

An Approach to Cross-Domain Situation-Based
Context Management and Highly Adaptive

Services in Pervasive Environments

Zakwan Jaroucheh

Submitted in partial fulfilment of

the requirements of Edinburgh Napier University

for the Degree of

Doctor of Philosophy

School of Computing

January 2012

II

Abstract

The concept of context-awareness is widely used in mobile and pervasive

computing to reduce explicit user input and customization through the increased

use of implicit input. It is considered to be the corner stone technique for

developing pervasive computing applications that are flexible, adaptable, and

capable of acting autonomously on behalf of the user. This requires the

applications to take advantage of the context in order to infer the user’s

objective and relevant environmental features. However, context-awareness

introduces various software engineering challenges such as the need to provide

developers with middleware infrastructure to acquire the context information

available in distributed domains, reasoning about contextual situations that span

one or more domains, and providing tools to facilitate building context-aware

adaptive services.

The separation of concerns is a promising approach in the design of such

applications where the core logic is designed and implemented separately from

the context handling and adaptation logics. In this respect, the aim of this

dissertation is to introduce a unified approach for developing such applications

and software infrastructure for efficient context management that together

address these software engineering challenges and facilitate the design and

implementation tasks associated with such context-aware services. The

approach is based around a set of new conceptual foundations, including a

context modelling technique that describes context at different levels of

abstraction, domain-based context management middleware architecture,

cross-domain contextual situation recognition, and a generative mechanism for

context-aware service adaptation.

Prototype tool has been built as an implementation of the proposed unified

approach. Case studies have been done to illustrate and evaluate the

approach, in terms of its effectiveness and applicability in real-life application

scenarios to provide users with personalized services.

III

Acknowledgments

I would like to thank my supervisors Dr. Xiaodong Liu and Mrs Sally Smith, my

PhD panel chair Dr. Michael Smyth for all their help, support, expertise and

understanding throughout my period of PhD study. I would also like to thank all

staff in the School of Computing at Edinburgh Napier University, especially the

members of the Centre for Information and Software Systems group, for

providing me with valuable feedback and suggestions during my PhD study.

I am most indebted to my beloved wife, Sheren, for her endless support and

understanding during the period of my PhD study. Finally, great appreciation

and thanks to my mother and my parents-in-law. Although they are in Syria,

they always encourage me on the phone and give me consistent spiritual

support. I am proud of them and appreciate what they contribute to my life.

IV

Publications from the PhD Work

Journal Articles

[1] Zakwan Jaroucheh, Xiaodong Liu, Sally Smith, "Recognize contextual

situation in pervasive environments using process mining techniques," Journal

of Ambient Intelligence and Humanized Computing, vol. 2, Dec. 2010, pp. 53-

69.

[2] Zakwan Jaroucheh, Xiaodong Liu, Sally Smith, "An Approach to Domain-

based Scalable Context Management Architecture in Pervasive Environments,"

Personal and Ubiquitous Computing, vol. 1617-4909, Jun. 2011, pp. 1-15

(impact factor 1.554 (2009)).

Book Chapters

[3] Zakwan Jaroucheh, Xiaodong Liu, Sally Smith, "A Software Engineering

Framework for Context-aware Service-based Processes in Pervasive

Environments", In IGI Global Research Handbook "Advanced approaches and

tools on emerging computing systems".

Conference Papers

[4] Zakwan Jaroucheh, Xiaodong Liu, Sally Smith, "Mapping Features to

Context Information: Supporting Context Variability for Context-aware Pervasive

Applications," IEEE/WIC/ACM International Joint Conference on Web

Intelligence and Intelligent Agent Technologies (WI-IAT 2010), Toronto,

Canada, IEEE Computer Society, 2010. (Acceptance rate 22.7%)

[5] Zakwan Jaroucheh, Xiaodong Liu, Sally Smith, "Apto: A MDD-based Generic

Framework for Context-aware Deeply Adaptive Service-based Processes,"

ICWS, The IEEE 8th International Conference on Web Services, Florida, USA,

IEEE Computer Society, 2010. (Acceptance rate 17.6%)

V

[6] Zakwan Jaroucheh, Xiaodong Liu, Sally Smith, "A Model-driven Approach to

Flexible Multi-Level Customization of SaaS Applications," SEKE, The 22nd

International Conference on Software Engineering and Knowledge Engineering,

San Francisco Bay, USA, 2010. (Acceptance rate 33.0%)

[7] Zakwan Jaroucheh, Xiaodong Liu, Sally Smith, "CANDEL: Product Line

Based Dynamic Context Management for Pervasive Applications," CISIS,

pp.209-216, 2010 International Conference on Complex, Intelligent and

Software Intensive Systems (ARES/CISIS 2010), Krakow, Poland, IEEE

Computer Society, 2010.

Workshops

[8] Zakwan Jaroucheh, Xiaodong Liu, Sally Smith, "A Perspective on

Middleware-Oriented Context-Aware Pervasive Systems," COMPSAC, vol. 2,

pp.249-254, 2009 33rd Annual IEEE International Computer Software and

Applications Conference (COMPSAC'09), IEEE Computer Society, 2009.

[9] Zakwan Jaroucheh, Xiaodong Liu, Sally Smith, Huiqun Zhao, "Lightweight

Software Product Line Based Privacy Protection Scheme for Pervasive

Applications, " 2011 35th IEEE International Computer Software and

Applications Conference (COMPSAC'11), Munich, Germany, IEEE Computer

Society, 2011.

http://www.ciss.napier.ac.uk/c/publications/publicationid/13367419
http://www.ciss.napier.ac.uk/c/publications/publicationid/13367419
http://www.ciss.napier.ac.uk/c/publications/publicationid/13367419

VI

Table of Contents

ABSTRACT II
ACKNOWLEDGMENTS ... III
PUBLICATIONS FROM THE PHD WORK ... IV

TABLE OF CONTENTS .. VI
LIST OF FIGURES ... X

LIST OF TABLES .. XII
CHAPTER 1 INTRODUCTION ... 1

1.1 Problem Statement.. 1
1.2 Aim and Objectives of the Research.. 8
1.3 Contributions to Knowledge .. 9
1.4 Statement of Methodology ... 11
1.5 Criteria of Success .. 12
1.6 The Structure of the Thesis .. 13

CHAPTER 2 LITERATURE REVIEW... 16

2.1 Current State of Context Modelling and Management ... 16
2.1.1 Introduction ... 16
2.1.2 Defining Context-awareness ... 17
2.1.3 General Concepts .. 18
2.1.4 Classification of Context Modelling Approaches.. 22
2.1.5 Context Information Abstractions ... 27
2.1.6 Context Management Middleware .. 29

2.2 Current State of Service Adaptation ... 32
2.2.1 Introduction ... 32
2.2.2 Context-aware Service Discovery ... 34
2.2.3 Context-aware Service Composition ... 34
2.2.4 Context-aware Service Adaptation .. 35
2.2.5 Adaptation Mechanisms .. 37

2.3 Current State of Enabling Technologies ... 39
2.3.1 Model Driven Architecture.. 39
2.3.2 Process Mining .. 40
2.3.3 Software Product Line ... 41
2.3.4 Jabber Overview .. 42

2.4 Conclusions .. 43

CHAPTER 3 RELATED WORK ... 46

3.1 Context Modelling ... 46
3.1.1 Requirements of Context Modelling ... 46
3.1.2 Context Modelling Approaches ... 48
3.1.3 Evaluation of the Context Modelling Approaches .. 54

3.2 Context Management Architectures ... 55

VII

3.2.1 Driving Requirements ... 55
3.2.2 Existing Context Management Architectures .. 58

3.3 Situation Recognition Approaches .. 64
3.3.1 Specification-Based Approaches ... 64
3.3.2 Machine Learning Based Approaches ... 67
3.3.3 Hybrid Approaches.. 68

3.4 Service Adaptation Approaches .. 69
3.5 Conclusions .. 75

CHAPTER 4 OVERVIEW ON THE PROPOSED APPROACH 78

4.1 Context Modelling, Abstraction and Management .. 79
4.2 Contribution to Service Adaptation .. 80

CHAPTER 5 GENERATIVE FEATURE-BASED CONTEXT MODEL 81

5.1 Introduction ... 81
5.2 The Rationale of the Proposed Approach ... 82
5.3 The Conceptual Model for Context Management .. 84
5.4 Context as a Dynamic Product Line .. 85

5.4.1 Feature-based Context Modelling ... 86
5.4.2 Annotated Context Model ... 87
5.4.3 Implicit Existence Condition (IEC) ... 89

5.5 Context Information Generation ... 90
5.6 Case Study: Conference Advisor Application .. 91

5.6.1 Objective ... 91
5.6.2 Illustration and Evaluation of Product Line based Context Model .. 91
5.6.3 Summary ... 98

5.7 Conclusion ... 99

CHAPTER 6 UBIQUE: CROSS-DOMAIN EFFICIENT AND PRIVACY-
ENSURING CONTEXT MANAGEMENT MIDDLEWARE 101

6.1 Introduction ... 101
6.2 Context Dissemination Problem .. 103
6.3 Cross-Domain Context Management .. 105

6.3.1 ubique Context Meta-Model.. 107
6.3.2 Context Management Components ... 108
6.3.3 Context Interfaces and Operations .. 110
6.3.4 Privacy ... 115

6.4 ubique Implementation ... 116
6.4.1 Jabber and Domain-based Context Management .. 118
6.4.2 Jabber and Context Manager ... 118

6.5 Case Study: Smart University System... 121
6.5.1 Objective ... 121
6.5.2 Solution and Implementation .. 122
6.5.3 Summary ... 128

6.6 Conclusion ... 129

VIII

CHAPTER 7 CONTEXTUAL SITUATION RECOGNITION WITH PROCESS
MINING TECHNIQUES .. 131

7.1 Introduction ... 131
7.2 Contextual Situation Recognition .. 133

7.2.1 Definitions ... 134
7.2.2 Conceptual Architecture .. 138
7.2.3 Conceptual Model ... 140
7.2.4 Contextual Situation Recognition Algorithm .. 141

7.3 Process Mining for Pervasive Environments .. 143
7.3.1 Abstraction on the States Log Level.. 145
7.3.2 Control-flow Mining ... 148

7.4 Defining the Expected Situation Model (ESM) .. 149
7.5 Conformance Analysis .. 150

7.5.1 ESM Conformance Checking Mode.. 151
7.5.2 LTL Constraint Checking Mode ... 153

7.6 Case Study: Leave-to-Work Situation Recognition ... 155
7.6.1 Objective ... 155
7.6.2 Background ... 155
7.6.3 Dataset ... 156
7.6.4 Set up and Methodology .. 157
7.6.5 Experiments ... 158
7.6.6 Summary ... 160

7.7 Conclusion ... 160

CHAPTER 8 APTO: A MODEL DRIVEN GENERATIVE MECHANISM FOR
CONTEXT-AWARE ADAPTIVE SERVICES ... 162

8.1 The Rationale behind Apto ... 162
8.2 Apto Approach ... 164
8.3 A Conceptual Model of Context-aware Adaptive Services ... 166

8.3.1 Basic Service Model .. 166
8.3.2 Context Model ... 167
8.3.3 Evolution Model .. 167
8.3.4 Linkage Model .. 169

8.4 Service Adaptation and Instantiation ... 170
8.5 Deployment and Execution .. 172
8.6 Apto Tool Realization .. 173

8.6.1 Prototype on Java platform .. 173
8.6.2 .NET Framework based prototype... 175

8.7 Case Study: Tourism Service Application .. 178
8.7.1 Objective ... 178
8.7.2 Solution and Implementation .. 178
8.7.3 Summary ... 183

8.8 Conclusion ... 184

CHAPTER 9 CONCLUSIONS AND FUTURE WORK 186

9.1 Critical Analysis .. 186

IX

9.1.1 Context as a Dynamic Product Line .. 186
9.1.2 ubique Middleware .. 189
9.1.3 Situation Recognition Approach ... 192
9.1.4 Apto Approach ... 194

9.2 Conclusions and Main Contributions.. 196
9.2.1 Conclusions ... 196
9.2.2 Contributions ... 198

9.3 Future Work .. 199

REFERENCES 203

APPENDIX A : ABBREVIATIONS AND ACRONYMS 213

APPENDIX B : ONTOLOGY-BASED CONTEXT MODEL 214

APPENDIX C : APTOML LANGUAGE ... 1

X

List of Figures

Figure 2.1 Example of context instance ... 20
Figure 5.1 The working definition of the context ... 83
Figure 5.2 The Conceptual Meta-Model ... 84
Figure 5.3 Overview of the proposed approach ... 88
Figure 5.4 A snippet of the used ontology .. 92
Figure 5.5 Example of context feature model ... 93
Figure 5.6 Feature model configuration ... 94
Figure 5.7 Example of available stereotypes ... 94
Figure 5.8 Example of annotated ontology... 95
Figure 5.9 Example of meta-statement .. 96
Figure 5.10 Example of meta-statement variable ... 96
Figure 5.11 Example of annotated SWRL rules ... 97
Figure 5.12 The retrieved context information .. 98
Figure 6.1 The proposed context meta-model ... 108
Figure 6.2 ubique components ... 109
Figure 6.3 CP capabilities XML scheme .. 111
Figure 6.4 CC interest XML scheme .. 113
Figure 6.5 Contextlet XML scheme .. 115
Figure 6.6 Privacy XML scheme .. 116
Figure 6.7 Domain-based context-aware eco-system 117
Figure 6.8 The context manager external component 119
Figure 6.9 ubique components interactions ... 120
Figure 6.10 Interaction between different components 123
Figure 6.11 Example of the activity provider’s advertised capability 123
Figure 6.12 Example of an application’s context interest 124
Figure 6.13 Example of a privacy policy .. 125
Figure 6.14 Example of contextlet received from activity provider 125
Figure 6.15 Example of the location provider advertised capabilities 126
Figure 6.16 The location provider capabilities disseminated to Carol HCS .. 126
Figure 6.17 Example of Carol location contextlet ... 127
Figure 6.18 Screenshots of the example application 128
Figure 7.1 Layered Conceptual Architecture .. 138
Figure 7.2 Conceptual Model ... 140
Figure 7.3 Process Mining ... 145
Figure 7.4 Petri Net model of the observed process 149
Figure 7.5 Conformance Analysis .. 152
Figure 7.6 Results of LTL checker ... 154
Figure 7.7 The daily inhabitant process model ... 158
Figure 7.8 The "leave-to-work" situation model .. 158
Figure 7.9 Leave-to-work situation matching measure 159
Figure 7.10 Incomplete leave-to-work situation matching measure 160
Figure 8.1 Levelled views of service .. 163
Figure 8.2 Service life cycle ... 164
Figure 8.3 Apto Approach .. 165

XI

Figure 8.4 Apto conceptual model ... 166
Figure 8.5 Generating evolution metamodel .. 168
Figure 8.6 Evolution metamodel generation script 169
Figure 8.7 Apto Java-based tool architecture ... 174
Figure 8.8 .NET based Apto tool .. 175
Figure 8.9 Basic service model .. 179
Figure 8.10 Context and linkage models .. 181
Figure 8.11 The generated context class ... 181
Figure 8.12 Example of a service variant model .. 183

XII

List of Tables

Table 2.1 Feature type relations ... 42
Table 3.1 Requirements for context modelling techniques 54
Table 5.1 IEC for different context primitives .. 89
Table 7.1 State Sequence in the Conference Room Scenario 136
Table 7.2 Example of the recorded states log ... 146
Table 7.3 Example of the process instances in Home domain 146
Table 7.4 Examples of LTL Analysis ... 153
Table 8.1 Evolution fragments and their evolution primitives 181
Table 8.2 Evolution fragments dependency .. 182

1

Chapter 1 Introduction
1.1 Problem Statement

Typically, context-aware systems are composed of sensors, actuators,

application components, and context processing components that manage

the flow of context information between the sensors/actuators and

applications. Context-awareness is considered to be the corner stone

technique for achieving the pervasive computing vision. Therefore, a strong

trend in context-awareness research is clearly visible in the last few years.

