T., Berghe, G. V., Vermeulen, T., Vernimmen, B., & Witlox, F. 
(2009). MamMoeT: An intelligent agent-based communication support platform 
for multimodal transport. Expert Systems with Applications, 36(7), 10280–10287. 
https://doi.org/10.1016/j.eswa.2009.01.049 



Page | 171  

 

Egan, K. (1997). The Educated Mind: How Cognitive Tools Shape Our Understanding. 
Chicago: University of Chicago Press. 

Eisenkopf, A. (2008). Logistik und Umwelt. In D. Arnold, K. Furmans, H. Isermann, A. 
Kuhn, & H. Tempelmeier (Eds.), Handbuch der Logistik (3rd ed., pp. 1016–
1050). Berlin Heidelberg: Springer. 

Ellinger, T., Beuermann, G., & Leisten, R. (2013). Operations Research: Eine 

Einführung. Berlin Heidelberg: Springer. Retrieved from 
https://books.google.co.il/books?id=G48iBgAAQBAJ 

Etzioni, O. (1996). Moving up the information food chain: Deploying softbots on the 
world wide web. In Proceedings of the National Conference on Artificial 

Intelligence (pp. 1322–1326). Retrieved from 
http://www.aaai.org/Papers/AAAI/1996/AAAI96-196.pdf 

Fawcett, S. E., Wallin, C., Allred, C., Fawcett, A. M., & Magnan, G. M. (2011). 
Information Technology as an Enabler of Supply Chain Collaboration: A 
Dynamic-Capabilities Perspective. Journal of Supply Chain Management, 47(1), 
38–59. https://doi.org/10.1111/j.1745-493X.2010.03213.x 

Fernie, J., & Sparks, L. (2014). Logistics and retail management: emerging issues and 

new challenges in the retail supply chain. Kogan page publishers. 

Fine, C. H. (2010). Clockspeed: Winning industry control in the age of temporary 

advantage. Cambridge, MA: Basic Books. 

Fischer, K., Chaib-Draa, B., Muller, J. P., Pischel, M., & Gerber, C. (1999). A 
simulation approach based on negotiation and cooperation between agents: a 
case study. IEEE Transactions on Systems, Man, and Cybernetics, Part C 

(Applications and Reviews), 29(4), 531–545. 
https://doi.org/10.1109/5326.798767 

Fleischmann, B. (2008). Begriffliche Grundlagen. In D. Arnold, K. Furmans, H. 
Isermann, A. Kuhn, & H. Tempelmeier (Eds.) (3rd ed., pp. 3–12). Berlin 
Heidelberg: Springer. 

Flint, D. J., Larsson, E., Gammelgaard, B., & Mentzer, J. T. (2005). Logistics 
Innovation: A Customer Value-Oriented Social Process. Journal of Business 

Logistics, 26(1), 113–147. https://doi.org/10.1002/j.2158-1592.2005.tb00196.x 

Flynn, D., Aitken, R., Gibbons, A., & Shi, K. (2007). Low power methodology manual: 

for system-on-chip design. New York: Springer Science & Business Media. 

Foerster, J., Nardelli, N., Farquhar, G., Afouras, T., Torr, P. H. S., Kohli, P., & 
Whiteson, S. (2017). Stabilising Experience Replay for Deep Multi-Agent 
Reinforcement Learning. ArXiv:1702.08887 [Cs]. Retrieved from 
http://arxiv.org/abs/1702.08887 

Folcik, V. A., An, G. C., & Orosz, C. G. (2007). The Basic Immune Simulator: an agent-
based model to study the interactions between innate and adaptive immunity. 
Theoretical Biology and Medical Modelling, 4(1), 39. 
https://doi.org/10.1186/1742-4682-4-39 

Forrester, J. W. (1971). Counterintuitive behavior of social systems. Technological 

Forecasting and Social Change, 3, 1–22. https://doi.org/10.1016/S0040-
1625(71)80001-X 



Page | 172  

 

Fourie, P. J., Erath, A. L., Ordóñez Medina, S. A., Chakirov, A., & Axhausen, K. W. 
(2016). Using smartcard data for agent-based transport simulation. In Public 

Transport Planning with Smart Card Data (pp. 133–160). Boca Raton: CRC 
Press. 

Fox, M. S., Barbuceanu, M., & Teigen, R. (2001). Agent-Oriented Supply-Chain 
Management. In M. J. Shaw (Ed.), Information-Based Manufacturing: 

Technology, Strategy and Industrial Applications (pp. 81–104). Boston, MA: 
Springer US. https://doi.org/10.1007/978-1-4615-1599-9_5 

Franke, W., & Dangelmaier, W. (2006). RFID-Leitfaden für die Logistik. Wiesbaden: 
Gabler. 

Freitag, M., Herzog, O., & Scholz-Reiter, B. (2004). Selbststeuerung logistischer 
Prozesse--ein Paradigmenwechsel und seine Grenzen. Industrie Management, 
20(1), 23–27. Retrieved from 
http://www.academia.edu/download/44588132/Selbststeuerung_logistischer_Pro
zesse_-_20160410-2701-bp4jjn.pdf 

Fu, J., & Fu, Y. (2015). An adaptive multi-agent system for cost collaborative 
management in supply chains. Engineering Applications of Artificial 

Intelligence, 44, 91–100. https://doi.org/10.1016/j.engappai.2015.05.002 

Fujimoto, R. M. (2000). Parallel and distributed simulation systems (Vol. 300). Wiley 
New York. 

Gartner. (2018). Priority Matrix for Supply Chain Execution Technologies, 2018. 
Retrieved September 15, 2018, from 
https://www.gartner.com/document/code/338710?ref=ddisp&refval=338710 

Gell-Mann, M. (1994). Complex adaptive systems. In G. A. Cowan, D. Pines, & D. E. 
Meltzer (Eds.), Complexity: metaphors, models, and reality. New York: 
Addison-Wesley. 

