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Abstract— An evolutionary Multi-Objective Algorithm
(MOA) is used to investigate the trade-off between CO2

savings, distance and number of vehicles used in a typical
vehicle routing problem with Time Windows (VRPTW). A
problem set is derived containing three problems based on
accurate geographical data which encapsulates the topology
of streets as well as layouts and characteristics of junctions.
This is combined with realistic speed-flow data associated
with road-classes and a power-based instantaneous fuel
consumption model to calculate CO2 emissions, taking account
of drive-cycles. Results obtained using a well-known MOA
with twin objectives show that it is possible to save up to
10% CO2, depending on the problem instance and ranking
criterion used.

I. INTRODUCTION AND MOTIVATION

Vehicle Routing problems (VRP) are well known optimi-
sation problems that arise in the transport and logistics sector.
Typically they involve despatching vehicles from centralised
location such that all customers are visited. An extension of
this problem is the VRPTW in which time-windows define
a period of time in which each customer must be visited.
The VRPTW problem is known to be NP-Hard. VRPTW
problems are well studied from the optimisation perspective-
they typically involve attempting to minimize the distance
travelled and number of vehicles required to deliver all goods
while ensuring that all customers are satisfied within the
expected time-frame. However, with increasing legislation
coming into force, companies in the real-world are increas-
ingly under pressure to reduce the levels of CO2 emissions
associated with their operations, adding another objective
to an already difficult problem. In this paper we use a
multi-objective evolutionary algorithm to examine the trade-
offs between solutions found using different combinations of
objectives; thus we examine the solutions found using dual
objectives of first distance and vehicles and then emissions
and vehicles as objectives of the MOA. In each case we
calculate the CO2 cost of the solutions found and determine
the potential savings that can be made.

The multi-objective algorithm used to find solutions is
the based on that described by [4] for solving standard
VRPTW problems in which the goal is to minimise the
number of vehicles and the cost (i.e. distance travelled)
of routes. Their algorithm evolves groupings of customers,
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such that each group is assigned to one vehicle without
violating either capacity or time constraints. Within each
group, route costs are calculated using Euclidean distance.
As we are concerned with real-world data based on an
actual road network, we utilise an A* algorithm [16] to
construct paths on the road network between each pair
of customers rather than a simplified Euclidean distance.
Although there are alternative routing algorithms such as
Dijkstra [17] for constructing routes between two points,
they are computationally expensive. A* was chosen as it
gives an acceptable balance between cost and quality. The
CO2 cost of any solution is determined retrospectively by
applying the emissions metric to the route determined by
the A* algorithm. Euclidean distance is used as the heuristic
within the A* algorithm, at present there is no equivalent
emissions based measure.

II. PREVIOUS WORK

There is a wealth of existing literature on evolutionary
approaches to solving VRPTW problems, using a variety of
different approaches. An overview of earlier work may be
found in [12], and the reader is referred to a recent survey by
[1] for examples of the state-of-the art. Much prior research
has concentrated on the problem instances first presented by
Solomon [14]. These instances are not based on realistic
underlying data, but have supported the benchmarking of
many VRPTW solvers.

A number of nature inspired approaches to solving the
VRPTW have been investigated, including Ant Colony Op-
timisation [11] cellular genetic algorithms [8], simulated
annealing [10] and genetic algorithms incorporating a messy
representation [7].

The approach of using of Pareto ranking in multi-objective
GAs such as [13] has been applied to a number of vehicle
routing problems [5]. As the focus of the paper is inves-
tigating the impact of including CO2 emissions as one of
the objectives in a MOA, rather than presenting a novel
MOA, we choose to employ a recent MOA by [4]. Ombuki’s
MOA represents a mature approach to the VRPTW that
has achieved significant published results on benchmark
solutions. The original MOA developed in [4] has been
applied to the problem of scheduling garbage collection in
[3].