So far, although many approaches and corresponding mechanisms have

been proposed by the research community and industry, fully automated and

perfectly effective context-aware services are still not a reality due to the

complexity and diversity of context mining/management and the challenging

nature in the consequent service adaptation. In this thesis we attempt to

develop a new approach and related mechanisms to address the research

question of how to achieve a perfectly effective and automated context-

awareness in software services. The context mining/management is

integrally linked with the consequent service adaptation in our approach.

In general, the research efforts in the context-aware service engineering

domain can be roughly divided into the following categories:

(i) Context modelling and abstraction.
(ii) Context management middleware.
(iii) Contextual situation recognition.
(iv) Service design, development, and evolution techniques.

However, the research in this domain still has to address a number of

challenges and problems associated with these categories:

(i) Context modelling and abstraction

Different approaches and techniques have been proposed to context

modelling and reasoning. One of the most prominent technologies for this

2

purpose is ontologies. These approaches produce ontologies that describe

context information and provide means for reasoning and inference. Usually

these approaches rely on Resource Description Framework (RDF) and Web

Ontology Language (OWL-DL) and are combined with middleware to provide

more complete context management. The main problem with these

approaches is that reasoning in OWL-DL is computationally expensive. As

the context manger is expected to administer a large volume of context

information represented by RDF triples in the context repository, applying

the reasoning capability to infer new context knowledge may have a severe

impact on the overall performance of the system. Thus, limited reasoning

performance reduces the applicability of these approaches in real world

applications.

On the other hand, applications use context queries to retrieve the set of

context information that adhere to some conditions. The application

developer may not have enough knowledge about context semantics, in

order to describe context queries correctly.

Finally, in order for the middleware to serve different types of applications, it

should provide context-specific programming abstraction or constructs that

model the context variability. Indeed, different context knowledge could be

extracted from the context repository by focusing on different views of the

context information. For example, in the smart meeting room, a seat may be

equipped with light and temperature sensors to reason about its occupation.

The seat could be either free or occupied. Two occupation variants may be

identified: occupied by an object and occupied by a person. These variants

represent two facets of the same fact. To the author’s best knowledge, the

existing approaches do not provide application developers with software

constructs through which a view-based customization of the context

knowledge could be expressed.

3

As an attempt to overcome these limitations, this thesis introduces the

context variability, context primitive, and context feature concepts. Each

application expresses its interest in context information by specifying a set of

context features. Each feature corresponds to a set of context primitives

which will be used to generate a per-application customized contextual

knowledge. Obviously, considering only the relevant context primitives would

improve the reasoning performance.

(ii) Context management middleware

In pervasive environments, context management systems are expected to

administer large volumes of contextual information that are captured from

different areas (domains). Research in context-aware computing has

produced a number of middleware systems for context management to

facilitate the communications between applications and context sources.

However, distributed context management among these domains raises

main issues that have been neglected or partially addressed in the current

approaches.

Firstly, in distributed context management scenarios, applications need to

have a mechanism allowing them to identify which context management

system provides the context information they are interested in. In addition,

these applications need to specify domain-based context query, i.e., context

information provided by context providers in specific domains.

Secondly, the existing middleware solutions have either limited generality or

scalability. Some recent middleware focus on a specific application types,

e.g., smart room [1] or Web content adaptation [2]. Other middleware offer

distributed platforms for context management (e.g. [3][4]), federation of

context management systems (e.g. [5][6]), or peer-to-peer interaction

approaches (e.g. [7]). In general, the first approaches assume context model

homogeneity in the distributed environment and they focus on efficient

context information dissemination among distributed clients, which is only

4

one requirement of such a distributed scenario. The second approaches

provide mechanisms that allow aggregation of independent context

management systems by sharing their context models with other context

management systems and by providing a common interface for applications

to query. Thus they support generality and interoperability among different

domains. The third approaches establish a direct connection to each context

management system that contains context information to be involved in

evaluating application context query. Typically the distribution of context

information should be transparent to the applications in the sense that they

should be alleviated from the tasks associated with retrieving the context

information available in different domains. In this respect, the context

management system maintains all the details of how the context is retrieved,

and by such enables transparent context access for providers and

consumers, independently if the context information is local or not to its

current domain. Although distribution is generally transparent to applications

this may degrade the overall system performance as this may requires

contacting several context management systems to handle application

queries.

Finally, the distributed context information among different domains raises

other issues such as privacy and cross-domain reasoning. That is, in order

to understand the user’s behaviour we may need to consider the user

context information originated from the different domains the user visits. The

existing middleware solutions do not provide an infrastructure that facilitates

this kind of reasoning. In addition, the distribution of the user’s context

information among the different visited domains may weaken the privacy

enforcement support.

(iii) Contextual situation recognition

Situations, the semantic interpretations of context, provide a better basis for

selecting adaptive behaviours than context itself. The ability to recognize

and monitor the user’s situation is vital to achieve less-intrusive interaction in

5

pervasive environments. Situation recognition is related to the activity

recognition research area. For example, Loke [8] states that activity can be

considered as a type of contextual information which can be used to

characterize a situation. Generally speaking, activities can be seen as a

sequence of events, and situations as a sequence of activities. Thus, some

of the existing activity recognition could be generalized to recognize

situations. This thesis focuses on abstracting from activities to infer the

current situation.

To recognize activities, a reasoning process uses the sensor data to infer

which activities are “occurring” at a particular point in time. This involves

matching sensor data or its more abstract and meaningful form against a

predefined model of activities. On the other hand, since situations are

semantic abstractions from activities, human knowledge and interpretation of

the world must be integrated into a model or situation representation [9].

This can be achieved in three ways: (i) a human defines the situations and

their relationship based on his knowledge during a specification process

using rule-based or ontological approaches (e.g. [10][11][12]), (ii) situation

models are learned from training data by associating a human-defined

situation label via learning techniques (e.g. [13][14][15]), (iii) or the situation

model is derived from a combination of both (e.g. [16]).

Learning approaches have been widely used for activity recognition, due to

their ability to automate the creation of the activity model from training data

and to handle noisy sensor data. On the downside, training data can be

difficult and costly to acquire. On the other hand, when contextual situations

and application needs of situations are known in advance, a human expert

can specify the situations manually. However, expert hours are expensive; in

addition, this model is not grounded in physical observations. Therefore, a

trade-off solution could be to create an initial situation model with minimum

expert knowledge input, and then her knowledge is exploited to provide

situation labels (such as in [16]).

6

Defining the user’s situation may require considering the different states

(activities) the user experiences in the different spatial domains they visit.

For example, to identify if the current day was busy for the user there is a

need to consider the different activities and states the user has experienced

in work, shopping, on the road, etc.

At present, there is no generic solution capable of recognizing situations

from perceptual events coming from different spatial domains and explicitly

support knowledge about activities the user experiences in the visited

domains. This generic solution should regroup different layers of

abstractions where the multi-domain activity sequences in one layer are

fused in the situation recognition layer to recognize situations spanning one

or more domains.

In addition, typically the existing approaches require constructing sequence-

based activity models comprising low-level activity features and trying to

recognize activities that follow this model. However, to recognize situations,

this thesis argues that in reality human behaviour may not follow a specific

sequence of activities; rather situations may have distinct series of activities

but with no particular sequence. Thus, relying on sequences of activities

may limit the accuracy of situation recognition (e.g. [17]). Finally, a generic

solution should provide the flexibility to define situation models based on the

domain expert knowledge or on training data. This way, the situation

designer has the option to define the situation model from scratch or to use

the sensor data to infer (mine) the user behaviour and then manually identify

the situations of interest.

(iv) Service design, development and evolution techniques

As Web service architecture is a popular trend in the service domain, it is not

surprising that most of the existing approaches follow Web service

technologies. On the other hand, the existing approaches tackle the context-

7

aware adaptation either on the client side or server side. This thesis focuses

on the server-side solutions.

In general the context-aware service engineering can be regrouped in three

categories [18]: source-code level approaches, message interception

approaches, and model-driven approaches. In the source-code level

approaches, the business logic of the service can be enhanced with code

fragments performing context handling and the required adaptive behaviour.

This is achieved either by extending the programming language syntax or

providing external context handling mechanisms [18]. However, these

approaches may be not suitable for the context-aware service development

which usually involves several stages (e.g. analysis and design) prior to the

actual code development. In the message interception approaches, the

context handling and adaptation is performed by intercepting and modifying

the incoming and outgoing messages of a service without affecting the core

business logic of the service. However, this may be insufficient as the

change in user context or business rules may require changing service

business logic as well. Relying heavily on models, the model driven

approaches are promising approaches as they consider the context-aware

adaptation in the full software development life cycle. In addition, they enjoy

the inherited power of model transformations and (semi)automatically

production of executable code. Thus, this thesis focuses on proposing

model-driven based approach for service adaptation.

Variability refers to a system’s ability to be changed, extended, customised

or configured for use in a particular context [19]. Usually developing a

context-aware adaptive service requires the developer to specify kinds of

variations (i.e. variation points and variants) in the service model that will be

determined at design time or runtime according to the operating context.

However, this may pose three main problems from the developer point of

view: (i) the variation points and variants are sometimes embedded in the

service logic itself (e.g. VxBPEL [20]) which weakens the system modularity

8

and violates the separation of concern principle, (ii) the constructs used to

specify the service variant (i.e. variation points and variants) do not reflect

the way the developer or designer logically view the difference in the service

model in each context usage, and (iii) managing the variation points and

their dependencies becomes a difficult task when the number of these

variation points increases.

1.2 Aim and Objectives of the Research

Motivated by the problems and directives in mind mentioned in Section 1.1,

this thesis proposes a unified approach for developing context-aware

services and contributes to the knowledge by addressing the following

points:

1- In order to support the developer in defining the context queries, a hybrid

approach to context modelling that combines the ontologies with a feature-

oriented modelling technique is needed. That is, the available context

information is “promoted” using context features that could be shared among

different applications. Each context feature corresponds to a specific set of

context primitives as will be seen. Obviously, considering only the relevant

context primitives would improve the reasoning performance and reduce

response time which is a vital issue in the pervasive environment. In

addition, the reusability principle is respected and the developers are able,

by configuring the context feature model, to get the context information they

are interested in. To this end, ideas from Software Product Line techniques

(feature model) have been leveraged.

2- The complexity of developing context-aware applications makes the

existence of middleware a vital requirement. Thus this thesis focuses on

developing and validating a distributed domain-based context management

middleware. It proposes ubique, a new middleware architecture which is

adequate for addressing the context consumer requirements anytime and at

9

any place in future pervasive environments. ubique allows applications to

describe and maintain context queries that involve context provided by

various environments (domains). By incorporating the management and

communication benefits of the Jabber protocol and taking advantage of the

semantic and inference benefits of ontology-based context models, ubique

forms an underlying robust and generic infrastructure for cross-domain

context dissemination, which significantly simplifies the development of

context-aware pervasive applications.

3- This thesis aims also to take advantage of the distributed context

management architecture, ubique, to capture and reason about the different

contextual situations which span one or more domains. To recognize such

situations, this thesis focuses on the potential use of Process Mining

techniques for firstly mining the actual behaviour and secondly comparing

the real situation of the user with the expected situation.

4- Services in pervasive environments need to cope with high variability, as

they are deployed on a diversity of computing platforms, operate in different

execution environments, and provide personalized services according to

dynamically varying users’ requirements. Supporting the development,

provision and evolution of such services in this setting requires a unified

solution that integrates the cutting edge technologies from several related

areas, such as context-awareness and adaptiveness, into a seamless

consistent approach. Therefore, this thesis also proposes an automated

model-driven approach for the development and evolution of highly agile

context-aware services.

1.3 Contributions to Knowledge

In order to address the research question of how to achieve an effective and

automated context-awareness in software services, this thesis proposes a

new approach to facilitate the developer task of designing and implementing

10

context-aware adaptive services. It attempts to solve some of the problems

associated with the context modelling and management, cross-domain

contextual situations recognitions, and the context-aware service adaptation.

Thus, this dissertation provides four main contributions:

• Product line based context information representation. This

representation significantly enhances reusability of context

information by providing context features to satisfy different

application needs. This allows the context modeller to specify the

context information in a high-level and logical way that regroups

context variabilities; and provides application developers with context-

specific programming constructs to express their needs. The result is

a more intuitive way to represent context and improvement of overall

systems performance.

• Process mining based situation recognition. Since the aim of

pervasive computing and ambient intelligence is to enable users to

interact with the environment in an intelligent way, the applications

should not only consider the current relevant context information but

also their history and their distribution among different domains. Thus

the second contribution is the introduction of a formalism for the

situation recognition problem and the leverage of process mining

techniques for measuring situation alignment, i.e., comparing the real

situations of users with the expected situations which span one or

more domains.

• Jabber-based cross-domain context management middleware.
The third contribution is the leverage of Jabber protocol to create

mechanisms that address the requirements of scalable distributed

context management, privacy enforcement, and efficient context

information dissemination and query handling. In this respect, ubique,

middleware architecture is proposed. ubique incorporates the

management and communication benefits of Jabber, while also taking

advantage of the semantic and inference benefits of ontology-based

11

context models. This architecture establishes a robust cross-domain

context management and collaboration framework which has been

designed, implemented and evaluated.

• Model-driven mechanism for context-aware adaptive services.
The forth contribution consists of proposing a generative approach for

the development and evolution of services. This approach supports

the viewpoint of context-aware adaptation as a crosscutting concern

with respect to the core “business logic” of the service. In this way,

the design of the service core can be decoupled from the design of

the adaptation logic. This means that the task of core service design

can be separated from the adaptation logic design task and they

could be considered as two separate concerns. To this end, ideas

from the domain of model-driven development (MDD) and generative

programming have been leveraged.

Based on the successful application of existing technologies, such as

MDD, Jabber protocol, generative programming, and software product

line, the proposed approach contributes to (i) provide a new context

modelling approach that facilitates the developer task, (ii) to allow the

developers to design and recognize cross-domain contextual situations,

(ii) a new domain-based context management infrastructure that allow

the developer to define domain-based queries and ensure user’s privacy,

and (iv) to provide the developer with tools methodology that captures

the service variants in a logical way to design and implement context-

aware adaptive services. Thus, the contribution aims towards a software

engineering approach which takes into consideration the ease of

developing context-aware services.

1.4 Statement of Methodology

The research work in this thesis has been accomplished with a methodology

combining literature review, creative research on approach process and

12

novel technologies, manual and tool-based case studies to verify, evaluate,

and then refine the approach and tool set.

Firstly, a comprehensive literature review has been done to get a complete

view of the current state of art of the related areas. Based on this view,

crucial problems of designing and implementing context-aware adaptive

service and context modelling have been identified. A proposed framework

of the approach has been established to correct the identified problems.

In next stage, case studies have been conducted, both manually and tool-

based on the adaptation of context-aware services. The result has triggered

further improvements and refinements to the developed approach. The

related prototype tool set has been designed and implemented on top of the

approach. Tool-based case studies have been done to evaluate the tool set

and the approach. The experiment data has been used to improve both the

tool set and the approach.

Papers have been submitted to top international conferences and journals to

disseminate the research results and to get valuable feedbacks.

1.5 Criteria of Success

In order to address the research question, a set of criteria have been

identified to measure the success of the proposed approach. For example,

concerning the context modelling approach, is it possible for the modelling

approach to take advantage of the ontology-based context modelling

approach and the same time improve the system performance by reducing

the reasoning time? Can the resulting context model be reused and shared

by different types of applications? Can the respective modelling approach

provide a mechanism through which the context variability can be expressed

in order to provide the applications with the context information they need on

different levels of abstractions?

13

Further, since the context information is naturally distributed, the context

management should be distributed in order to allow efficient and scalable

dissemination of context. In this case, additional restrictions may arise when

the mobile users roam across domains (e.g. concerning limited connectivity

and bandwidth, unknown network conditions, etc.). Accordingly, is it possible

to provide the developers with mechanisms to define their queries about

context information of interest which may span different domains? Is it

possible to design an efficient protocol for exchanging context information

between domains that disseminates only the required information and at the

same time provides a mechanism to enforce the user’s privacy? Can the

respective context management middleware provide an infrastructure that

permits to recognize contextual situations which span one or more domains?