Gershenson, C., & Niazi, M. A. (2013). Multidisciplinary applications of complex 
networks modeling, simulation, visualization, and analysis. Complex Adaptive 

Systems Modeling, 1(1), 17. https://doi.org/10.1186/2194-3206-1-17 

Gleißner, H., & Femerling, J. C. (2008). Logistik. Wiesbaden: Gabler. 

Goldstein, J. (2008). Resource Guide and Glossary for Nonlinear/Complex Systems 
Terms. On the Edge: Nursing in the Age of Complexity, 23–47. Retrieved from 
https://plexusinstitute.org/wp-content/uploads/2018/02/goldstein_-
_resource_guide_a-1-1.pdf 

Golob, T. F., & Regan, A. C. (2002). The perceived usefulness of different sources of 
traffic information to trucking operations. Transportation Research Part E: 

Logistics and Transportation Review, 38(2), 97–116. 
https://doi.org/10.1016/S1366-5545(01)00015-1 

Gonzalez Aces, C., & Kleeberger, M. (2018). Revolutionizing Chains - the Impact of 
Blockchain. Retrieved September 15, 2018, from 
http://www.delivered.dhl.com/en/articles/2018/06/the-impact-of-blockchain-on-
the-supply-chain.html 

Greasley, A. (2008). Enabling a simulation capability in the organisation. London: 
Springer Science & Business Media. 



Page | 173  

 

Grimm, V., Berger, U., DeAngelis, D. L., Polhill, J. G., Giske, J., & Railsback, S. F. 
(2010). The ODD protocol: a review and first update. Ecological Modelling, 
221(23), 2760–2768. https://doi.org/10.1016/j.ecolmodel.2010.08.019 

Grix, J. (2010). The Foundations of Research. London: Palgrave Macmillan. 

Guba, E. G. (1990). The paradigm dialog. Newbury Park: Sage Publications Inc. 

Guba, E. G., & Lincoln, N. K. (1994). Competing paradigms in qualitative research. In 
Y. S. Lincoln & N. K. Denzin (Eds.), Handbook of Qualitative Research (p. 
105). Thousand Oaks, CA: Sage Publications Inc. 

Gudehus, T. (2012a). Logistik 1: Grundlagen, Verfahren und Strategien (4.). Berlin 
Heidelberg: Springer-Verlag. 

Gudehus, T. (2012b). Logistik 2: Netzwerke, Systeme und Lieferketten (4.). Berlin 
Heidelberg: Springer-Verlag. 

Handke, V., & Jonuschat, H. (2013). Mobility. In V. Handke & H. Jonuschat (Eds.), 
Flexible Ridesharing: New Opportunities and Service Concepts for Sustainable 

Mobility (pp. 5–11). Berlin, Heidelberg: Springer Berlin Heidelberg. 
https://doi.org/10.1007/978-3-642-11345-1_2 

Happach, R. M., & Tilebein, M. (2015). Simulation as Research Method: Modeling 
Social Interactions in Management Science. In C. Misselhorn (Ed.), Collective 

Agency and Cooperation in Natural and Artificial Systems: Explanation, 

Implementation and Simulation (pp. 239–259). Cham: Springer International 
Publishing. https://doi.org/10.1007/978-3-319-15515-9_13 

Heidmeier, S., & Siegmann, J. (2008). Eisenbahngüterverkehr. In D. Arnold, K. 
Furmans, H. Isermann, A. Kuhn, & H. Tempelmeier (Eds.), Handbuch Logistik 
(3rd ed., pp. 743–757). Berlin Heidelberg: Springer. 

Hellenschmidt, M., & Wichert, R. (2007). Selbstorganisation: Dinge in 
eigenverantwortlicher Kooperation – eine Systemanalyse. In H.-J. Bullinger & 
M. ten Hompel (Eds.), Internet der Dinge (pp. 91–105). Berlin Heidelberg: 
Springer-Verlag. 

Hellingrath, B. (2008). Planung und Bewertung von Distributionsprozessen. In D. 
Arnold, K. Furmans, H. Isermann, A. Kuhn, & H. Tempelmeier (Eds.), 
Handbuch Logistik (3rd ed., pp. 449–456). Berlin Heidelberg: Springer. 

Hidas, P. (2002). Modelling lane changing and merging in microscopic traffic 
simulation. Transportation Research Part C: Emerging Technologies, 10(5–6), 
351–371. https://doi.org/10.1016/S0968-090X(02)00026-8 

Hidas, P. (2005). Modelling vehicle interactions in microscopic simulation of merging 
and weaving. Transportation Research Part C: Emerging Technologies, 13(1), 
37–62. https://doi.org/10.1016/j.trc.2004.12.003 

Hitchcock, F. L. (1941). The distribution of a product from several sources to numerous 
localities. Journal of Mathematics and Physics, 20(1–4), 224–230. 
https://doi.org/10.1002/sapm1941201224 

Hoffa, P., & Pawlewski, P. (2014). Agent based approach for modeling disturbances in 
supply chain. In International Conference on Practical Applications of Agents 

and Multi-Agent Systems (pp. 144–155). https://doi.org/10.1007/978-3-319-
07767-3 



Page | 174  

 

Holland, J. H. (1992). Complex adaptive systems. Daedalus, 121(1), 17–30. Retrieved 
from https://www.jstor.org/stable/20025416 

Holland, J. H. (2006). Studying Complex Adaptive Systems. Journal of Systems Science 

and Complexity, 19(1), 1–8. https://doi.org/10.1007/s11424-006-0001-z 

Hölldobler, B., & Wilson, E. O. (2009). The superorganism: the beauty, elegance, and 

strangeness of insect societies. New York: W. W. Norton & Company. 

Horx, M. (2007). Zukunft machen: Wie Sie von Trends zu Business-Innovationen 

kommen. Ein Praxis-Guide. Frankfurt/New York: Campus Verlag. Retrieved 
from https://books.google.de/books?id=ePDlAgAAQBAJ 

IBM & Maersk. (2018, January 16). Digitizing Global Trade with Maersk and IBM. 
Retrieved September 15, 2018, from 
https://www.ibm.com/blogs/blockchain/2018/01/digitizing-global-trade-maersk-
ibm/ 

Jain, S. C. (2006). Emerging economies and the transformation of international 

business: Brazil, Russia, India and China (BRICs). Cheltenham, UK: Edward 
Elgar Publishing. 