OSM Catagory Speed (kph)
default 32

unclassified 32
secondary 36
residential 36

primary 38
tertiary 38

trunk 64
motorway-link 80

motorway 112

TABLE I
AVERAGE SPEEDS ALLOCATED TO OSM LINK CLASSES. FOR ANY LINK

CLASS NOT IN THE LIST, THE DEFAULT VALUE (32KPH) IS USED.

III. PROBLEM DESCRIPTION

A. The Geographical Data Source

Accurate geographical data is now readily available online
for many regions. Such data encapsulates the topology of
streets as well as the layout and characteristics of junctions.
In this paper, we use data from the Open Street Map (OSM)
project [18].

We focus on OSM Data representing the road network
within the City of Edinburgh, Scotland. The entire road
network for the city is stored; this consists of the length
and class of every road section as shown in figure 1.

Using data presented in [6] we allocate a realistic average
free-flow speed to each class of road (for example, see table
I). For each junction on the map, we store data regarding
the appropriate intersecting street details, alongside any other
relevant features such as the existence of traffic signals
or a roundabout. Data regarding the gradient of any road
is not available, therefore this attribute of roads in the
network is not taken into account in the emissions model
employed. Similarly, we do not have accurate data available
regarding waiting-time at junctions, which further simplifies
the emissions calculation. A more complex model will be
developed, but it is useful to understand the effects of routing
based on emissions calculated using free flow speeds and
times.

B. Emissions Calculations using a drive cycle and fuel
consumption model

The accurate estimation of vehicle emissions is a non-
trivial exercise for which a number of models have been
proposed ([15],[9]). The emissions characteristics of vehicles
will differ depending on a range of factors, such as engine
size, fuel type and mass. The driving activity and locality
will also influence emissions through variables such as speed,
acceleration and gradient. In this study, we utilise a power
based instantaneous fuel consumption model for road vehi-
cles, proposed in [15]. This model allows the estimation of
fuel used over a given interval (e.g. 1 second), this maps onto
the concept of a drive cycle which will typically calculate
speeds at similar intervals. Once a route has been constructed
between points on the map it has to be converted into a series
of interconnected drive cycles. First, an average free-flow
speed for a street section is established (see table I). Based

on the length of the street and speed, an set of speeds are
created to represent the vehicles speed at 1 second intervals.
Such speeds are not constant, deviations above and below
the average are added based on data in [6]. Additional data
points to represent changes in speed at junctions are added,
based on the attributes of each individual junction and the
classification of the incoming/outgoing roads. For example,
at roundabouts and traffic lights, vehicles are assumed to
stop then restart. Other junction types may simply require a
change in speed. Once this has been calculated, appropriate
data points can be added to the drive cycle using accelera-
tion/deceleration curves from the TRL data [6].

The fuel consumption model may now be applied sequen-
tially to each of the speed values calculated for the street
section. The model may be described as follows:

dF = αdt+ β1R1dx+ [β2aR1]a>0 forRT > 0 (1)
= αdt forRT ≤ 0 (2)

where

dF = fuel (mL) consumed over distance dx (metres)
during time dt(s)
α = idle fuel rate (mL/s)
β1 = fuel consumption per unit of energy
β2 = fuel consumption during positive acceleration
a = acceleration (m/s), negative when slowing down
Rt = total force required to drive the vehicle (kN) expressed
as follows:

Rt = RD +Rl +RG,

RD = b1 + b2v
2,

Rl = Ma/1000,

RG = 9.81M(G/100)/1000,

(3)

where
v= speed (dx/dt) m/s
G = gradient (%) +ve or -ve
M = vehicle mass (kg)
b1, b2 = drag force function parameters

Appropriate values are provided in [15] to allow the
model to be calibrated with respect to an instrumented
vehicle. This model allows an estimate of fuel consumed
to be derived for any given route. The litres fuel consumed
are converted to Kg of CO2 by multiplying by a conversion
factor of 2.317 as specified in [2]. Within this paper
emissions are measured in Kg of CO2.