On the other hand, services evolve according not only to the available

context information but also to the changes in the business rules and

requirements. Can the service core logic be designed and implemented

separately from the context handling and adaptation logics through the

service development and evolution phases? Is it possible to provide the

developers with mechanisms to capture the service variability from a logical

point of view in order to easily manage and understand the service variants

in each usage context?

The aforementioned criteria are described and discussed in more details in

Chapter 3.

1.6 The Structure of the Thesis

The thesis is organized as follows:

Chapter 1 gives an introduction of the research, including the problem

statement, the aim and objectives of the research, and the contributions to

knowledge.

14

The literature review is presented in Chapter 2, which includes the current

state of context modelling and management, context-aware service

adaptation, and the current state of enabling technologies such as software

product lines, model driven architecture, Jabber protocol, and process

mining.

Chapter 3 summarises the related research projects in context modelling

and management, situation recognition, and service-based application

adaptation, and describes typical research projects in detail. In addition,

these projects are critically analysed and a conclusion is drawn, which gives

the motivation of the research.

Chapter 4 provides an overview of the proposed approach and shows how

the different parts of the approach are interlinked.

Chapter 5 presents the context modelling approach, which includes the

product line based context model, the mapping between context features in

the context feature model and the available context information, and the

algorithm used to generate a customized view of the available context

information.

Chapter 6 describes the ubique approach for a collaborative context

management among different context servers distributed in different

domains in the pervasive environment. It describes a new protocol (built

upon Jabber protocol) which has been designed and implemented in order

to efficiently disseminate context information between different domains in a

way that respect the users’ privacy.

Chapter 7 proposes a multi-layered conceptual architecture for contextual

situation recognition. It formally defines the situation recognition problem and

proposed a recognition approach by leveraging ideas from process mining

techniques.

15

Chapter 8 describes Apto, the proposed approach for service development

and evolution. It provides a conceptual model for the context-aware adaptive

services and describes the Apto prototype tool, including its architecture and

implementation.

Chapter 9 presents the conclusions of the research and future work.

16

Chapter 2 Literature Review

This chapter conducts a broad overview on context-awareness issues (such

as context modelling, abstractions and management) and on service

adaptations which are usually triggered or driven by context change. This

chapter also conducts a survey of several techniques that have been found

useful for the proposed approach such as software product lines, model

driven development, process mining, and the Jabber protocol. These

techniques are the foundation of the development of the proposed approach.

2.1 Current State of Context Modelling and Management
2.1.1 Introduction

With the growth of mobile devices such as laptops and smart phones, it is

not surprising that mobile computing has attracted considerable attention in

recent years. In an attempt to go beyond the traditional view of explicitly

used computers and terminal devices, a new more general paradigm of

user-centric mobility was introduced by Mark Weiser [21] in 1991 and called

“Ubiquitous Computing”. In this paradigm, smart and autonomous computing

technology will be embedded in every device to enhance the use of

computers by making computers effectively available throughout the

physical environment and, at the same time, making them invisible to the

user. Mark Weiser [21] expressed this goal as achieving the most efficient

technology and making computing as ordinary as electricity. Thus, instead

of relying on specialized devices carried and maintained by the user such as

a mobile phone, the focus is now on provisioning services to the user.

Furthermore, pervasive computing is another term used in the same context

but from different points of view [22]. Pervasive computing emphasizes

mobile data access, smart spaces and context awareness. Thus pervasive

computing focuses on three main areas: (i) how do people see and use

mobile and wireless computing devices; (ii) how to create and deploy

17

applications to end users; and (iii) the way ubiquitous services enhance the

environment. Because of this conceptual overlap, this dissertation uses the

words “pervasive” and “ubiquitous” interchangeably.

2.1.2 Defining Context-awareness

The traditional model of software systems relies on the input explicitly taken

from the user to act upon and produce explicit output. In pervasive

environment, this model is being seen as unsuitable, where users find

themselves dealing with a large number of services and devices. Thus,

services have to operate not only on the explicit input but also on implicit

information gathered from the environment; in other words, they have to be

context-aware so that they can adapt to changes in situations on behalf of

the user.

In the literature, there are many different definitions and uses of the term

context (e.g., [23][24][25][26]). Definitions given by earlier works agree on

the key idea that contexts describe situations. For example Dey [23]

confirmed this by defining context as: “Any information that can be used to

characterize the situation of an entity. An entity is a person, a place, or a

physical or computational object that is considered relevant to the interaction

between a user and an application, including the user and application

themselves.”

Context can also be defined as meta-information to characterize the specific

situation of an entity and to describe a group of conceptual entities [24].

Winograd [25] indicated that in using open-ended phrases such as "any

information" and "characterize", the context becomes so broad that it covers

everything. He indicated also that “something is context because of the way

it is used in interpretation, not due to its inherent properties. The voltage on

the power lines is considered as a context if the interpretation of the user’s

or computer’s action is dependent on it, but otherwise it is just part of the

environment. Therefore, “context depends on the interpretation of the

18

operations involved on an entity at a particular time and space rather than

the inherent characteristics of the entity itself.” Another interesting definition

for context [26] indicates that “context is always related to a focus”. Viera et

al. argue that context should always be considered related to a focus, which

is a step in a task execution, in a problem solving or in a decision making

process. Moreover, the context evolves dynamically according to the focus,

which enables a context-aware system to separate relevant from not

relevant knowledge in order to determine the context.

Context-awareness is considered as an important functionality in pervasive

computing. For example, a context-aware mobile phone could be switched

into silent mode once the user enters a conference room. Furthermore, as

stressed by the ubiquitous vision, distributed systems need not only adapt to

the change in the available resources, but also to the users’ preferences and

profiles over time and the physical environment. This ability is generally

referred to as context-awareness. Thus, context-awareness is the ability for

a software system to acquire, manage, interpret, and respond to context to

provide appropriate services to the changing situation [27]. Context-

awareness could also be defined as the “capability of a context-aware

system or middleware to provide anytime access to heterogeneous,

distributed, and unanticipated context information in global scale and for

distinct scenarios” [28].

Obviously, context-awareness is central to ubiquitous computing that aims at

delivering applications to end-users in an opportunistic way, with the best

quality possible. We can say that a system is context-aware if it uses context

to provide relevant information and/or services to the user, where relevancy

depends on the user’s task at hand.

2.1.3 General Concepts

In context-aware applications, any interaction is based on two elementary

concepts: entity and context information. An entity is any object that can be

19

represented in the computational environment, such as a user, a physical

object or any computational resource. Context information is an abstract

information that describes the entity’s state and its relations with other

entities [29]. For example, the entity user is characterized by his location and

his relationships with others.

Context information representation is implemented through context types

and their instances. Context type is a computational representation of

context information which specifies its data structure. For example, the

location information provided by a GPS sensor could be represented by a

GPSLocation type which regroups three floating point numbers: latitude,

longitude, and elevation. Context type does not only specify the state of an

entity but also its relations with other entities. For example, the user’s

context information could be represented by a User type which regroups his

location, current activity, role, etc., as well as his relations with other entities.

Different context types could be adopted to represent abstract context

information. For instance, the location information could be represented as a

symbolic location (e.g. Room1, Floor2, BuildingC, etc.), or proximity-based

location (e.g. [30]). Thus, each representation could be modelled by a

particular context type. Different applications are prepared to deal with

different context types. For example, the location context information

provided as geo coordinates can be useful for applications displaying

people’s locations on a map but not useful for other types of applications.

Context instance is the set of values that describes the states and relations

of an entity at a specific point of time and which conform to a certain context

type. For example, an Alice context instance could be described as in the

Figure 2.1.

20

Alice : Person

Latitude = “55.923215”

Longitude = “-3.286835”

IsInvolvedIn = “Reading”

sitsBesides = Bob
Figure 2.1 Example of context instance

Context model determines the set of available context types. It defines

relevant concepts to the application domain which the middleware is

prepared to deal with. For example, the CoBrA [31] middleware models

entities such as Agent, Person, Meeting, and Schedule which supports

implementing smart meeting applications. The expressiveness and

complexity of a context model depends on the modelling approach adopted

in the system, which defines how the concepts and their relationships are

described.

The question now is how can the context information acquired from different

sources (e.g. user, device and environment contexts) be formally

represented, managed and integrated to be used by the application layer for

adaptation. In [27] a set of necessary functional elements that context-aware

systems have to support have been identified:

- Context acquisition which concerns mechanisms to obtain the context

information from different context sources. Reusable context acquisition

requires that the high-level context usage be decoupled from the low-level

context sensing.

- Context modelling which forms the basis for context sharing and

interpretation. Existing approaches to context modelling differ in their power

of expressiveness, in the support they can provide for reasoning about

context information, in the computational performance of the reasoning, and

in the scalability of the context information management [9]. In previous

works, both informal and formal context models have been proposed.

Informal context models do not ease shared understanding about context as

21

they rely on proprietary representation schemes. Among systems with

informal context models is Context Toolkit [32] which represents context in

the form of attribute-value tuples. Today, with the advance of context aware

computing, there is an increasing need for developing formal context models

to facilitate context representation, context sharing and semantic

interoperability of heterogeneous systems [33].

- Context aggregation: Based on a shared context model, context

aggregation merges interrelated information gathered from different sources

and enables further data interpretation. This alleviates context-aware

applications from the overhead caused by querying from distributed context

sources.

 - Context interpretation: The low-level information needs to be interpreted

to derive the high-level context used by applications. Furthermore, a specific

context can be translated into logical situations [34]. For example, we need

to derive high-level location (e.g., which location is the user in? living room,

conference hall, etc.) from related low-level information (e.g., GPS

coordinate, sensors data, etc.). Currently, context interpretation (reasoning)

could be achieved by several approaches such as an ad-hoc manner, rule-

based reasoning (e.g., [35][36]) and machine learning.

- Context query: Context-aware applications need a mechanism –context

query- to access interrelated information spread across distributed context

repositories. Currently there exist several query languages (e.g., SPARQL

language which could be used to query context information represented by

RDF tuples).

The following section focuses on the different approaches for context

modelling. An efficient context modelling technique should exhibit

characteristics like flexibility, extensibility, expressiveness, and reasoning

which are vital to enable context awareness.

22

2.1.4 Classification of Context Modelling Approaches

A context model is needed to define and store context data in a machine

processable form. Developing context-aware applications should be

supported by adequate context modelling and reasoning techniques [9]. A

well designed model is quite important in any context-aware system for the

provision, storage, and retrieval of context data.

Currently there are several means for context modelling; they can be

regrouped in the following categories:

1- Early approaches: Key-value and Mark-up Models

Key-value models use simple key-value pairs to define the list of attributes

and their values describing context information used by context-aware

applications. Schilit et al. [37] used key-value pairs to model the context by

providing the value of context information (e.g. location information) to an

application as an environment variable. These models are easy to manage,

but are not adequate for sophisticated structuring and reasoning purposes.

Mark-up scheme models integrate the model schema and values using

mark-up languages such as XML. The W3C standard for description of

mobile devices, Composite Capabilities/Preference Profile (CC/PP) [38], is

the first context modelling approach to use a Resource Description

Framework (RDF) and to include elementary constraints and relationships

between context types. CC/PP is intended to express both device

capabilities and user preferences. CC/PP can be considered a

representative both of the class of key-value models and of mark-up models,

since it is based on RDF syntax to store key-value pairs under appropriate

tags. Some approaches (e.g. [39][40]) are defined as extensions to the

CC/PP [38] and User Agent Profile (UAProf) [41] standards, which have the

expressiveness reachable by RDF/S and a XML serialization. These kinds of

context modelling approaches usually extend and complete the basic CC/PP

23

and UAProf vocabulary and procedures to try to cover the higher dynamics

and complexity of contextual information compared to static profiles.

The main critic of these approaches is their limited capabilities in: (i)

capturing relationships and dependencies of context information, (ii) allowing

consistency checking, and (iii) supporting reasoning on context and on

higher context abstractions.

2- Graphical models have been derived from generic modelling methods

such as Unified Modelling Language (UML) (e.g. [42]) and Entity

Relationship Diagrams (ERD). The main critic of these approaches is that

they are not well suited to capturing special features of context information

such as: (i) historical information, (ii) uncertain and incomplete information,

and (iii) dependencies between different types of information [43].

A more recent and interesting proposal of a graphical oriented approach to

model contextual interrelationships is the Context Modelling Language

(CML) (used e.g. in [44]). CML is a tool to assist designers with the task of

describing types of information (in terms of fact types), their classifications

(sensed, static, profiled or derived), relevant quality metadata, and

dependencies between different types of information in order to specify the

context requirements of a context-aware application at design time. Later,

the modelling concepts of CML have been reformulated as extensions to

Object-Role Modelling (ORM) [45]. However, CML has two main limitations:

(i) all context types are uniformly represented as atomic facts; thus, it is not

suitable for representing a hierarchical structure of context information, and

(ii) as it is domain and application specific, it does not support interoperability

found, for example, in ontology-based models.

3- Object-oriented models exploit the encapsulation and reusability present

in an object-oriented approach. The details of context processing are

encapsulated at the object level and access to context information is only

through specified interfaces. Representatives of this kind of approaches

24

include cues used in TEA project [46] and the Active Object Model of the

GUIDE project [47]. The main drawback of these approaches is the lack of

supporting reasoning on context information.

4- Logic-based models formulate the context as a set of facts, expressions

and rules. In logic-based context models a context is (generally) defined

using facts (context properties) with expressions and rules to describe and

define relationships and constraints. Contextual information is added,

updated or deleted from a logic-based system in terms of facts or is inferred

using rules that describe and define relationships and constraints in logic-

based systems. A characteristic of logic-based systems is a high-degree of

formalism. An early representative of this kind of approach is the Extended

Situation Theory [48] and the Sensed Context Model proposed in [49].

5- Domain-specific modelling. In the literature, there exist some works on

modelling the context information that can enhance the functionalities of

domain-specific context-aware applications. Two examples could be

identified in this category: (i) the W4 context model [50] that supports the

representation of context as (Who, What, Where, When) Linda-like tuples

and provides an interface to store and query such tuples, and (ii) spatial

modelling approaches that give space and location special handling.

Location is considered one of the most important pieces of context

information: e.g. Schilit et al. [37] define three important aspects of context

as “Where you are, who you are with and what resources are nearby”. Most

spatial context models are fact-based models that organise their context

information by physical location. One of the most representative examples of

these approaches is the global context model called the Augmented World

Model (AWM) [51] provided by the Nexus project. The Nexus project aims

at providing shared context models in an open, federated environment [52].

In this respect, autonomous data servers and sensors offer different local

context models, which are federated into an integrated view over those

25

context models for the applications (the AWM). AWM is an object-oriented

information model for applications that use spatial data or services that are

linked to locations. Most object classes of this model inherit from the class

SpatialObject, which makes the Augmented World model inherently spatial.

Obviously, spatial context models are well suited for context-aware

applications that are mainly location-based e.g. many mobile information

systems. Spatial context models allow reasoning about the location and the

spatial relationships of objects such as the inclusion in some area or range

and the distance to other entities.

In fact, both middleware and context models are strongly interdependent

since the complexity of a context model determines the complexity of context

management by middleware [53]. Therefore, since many context-aware

applications use space as a primary context, it is reasonable to design

context management systems to efficiently support spatial queries, e.g., by

managing spatial indexes.

These domain specific approaches are important to support context-aware

application in particular domains. However, an application- and domain-

agnostic context model, that captures various types of context information

and the dependencies between them, that could be reused and shared by

different applications, is also needed in pervasive environments.

6- Ontology-based models. Currently, with the emerging Semantic Web

concept, a number of open standards for exchanging machine-

understandable information have been established. For example, Web

ontology languages (i.e., DAML+OIL, OWL [54], and its sublanguage OWL-

DL which can be viewed as expressive Description Logics, with an ontology

being equivalent to a Description Logic knowledge base.) provides formal

logic model to support the formal definition and sharing of domain

vocabularies for resources. Therefore, the ontology-based models provide a

uniform way of specifying a model’s core concepts as well as an arbitrary

26

amount of sub-concepts and facts, which facilitates sharing and reuse of

contextual knowledge.