Jennings, N. R. (2001). An agent-based approach for building complex software 
systems. Communications of the ACM, 44(4), 35–41. 
https://doi.org/10.1145/367211.367250 

Jordan, M. I., & Mitchell, T. M. (2015). Machine learning: Trends, perspectives, and 
prospects. Science, 349(6245), 255–260. https://doi.org/10.1126/science.aaa8415 

Jünemann, R. (1989). Materialfluß und Logistik: Systemstechnische Grundlagen mit 

Praxisbeispielen. Heidelberg: Springer-Verlag. 

Kellerman, A. (2018). Automated and Autonomous Spatial Mobilities. Cheltenham, UK: 
Edward Elgar Publishing. 

Kikuchi, S., Rhee, J., & Teodorović, D. B. (2002). Applicability of an agent-based 
modeling concept to modeling of transportation phenomena. Yugoslav Journal of 

Operations Research, 12(2), 141–156. Retrieved from http://scindeks-
clanci.ceon.rs/data/pdf/0354-0243/2002/0354-02430202141K.pdf 

Kim, H. S., & Sohn, S. Y. (2009). Cost of ownership model for the RFID logistics 
system applicable to u-city. European Journal of Operational Research, 194(2), 
406–417. https://doi.org/10.1016/j.ejor.2007.12.015 

Klaus, P., & Kille, C. (2008). Märkte für logistische Leistungen. In D. Arnold, K. 
Furmans, H. Isermann, A. Kuhn, & H. Tempelmeier (Eds.), Handbuch Logistik 
(3rd ed., pp. 947–969). Berlin Heidelberg: Springer. 

Kohout, R., Erol, K., & Robert, C. (1999). In-time agent-based vehicle routing with a 
stochastic improvement heuristic. In AAAI/IAAI (pp. 864–869). Retrieved from 
http://www.aaai.org/Papers/IAAI/1999/IAAI99-122.pdf 

Kopetz, H. (2011). Internet of Things. In H. Kopetz (Ed.), Real-Time Systems: Design 

Principles for Distributed Embedded Applications (pp. 307–323). Boston, MA: 
Springer US. https://doi.org/10.1007/978-1-4419-8237-7_13 

Koshal, R. K. (1972). Economies of Scale. Journal of Transport Economics and Policy, 
6(2), 147–153. Retrieved from https://www.jstor.org/stable/20052273 



Page | 175  

 

Kruger, P. S. (2003). The art of simulation modelling. South African Journal of 

Industrial Engineering, 14(1), 39–50. Retrieved from 
http://sajie.journals.ac.za/pub/article/download/297/242 

Kukla, R., Kerridge, J., Willis, A., & Hine, J. (2001). PEDFLOW: Development of an 
autonomous agent model of pedestrian flow. Transportation Research Record: 

Journal of the Transportation Research Board, (1774), 11–17. 
https://doi.org/10.3141/1774-02 

Kumar, S. N., & Panneerselvam, R. (2012). A survey on the vehicle routing problem and 
its variants. Intelligent Information Management, 4(03), 66–74. 
http://dx.doi.org/10.4236/iim.2012.43010 

Kunze, O. (2016). Replicators, Ground Drones and Crowd Logistics A Vision of Urban 
Logistics in the Year 2030. Transportation Research Procedia, 19, 286–299. 
https://doi.org/10.1016/j.trpro.2016.12.088 

Kwon, O., Im, G. P., & Lee, K. C. (2007). MACE-SCM: A multi-agent and case-based 
reasoning collaboration mechanism for supply chain management under supply 
and demand uncertainties. Expert Systems with Applications, 33(3), 690–705. 
https://doi.org/10.1016/j.eswa.2006.06.015 

Lambert, D. M., & Stock, J. R. (1993). Strategic logistics management (Vol. 69). 
Boston: Mc Graw Hill / Irwin. 

Lampe, M., Flörkemeier, C., & Haller, S. (2005). Einführung in die RFID-Technologie. 
In E. Fleisch & F. Mattern (Eds.), Das Internet der Dinge: Ubiquitous 

Computing und RFID in der Praxis: Visionen, Technologien, Anwendungen, 

Handlungsanleitungen (pp. 69–86). Berlin, Heidelberg: Springer. 
https://doi.org/10.1007/3-540-28299-8_3 

Lange, V. (2008). Verpackungs- und Verladetechnik. In D. Arnold, K. Furmans, H. 
Isermann, A. Kuhn, & H. Tempelmeier (Eds.), Handbuch Logistik (3rd ed., pp. 
695–726). Berlin Heidelberg: Springer. 

Langheinrich, M., & Mattern, F. (2002). Wenn der Computer verschwindet. Digma – 

Zeitschrift Für Datenrecht Und Informationssicherheit, 2(3), 138–142. Retrieved 
from http://vs.inf.ethz.ch/publ/papers/datenschutz-langhein02.pdf 

Laporte, G. (1992). The vehicle routing problem: An overview of exact and approximate 
algorithms. European Journal of Operational Research, 59(3), 345–358. 
https://doi.org/10.1016/0377-2217(92)90192-C 

Larrain, J. (1979). The Concept of Ideology. London: Hutchinson. 

Law, A. M. (2003). Designing a simulation study: how to conduct a successful 
simulation study. In Proceedings of the 35th conference on Winter simulation: 

driving innovation (pp. 66–70). Retrieved from 
https://pdfs.semanticscholar.org/815b/8e93926c8311c9f529fd5cf12249bf9a43be.
pdf 

Law, A. M., & Kelton, W. D. (1991). Simulation modeling and analysis (Vol. 2). 
McGraw-Hill New York. 