IV. PROBLEM INSTANCES

Using the OSM data for the city of Edinburgh, we gener-
ated three problem instances, each using a set of randomly
selected delivery points located within the City of Edinburgh.
The problems generated contained 20, 40, 60, 80 and 100
delivery points; the entire set of delivery points is shown in



Fig. 1. A fully rendered version of the dataset used. All 100 customers are highlighted.

figure 1). We utilised a delivery window size of 5 minutes for
each customer, all time windows starting and ending within
a 12 hour period.

V. THE EVOLUTIONARY ALGORITHM

As previously stated, we use the multi-objective evolu-
tionary algorithm described by [4]. The algorithm utilises an
indirect representation; each chromosome defines an ordering
of customers which need to be allocated to routes (vehicles).
To construct a solution, each customer is considered in the
order defined by the chromosome. The customer is added
to the current route if this does not cause any violations of
time constraints. If the customer cannot be added, the current
route is considered complete and a new route is initiated.

The evolutionary algorithm uses a steady state model with
a population size of 300, a crossover rate of 0.8 and a muta-
tion rate of 0.1, these parameters and the associated operators
are based upon [4]. For the experiments being conducted here
we execute the algorithm for 10,000 generations. A two point
cross over operator as used in [4] is used to construct new
individuals, this incorporates a repair function to ensure that
each child is a valid permutation. Parents are selected based
on tournament selection (using a tournament size of 2), the
resulting child has a random swap mutation operator applied
before being replacing the looser of a tournament (size =2)
in the main population.

The algorithm uses pareto-ranking to compare the quality
of solutions, where the ranks are sequential integer values
that represent the layers of stratification in the population
obtained via dominance testing [4]. In the experiments

presented in this paper a third objective is added, that of
minimising the CO2 produced by the solution.

VI. EXPERIMENTAL RESULTS

Experiments were performed with the EA described above
using the following ranking criteria:

• minimise vehicles and minimise distance (D+V)
• minimise vehicles and minimise CO2 (EM+V)
For each criterion, 10 runs of the algorithm were per-

formed on each of the five data sets (giving 100 runs in total).
For each solution produced the qty of vehicles, distance and
emissions where recorded. Given the nature of the MOA
algorithm, more than one non-dominated solution may be
produced at the end of a run.

The solutions produced by these runs are plotted in figures
2 to 6. In each figure the left hand and right hand graphs show
the same set of results plotted by vehicles and distance, and
vehicles and emissions. Where the run resulted in the pro-
duction of more than one solution, the multiple solutions are
plotted linked by a line. The plots represented by diamonds
are those results produced when using the D+V ranking. The
plots represented by squares are those results produced when
using EM+V ranking.

Figure 2 shows the results obtained on the 100 customer
problem. When the results are plotted by distance versus
vehicles, there appears to be no division between the D+V
and the EM+V results. However when the results are plotted
by emissions and vehicles, it may be observed that the EM+V
results mostly show a decrease in emissions compared to the
D+V results.



The solutions produced by the 80 customer data set are
shown in figure 3. When plotting by distance and vehicles it
may be noted that there appears to be no distinction between
results produced using D+V and EM+V ranking. When the
results are plotted by emissions and vehicles we note that
the EM+V results, in general, show a decrease in emissions
compared to those obtained using D+V ranking.

The results in figure 4 suggest that for this dataset it is
more difficult to find low CO2 solutions. When plotting the
solutions by distance and vehicles we may note that the
solutions produced using EM+V mostly require a longer
distance and more vehicles than those produced using D+V.
When plotting by emissions and vehicles we note no sig-
nificant differentiation between the two sets of results. The
solutions shown in figure 5 suggest that as with the 60
customer dataset it is difficult to find low CO2 solutions for
the 40 customer dataset. No significant trends differentiating
the D+V and EM+V results are apparent. No significant
difference in results produced using EM+V and D+V may
be seen in figure 6, showing the results obtained with the 20
customer problem.

A summary of results is shown in tables II and III, note
that the distance and emissions values are averaged over all
of the results produced for that data set. On average the
number of vehicles required for the EM+V solution rises
slightly, but not significantly. Given that the MOA produced
multiple solutions in some instances not all of the averages
are calculated over the same number of solutions.