Ontology-based context models exploit the representation and reasoning

power of the description logic of OWL-DL in three points: (i) the

expressiveness of the language is leveraged to represent complex context

information that cannot be represented by simple languages (e.g., CC/PP

[38]); (ii) since ontologies provides a formal specification of the semantics of

context information, it is well suited for sharing and/or integrating context

among different sources and applications; and (iii) the correspondent

available reasoning tools can be used both to (a) detect possible

inconsistencies in the context data, and, (b) to support the reasoning task

i.e. to derive new knowledge based on the defined classes and properties,

and on the individual objects retrieved from sensors and other context

sources.

In order to overcome the limitation of OWL-DL expressiveness, the

possibility of augmenting the expressivity of ontological languages through

an extension with rules has been recently investigated by the Semantic Web

community and thus the SWRL language [55] has been proposed. A further

research issue considers extending existing ontological languages to

support fuzziness and uncertainty while retaining decidability (e.g. [56]).

However, the main problem in adopting ontology-based approaches in a

pervasive environment is not related to their expressiveness but to their

applicability; the reasoning in OWL-DL is computationally expensive which

leads to serious performance issues especially when the ontology is

populated by a large number of individuals (see e.g. [33]).

Strang and Linnhoff-Popien [57] present a survey of context models. The

survey evaluates different context models with respect to specific criteria

including distributed composition, partial validation, quality of information,

incomplete information, and level of formality. The authors conclude that

27

object-oriented and ontology-based models best meet the criteria and that

ontology-based models are the most promising for context modelling with

respect to handling context in a distributed fashion, validating context,

providing quality of context indicators, supporting incompleteness and

ambiguity of context, and providing a formal definition of the domain. This

dissertation focuses on the ontology-based approaches and tries to

overcome some of the main limitations of the existing approaches which

harness ontology for context encapsulation.

2.1.5 Context Information Abstractions

The limitation of low-level context when modelling human interactions and

behaviour may reduce the usefulness of context-aware applications. As

aforementioned, one possible solution to alleviate this problem is the

derivation of higher-level context information from raw sensor values, called

context reasoning and interpretation. This can be achieved by creating a

new model layer that gets the sensor readings as input and generates or

triggers system actions. The most common notion that has been employed

to refer to this high-level context layer is the situation (see for example

[12][48][58][59]). Situations permit defining high-level specification of human

behaviour or other context information which helps to inject meaning into

applications.

Additionally, situations are more stable and easier to define and manage

than basic context information. That is, situations can be specified in

different ways based on context information. For example, a

user_is_busy_now situation can be specified by: (i) the user calendar and

his position, (ii) his current activity and environmental noise and sound, or

(iii) his to do list and time being, etc. In each case, even if the context

information defining the situation changes, the situation itself remains stable

and the therefore, the applications themselves remain stable as the system

actions are associated to this situation. Adaptations in applications are then

28

triggered by a change of the situations (caused by context information

change). This leads us to the situation-awareness concept which refers to

the capability of the entities in pervasive computing environments to be

aware of situation changes and automatically adapt themselves to such

changes to satisfy user requirements, including security and privacy [12].

The question now is how to define and represent situations. As situations

are human perceptions of low-level context information, human knowledge

and interpretation of the world should obviously be embedded when defining

situations. Thus, we have two options: (i) either the human manually defines

the different situations based on their knowledge, or (ii) by using machine

learning the situations are automatically recognized and learned (e.g.

[60][16]). In the latter learning-based approaches, the recognition rate

depends on the number and kind of observations provided for recognition

and situations to be recognized. For example it is 88.8% in McCowan et al.’s

work [60] on recognizing the group actions in meetings based on the

interactions of the individual participants, and 94.3% in [16] which learns

situation models by supervised learning algorithm using feedback from

users.

However, these approaches require a training phase during which an

important number of situation examples (which may require significant

period of time) are collected and analyzed and which require human

intervention (e.g. for situation labelling). For example, if an application needs

to recognize a pick-pocket situation in a shopping mall, we would need at

least one or more pick-pocket scenarios which may only take place once a

month.

Most of the existing approaches refer to Dey’s definition of situation:

“description of the states of relevant entities”. Thus, a situation is a temporal

state within the context. The approaches in this category usually use formal

logics to represent these states (e.g., [33][48][58][10]). For example, in [33],

29

logic reasoning has been used to reason over low-level, explicit context to

derive high-level, implicit context i.e. situation. Thus, these approaches

provide high-level of abstraction and formality for specifying situations.

However, as the context information is incomplete and ambiguous in

pervasive environments, these approaches may not be well suited to

recognize situations. To cope with this, some approaches (e.g. [61]) try to

combine first order probabilistic logic (FOPL) and web ontology language

(OWL) ontologies, to provide a common understanding of contextual

information to facilitate context modelling and reasoning about imperfect and

ambiguous contextual information.

Recognizing situations in the context information could be computationally

expensive. Thus, to reduce the search space for potential situations, some

approaches (e.g. [62][63]) focus on defining the relationships between

situations (e.g. represented by Allen's temporal logic [64]). This way, by

knowing the current situation, the search for situations could be limited to

those situations having potential occurrence (e.g. successor of the current

situation). In addition, these approaches model the behaviour within the

environment which can be described by a sequence of situations and their

relationships. These approaches suffers a limitation from the applicability

point of view; i.e. as at least one situation is active at one time, this requires

that all potential situations, their relationships and transitions are included in

the model which is a difficult task and may not be always possible.

2.1.6 Context Management Middleware

In pervasive environments, the context-aware application adaptations are

usually driven by the change in context information. This information can be

originated from different sources (e.g. sensors). For example, in the smart

meeting rooms, the presenter location may be provided by a proximity

sensor to identify if the presenter is inside the room or by using a

microphone connected to voice recognition software to identify certain

30

people inside the room. Moreover, this context information may be used by

different applications. For example, both the presenter location and the

current situation in the meeting room can trigger the presentation transfer

application so that the presentation will be projected to the closest screen. In

addition, this information may be also used by a cameraman system that

automatically records the presentation and selects, based on the current

presenter location and situation, the appropriate camera to record the

presenter, the audience, etc. This requirement of reuse calls for middleware

systems that alleviate developers from developing context-aware

applications from scratch.

Middleware for context-aware systems refers to the components located

between the application layer and the sensors layer in addition to the

communication framework connecting the distributed components together.

Therefore, the main goal of the middleware in context-aware computing is to

decouple the communication between context providers (e.g. sensors), and

the applications interested in this information.

In addition, development of ubiquitous application is a complex and error-

prone task because they must cope with heterogeneous infrastructures and

with system dynamics in an open network. The role of the middleware is

therefore essential to support mobility and adaptation of applications to the

current context [65]. Thanks to the abstraction provided by the middleware, it

is able to hide the heterogeneity of the networking environment, support

advanced coordination models among distributed entities and make the

distribution of computation as transparent as possible [66].

Typically these middleware systems adopt an asynchronous communication

mechanism such as publish/subscribe [67] or tuple-space [68], as a basis of

interaction between context providers and applications. This mechanism

allows applications to specify the context information they need (i.e. their

31

interests) and to asynchronously receive notification events that match these

interests.

The context manager (CM) is an architectural middleware component

responsible for storing context information, managing applications

subscription to context changes, and handling the registered applications’

queries. It is an independent infrastructure that enables interaction between

context provider and consumer. CM is also responsible for managing the

context model and validating the consistency of the context instances

according to the model. Of course, the underlying context modelling

approach plays an important role in defining the complexity of implementing

the CM and its performance. For example, ontology-based models require

constant execution of inference rules which usually degrade the CM

performance.

The context information is naturally distributed in different spatial domains in

the pervasive environment. In [29], the pervasive environment is organized

hierarchically by dividing it into context domains and sub-domains. A context

domain is defined as an abstraction of a spatial area which has a clear

boundary and it is built on top of the traditional notion of network domain.

The context domain establishes the CM scope. A CM should allow the

automatic discovery, retrieval and exchange of the context information

distributed in different domains.

Although users and applications are more interested in context information

available in their local domain, other context information from other domains

may also be relevant to the current task at hand. Thus, a collaborative

context management across domains is needed.

32

2.2 Current State of Service Adaptation

2.2.1 Introduction

This thesis focuses on context-aware applications developed using the

Service Oriented Architecture (SOA) guidelines. SOA is a promising way to

address the problems of the integration of heterogeneous applications in a

distributed environment [69]. In a SOA environment, every service provider

has to declaratively define the functional and non-functional requirements

and capabilities of their services in an agreed machine-readable format. In

its basic form, SOA model requires that service provider publish its services’

descriptions in a public registry; service requestors discover services by

querying this registry; the service requestors then select and bind to the

selected services dynamically.

Three components can be identified at each end of interaction between

services: (i) the service implementation or business logic, (ii) the service

metadata describing the requirement and capabilities of the service that can

be used by other parties to understand the service functionality and how to

interact with it, and finally (iii) the SOA middleware which supports the

automatic service discovery, selection and dynamic binding. The decoupling

of implementation achieved by separating and publishing service interface

definition is generalized in SOA environment to include not only the

functional aspect of the service, but also the quality of service and

middleware interoperability aspects [69].

The Web services framework is an instance of an SOA. Web services are a

well-known XML-based application-to-application communication technology

that is built upon standard internet protocols such as SOAP, WSDL, UDDI

and XML. The basic component of Web services is the Simple Object

Access Protocol (SOAP), a XML based communication protocol for

interacting with Web services. The services are described using Web

33

Services Description Language (WDSL). It describes the service location,

the supported operations and the format of messages to be exchanged

between service providers and service requestors. Universal Description

Discovery and Integration (UDDI) allows service providers to advertise their

services in a standard way and for service requestors to query services of

their interest.

From an architecture point of view, SOA may represent an effective

architectural paradigm for the design of pervasive applications [70]. That is,

the loose coupling and interoperability properties may provide a good

support for the realization of flexible applications that can be easily adapted

to different execution contexts.

By introducing a layer of abstraction above the operational systems layer,

Web services eases interoperability between heterogeneous systems

running on different platforms, managed by different providers, and

implemented in different programming languages. The power of Web

services is the ability to combine Web services possibly from different

providers in order to create value-added and feature rich integrated services.

For example, a hotel service, an airline booking service and a credit card

service can be composed into a travel booking service.

Web service has to cope with the highly dynamic pervasive environment.

Web services standards are inadequate on rendering Web services

adaptable and aware of the changes in Web service capability or availability

as well as user’s context. This is due to the request-response pattern

imposed by interacting Web services with other peers and users [71]. This

means that the Web service replies to requests without assessing (i) its

execution capabilities and internal execution status, and (ii) surrounding

environment as well as the information describing users and their

preferences prior to binding to any composition. In other words, Web service

should be context-aware [24]. In this respect, three main overlapped

34

research areas could be identified: context-aware service discovery, context-

aware service composition, and context-aware service adaptation.

2.2.2 Context-aware Service Discovery

To operate in dynamic and potentially unknown environments a mobile client

must first discover the local services that match its needs, and then interact

with these services to obtain the required application functionality. It has

been shown that incorporating context and situation awareness in service

discovery can greatly improve the precision and recall of the discovery

results [72], where recall is defined as number of relevant services retrieved

in service discovery divided by the total number of relevant services

available; and precision is defined as the number of relevant services

retrieved in service discovery divide by the total number of services

discovered.

Service discovery approaches basing on the comparison made at the

syntactical level (i.e., compare inputs, outputs, pre-conditions and post-

conditions to match the appropriate component services) may raise

semantic incompatibility. As the user of a service, being the user a human or

an application, is interested in a given functionality provided by this service

and not on how this functionality is implemented, an abstraction of services

is needed (e.g. [73]).

2.2.3 Context-aware Service Composition

Service composition refers to the technique of creating composite services

with the help of smaller, simpler and easily executable services or

components [74]. Web services from different sources and locations can be

identified, selected and composed to achieve a certain task. Composing

services rather than accessing a single service offers greater benefits to

users. Thus, composition addresses the situation of a client request that

35

cannot be satisfied by any available service, and combining a set of services

into a composite service might be used for fulfilling the request [75].

A composite service (also known as a process) is always associated with a

specification which describes the list of component Web services that

participate in the composition, their execution chronology and types of

dependencies between them. Examples of Web composition languages are

Business Process Execution Language (BPEL), and Web Services Flow

Language (WSFL). The main objective of these languages is to provide

high-level description of the composition process. Currently, WS-BPEL is

considered the de-facto industry standard for orchestrating Web services. It

is used to model the behaviour of processes with XML-based script.

Research in service composition has followed two directions: one direction

defines languages to formally describe services and composite services in

terms of e.g. service input/output, service constraints and invocation

mechanisms. This research also includes developing engines that utilize

these languages to generate workflow specifications that compose different

services. The other direction concerns development architectures that

enable service composition. Based on a declarative description of services,

these architectures perform the task of discovering, integration and

execution of the relevant services.

2.2.4 Context-aware Service Adaptation

A software application is adaptable if it can change its behaviour dynamically

(at run time) in response to transient changes in its execution environment or

to permanent changes in its requirements [76]. To this end, the service

needs to be informed about the networking environment in which it operates

so that it can change its behaviour in order to provide the intended service

despite the change in the environment.

36

Adaptation motivation: Context-aware adaptation was introduced in

response to the highly-dynamic pervasive environment. This dynamism is

cause by different factors: (i) in pervasive environments, the services and

their parameters are subject of unpredictable changes: services may

disappear; their behaviour, signature, or their quality-of-service

characteristics may change over time. Consequently, as the composite

service relies on services, faults and errors in the service execution maybe

triggered. In this case, the service should recover from a faulty situation and

return to normal operation (self-healing systems [77]). (ii) Different service

consumers have different preferences, constraints, and QoS requirements.

Therefore, the service should be able to dynamically adapt to these

variations. (iii) The service should be able to adapt to the change in

operating context. This includes for example the device context (e.g.

memory available and physical dimensions), and the environment context

(e.g. time, location, wireless signal loss, etc.). (iv) Service should be able to

accommodate not only instance-level changes (for each consumer), but also

the permanent behaviour change (evolution) of the service itself. This need

could be motivated by, for example, the change of the business rules.

Adaptation Levels: Typically, the adaptation in the service (process) takes

place in three levels: abstract level, service definition level, and instance

level [78]. In some approaches the service model contains the service tasks

in an abstract form. The adaptation in this level requires transforming the

abstract service into a concrete one by determining the actual

implementations of these tasks based on the available context before or

during the service execution. The adaptation in the service definition level

addresses the change in the business events or rules. It involves the

modification of the service definition which should be propagated to the

corresponding instances. The last level, instance level, takes place in the

level of the instance of a concrete service definition and may include re-

configuration or re-binding of the involved services according to the changes

37

in QoS requirements. This thesis focuses on the adaptation in the service

definition level.

In order for the developer (adaptation designer) to specify the required

adaptation, usually two issues should be considered: (i) the moment the

adaptation should take place (adaptation point) and (ii) how the adaptation

should be performed (adaptation mechanisms). The adaptation point could

be associated, for example, to a certain event such as reception of a

message or time out. Such a point could also be associated to a certain

application or environment state (context). In this case, it is defined as a

complex condition regrouping relevant parameters. Finally, it could be

associated to a specific control point in the business process model (e.g.

executing a certain activity in BPEL). The next section describes the different

adaptation mechanisms.

2.2.5 Adaptation Mechanisms

The existing adaptation approaches use different adaptation mechanisms

which can be classified in three groups: goal-based, action-based, and

variability-based [79].

Goal-based approaches

These approaches (e.g. [80]) define the goals to be reached by the system

and the adaptation activities in a high-level form, leaving the system or the

middleware to determine the concrete services at runtime to achieve the

required goals based on some utility function. These approaches provide a

degree of flexibility to define the adaptation actions. However, discovering

options at runtime and making decisions depend on the expressiveness and

completeness of service descriptions, and on the accuracy of the used

decision making algorithm.