Lawler, E. L., Lenstra, J. K., Kan, A. R., & Shmoys, D. B. (1985). The traveling 

salesman problem: a guided tour of combinatorial optimization. New York: 
Wiley. 



Page | 176  

 

Lee, J., Lapira, E., Bagheri, B., & Kao, H. (2013). Recent advances and trends in 
predictive manufacturing systems in big data environment. Manufacturing 

Letters, 1(1), 38–41. https://doi.org/10.1016/j.mfglet.2013.09.005 

Levin, S., Xepapadeas, T., Crépin, A.-S., Norberg, J., Zeeuw, A. de, Folke, C., … 
Walker, B. (2013). Social-ecological systems as complex adaptive systems: 
modeling and policy implications. Environment and Development Economics, 
18(2), 111–132. https://doi.org/10.1017/S1355770X12000460 

Li, J., & Sheng, Z. (2011). A multi-agent model for the reasoning of uncertainty 
information in supply chains. International Journal of Production Research, 
49(19), 5737–5753. https://doi.org/10.1080/00207543.2010.524257 

Lind, J., & Fischer, K. (1999). Transportation Scheduling and Simulation in a Railroad 
Scenario: A Multi-Agent Approach. In H. Kopfer & C. Bierwirth (Eds.), Logistik 

Management: Intelligente I + K Technologien (pp. 171–183). Berlin, Heidelberg: 
Springer Berlin Heidelberg. https://doi.org/10.1007/978-3-642-60184-2_15 

Liu, Z., Ishida, T., & Sheng, H. (2005). Multiagent-Based Demand Bus Simulation for 
Shanghai. In T. Ishida, L. Gasser, & H. Nakashima (Eds.), Massively Multi-

Agent Systems I (pp. 309–322). Springer Berlin Heidelberg. 

Louis, M., & Giannakis, M. (2016). A multi-agent based system with big data 
processing for enhanced supply chain agility. Journal of Enterprise Information 

Management, 29(5), 706–727. https://doi.org/10.1108/JEIM-06-2015-0050 

Luck, M. (2004). Guest editorial: Challenges for agent-based computing. Autonomous 

Agents and Multi-Agent Systems, 9(3), 199–201. 
https://doi.org/10.1023/B:AGNT.0000038057.78313.87 

Lun, Y. V., Lai, K., & Cheng, T. E. (2010). Shipping and logistics management. 
London: Springer. 

Macal, C. M., & North, M. J. (2007). Agent-based modeling and simulation: Desktop 
ABMS. In 2007 Winter Simulation Conference (pp. 95–106). 
https://doi.org/10.1109/WSC.2007.4419592 

Macal, C. M., & North, M. J. (2010). Tutorial on agent-based modelling and simulation. 
Journal of Simulation, 4(3), 151–162. https://doi.org/10.1057/jos.2010.3 

Macal, C., & North, M. (2014). Introductory tutorial: Agent-based modeling and 
simulation. In Proceedings of the 2014 Winter Simulation Conference (pp. 6–20). 
Retrieved from http://simulation.su/uploads/files/default/2014-macal-north.pdf 

Malleson, N., & Birkin, M. (2012). Analysis of crime patterns through the integration of 
an agent-based model and a population microsimulation. Computers, 

Environment and Urban Systems, 36(6), 551–561. 
https://doi.org/10.1016/j.compenvurbsys.2012.04.003 

Mallik, S. (2010). Customer Service in Supply Chain Management. In H. Bidgoli (Ed.), 
Supply Chain Management, Marketing and Advertising, and Global 

Management (Vol. 2, pp. 103–120). Hoboken, NJ: John Wiley & Sons. Retrieved 
from https://books.google.de/books?id=EKNoKQ1L4CoC 

Martin, H. (2006). Transport-und Lagerlogistik - Planung, Struktur, Steuerung und  

Kosten von Systemen der Intralogistik (6th ed.). Wiesbaden: Vieweg+Teubner. 

MATSim. (n.d.). MATSim. Retrieved August 16, 2018, from https://matsim.org/ 



Page | 177  

 

Mattern, F. (2005). Die technische Basis für das Internet der Dinge. In E. Fleisch & F. 
Mattern (Eds.), Das Internet der Dinge (pp. 39–66). Berlin Heidelberg: Springer. 

Mattia, A. (2012). A multi-dimensional view of agent-based decisions in supply chain 
management. Communications of the IBIMA, 2012, 1. 
https://doi.org/10.5171/2012.658483 

Mehmann, J., & Teuteberg, F. (2016). The fourth-party logistics service provider 
approach to support sustainable development goals in transportation – a case 
study of the German agricultural bulk logistics sector. Journal of Cleaner 

Production, 126, 382–393. https://doi.org/10.1016/j.jclepro.2016.03.095 

Meinel, C., Gayvoronskaya, T., & Schnjakin, M. (2017). Blockchain: Hype oder 

Innovation (Vol. 113). Potsdam: Universitätsverlag Potsdam. 

Merkuryeva, G., & Bolshakovs, V. (2010). Vehicle schedule simulation with AnyLogic. 
In Computer Modelling and Simulation (UKSim), 2010 12th International 

Conference on (pp. 169–174). https://doi.org/10.1109/UKSIM.2010.38 

Mes, M., Van Der Heijden, M., & Van Harten, A. (2007). Comparison of agent-based 
scheduling to look-ahead heuristics for real-time transportation problems. 
European Journal of Operational Research, 181(1), 59–75. 
https://doi.org/10.1016/j.ejor.2006.02.051 

Mishra, N., Kumar, V., & Chan, F. T. S. (2012). A multi-agent architecture for reverse 
logistics in a green supply chain. International Journal of Production Research, 
50(9), 2396–2406. https://doi.org/10.1080/00207543.2011.581003 

Moore, G. E. (1998). Cramming More Components Onto Integrated Circuits. 
Proceedings of the IEEE, 86(1), 82–85. 
https://doi.org/10.1109/JPROC.1998.658762 

Mustafee, N., & Bischoff, E. E. (2011). A multi-methodology agent-based approach for 
container loading. In Proceedings of the Winter Simulation Conference (pp. 234–
245). https://doi.org/10.1109/WSC.2011.6147754 

Nagel, K., & Schreckenberg, M. (1992). A cellular automaton model for freeway traffic. 
Journal de Physique I, 2(12), 2221–2229. https://doi.org/10.1051/jp1:1992277 

Newman, I., & Benz, C. R. (1998). Qualitative-quantitative research methodology: 

Exploring the interactive continuum. Carbondale, IL: SIU Press. 