VII. CONCLUSIONS AND FUTURE WORK

Using a standard MOA, we have investigated the routes
obtained in a VRPTW problem based on realistic data from
the perspective of the amount of CO2 emitted, by varying
the objectives used to compare solutions.

Of the five datasets investigated it has been possible in
three cases (100,80 and 40 customers) to use the EM+V
criterion to find solutions with lower CO2 characteristics than
those solutions found using D+V as the ranking criterion (see
table II). On average a 10% decrease in emissions is noted
when using EM+V rather than D+V on the 100 customer
data set, this drops to 5% and 5% respectively on the 80
and 40 customer datasets. Note the increases in the average
distance of between 5% and 9% within the same results on
the 20-80 customer data sets. On the 100 customer data set
a small decrease in distance (approx. 1%) is noted.

It should be noted that although an MOA is utilised, only
in very few cases was more than one non-dominated solution
found by the algorithm. Previous work with raking-based
MOAs has found the production of multiple non-domainated
solutions, forming a Pareto front to be common. Of the
100 runs of the MOA undertaken 76% returned only one
solution, of the remainder 23% returned 2 solutions and
only one run returned 3 solutions. It might be surmised
that the relationship between the emissions produced by a
solution and its length may be encouraging this phenomena
of producing only one solution.

To facilitate further analysis of the MOA performance, it
is proposed to solve the problem instances presented in this
paper using a differing algorithmic approach to the multiple
objectives. The underlying data used is based upon free-
flow speeds and without gradients. The effect of adding
congestion data which will vary link speeds depending on
the time of day has still to be observed. Other areas to
be investigated are modifying the emissions model to allow
multiple vehicles with differing characteristics to be included.

Future work to be carried out includes the investigation of
other time window constraints to observe whether increasing
the length of the time windows improves the abilities to find
low CO2 solutions. It is also proposed to investigate ranking
on three criterion, vehicles used, distance and emissions.
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Data set Avg dist:EM+V (KM) Avg dist: D+V (KM) Avg emissions:EM+V (Kg/CO2) Avg emissions: D+V (Kg/CO2)
100 784.2 796 35465.8 39392.8
80 662 629.4 29196.3 30803.7
60 541.8 497.4 24722 24181.7
40 383.2 372.7 17368 18605.5
20 202.9 197.7 10366.5 9970.4

TABLE II
RESULTS SUMMARY

Data set Avg vehicles:EM+V Avg vehicles: D+V
100 13.2 12.3
80 10.6 10.2
60 9.2 7.9
40 6.5 5.8
20 3.2 2.7

TABLE III
SUMMARY OF VEHICLES USED

Fig. 2. Results for the 100 customer data set. The left-hand plot shows the solutions by vehicles and distance, the right hand shows the same results plotted
by vehicles and emissions. The diamond plots represent solutions created using the D+V ranking and the squares those created using EM+V ranking.

Fig. 3. Results for the 80 customer data set. The left hand plot shows the solutions by vehicles and distance, the right hand shows the same results plotted
by vehicles and emissions. The diamond plots represent solutions created using the D+V ranking and the squares those created using EM+V ranking.



Fig. 4. Results for the 60 customer data set. The left hand plot shows the solutions by vehicles and distance, the right hand shows the same results plotted
by vehicles and emissions. The diamond plots represent solutions created using the D+V ranking and the squares those created using EM+V ranking.

Fig. 5. Results for the 40 customer data set. The left hand plot shows the solutions by vehicles and distance, the right hand shows the same results plotted
by vehicles and emissions. The diamond plots represent solutions created using the D+V ranking and the squares those created using EM+V ranking.

Fig. 6. Results for the 20 customer data set. The left hand plot shows the solutions by vehicles and distance, the right hand shows the same results plotted
by vehicles and emissions. The diamond plots represent solutions created using the D+V ranking and the squares those created using EM+V ranking.