Action-based approaches

38

These approaches (e.g. [81]) rely on defining situation-action rules and

therefore specify exactly what to do in every situation. Although it is easy

and intuitive from the developer point of view, it may lead to a huge number

of rules which may require analysis tools to identify the possible conflicting

between these rules.

Variability-based approaches

These approaches (e.g. [20]) first identify the variation points in the service

and its associated alternatives (variants) that specify different

implementations or behaviours. Second, they specify variants selection

mechanisms (based on ranking rules, preferences, etc.). These approaches

enjoy the inherent power of a software product line in dealing with variability,

automation and consistency.

Service modelling should be flexible enough to deal with constant changes –

both at the business level (e.g. evolving business rules) and the technical

level (e.g. platform upgrades). The flexibility could be provided or addressed

by incorporating variabilities into a system [20]. The service adaptation is

usually addressed (on the service instance or definition level) by explicitly

specifying some form of variation points. To date, a variety of different

adaptation approaches have been proposed for capturing variabilities (e.g.

[20][82]). Common to all these approaches is that to differentiate between

service family members they capture the service variant as a structure

containing variation points. By making appropriate choices to resolve the

variation points, either at design time or at runtime, a single service variant

could be constructed. The proposed approach in this thesis can be classified

in this variability-based group.

39

2.3 Current State of Enabling Technologies
2.3.1 Model Driven Architecture

Model Driven Development (MDD) is a software development approach that

is based on the use of software modelling as a primary form of expression

[42]. Software models are constructed, and then code is written by hand in a

separate step. Alternatively, complete software models are built including

executable actions. Code can be automatically generated from the models,

ranging from system skeletons to complete, deployable products. MDD has

become very popular today especially after the introduction of the Unified

Modelling Language (UML). Later, with the increased focus on architecture

and automation MDD technologies have evolved to provide higher levels of

abstraction in software development which promotes models with a greater

focus on problem space. Therefore, the Object Management Group (OMG)

has developed a set of standards called Model Driven Architecture (MDA),

building a foundation for this advanced architecture-focused approach.

The Model Driven Architecture (MDA) emphasizes the use of models

throughout the application development lifecycle [83]. It aims to provide a

system for complete cycle of analysis, design, and implementation of

applications. All MDA development projects start with a Platform

Independent Model (PIM), which is expressed in UML. The base PIM is then

(semi)automatically transformed to a Platform Specific Model (PSM) using

some transformation tool and possibly with some additional information that

guides the transformation process [84]. This transformation allows for higher

run-time performance through automated optimizations not feasible with

handwritten code.

Due to the platform independence MDA can be used with CORBA, COM,

Java, C#/.NET, XML/SOAP and any future middleware software [85]. UML

allows an application model to be constructed, viewed, developed, and

manipulated in a standard way at analysis and design time. Just as

40

blueprints represent the design for an office building, UML models represent

the design for an application, allowing business functionality and behaviour

to be represented clearly by business experts at the first stage of

development. This allows the design to be evaluated when changes are

easiest and least expensive to make, before it is coded.

In pervasive environment, for example, there exist different types of

embedded devices with varying capabilities and requirements. Developing

applications for these devices is a difficult task to the programmer as it

involves low-level embedded knowledge together with domain expertise.

MDA allows a PIM (which captures the high-level design) and multiple PSMs

(which capture implementation and platform-specific details of each device)

to be defined.

2.3.2 Process Mining

Process mining techniques use log data to analyze observed processes and

have been successfully applied to real-life logs from, e.g., hospitals, banks,

etc. [86]. The basic idea of process mining is to discover, monitor and

improve real processes (i.e., not assumed processes) by extracting

knowledge from event logs. The activities occurring in processes are either

supported or monitored by information systems. However, process mining is

not limited to information systems and can also be used to monitor other

processes [87]. The common denominator in the various applications of

process mining is that there is a notion of a process and that the

occurrences of activities are recorded in so-called event logs [88]. Process

models are structures that model behaviour. Although the idea of process

mining is related to some work discussed in the machine learning domain,

the targeted process models reside at the net level (e.g., Petri nets) rather

than sequential or lower level representations (e.g., Markov chains, finite

state machines) [89]. Therefore, process mining needs to deal with various

forms of concurrency. Moreover, as will be seen later the process could be

41

analyzed not only from the control flow perspective but from different

perspectives.

In the area of process mining, there are different algorithmic approaches,

which derive the control-flow and other models (e.g. the organization and the

information models) from the data logs [90]. These algorithms are integrated

as plug-ins in the ProM tool [91]. This thesis focuses on control flow mining

algorithms to understand the user behaviour and recognize her contextual

situation as will be seen in Chapter 6.

2.3.3 Software Product Line

The commonality and variability management techniques from Software

Product Line (SPL) are appealing because as will be seen in Chapter 4 it

can be applied to handle context variabilities. According to [92] a SPL is “a

set of features that satisfy specific needs of a particular market or mission,

and that are developed from a common set of core assets in a prescribed

way”. Thus, SPL is an effective approach to software development that

promotes “reuse” to a first-class entity aiming at reducing overall

development time and cost while improving product quality.

A product line architecture represents an architectural structure for a set of

related products by defining core elements that are present in all product

architectures, and variation points where differences might occur among

specific product architectures. Each variation point is guarded with a

Boolean expression. Given a set of desired properties or bindings, a

particular product architecture can be selected out of a product line

architecture by resolving the Boolean guards of each variation point.

Treating software as a product line is a new approach to support software

variability from design-time to invocation-time to run-time [93].

The feature model proposed in [94] has generated a lot of interest in the SPL

community. By modelling a product hierarchy of features with their

42

similarities, differences and relationships, feature model plays an important

role in SPLs. It provides means to represent the commonalities and

variabilities within a family of systems which allows individual family

members to be safely configured. Commonly there are five types of relations

possible in a feature model [13] (see Table 2.1). Additional constraints

between features may exist that describe how features interact with each

other e.g. requires and excludes constraints. These relationships and

constraints have been used to model the dependencies between context

features as will be seen in Chapter 4.

Table 2.1 Feature type relations

And: if F1 is selected, subfeatures (F2,F3) must be part of

any product of the product line
Alternative: if F1 is selected, only one subfeature (F2 or

F3) can be selected in any product in the product line.
Or: if F1 is selected, one or more subfeatures can be

selected as part of any product in the product line.
Mandatory: if F1 is selected, the subfeature is required as

part of any product in the product line.
Optional: if F1 is selected, the subfeature may or may not

be part of a product in the product line.

2.3.4 Jabber Overview

The collaboration between different context servers distributed in different

domains requires generic APIs and an appropriate communication protocol

allowing context information exchange between different entities: context

servers, context providers, and context consumers. Relying on a standard

protocol is obviously a preferred choice. Jabber is an extensible instant

messaging (IM) system. More precisely, Jabber is a set of streaming XML

protocols and technologies that enable any two entities on the Internet to

exchange messages, presence, and any other structured information in

near real-time.

43

The Internet Engineering Task Force (IETF) has standardized the core

Jabber protocol as the XMPP protocol [95]. The architecture of the Jabber

system is distributed. A Jabber server has a number of registered clients.

Clients on the same server interact through that server; clients on different

servers interact through server-to-server communication. Jabber enables

message transfer not only between people, as in traditional Instant

Messaging (IM) systems, but also between any two entities. An entity can be

a person, a device, or a software service. Each entity has a unique Jabber

ID (JID). A JID is similar to an e-mail address. For example, a JID for Alice is

Alice@merchiston.napier.ac.uk.

Furthermore, Jabber enriches the communication support beyond chat to

many other interaction semantics thanks to the XMPP extensions. The

Jabber Software Foundation develops extensions to XMPP through a

standards process centred on XMPP Extension Protocols (XEPs) [96].

Examples of these extensions are the Jabber RPC [XEP-0009], ad-hoc

commands [XEP-0050], streaming audio and video [XEP-0166], and so on.

In addition, Jabber has an interesting pubsub facility [XEP-0060], in which

both publishers and subscribers are Jabber entities. A publisher publishes a

message item to a topic, and then all the topic subscribers will be notified

about the newly published item. In this communication mechanism, since the

publisher does not know who will receive the message, and a subscriber

does not know who sent it, the time-coupling and reference-decoupling

between publishers and subscribers are assured. This pubsub mechanism is

ideal for implementing ubique middleware as will be seen, where context

providers and consumers can be associated and disassociated dynamically.

2.4 Conclusions

Based on the literature review, the following conclusions have been reached:

44

1- Ontologies are a very promising instrument for modelling contextual

information due to their high and formal expressiveness and the possibilities

for applying ontology reasoning techniques. Thus, this thesis focuses on

context management employing ontologies as the underlying technology.

2- In a pervasive environment, the context manger is expected to administer

a large volume of context information represented by RDF triples in the

context repository. Applying the reasoning capability to infer new context

knowledge may have a severe impact on the overall performance of the

system. That is, for any new event or context information added to the

repository there is a chance of deducing new context knowledge by applying

ontology and rule-based reasoning. Therefore, applying ontology-based

modelling is still inefficient due to performance limitations. Thus, there is a

need to improve the reasoning performance and reduce the response time

which is a vital issue in a pervasive environment.

3- The SPL is a promising technology to model context variability as will be

seen in Chapter 4. Therefore, in order for the middleware to serve different

types of applications, SPL could be leveraged to provide context-specific

programming abstraction or constructs that model the context variability.

4- In pervasive environments, context management systems are expecting

to administer contextual information which is naturally originated from

different domains (areas). Each domain may maintain its own sensors and

mechanisms for inferring context. Thus, a cross-domain context

management and collaboration framework is needed. In particular, the

design of distributed storage, retrieval, and dissemination mechanisms of

context information is vital.

5- The communication benefits of Jabber technology can be leveraged to

design robust and scalable middleware architecture for distributed context

managements and cross-domain context information dissemination. The

45

nature of this technology makes it a potentially suitable ingredient of ubique,

the proposed middleware architecture to distributed context management.

6- Contextual situations (high-level context information derived from low-

level sensor readings) are more stable and easier to define and manage

than basic context information. Thus, situation awareness is needed to allow

the entities in pervasive computing environments to be aware of situation

changes and automatically adapt themselves to such changes to satisfy user

requirements.

7- Because context information is naturally distributed in different domains

(areas), recognizing user’s situations among the flow of context information

may require considering not only the context information history but also the

states the user experienced in these domains.

8- Context-awareness and adaptability are important and desirable

properties of services to provide users with personalized offering. In addition,

service modelling must be flexible enough to deal with constant changes. It

is promising to provide or address this flexibility by incorporating variabilities

in a logical way so that the developer can view the service variant as a set of

features that determine the difference between service variants in each

usage context.

9- As the service engineering process passes through the stages of analysis

and design prior to the actual code development, the context and adaptation

should be considered also in these stages. In this respect, it is promising to

develop a new method to automatically derive the service variant based on

the current context by leveraging model driven development and generative

programming techniques.

46

Chapter 3 Related Work
3.1 Context Modelling
3.1.1 Requirements of Context Modelling

A number of ontologies have been developed specifically for use in

pervasive computing such as CoBrA [31], Gaia [97], CoOL [98], CONON

[33], GAS [99], and CoDAMoS [100]. In the literature, there exist different

surveys on context modelling approaches (e.g., [37][101][9][102][103]); each

of them evaluates the different context models with respect to different

criteria. For example, the authors of [102] compare and evaluate the above

mentioned most popular ontologies against the system challenges generally

recognized within the pervasive computing community and with respect to

ontology-modelling best practices.

However, the investigation that forms the basis of this dissertation addresses

issues related to providing context designers and developers with

methodologies and tools for developing context-aware services which

facilitates their task. For this aim, the evaluation of ontology-based

approaches to model context is addressed from the perspective of their

efficacy in meeting the requirements of a straightforward way of developing

context-aware applications and efficient applicability of ontologies to context

modelling. To this end, this dissertation adds to the general criteria

mentioned in [57][101][9][104] different criteria derived from the literature

and from the author’s own experience in developing such applications.

The following shows the requirements (R1-R5) for context modelling

technique that can be used to evaluate the ontology-based context

techniques in Section 3.1.3. It may not be possible for a modelling technique

to fulfil all requirements. Moreover, there is no clear indication which

requirement has priority.

47

R1- Efficient applicability of context reasoning: As aforementioned, in a

pervasive environment, the context manager is expected to manage a large

volume of context information represented by RDF triples in the context

repository. Thus applying the reasoning capability to infer new context

knowledge may have a severe impact on the overall performance of the

system. Therefore, techniques for pre-selection of context information

relevant to an application, which could speed up the reasoning process by

reducing the size of the knowledge base, are needed.

R2- Ease of context querying: applications use context queries to retrieve

the set of context information that adheres to some conditions. Some context

queries are difficult to be defined using general-purpose querying

mechanisms (e.g., SPARQL). In addition, the application developer may not

have enough knowledge about the context semantics, in order to describe

queries correctly.

R3- Providing different levels of abstractions: The context model should

provide context information in arbitrary levels of abstraction. It should hide

irrelevant context details and offer a high-level interpretation of lower-level

context details. The level of details should be specified by the application.

R4- Efficient context provisioning: in the presence of large models and

numerous data objects, efficient access to context information becomes a

requirement [9]. In order for the applications to access the relevant context

information suitable access paths have to be represented in the context

modelling. These access paths define the primary dimensions which will be

used to access the secondary context. For example, primary context

attributes could be the object identity, its location or activity, etc. The context

modelling technique should provide mechanisms that allow different

applications to express their access paths according to their needs. Further,

to effectively provide different applications with relevant context information it

may be necessary to find a mechanism to decrease the number of network

48

interactions between an application and the context provider which may

improve the overall performance of the system.

R5- Provide constructs to model context variability: in order for the

context management system to serve different types of applications, it

should provide context-specific programming abstractions or constructs that

model the context variability. Therefore, the context modelling technique

should provide application developers with software constructs through

which a view-based customization of the context knowledge could be

expressed.

3.1.2 Context Modelling Approaches
3.1.2.1 Context Model of CoBrA

In CoBrA [31], a broker-centric agent-based architecture for supporting

context-aware computing in intelligent spaces, contextual information is

represented by a set of ontologies called COBRA-ONT that is implemented

in OWL [61]. CoBrA-ONT defines typical concepts and relations for

describing physical locations, time, people, software agents, mobile devices,

and meeting events, which supports smart meeting applications.

Subsequently, a set of more general ontologies, named SOUPA [105]

(Standard Ontology for Ubiquitous and Pervasive Applications), has been

proposed for supporting pervasive computing applications.

SOUPA organizes its ontologies into SOUPA core and extension. The

SOUPA Core ontologies define generic vocabularies (including Person,

Agent, Event, Space, Time, Action, and Policy) that are universal for

different pervasive computing applications. By extending the core ontologies,

the SOUPA Extension ontologies define task-dependent vocabularies for

supporting specific types of applications.

SOUPA offers a formal and well-structured way to model context, and thus

provides rich semantics for programming. It also allows policies to be

49

defined to support trust and privacy. This is demonstrated in CoBrA’s

EasyMeeting application [106], in which the ontologies facilitate knowledge

sharing and work with logic inference rules to reason about the context to

infer new context knowledge (e.g., spatial relations, device profiles) that

cannot be easily acquired from the physical sensors. Thus, by using these

rules, different levels of context abstractions could be achieved; however,

these rules are specified independently of the applications’ needs. Moreover,

application developers should have enough understanding of the internal

structure and semantics of the context information in order to specify the

required queries. Finally, the rigid reasoning schema does not permit

different reasoning schemas for different applications’ needs, i.e. context

variability is not addressed.

3.1.2.2 Context Model of Gaia

In Gaia [1], an infrastructure for smart spaces, ontologies are introduced to

provide a standard taxonomy of the different kinds of entities (including

applications, services, devices, users, and data sources). Therefore, these

ontologies are beneficial for semantic discovery and interoperability between

entities. Additionally, the Gaia ontologies are used to make Gaia systems

context-aware. They model contextual information including physical,

environmental, personal, social, and system contexts.