Niazi, M. A. (2013). Complex Adaptive Systems Modeling: A multidisciplinary 
Roadmap. Complex Adaptive Systems Modeling, 1(1), 1. 
https://doi.org/10.1186/2194-3206-1-1 

Nikolopoulou, A., & Ierapetritou, M. G. (2012). Hybrid simulation based optimization 
approach for supply chain management. Computers & Chemical Engineering, 
47, 183–193. https://doi.org/10.1016/j.compchemeng.2012.06.045 

Nitschke, T. (2006). Legal Consequences of Agent Deployment. In S. Kirn, O. Herzog, 
P. Lockemann, & O. Spaniol (Eds.), Multiagent Engineering (pp. 597–618). 
Berlin, Heidelberg: Springer Science & Business Media. 

Nonaka, I. (2008). The knowledge-creating company. Boston, MA: Harvard Business 
Review Press. 

Nwana, H. S. (1996). Software agents: An overview. The Knowledge Engineering 

Review, 11(3), 205–244. https://doi.org/10.1017/S026988890000789X 



Page | 178  

 

Nwana, H. S., & Wooldridge, M. (1997). Software agent technologies. In H. S. Nwana 
& N. Azarmi (Eds.), Software Agents and Soft Computing Towards Enhancing 

Machine Intelligence: Concepts and Applications (pp. 59–78). Berlin, 
Heidelberg: Springer Berlin Heidelberg. https://doi.org/10.1007/3-540-62560-
7_38 

Oliveira, D. de, & Bazzan, A. L. C. (2009). Multiagent Learning on Traffic Lights 
Control: Effects of Using Shared Information. Multi-Agent Systems for Traffic 

and Transportation Engineering, 307–321. https://doi.org/10.4018/978-1-60566-
226-8.ch015 

Oliver, R. K., Webber, M. D., & others. (1982). Supply-chain management: logistics 
catches up with strategy. Outlook, 5(1), 42–47. 

Oren, T. I., Elzas, M. S., Smit, I., & Birta, L. G. (2002). Code of professional ethics for 
simulationists. In Summer Computer Simulation Conference (pp. 434–435). 
Retrieved from http://www.csi.uottawa.ca/~lbirta/pub2002-07-Code.pdf 

Ossimitz, G., & Mrotzek, M. (2008). The basics of system dynamics: discrete vs. 
continuous modelling of time. Retrieved from 
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.408.4644&rep=rep1&t
ype=pdf 

Pace, D. K. (2002). The value of a quality simulation conceptual model. Model Simul 

Mag, 1(1), 9–10. Retrieved from 
https://www.scopus.com/record/display.uri?eid=2-s2.0-
40249097571&origin=inward 

Pathak, S. D., Day, J. M., Nair, A., Sawaya, W. J., & Kristal, M. M. (2007). Complexity 
and Adaptivity in Supply Networks: Building Supply Network Theory Using a 
Complex Adaptive Systems Perspective*. Decision Sciences, 38(4), 547–580. 
https://doi.org/10.1111/j.1540-5915.2007.00170.x 

Perumalla, K. S. (2006). Parallel and distributed simulation: traditional techniques and 
recent advances. In Proceedings of the 38th conference on Winter simulation (pp. 
84–95). Retrieved from https://dl.acm.org/citation.cfm?id=1218132 

Petrie, C. J., Webster, T. A., & Cutkosky, M. R. (1995). Using Pareto optimality to 
coordinate distributed agents. AI EDAM, 9(4), 269–281. 
https://doi.org/10.1017/S0890060400002821 

Phillips, D. C., & Burbules, N. C. (2000). Postpositivism and educational research. 
Lanham: Rowman & Littlefield. 

Pidd, M. (2004). Computer Simulation in Management Science (5th Edition). 
Chichester: John Wiley & Sons. 

Pisano, G. P. (2015). You need an innovation strategy. Harvard Business Review, 93(6), 
44–54. Retrieved from 
http://cegllcstrategies.com/pdfs/You_Need_an_%20Innovation_Strategy_5.pdf 

Poole, D., Mackworth, A., & Goebel, R. (1998). Computational Intelligence: A Logical 

Approach. New York: Oxford University Press. 

Prahalad, C. K., & Hamel, G. (2006). The Core Competence of the Corporation. In D. 
Hahn & B. Taylor (Eds.), Strategische Unternehmungsplanung — Strategische 

Unternehmungsführung: Stand und Entwicklungstendenzen (pp. 275–292). 



Page | 179  

 

Berlin, Heidelberg: Springer Berlin Heidelberg. https://doi.org/10.1007/3-540-
30763-X_14 

Prentice, B. E. (1998). Re-engineering grain logistics: bulk handling versus 
containerization. In Annual Meeting of the Transportation Research Forum, 

Philadephia, Pennsylvania. Retrieved from 
https://www.umanitoba.ca/faculties/management/ti/media/docs/Re_Engineering_
Grain_1998.pdf 

Prigogine, I., Stengers, I., & Prigogine, I. (1984). Order out of chaos: Man’s new 

dialogue with nature. New York: Bantam Books. 

Rabelo, L., Helal, M., Jones, A., & Min, H.-S. (2005). Enterprise simulation: a hybrid 
system approach. International Journal of Computer Integrated Manufacturing, 
18(6), 498–508. https://doi.org/10.1080/09511920400030138 

Razali, N. M., Wah, Y. B., & others. (2011). Power Comparisons of Shapiro-Wilk, 
Kolmogorov-Smirnov, Lilliefors and Anderson-Darling Tests. Journal of 

Statistical Modeling and Analytics, 2(1), 21–33. Retrieved from 
https://www.researchgate.net/profile/Bee_Yap/publication/267205556_Power_C
omparisons_of_Shapiro-Wilk_Kolmogorov-Smirnov_Lilliefors_and_Anderson-
Darling_Tests/links/5477245b0cf29afed61446e1/Power-Comparisons-of-
Shapiro-Wilk-Kolmogorov-Smirnov-Lilliefors-and-Anderson-Darling-Tests.pdf 

Robinson, S. (1997). Simulation model verification and validation: increasing the users’ 
confidence. In Winter Simulation Conference (pp. 53–59). Retrieved from 
https://www.researchgate.net/profile/Stewart_Robinson/publication/2484185_Si
mulation_Model_Verification_And_Validation_Increasing_The_Users'_Confide
nce/links/004635252de0f90313000000/Simulation-Model-Verification-And-
Validation-Increasing-The-Users-Confidence.pdf 

Robinson, S. (2008a). Conceptual modelling for simulation Part I: definition and 
requirements. Journal of the Operational Research Society, 59(3), 278–290. 
https://doi.org/10.1057/palgrave.jors.2602368 

Robinson, S. (2008b). Conceptual modelling for simulation Part II: a framework for 
conceptual modelling. Journal of the Operational Research Society, 59(3), 291–
304. https://doi.org/10.1057/palgrave.jors.2602369 

Robinson, S., & Bhatia, V. (1995). Secrets of successful simulation projects. In Winter 

Simulation Conference Proceedings, 1995. (pp. 61–67). 
https://doi.org/10.1109/WSC.1995.478706 

Robinson, S., & Pidd, M. (1998). Provider and customer expectations of successful 
simulation projects. Journal of the Operational Research Society, 49(3), 200–
209. https://doi.org/10.1057/palgrave.jors.2600516 

Roozemond, D. A. (1999). Using autonomous intelligent agents for urban traffic control 
systems. In Proceedings of the 6th World Congress on Intelligent Transport 

Systems. Retrieved from 
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.41.8159&rep=rep1&ty
pe=pdf 

Rosen, R., & Boschert, S. (2017). Modellbildung und Simulation. In Modellbasierter 

Entwicklungsprozess cybertronischer Systeme (pp. 115–118). Berlin: Springer. 



Page | 180  

 

Russell, S. J., & Norvig, P. (2003). Artificial Intelligence: A Modern Approach (Vol. 2). 
Boston: Prentice Hall. 

Saake, G., & Sattler, K. U. (2013). Algorithmen und Datenstrukturen: Eine Einführung 

mit Java. Heidelberg: Dpunkt.Verlag GmbH. Retrieved from 
https://books.google.co.il/books?id=AWoHnwEACAAJ 

Salazar, M., Rossi, F., Schiffer, M., Onder, C. H., & Pavone, M. (2018). On the 
Interaction between Autonomous Mobility-on-Demand and Public 
Transportation Systems. In 2018 21st International Conference on Intelligent 

Transportation Systems (ITSC) (pp. 2262–2269). 
https://doi.org/10.1109/ITSC.2018.8569381 

Sandholm, T. (1993). An implementation of the contract net protocol based on marginal 
cost calculations. In AAAI (Vol. 93, pp. 256–262). Retrieved from 
https://pdfs.semanticscholar.org/a25e/886da646c3524a38d892b29017378cab89f
3.pdf 

Sargent, R. G. (2013). Verification and validation of simulation models. Journal of 

Simulation, 7(1), 12–24. https://doi.org/10.1057/jos.2012.20 

Sawamoto, J., Tsuji, H., & Koizumi, H. (2002). Continuous Truck Delivery Scheduling 
and Execution System with Multiple Agents. In K. Kuwabara & J. Lee (Eds.), 
Intelligent Agents and Multi-Agent Systems (pp. 190–204). Springer Berlin 
Heidelberg. 

Schepperle, H., & Böhm, K. (2007). Agent-Based Traffic Control Using Auctions. In M. 
Klusch, K. V. Hindriks, M. P. Papazoglou, & L. Sterling (Eds.), Cooperative 

Information Agents XI (pp. 119–133). Springer Berlin Heidelberg. 

Schmidt, A., & Schneider, M. (2008). Lager- und Materialflussprozesse. In D. Arnold, 
K. Furmans, H. Isermann, A. Kuhn, & H. Tempelmeier (Eds.), Handbuch 

Logistik (3rd ed., pp. 371–404). Berlin Heidelberg: Springer. 

Scholz-Reiter, B., Görges, M., & Jagalski, T. (2011). Logistic Systems with Multiple 
Autonomous Control Strategies. In M. Hülsmann, B. Scholz-Reiter, & K. Windt 
(Eds.), Autonomous cooperation and control in logistics (pp. 97–112). Berlin 
Heidelberg: Springer. 

Scholz-Reiter, B., Toonen, C., & Windt, K. (2008). Logistikdienstleistungen. In D. 
Arnold, K. Furmans, H. Isermann, A. Kuhn, & H. Tempelmeier (Eds.), 
Handbuch Logistik (3rd ed., pp. 581–607). Berlin Heidelberg: Springer. 

Schuh, G., Stich, V., & Schmidt, C. (2008). Produktionsplanung und -steuerung in 
Logistiknetzwerken. In P. Nyhuis (Ed.), Beiträge zu einer Theorie der Logistik 
(pp. 249–273). Berlin, Heidelberg: Springer Berlin Heidelberg. 
https://doi.org/10.1007/978-3-540-75642-2_12 

Schuldt, A. (2011). Multiagent Coordination Enabling Autonomous Logistics. Berlin 
Heidelberg: Springer-Verlag. 