The Gaia context model is based on first-order logic and Boolean algebra,

which permits easily written rules to describe context information. An atomic

context predicate is defined as Context(<ContextType>, <Subject>,

<Relater>, <Object>). It is written in DAML+OIL [107]. More complex

contexts can be constructed by performing first-order logic operations such

as quantification, implication, conjunction, disjunction, and context predicate

negation.

Moreover, to present context as directories, Gaia introduced the context file

system to construct a virtual directory hierarchy, based on the types of

50

context associated with particular files, in which path components represent

context types and values. This virtual directory hierarchy forms a simple

query language to determine what types of context are attached to files. For

example, to determine which files have the associated context: location =

Room3 And situation = meeting, we enter /location:/Room3/situation:/

meeting directory. Therefore, develops can easily query the context

repository. In addition, by using the context file system primary dimensions,

which will be used to access the secondary context, can be easily identified

and mapped to file paths. However, reasoning about available context

information from different perspectives is neglected.

3.1.2.3 ASC Context Model

Aspect-Scale-Context (ASC) is a model for describing contexts and their

relationships using ontologies as fundamental [108]. A context is a set of

ContextInformation instances characterizing entities (like a person, place, or

a general object) relevant for a specific task in their relevant aspects. These

instances are defined and interlinked by use of the aspect-scale-context

(ASC) model. An Aspect is a classification whose subsets are a super-set of

all reachable states, grouped in one or more related dimensions called

Scales. A Scale specifies fine-grained representation formats for an aspect,

for example, a distance aspect has multiple scales such as metre, kilometre,

and nautical mile. The ASC model shows how contextual information may be

used to characterize a state of an entity under a specific aspect.

CoOL, the Context Ontology Language [108], is derived from ASC to

facilitate ontology-based contextual interoperability. CoOL is divided into two

subsets: (i) the CoOL Core, which projects ASC model into various common

ontology languages such as OWL and DAML+OIL, and F-Logic [109]; and

(ii) CoOL Integration, which is a collection of schema and protocol

extensions as well as common sub-concepts of ASC. CoOL is used to

enable context interoperability and context-awareness during service

51

discovery and execution. By using rules and an inference engine, the

context provider is able to derive new knowledge from CoOL-based

knowledge, and to validate ontology consistency. In fact, using the aspect

concept facilitates the definition of the context access paths to effectively

provide context information.

However, because the inference is done on monolithic CoOL-based

knowledge, the context reasoning may be inefficient. In addition, the CoOL

model partially supports context variability. However, it is not generic enough

to model the aspects hierarchy and their dependency. For example, if we

consider the Publication as an aspect for a Researcher object, we may have

different sub-aspects (e.g. conferences, journals, and book chapters); each

of which has different scales. Thus, a more generic approach to model the

context variability is needed. Finally, CoOL is less practical for expressing

aspects’ scales with regards to more non-material context data, such as user

preference or activity.

3.1.2.4 Context Model of SOCAM

The CONtext ONtology (CONON) is an ontology-based context model, in

which a hierarchical approach is adopted for designing context ontologies

[33]. Contexts are represented as predicates written in OWL. CONON is

used in the Service-Oriented Context-Aware Middleware (SOCAM) [36], an

architecture that enables the building and rapid prototyping of context-aware

services in pervasive computing environments.

Similar to ULCO [110] and COMANTO [111] ontologies, CONON includes a

common upper ontology that captures general concepts about basic context

in pervasive computing (such as person, location, computing entity, and

activity), and also provides the possibility of defining a domain specific

context model (e.g., smart homes) by extending the upper ontology for

adding domain-specific ontology in a hierarchical manner. Domain-specific

ontologies can be dynamically "bounded" or "re-bounded" with the upper

52

ontology when the domain is changed. For example, when a user leaves his

home to drive a car, the home-domain ontology will be automatically

replaced by the vehicle-domain ontology.

To support various kinds of reasoning tasks, multiple logic reasoners are

considered: RDFS reasoner, OWL reasoner and a general rule-based

reasoner. Therefore, different levels of abstractions could be achieved but

these levels are not specified by the applications. A context-aware home

scenario is implemented in the prototype system to demonstrate the use of

CONON [112].

By tailoring the upper context ontology and domain-specific ontologies in the

context model, context reasoner has a reasonable performance over small-

scale context knowledge in pervasive environments [36]. However, CONON

does not provide constructs to model context variability to support different

applications with different reasoning schema needs.

3.1.2.5 Context Model of ACAI

In [113] the authors have designed context ontology adequate for supporting

their ACAI architecture (Agent-based Context Aware Infrastructure). They

argue that instead of modelling context according to its functional intentions,

context should be modelled according to the tasks the application layer

performs. Therefore, they decided to model context in several levels of

expressiveness, where the highest level is an abstraction of all concepts of

context. When going down through the levels, context is expressed in more

detail and refined more concretely. The highest level of abstraction is the

ContextView which represents the different types of context that belong to a

given entity. Thus ContextView represents the primary dimension which will

be used to access the secondary context. ContextView has two properties

contains, and invokes. The classes ContextFeatures and

ContextEngagements are the respective ranges of those properties. These

53

classes are considered to be the second level of expressiveness in the

ontology.

In order to be able to reason about the available context information, Khedr

et al. developed a relational and dependency ontology model and

implemented an inference engine in order to derive logical, social and

composable context. The dependency ontology has a wide range of

predicates that correspond to the different ContextFeatures represented.

The ontology consists of five rule-type categories: ActionDependency,

ActorDependency, LocationDependency, ServiceDependency, and

RoleDependency. Therefore, this separation of predicates permits efficient

application of the context reasoning by considering only the dependencies

needed by an application. However, ACAI ontology is rather elementary with

regards to the context features and types defined. In addition, a more

generic solution is still needed which does not impose any restriction either

on the number of these dependencies or on the number of context features.

3.1.2.6 The MUSIC context modelling

The MUSIC context model is a result of a research project called Self-

Adapting Applications for Mobile Users in Ubiquitous Computing

Environments (MUSIC) [114]. The goal of MUSIC is to develop an open-

source computing infrastructure and an associated software development

methodology that facilitate the development of self-adapting, context-aware

applications in pervasive environments. The proposed context model follows

an ontology-based approach and has three layers of abstraction, i.e.

conceptual layer, exchange layer, and functional layer [115]. These three

layers facilitate the analysis and design of context-aware applications as part

of a comprehensive, model-driven software engineering process.

The MUSIC context model is inspired by and complements the ASC model

with MDD support. The conceptual layer aims to be leveraged by the

developers and to be exploited in the MDD approach. In this layer, the

54

ontology is described in OWL and the context meta-model is specified in

UML. At the exchange layer, an instance of the conceptual model is

represented in e.g. XML. The functional layer also defines a set of data

structures for storing the context information.

Context querying is facilitated by providing the developer with a Context

Query Language (CQL) [116]. In addition, similar to SOCAM, MUSIC

provides an ontology that is divided into two corresponding hierarchies:

concepts and representations. This division allows the use of only the light-

weight concepts hierarchy for context reasoning while omitting large parts of

the ontology that only contain the representations; thus rendering relatively

efficient context reasoning. However, this model does not provide the

developer with any programming constructs used to express the level of

abstraction required for an application. Moreover, the context variability is

not supported in this model.

3.1.3 Evaluation of the Context Modelling Approaches

In Table 3.1, the surveyed approaches to model the context information are

listed. All these approaches are evaluated on how well each approach fulfils

the context modelling requirements specified in Section 3.1.1. None of these

approaches appears to cover adequately the space of concerns defined by

these requirements.

Table 3.1 Requirements for context modelling techniques

R1- Efficient applicability of context reasoning

R2- Ease of context querying

Context Model R1 R2 R3 R4 R5

Context Model of CoBrA - ~ - + -

Context Model of Gaia - + - ++ -

ASC Context Model - ~ - + ~

Context Model of SOCAM + ~ - + -

Context Model of ACAI + ~ + ++ -

MUSIC Context Model + + - + -

+ fulfilled. - not fulfilled. ~ partially fulfilled

55

R3- Providing different levels of abstractions

R4- Efficient context provisioning

R5- Provide constructs to model context variability

As shown from the comparison, existing context modelling approaches

address a sub-set of these challenges only, or cover some of them only to a

limited extent. Moreover, most of them view context modelling either from a

purely conceptual or a purely functional perspective. However, when

engineering context-aware systems two main aspects should be addressed

at the same time: defining the semantics and relations between context

elements at a conceptual view, and providing context constructs that can

serve different applications. Thus, this thesis presents an attempt to facilitate

the developer task in dealing with these aspects.

3.2 Context Management Architectures
3.2.1 Driving Requirements

Hereafter, we refer to the computational entity responsible for transparently

binding the context consumers (CCs) (i.e. applications) with corresponding

context providers (CPs) a context server (CS). The context management in

each domain is done by the CS available in that domain. The complexity of

developing context-aware applications that require context information

available in different CSs makes the use of a context management

middleware crucial. This middleware should address many of the

requirements of traditional distributed systems, such as heterogeneity,

mobility, and scalability. In addition, it should fulfil other key requirements

such as:

Domains of context perception: Since the context information is naturally

distributed, the context management must be distributed in order to allow

efficient and scalable dissemination of context. However, the task of context-

aware developers becomes more difficult as it requires a priori knowledge of

the computational entities responsible for providing the context information

56

they are interested in. Their task becomes even more complex when context

providers dynamically enter and leave the pervasive environment. Thus,

there is a need for a dynamic discovery mechanism of context providers.

Furthermore, the middleware scalability could be increased by restricting the

access and perception of the context to some domains [29]. This

requirement conforms to the principle of system boundary [117] of pervasive

applications.

Uniform API interface and protocol: In order to enable every party to

become a context provider and implement its own CS, every CS should: (i)

obey a certain protocol with which context information can be disseminated

between different CSs; and (ii) implement a standard API which allows

context providers to register and publish context information in it, and

context consumers to acquire context information they are interested in. This

way, for instance, an organization can operate a CS for its members, and an

individual can run a CS as a context provider for a single user or family

members. Therefore, similar to the Next Generation Service Interfaces

(NGSI) [118], providing a standard API for accessing such information,

allows third party application developers to build new services based on the

context made available to them.

Efficient context information dissemination: With regard to situations

involving mobile users roaming across domains, additional restrictions may

arise (e.g. concerning limited connectivity and bandwidth, unknown network

conditions, etc.), thus exchanging context information between domains

should be fast and only the required information should be transferred when

users roam across domains. This requirement calls for a dissemination

protocol between CSs. Furthermore, the middleware should support the

“publish on demand” mode of operation. That is, if a context provider

publishes at a higher rate the context information is more accurate in terms

of freshness. However, this is a costly operation in terms of the network

57

bandwidth usage, processing power, and energy consumption (e.g. battery

usage of WiFi scanners). Thus, the middleware should enable providers to

publish when there is a corresponding consumer and according to the

publishing rate needed by the consumer.

Cross-domain reasoning: As the context information is originated from

different domains, the context management system should support

reasoning about context information spanning multiple domains. That is, in

order to track user’s behaviour there is a need to consider the context

information available in the different domains the user visits [119]. Hence,

understanding the user’s current situation may require considering the

different states the user experienced in these domains. For example, to

identify if the current day was busy for the user there is a need to consider

the different activities and states the user has experienced in work,

shopping, on the road, etc.

Dynamic matching between context providers and consumers: Typically

developers define context interests (queries) which should be transparently

kept across distributed CSs. The middleware should allow the context

consumers (applications) to register their interests in context information;

and the context providers to register their capabilities. Then, for any change

in either the context consumers or providers, a matching function should be

triggered so that applications asynchronously receive notifications of context

information that match their interests. In addition, the application should be

able to specify its context interests on the basis of context types and meta-

attributes such as precision and accuracy and to indicate additional

restrictions based on properties of the provider or the context publication. In

this case, the middleware has to choose the most adequate context

providers among the available dynamic set of providers.

Support for privacy: The flow of context information between different

distributed domains obviously raises user privacy issue. A context-aware

58

echo-system should protect user’s information and guarantee privacy across

domains.

3.2.2 Existing Context Management Architectures

Classical work in context-aware computing has developed centralized and

application-specific solutions such as Context Toolkit [32] which provides a

set of abstractions that can be used to implement reusable software

components for context sensing and interpretation. The context information

is directly acquired from a sensor by means of the context widget

component. Widgets can be combined with interpreters, which transform

low-level information into higher-level information that is more useful to

applications, and aggregators, which group related context information

together in a single component. Finally, context-aware applications can

invoke actions using actuators, and locate suitable widgets, interpreters, and

aggregators using discoverers. Another interesting study is Gaia [1] which

adopts the concept of active spaces. Active spaces are physical spaces

where devices in a heterogeneous network, such as PDAs and printers, can

discover each other, auto-configure and dynamically start a context-aware

interaction. It provides a framework to develop user-centric, resource-aware,

multi-device, context-sensitive and mobile applications. However, these

approaches offer solutions for restricted and small-size smart space

environments, with localized scalability.

More recent middleware offer access to context information in distributed

repositories. For example, the Context Fabric (Confab) [4] provides

architecture for privacy-sensitive systems, as well as a set of privacy

mechanisms that can be used by application developers. It maintains

context information in distributed tuple-spaces called infospaces. Each

infospace is a repository responsible for storing one or more context types.

An application interested in a certain context, builds a context query using

the address of the responsible infospace. In order to handle queries over

59

distributed infospaces, Confab offers a query processing service, which

distributes queries over distributed infospaces and composes the query

results. Privacy is supported by adding operators to an infospace to carry out

actions when tuples enter or leave the space. However, Confab does not

adequately address the other middleware requirements such as mobility or

context information dissemination across domains.

The scalability issue is considered in PACE [120], which is another

distributed middleware focusing on offering a context model called CML

(Context Modelling Language) and advanced context-based programming

abstractions for distributed context-aware applications. PACE is organized in

layers that provide, in addition to context management, an interface to

execute distributed context queries, and an adaptation layer, which

maintains a reusable repository of adaptation abstractions. Applications use

a catalogue and meta-attributes to discover which repository satisfies their

context requirements. However, this discovery mechanism does not allow

the developers to identify the context repositories (CSs) existing in the

domains visited by the roaming users and holding their context information.

CAMUS [5] is another distributed middleware where context-aware system

federation is composed by environments based on CAMUS services, which

disseminate context information as tuples. Each service of an environment

must be registered in a Jini discovery service. A CAMUS context domain is

an environment that supports a minimum set of CAMUS services. The set of

Jini services responsible for each CAMUS domain composes a federation. In

order to access context information or to use a service of a specific domain,

a client must query the Jini federation, using parameters such as the name

and localization of the domain. CAMUS, however, does not address cross-

domain context dissemination and how to ensure user’s privacy.

Another interesting approach to allowing distributed context management

based on federating context-aware services is Nexus [3]. Nexus supports

60

heterogeneity among context management systems’ context models, i.e.

each context management system can adopt a particular context model and

must implement an abstract interface and register itself at an Area Service

Register. Thus, it focuses on the data management aspect of large-scale

pervasive computing systems. A client may access context information

provided by the federation, by using a query language. However, there is no

concept such as domain or environment: each context server is a repository

of a specific context type [29]. Similar to Nexus, GLOSS [6] composes

heterogeneous context management systems through hierarchical or peer-

to-peer interconnection methods. By introducing the notion of Global Smart

Spaces, GLOSS supports interaction amongst people, artefacts and places

while taking into account both context and movement on a global scale that

facilitates the implementation of location–aware services. It allows users to

pick up small notes left for them in the environment. GLOSS uses the idea of

home nodes used in the proposed approach in this thesis, however, it has

been designed to manage location context only.

Compared to this approach, Chen et al. [7] propose Solar, a data-centric

infrastructure based on Context Fusion Networks (CFNs) to support context-

aware pervasive-computing applications. CFNs are based on an operator

graph model, in which context processing is specified by application

developers in terms of sources, sinks and channels. In this model, sensors

are represented by sources, and applications by sinks. Operators, which are

responsible for data processing, act as both sources and sinks. At runtime,

the implemented peer-to-peer (P2P) infrastructure instantiates the operator

graphs on behalf of context-aware applications. Solar consists of a set of

functionally equivalent hosts named Planets. The components messages will

be delivered to a Planet with the numerically closest ID; therefore, unlike the

proposed approach in this thesis, Solar services focus on the data objects

instead of on where they live i.e. from which domain they originate. In

addition, Solar does not address privacy enforcement.