Schuldt, A., & Werner, S. (2007). Distributed Clustering of Autonomous Shipping 
Containers by Concept, Location, and Time. In Multiagent System Technologies 
(pp. 121–132). Springer. https://doi.org/10.1007/978-3-540-74949-3_11 

Schultz, R. L. (1974). The use of simulation for decision making. Behavioral Science, 
19(5), 344–350. https://doi.org/10.1002/bs.3830190507 



Page | 181  

 

Schwaber, K., & Beedle, M. (2002). Agile software development with Scrum. Upper 
Saddle River: Prentice Hall. 

Seifert, R. W., Thonemann, U. W., & Hausman, W. H. (2004). Optimal procurement 
strategies for online spot markets. European Journal of Operational Research, 
152(3), 781–799. https://doi.org/10.1016/S0377-2217(02)00754-3 

Shannon, R. E. (1975). Systems simulation; the art and science. Englewood Cliffs: 
Prentice Hall. 

Shubik, M. (1960). Simulation of the Industry and the Firm. The American Economic 

Review, 50(5), 908–919. Retrieved from https://www.jstor.org/stable/1810952 

Siebers, P.-O., Macal, C. M., Garnett, J., Buxton, D., & Pidd, M. (2010). Discrete-event 
simulation is dead, long live agent-based simulation! Journal of Simulation, 4(3), 
204–210. https://doi.org/10.1057/jos.2010.14 

Sitek, P., Wikarek, J., & Grzybowska, K. (2014). A Multi-Agent Approach to the Multi-
Echelon Capacitated Vehicle Routing Problem. In J. M. Corchado, J. Bajo, J. 
Kozlak, P. Pawlewski, J. M. Molina, B. Gaudou, … P. García Teodoro (Eds.), 
Highlights of Practical Applications of Heterogeneous Multi-Agent Systems. The 

PAAMS Collection (pp. 121–132). Springer International Publishing. 

Skobelev, P., Budaev, D., Laruhin, V., Levin, E., & Mayorov, I. (2014). Practical 
Approach and Multi-agent Platform for Designing Real Time Adaptive 
Scheduling Systems. In J. M. Corchado, J. Bajo, J. Kozlak, P. Pawlewski, J. M. 
Molina, B. Gaudou, … P. García Teodoro (Eds.), Highlights of Practical 

Applications of Heterogeneous Multi-Agent Systems. The PAAMS Collection (pp. 
1–12). Springer International Publishing. 

Slife, B. D., & Williams, R. N. (1995). What’s behind the research? Discovering hidden 

assumptions in the behavioral sciences. Thousand Oaks, CA: Sage. 

Smith, E. R., & Conrey, F. R. (2007). Agent-Based Modeling: A New Approach for 
Theory Building in Social Psychology. Personality and Social Psychology 

Review, 11(1), 87–104. https://doi.org/10.1177/1088868306294789 

Smith, R. G. (1980). The Contract Net Protocol: High-Level Communication and 
Control in a Distributed Problem Solver. IEEE Transactions on Computers, C–

29(12), 1104–1113. https://doi.org/10.1109/TC.1980.1675516 

Stadtler, H. (2005). Supply chain management and advanced planning----basics, 
overview and challenges. European Journal of Operational Research, 163(3), 
575–588. https://doi.org/10.1016/j.ejor.2004.03.001 

Statista. (2018). Bulk cargo - international seaborne trade 2016 | Statistic. Retrieved 
August 31, 2018, from https://www.statista.com/statistics/267548/charged-bulk-
cargo-in-international-trade-since-1970/ 

Sterman, J. D. (2000). Business dynamics: systems thinking and modeling for a complex 

world. Boston: Irwin/McGraw-Hill. 

Sweetser, A. (1999). A comparison of system dynamics (SD) and discrete event 
simulation (DES). Retrieved from 
https://www.systemdynamics.org/assets/conferences/1999/PAPERS/PARA78.P
DF 



Page | 182  

 

Tako, A. A., & Robinson, S. (2012). The application of discrete event simulation and 
system dynamics in the logistics and supply chain context. Decision Support 

Systems, 52(4), 802–815. https://doi.org/10.1016/j.dss.2011.11.015 

Taylor, S. J. E., Eldabi, T., Riley, G., Paul, R. J., & Pidd, M. (2009). Simulation 
modelling is 50! Do we need a reality check? Journal of the Operational 

Research Society, 60(sup1), S69–S82. https://doi.org/10.1057/jors.2008.196 

ten Hompel, M., Sadowsky, V., & Beck, M. (2011). Materialflusssysteme. Berlin 
Heidelberg: Springer. 

Tesfatsion, L. (2003). Agent-based computational economics: modeling economies as 
complex adaptive systems. Information Sciences, 149(4), 262–268. 
https://doi.org/10.1016/S0020-0255(02)00280-3 

Tidd, J., Bessant, J., & Pavitt, K. (2005). Managing innovation integrating 

technological, market and organizational change. Chichester: John Wiley and 
Sons Ltd. 

Tobias, R., & Hofmann, C. (2004). Evaluation of free Java-libraries for social-scientific 
agent based simulation. Journal of Artificial Societies and Social Simulation, 
7(1). Retrieved from http://jasss.soc.surrey.ac.uk/7/1/6.html 

Transparency Market Research. (2016). Logistics Market - Global Industry Analysis, 
Size, Share, Trends, Forecast 2016 - 2024. Retrieved September 1, 2018, from 
https://www.transparencymarketresearch.com/logistics-market.html 

Trochim, W. M., & Donnelly, J. P. (2001). Research methods knowledge base. Ithaca, 
N.Y.: Cornell University. Retrieved from 
http://www.anatomyfacts.com/research/researchmethodsknowledgebase.pdf 

Turgay, S., Kubat, C., & Taskin, H. (2007). Modelling and simulation of MRP II 
activities in multi agent systems. Production Planning and Control, 18(1), 25–
34. https://doi.org/10.1080/09537280600940663 

UNCTAD. (2015). Review of Maritime Transport. Presented at the United Nations 
Conference on Trade and Development. Retrieved from 
http://unctad.org/en/pages/PublicationWebflyer.aspx?publicationid=1374 

Urry, J. (2012). Sociology beyond societies: Mobilities for the twenty-first century. 
London: Routledge. 