61

Another hybrid approach to modelling contextual information that

incorporates the advantages of object-oriented and ontology-based

modelling techniques is introduced by Lee and Meier [121]. The objective is

to support a specific large-scale pervasive domain, namely the

transportation domain. Their notion of Primary-Context Model and the

Primary-Context Ontology is used to share context between different

domains. Although their approach is interesting, it does not address other

issues such as mobility and cross-domain context dissemination.

ICE [122] is a scalable context management middleware for Next Generation

Networks. It is based on the concepts of context sessions and context flows.

The idea is to separate signalling data from content exchange, as in IP

Multimedia Subsystem, to establish context sessions for more scalable and

adaptive management of context information. The Context Access

Language (CALA) has been designed to support context queries and

subscriptions. However, ICE focuses heavily on efficient context information

dissemination between context sources and sinks, and ignores in its

designed protocols ensuring entities privacy. In addition, ICE requires that

the context sources’ descriptions and the context sinks’

queries/subscriptions to be registered in a centralized entity - the context

broker. Therefore, as the user roams between domains, this adds complexity

to the developers as they must know in advance which context broker has

the context information they are interested in.

The Context Management Framework (CMF) proposed in the MobiLife

project [123][124] is designed for the discovery of, exchange of, and

reasoning on context information. It is a set of components, which are

connected at run time, that together provide the relevant context information

for the service or application, using sensing and interpretation mechanisms.

The main tasks for the CMF are to enable the discovery of context providers,

to provide a published agreement or interface contract between context

providers and context consumers, and binding context consumers with the

62

matched context providers in order to use their context service functions

through the use of a context broker. Therefore, in CMF there is no concept

such as domain so that the application is able to specify the domain(s) from

which the context information is originated. In addition, the infrastructure

needed for setting and enforcing privacy of user-controlled data available

through context providers is controlled by the Trust Engine. However, this

thesis argues that this setting weakens enforcing the privacy since a

malicious context provider can skip contacting the trust engine to verify if the

context consumer is eligible to access the context information.

Zebedee et al. [125] introduced ACMF, an adaptable context management

system by adopting autonomic computing paradigm. ACMF is implemented

by using the Web services and the Web Services Distributed Management

(WSDM) standards. ACMF views each device in terms of the roles it plays

with respect to context management which includes client, server, and

context proxy. ACMF defines a context model and a set of context exchange

protocols between devices. ACMF models the pervasive computing

environment as a collection of domains where each domain contains a set of

regions and a set of device types. A domain is a logical representation of a

physical space, such as a building or campus, containing regions and

device-types. In this respect, their domain concept is similar to the domain

concept used in the proposed approach in this thesis. However, because the

focus is on exchanging context information between devices available on a

local area (one region) ACMF does not address cross-domain context

dissemination, which is a requirement in a pervasive environment.

Therefore, querying context information available in distributed domains is

not possible in their approach.

From the perspective of globally connecting sensors, the Open Geospatial

Consortium provided the Sensor Web Enablement (SWE) initiative [126] to

build a framework of open standards for exploiting Web-connected sensors

and sensor systems of all types such as flood gauges, air pollution monitors,

63

Webcams, etc. SWE provides the opportunity for adding a real-time sensor

dimension to the Internet and the Web. It focuses on developing standards

to enable the discovery, exchange, and processing of sensor observations,

as well as the tasking of sensor systems in order to achieve a "plug-and-

play" Web-based sensor networks. Thus, SWE cannot be directly applied to

achieve context-awareness because, for example, Sensor Model Language

(SensorML) describes sensors systems and provides information needed for

the discovery of sensors, the location of sensor observations, etc. But it does

not consider modelling the entities about which the sensor is able to provide

information.

Most of the previous work focussed on the software engineering perspective

of the distributed context management. Castelli and Zambonelli [127]

addressed the distributed management of context information from a

knowledge management perspective. They propose a self-organized agent-

based approach to autonomously organize distributed contextual data items

into knowledge networks. These data atoms as well as any higher-level

piece of contextual knowledge represents a fact which can be expressed by

means of a four-field tuple (Who, What, Where, When); they call it the W4

Data Model. This model is able to represent data coming from

heterogeneous sources and to promote ease of management and

processing. These knowledge atoms are linked via general-purpose

mechanisms and policies to form W4 knowledge networks which can

facilitate services in extracting useful information out of a large amount of

distributed contextual items. The usage of tuple-space like repositories

supports heterogeneity and facilitates building the knowledge network.

However, because the focus is on the knowledge management perspective

other requirements such as mobility between domains have been partially

addressed. In addition, despite the efficiency in retrieving tuples during the

query resolution phase, using the spidering approach to create the

knowledge networks may be inefficient when considering the rapidly

changing context information such as entities location.

64

If we look at the aforementioned requirements and at the approaches

described above, it reveals that research in the area of context management

is well established and many ideas have been developed for addressing

most of the above requirements individually. However, none of the examined

approaches supports all of our requirements to a sufficient extent. Therefore,

there is a need to design a new context management infrastructure that

takes into consideration the distribution of context in different domains and

the necessity to ensure user privacy.

3.3 Situation Recognition Approaches

Situations can be recognised and learned automatically by aggregating

sensor readings and associating them to a human-defined situation label

using for example machine learning techniques. Alternatively, situation

models can be defined manually by domain experts. Thus, situation

recognition approaches can be roughly grouped into three categories:

specification-based approaches, machine learning based approaches, and a

combination of both.

3.3.1 Specification-Based Approaches

The common denominator of these approaches is that they define the

situation as a set of rules and try to find an exact match in the context

information. These approaches are suitable when contextual situation

ingredients are known in advance; in this case an expert can specify the

situations manually based on his knowledge. These approaches can be

subsequently classified into rule-based and ontology-based.

Rule-based approaches

Early approaches use formal logic and temporal logic to describe and

represent situations. For example, Loke [10] views the situation as a set of

relations between objects, thus recognizing a situation boils down to

65

determining if a prescribed set of such relations hold or do not hold at that

given point in time. In his approach situations are represented within a logic

programming language and manipulated as first-class entities. Therefore, a

situation is defined as a collection of rules (or a logic program), which is

called a situation program. The rules of a situation program permit natural

representation of a situation, i.e. if a situation occurs, then certain conditions

and constraints should hold. Loke described six different ways to specify the

situation in_meeting_now based on different contextual facts.

Another interesting example is Gaia project [11] where the model of context

is based on first order predicate calculus, and the reasoning about high-level

context is based on the pre-defined rules. For example, what kind of activity

is going on in the room can be recognized based on the number of people in

the room and the applications running in the room.

The main limitation of logic-based approaches is that they are not suitable

for inference from imprecise and incomplete contexts as they are designed

for exact reasoning. In addition, they do not take semantics into

consideration.

Ontology-based approaches

Ontology-based reasoning approaches incorporate the semantics into

context representation and reasoning [33]. Below are some examples of

these approaches.

In [59], Springer et al. presented an interesting approach which provides a

conceptual architecture and generic framework that enables an easy and

flexible development of situation-aware systems. This architecture covers

the whole process of context capturing, context abstraction and decision

making. To handle complex situations the concept of decomposition is

applied to the situation to achieve a hierarchy of sub-situations. However, a

more generic approach is needed so that defining situations in terms of

66

states should not only consider logical relationships but also temporal and

dependency ones.

In [12], OWL-based situation ontology is presented to model situation

hierarchically to facilitate sharing and reusing of situation knowledge and

logic inferences. This situation ontology models the upper ontology for

context and situations in pervasive computing environments using OWL-DL

which can be easily extended in each domain and facilitates the sharing and

reusing of situation information. However, they follow the traditional scheme

of identifying situations by using logic reasoning which involves exact

matching with a specified situation model.

Ontology-based approaches have limited capability in dynamically inferring

contexts. It requires defining all the rules beforehand, and that all ontologies

related to the specific domain must be defined already [128]. Due to a lack of

comprehensive knowledge about their domains, users have to resort to

domain experts; this leads to higher human cost and restricts the ontology

application.

Other approaches focus on defining and modelling the relationships between

situations. The rationale behind these approaches is, given a current

situation and its relations to other situations, the search space for potential

situations to be recognised is reduced. For example Reignier et al. [62]

represent situations relationships by Allen’s temporal logic. These temporal

relations are compiled into a Petri net that takes contextual changes as input

to trigger the situation transitions. They emphasise the constraint that at

least one situation must be active at a time which provides more stability and

better performance. However, this requires the developer to design a

complete situation model covering all potential situations, their relationships

and transitions which is not always possible. Thus, the developer task

becomes more difficult.

67

Generally speaking, the rule-based and ontology-based approaches provide

the flexibility to represent a situation in multiple ways. In addition, the

modularity of representing situations emphasizes the incremental approach

and reuse when building a knowledge base of situations. However, in the

domain of context-aware computing, these approaches are error-prone due

to the incompleteness and ambiguity of context information. Furthermore,

limited reasoning performance reduces its applicability in real world

applications.

3.3.2 Machine Learning Based Approaches

In these approaches situations are recognized automatically by aggregating

the sensor readings using one of the machine learning techniques. In the

learning phase, a specified set of sensor readings values are associated to a

human-defines situation labels.

The learning based situation recognition is related to the domain of human

activity recognition. Typically the existing approaches to activity detection

require constructing sequence-based models of low-level activity features

based on the order of object usage. However, Palmes et al. [17] argue that

activities may have a distinct series of steps but with no particular sequence.

Thus, relying on sequence of events for activity recognition may significantly

limit the accuracy and applicability of models that rely particularly on object

sequence. Therefore, they use an object data mining approach to activity

discovery by relying on the relevance weights of objects as the basis of

activity discrimination rather than on sequence information.

Another example in this category is the work done by McCowan et al. [60]

for automatic meeting analysis based on modelling interactions between

individuals. Thus, a two-layer framework has been proposed to recognize

individual and group actions in meeting. In the first layer, actions of individual

participants (e.g. ‘‘writing’’, ‘‘speaking’’) are first measured using a variety of

audiovisual features (such as speech activity, pitch, speaking rate, etc.).

68

These multimodal feature sequences are fused in the second layer to

recognize actions belonging to the group as a whole. The result of this layer

is group situations like “discussion’’, ‘‘note-taking’’, or ‘‘presentation’’.

The learning-based approaches have at their core a probabilistic reasoning

method to, in the first instance, learn behaviour patterns and follow this to

recognise activities or situations. A potential drawback of such approaches is

the fact that learning behavioural patterns requires large amounts of activity

historical data which can be difficult and costly to acquire.

3.3.3 Hybrid Approaches

In order to reduce the reliance on training data, several works try to

incorporate domain knowledge into their approaches (e.g.

[15][128][129][130]). For example, the activity classifier used in [130] is

called the situation lattice, which is a mathematical model that is used to

abstract and combine sensor data in a lattice structure. Through a learning

process, the situation lattice can build the correlation between the abstracted

sensor data and the high-level situations or human activities. It supports the

representation and use of domain knowledge to incorporate semantic

relationships between abstracting sensor data to tune the lattice as well as

to incorporate temporal features in the inference process.

Brdiczka et al. [16] propose a two step situation learning framework. An

initial simplified situation model is learned from a stream of perceptual

events coming from different sensors in the environment by applying an

automatic segmentation process with minimal human intervention. The

human expertise is used only for providing the situation labels. This model is

subsequently adapted to different users’ preferences by a supervised

learning algorithm using feedback from users. That is, general situations,

such as “Bob sitting on couch”, must be refined to obtain sub-situations

incorporating the preferred system services in each sub-situation. Therefore,

rather than preprogram the appropriate behaviours for a context-aware

69

service, in this approach services adapt behaviour to individual preferences

through feedback from the user. However, modelling the situation does not

consider the history of states the user experiences i.e. it is a snapshot of the

sensor reading at one point of time.

3.4 Service Adaptation Approaches

Many different solutions have been proposed by researchers to the problem

of context-aware adaptation during service development and provision. The

service adaptations can be classified according to whether they are

performed at design-time or run-time; either at the service definition level or

service instance level.

AdaptiveBPEL [131] is a service composition framework which aims at

supporting the development of adaptive Web services compositions. This is

achieved by leveraging the concept of aspects (originally from Aspect

Oriented Software Development) to combine concerns (such as QoS) which

are separately specified in BPEL processes and aspects. The adaptation

process is driven by aspects weaving constructs generated based on a

collaboration policy negotiated at runtime (by a built-in policy mediator)

between the interacting endpoints.

To achieve process adaptation, a run-time aspect weaving middleware is

integrated on top of a BPEL engine. The approach addresses the adaptation

from the perspective of middleware. At runtime it transparently enforces QoS

policies and dynamically adapts the composition instance through the ability

to weave predefined extensions (such as encrypt outgoing messages) as

Web service calls before, after or instead of an activity instance. However,

the approach needs extensions to the existing Web service composition

platforms, such as ActiveBPEL.

AO4BPEL [132], is an aspect-oriented extension to BPEL. In AO4BPEL, the

main concern in workflows is the business logic, while crosscutting concerns

70

(such as data validation and security) are specified using workflow aspects

which provide better modularity and dynamics. Similar to AdaptiveBPEL

[131], AO4BPEL proposes to solve the modularity problems using the

aspect-oriented concepts in the context of workflow languages. However,

there is a need to modify the BPEL engine to support aspects before and

after executing each activity. In addition, since service logic is split up over

many different files (aspects), this could make debugging a faulty service a

difficult task [20].

eFlow [133] is a platform developed for specifying, enacting, and monitoring

composite e-services (i.e., electronic services for e-business). Composite e-

services are modelled (using graphs) as business processes, enacted by a

service process engine. eFlow provides dynamic process change feature

and distinguishes between ad-hoc changes (which apply to a single process

instance) and bulk changes (which apply to many or all process instances).

To achieve this adaptability, eFlow uses several constructs such as dynamic

service discovery (i.e. service selection and binding), multiservice nodes (i.e.

parallel execution of multiple equivalent services) and the notion of generic

service that can be replaced with a specific set of services at process

instantiation time or at runtime.

The eFlow’s migration manager allows users to modify running process

instance(s) by migrating them from a source schema to a destination

schema and without violating a predefined set of behavioural consistency

rules. However, as eFlow uses its own process definition language and

execution engine it remains vendor specific. In addition it tackles the

adaptation on the code level. Moreover, the services composition should be

adaptive not only to the events but also to the other adaptation triggers such

as the change in business rules.

TRAP/BPEL [134] is a framework that adds autonomic behaviour to an

existing BPEL service. The aim is to make an aggregate Web service

71

continue its function even after one or more of its constituent Web services

have failed. To achieve this aim, the TRAP/BPEL framework has been

developed for automatically adapting BPEL services by monitoring the

invocation of their partner Web services at runtime.

In detail, the framework monitors events such as faults and timeouts from

within the adapted service which is augmented with a generic proxy that

replaces failed services with predefined or newly discovered alternatives.

TRAP/BPEL treats the adaptation of Web services compositions implicitly

and achieves it only in the level of implementation at runtime. It extends

neither the BPEL language nor its engine; however the realization of proxy

causes extra versions of BPEL services. Moreover, addressing the

adaptation both at design-time and at runtime is also needed.

Similar to TRAP/BPEL, wsBus [135] is a kind of broker which improves QoS

by selecting appropriate services for execution at runtime. It is lightweight

service-oriented middleware which is developed to address QoS concern of

Web service compositions using broker pattern. The objective is to

implement a customized messaging middleware optimized for the unique

characteristics of SOAP. The wsBus introduces the concept of a virtual

endpoint where a policy could be attached. During the service enactment, a

handler bound to the virtual endpoint intercepts request and response

messages and redirects messages to real services. The selection of

services is based on monitoring data or QoS metrics. In this way, wsBus

separates functional requirements (business logic) from non-functional

requirements (such as QoS). However, since a large number of messages

may be routed through it, the wsBus may become a bottleneck. In addition,

wsBus focuses on runtime Web service composition instances adaptation

and does not consider the adaptation at the service specification layer.