Vahrenkamp, R. (2007). Logistik — Management und Strategien (6th ed.). München: 
Oldenbourg. 

Van Dyke Parunak, H. (1999). Industrial and practical applications of DAI. In G. Weiss 
(Ed.), Multiagent systems: a modern approach to distributed artificial 

intelligence (pp. 337–421). Cambridge, MA: The MIT Press. 

Van Dyke Parunak, H. (2000). Agents in overalls: Experiences and issues in the 
development and deployment of industrial agent-based systems. International 

Journal of Cooperative Information Systems, 9(03), 209–227. 
https://doi.org/10.1142/S0218843000000119 

Van Dyke Parunak, H., Savit, R., & Riolo, R. L. (1998). Agent-Based Modeling vs. 
Equation-Based Modeling: A Case Study and Users’ Guide. In J. S. Sichman, R. 
Conte, & N. Gilbert (Eds.), Multi-Agent Systems and Agent-Based Simulation 
(pp. 10–25). Springer Berlin Heidelberg. 



Page | 183  

 

Vastag, A. (2008). Distribution. In D. Arnold, K. Furmans, H. Isermann, A. Kuhn, & H. 
Tempelmeier (Eds.), Handbuch Logistik (3rd ed., pp. 405–440). Berlin 
Heidelberg: Springer. 

Waller, M. A., & Fawcett, S. E. (2013). Click here for a data scientist: Big data, 
predictive analytics, and theory development in the era of a maker movement 
supply chain. Journal of Business Logistics, 34(4), 249–252. 
https://doi.org/10.1111/jbl.12024 

Walliman, N. (2006). Experimental Design. In pages 101-109, Social Research 

Methods. London: SAGE Publications, Ltd. 
https://doi.org/10.4135/9781849209939 

Wang, F.-Y. (2008). Toward a revolution in transportation operations: AI for complex 
systems. IEEE Intelligent Systems, 23(6), 8–13. 
https://doi.org/10.1109/MIS.2008.112 

Wang, G., Wong, T. N., & Wang, X. (2013). An ontology based approach to organize 
multi-agent assisted supply chain negotiations. Computers & Industrial 

Engineering, 65(1), 2–15. https://doi.org/10.1016/j.cie.2012.06.018 

Weber, R. H., & Weber, R. (2010). Internet of things. Berlin Heidelberg: Springer. 

Weiß, G., & Jakob, R. (2006). Agentenorientierte Softwareentwicklung: Methoden und 

Tools. Berlin Heidelberg: Springer-Verlag. 

Windt, K. (2008). Ermittlung des angemessenen Selbststeuerungsgrades in der Logistik 
— Grenzen der Selbststeuerung. In P. Nyhuis (Ed.), Beiträge zu einer Theorie 

der Logistik (pp. 349–372). Berlin, Heidelberg: Springer Berlin Heidelberg. 
https://doi.org/10.1007/978-3-540-75642-2_16 

Windt, K., & Hülsmann, M. (2007). Changing Paradigms in Logistics — Understanding 
the Shift from Conventional Control to Autonomous Cooperation and Control. In 
M. Hülsmann & K. Windt (Eds.), Understanding Autonomous Cooperation and 

Control in Logistics: The Impact of Autonomy on Management, Information, 

Communication and Material Flow (pp. 1–16). Berlin, Heidelberg: Springer 
Berlin Heidelberg. https://doi.org/10.1007/978-3-540-47450-0_1 

Wittenbrink, P. (1995). Bündelungsstrategien der Speditionen im Bereich der City-

Logistik: eine ökonomische Analyse. Göttingen: Vandenhoeck & Ruprecht. 

Wooldridge, M. (2009). An Introduction to MultiAgent Systems (2nd ed.). Chichester: 
John Wiley & Sons. 

Wooldridge, M., & Jennings, N. R. (1995). Intelligent agents: theory and practice. The 

Knowledge Engineering Review, 10(2), 115–152. 
https://doi.org/10.1017/S0269888900008122 

Zambonelli, F., & Van Dyke Parunak, H. (2003). Signs of a Revolution in Computer 
Science and Software Engineering. In P. Petta, R. Tolksdorf, & F. Zambonelli 
(Eds.), Engineering Societies in the Agents World III (pp. 13–28). Springer 
Berlin Heidelberg. 

Zellner, M., Massey, D., Shiftan, Y., Levine, J., & Arquero, M. (2016). Overcoming the 
last-mile problem with transportation and land-use improvements: an agent-
based approach. International Journal of Transportation, 4(1), 1–26. 
http://dx.doi.org/10.14257/ijt.2016.4.1.01 

  



Page | 184  

 

Appendix 

 

Appendix I: Interview Questions 

 

List of questions: 

 

Background & motivation 

- Can you please a give short description of your position in the company and 
relation to this project/study? 

- Could you list some particular challenges for the supply network at hand? 
- What was your motivation to support this scientific investigation? 
- What outcome did you expect / what benefits do you hope to see of this study? 

 
Fit of design of the study 

- Do you feel that simulation is the right method to address the research problem? 
- Was the comparative approach helpful? Why is that? 
- Drawback / negative aspects you associate with simulation and/or the study 

approach? 
- Do the simulation results help to better validate potential impact of the switching 

the control approach? 
 
Results in detail 

- Is the observed reduction in trucks required relevant for you? (10%)? 
- Are the assumed financial saving in a relevant range? (Price reduction 13-18%) 
- Do you believe to benefit from the improved response of the supply chain to 

uncertainty? (Train failure) 
- Do you believe these results could be realised in reality? 
- Where do you see limitations or risks? 

 
Path to implementation 

- Having seen the results in simulation would you believe that autonomous control 
would bring benefits to your supply chain operation? 

- What are your primary concerns why you are not moving forward with 
implementing such a control solution? 

- Where do you see the greatest barriers when introducing such a decentral control 
solution? 

- Could the simulation/the study effectively address any of these 
barriers/concerns? 

 