In the context of SaaS (Software as a Service), Ralph and Frank [82]

present an approach that allows the generation of customization process out

72

of variability descriptors that defines variability points for the process layer

and related artefacts of process-based SaaS applications. SaaS model

allows the provider to exploit economies of scale by hosting and providing

the same application for several different customers; each of them has

different requirements for the same basic application. This is achieved by

providing an application template where some parts of the application

remain unspecified (called variation points) or are defaulted and can be

customized by each customer according to their needs. First, the customer

needs to specify concrete values for the variability points of the application

template. Depending on these values, different values might be permitted for

subsequent variability points. Therefore variability points could be dependent

on each other. The result of specifying variation points is an application

solution which is then deployed at the SaaS provider hosting.

Further, a WS-BPEL process model that can then be used to guide a

customer through the customization of the SaaS application is generated

from the variability descriptors. However, using the variation points may not

allow viewing the service variant in terms of the features that determine the

difference between these variants in each usage context.

Another interesting work is the Provop approach [136], which provides a

flexible solution for managing process variants following an operational

approach to configure the process variant out of a basic process. This is

achieved by applying a set of well-defined change operations (adaptations)

to a common master (basic) process. Provop supports change patterns:

Insert/Delete/Move process fragment and Modify process element attribute.

Thereby, contextual information is utilized for enabling (semi)automated

variant configuration. The framework has been implemented as an extension

of the ARIS Business Architect (an existing BPM tool) in order to better cope

with the high variability of business process models.

73

Choi et al. [137] propose an adaptation approach in a pervasive environment

to support the modification of workflow at runtime. Each service is modelled

as a sub workflow which can be inserted into the main workflow. If the

context conditions are satisfied, that service will be executed. The adaptation

takes place at the workflow definition level and is reflected in the running

instance. However, their approach may not be sufficient to derive workflow

variant; that is because this may involve rolling back executed tasks or

adding new activities. They consider only the activities to be executed but

not the activities that have already been executed.

Muller et al. [138] propose AgentWork, an interesting approach for workflow

adaptation to customize the hospital cancer treatment workflow to suit each

patient’s medical profile by adding and deleting tasks in the running workflow

instance according to the predefined ECA (Event/Condition/Action) rules.

The adaptation in this approach provides dynamic and automatic workflow

adaptations and suggests and implements a reactive and predictive

adaptation strategy. Thus, AgentWork uses temporal estimates to determine

which remaining parts of a running workflow are affected by failures that may

occur during workflow execution and is able to perform suitable adaptations

in advance (predicatively). Reactive adaptation is performed when predictive

adaptation is not possible; that is the adaptation is performed when the

affected workflow part is to be executed.

AgentWork address the adaptation on the instance level and thus it may not

be suitable to address the permanent changes that are due to business rules

and which should be treated on the workflow definition level. In addition the

adaptation mechanism cannot be applied to workflows developed without

adaptability in mind, defined in standard languages (e.g. BPEL), or running

in common engines (e.g. ActiveBPEL).

VxBPEL [20] is an adaptation language that is able to capture variability in

processes developed in the BPEL language. VxBPEL provides the

74

possibility to capture variation points, variants and realization relations

between these variation points. Defining this variability information facilitates

capture of a family of processes within one process definition and switching

between these family members at run-time. VxBPEL works on the BPEL

code level and the variants are mixed with the process business logic which

may add complexity to the process developer task. Further, VxBPEL

approach has been implemented in ActiveBPEL. In order to allow

ActiveBPEL to execute VxBPEL, the engine must be adapted to recognize

and store the new variability elements; in addition, a definition of behaviour

during execution needs to be defined for these elements. Thus, the

approach needs extensions for other BPEL engines.

Summary

Look at the approaches described above, the survey reveals that although

the research in the area of context-aware adaptation is well established,

there are still the following points missing that should be addressed:

1- The context management and adaptation logic in many existing

approaches are handled at the code level by enriching the core logic of the

service with code fragments responsible for context manipulation or

adaptation rules. Significant examples of such approaches are Context

Oriented Programming [139], AO4BPEL [132], and VxBPEL [20] which

incorporates the variation points and variants inline in the service definition

itself (i.e. BPEL code). However, as the service engineering process passes

through the different phases (from analysis and design to the actual code

development) the context and adaptation should be considered also in these

phases.

2- Service modelling must be flexible enough to deal with constant changes

– both at the business level and the technical level. The flexibility could be

provided or addressed by incorporating variabilities into a system (e.g. [20]

[82][137]). Most of the approaches tackle service adaptation on the service

75

instance or definition level by explicitly specifying some form of variation

points. The problem is that, for example, each task in the service is modelled

as a variation point, each ruled by its own clause to determine its inclusion or

exclusion. This may be in contradiction with how the developer logically

views the service variant i.e. in terms of the features that determine the

difference between service variants in each usage context. Moreover,

managing and understanding the service variants becomes more difficult

when the number of variabilities and their relationships increase. Therefore,

there is a need to capture the variability from a more logical point of view.

3.5 Conclusions

To summarise, as aforementioned there are still problems associated with

current approaches for developing context-aware adaptive services. To

correct these problems, a successful approach for context-aware adaptive

service needs to meet the following requirements:

Requirement 1: Support for context variability

Several middleware and ontology-based models for describing context

information have been developed in order to support context-aware

applications. However, the context variability, which refers to the possibility

to interpret the available context information from different perspectives to

serve different applications, has been neglected in the existing context

modelling approaches.

Requirement 2: Support for cross-domain context management
infrastructure

The distribution of context information among different domains calls for a

context management infrastructure (middleware) able to store, retrieve, and

disseminate context information across domains. In addition, this

middleware should provide developers with mechanisms to define their

76

queries about context information of interest which may span different

domains.

Requirement 3: Support for cross-domain situation recognition

A contextual situation recognition generic solution should recognize high-

level situations based on the recorded (inferred) activities originated from

different domains the user visits. In addition, this solution should also take

into consideration the temporal relationships between the sequence of

activities, and the fact that a situation can be characterized by a set of

distinct activities but with no particular sequence.

Requirement 4: Support for service development and evolution

The context-aware service development usually involves several stages

(e.g. analysis and design) prior to the actual code development. In addition,

the service evolves according to the changes in the business rules and

requirements. Therefore, the context and adaptation should be considered

through the service development and evolution phases.

Requirement 5: The adaptation and business logics should be
separated

Although the structure and behaviour of the service can be adapted to

contextual information, the overall goal of the service core logic is indifferent

to context change. Therefore, the adaptation to different contexts can be

considered as an orthogonal task with respect to the core service logic. The

separation of concerns is a promising approach in the design of such

context-aware adaptive services where the core logic is designed and

implemented separately from the context handling and adaptation logics.

Requirement 6: Providing the developer with constructs that facilitate
capturing the service variants

77

There is a need to provide developers with mechanisms to capture the

service variability from a logical point of view in order to easily manage and

understand the service variants in each usage context.

Summary

To summarise, based on the investigation of the current techniques on

context modelling and abstractions, context management middleware, and

service adaptations, a new service engineering approach is required to

eliminate the problems associated with these techniques, and therefore

achieve universal context management and access control, and service

adaptation with high automation.

The next chapter gives an overview of the proposed approach and its parts.

It identifies the relevant areas of research and the corresponding

contributions.

78

Chapter 4 Overview on the Proposed Approach

This thesis attempts to develop a new approach and related mechanisms to

address the research question of how to achieve an effective and automated

context-awareness in software services. In this respect, this thesis presents

a conceptual model for developing context-aware adaptive services and

software infrastructure for efficient context management that together

facilitate the design and implementation tasks associated with such context-

aware services. Therefore, two main areas of contribution are identified in

this thesis: the context modelling, abstraction and management contribution,

and the contribution to service adaptation (see Figure 4.1).

Figure 4.1 Overview on the proposed approach

79

4.1 Context Modelling, Abstraction and Management

To ease the development of pervasive applications it is necessary to provide

universal context models and mechanisms to manage context. Thus, generic

context models that can be reused by different applications and ease context

sharing between systems are of interest. Therefore, a flexible product line

based context model is introduced. It reduces application complexity and

significantly enhances reusability of context information by providing context

variability constructs (i.e. context features) to satisfy different application

needs. This is achieved by devising context-specific features that can be

shared among all applications as will be seen in Chapter 5.

On the other hand, the context information is naturally distributed among

several domains. Therefore, the design of distributed storage, retrieval, and

propagation mechanisms of context information between different domains

becomes vital. Thus, to addresses the requirements of scalable context

managements, Chapter 6 introduces ubique, a domain-based context

management approach which allows developers to define domain-based

context queries. In addition, it forms a robust context management

infrastructure which enforces user’s privacy and ensures efficient context

information dissemination between domains.

Furthermore, the application adaptation is usually triggered by a change in

context information i.e. a certain contextual situation. In order to effectively

recognize contextual situations (which will drive the application adaptation)

Chapter 7 focuses on the potential use of process mining techniques for

cross-domain situation recognition. For this objective, the proposed situation

recognition approach takes advantage of the above context management

infrastructure.

80

4.2 Contribution to Service Adaptation

In pervasive environments the ultimate objective is to amplify human

activities and demanding minimal attention from the user. Context-aware

services aims to meet these objectives or requirements by adapting to a

subset of the current context considered relevant to the task at hand such as

the user location, time, and user situation. To this end, service modelling

must be flexible enough to deal with constant changes – both at the

business level (e.g. evolving business rules) and the technical level (e.g.

contextual information and platform upgrades). The flexibility could be

provided or addressed by incorporating variabilities into a system. Chapter 8

introduces two notions to capture the service variability in a logical and

intuitive way: the evolution fragment and evolution primitive. Furthermore,

the proposed mechanism could apply an adaptation to services modelled or

developed without any adaptation possibility in mind and independently of

specific usage contexts.

The next chapter is an attempt to address the main aforementioned

limitations in the context modelling approaches by leveraging ideas from the

SPL domain.

81

Chapter 5 Generative Feature-Based Context
Model

As part of the proposed service engineering approach this chapter presents

a flexible product line based context model which significantly enhances the

reusability of context information by providing context variability constructs

(i.e. context features) to satisfy different application needs. On one hand,

commonality and variability management techniques from the SPL approach

can be applied to handle context variabilities for serving different

applications’ needs. On the other hand, based on the context feature model,

specific context (i.e. member of a product line) can be dynamically

constructed by composing a specified set of context features.

5.1 Introduction

As aforementioned, different context knowledge could be extracted from the

context repository by focusing on different views of the context information.

For example, in the smart meeting room, a seat may be equipped with light

and temperature sensors to reason about its occupation. The seat could be

either free or occupied. Two occupation variants may be identified: occupied

by an object or occupied by a person. These variants represent two facets to

the same fact. Another example of context variability is the context

information classification. For instance, the room temperature could be

classified as low, moderate and high according to some specified

temperature ranges; but these ranges could be different if the room type is a

sitting or a sauna room. Therefore, in order for the middleware to serve

different types of applications, SPL could be leveraged to provide context-

specific programming abstraction or constructs that model the context

variability.

This chapter focuses on dealing with context variability from the application

requirement perspective. The proposed approach does not model the

82

context information itself by using feature models as the feature models are

less powerful than ontologies, and are more appropriate for expressing a

subset of what ontologies can express [140]. Instead, the aim is to represent

the context information from the requirement perspective via the feature

model, the context primitives and their associations.

5.2 The Rationale of the Proposed Approach

The rationale behind this approach is as follows:

Firstly, in terms of modelling philosophy, in ontology modelling a concept is

described by adding its details and implicitly defining in a bottom-up fashion

the scope of the concept through the details. Whereas, in feature modelling,

a concept is described by first setting its scope and hierarchically adding its

details in a top-down fashion [140]. This approach is quite interesting as it

allows the context modeller to devise, in a top-down fashion, generic and

reusable context features which can be shared among all applications that

need to use the available context information. The relationships between

context features express the context variability from the application point of

view.

Secondly, according to the proposed working definition of the context

illustrated in Figure 5.1, the context knowledge is composed of a set of small

contextual knowledge pieces namely context primitives which include

context entities, attributes, associations, and rules. Each context feature

corresponds to a specific set of context primitives. The focus is a concept

representing the point of view the application is interested in looking at the

current context. Each focus corresponds to a specific set of context features.

Given a focus, a relevant subset of these pieces will be used to generate

per-application customized contextual knowledge. Obviously, considering

only the relevant context primitives would improve the reasoning

83

performance and reduce response time which is a vital issue in the

pervasive environment.

Figure 5.1 The working definition of the context

Thirdly, applications use context queries to retrieve the set of context

information that adhere to some conditions. Some context queries are

difficult to be defined using general-purpose querying mechanisms (e.g.

SPARQL 1). In addition, the application developer may not have enough

knowledge about context semantics, in order to describe queries correctly.

Finally, as developers usually do not have full understanding of the context

internal semantic, “promoting” the context information using the feature

model will enable the contextual knowledge visibility from different views in a

top-down fashion. Another advantage is that these context features might be

shared between applications which significantly enhances the reusability of

context information and reduces application complexity.

1 http://www.w3.org/TR/rdf-sparql-query/

http://www.w3.org/TR/rdf-sparql-query/

84

5.3 The Conceptual Model for Context Management

The concepts of features have been imported from Feature Oriented Domain

Analysis (FODA) [94]. In FODA, features are essential abstractions that both

context consumer and provider understand. Thus, the main concept in the

feature description language FODA is the feature itself. Here a feature is a

set of context primitives that is relevant to some stakeholder from a specific

“focus” point of view. Figure 5.2 depicts the proposed conceptual

metamodel. The concepts of the conceptual metamodel were identified and

grouped into two different sections: the context related concepts (white), and

the context features concepts (shaded).

Figure 5.2 The Conceptual Meta-Model

The main construct for representing contextual knowledge is the

ContextPrimitive which represents the base context constructs (primitives)

mentioned above: entity classes, entity attributes, entity associations, and

rules.

• Entity class: represents a group of entities (e.g. users, places, devices,

etc.) sharing some properties.

85

• Attribute class: represents an entity’s attributes e.g. preference, position,

temperature, etc.

• Association class: represents a relationship between one entity and either

another entity or an attribute.

Further optional modelling constructs are additional facts about the entities

and attributes. These are: specialization and equivalence relationships that

may be specified between two entity classes, two attribute classes, or two

association classes.

Two types of rules could be identified: (i) Consistency rules provide a

mechanism for context consistency by specifying conditions that must be

held in the context information. For example, a consistency rule could

specify that if the person is cooking, they must be in the kitchen. (ii)

Inference rules are used to generate new context information after reasoning

on the existing one. For example, an inference rule could conclude that a

person is sleeping if she is in the bed room, the light is off and it is night-

time.

5.4 Context as a Dynamic Product Line

As already mentioned the context evolves dynamically according to the

focus and that context is a set of contextual elements that are assembled

and instantiated according to the focus. This section explains how the

context management middleware can dynamically generate the per-

application context information given a set of features.

In fact, both middleware and context models are strongly interdependent

since the complexity of a context model determines the complexity of context

management by a middleware. Coutaz et al [53] presents this relationship as

a conceptual framework that interconnects an ontological foundation for

context modelling with the middleware (runtime infrastructure).

86

5.4.1 Feature-based Context Modelling

In order to identify what of the context information is eligible for being

modelled as a feature, simplified criteria have been adopted which are

composed of the three steps shown below, followed by the correspondent

modelling decisions:

1- Identify the context information required by the application adaptation

(e.g. user location). This should be represented by a generic feature

in the feature model.

2- Identify the different interpretations of the currently available context

information in order to be shared by all application instances (e.g.

room-, floor-, and building-resolution user location information). These

interpretations should be represented by different feature variants.

3- Regrouping the different identified context features into a logical

hierarchy of features in a top-down manner that could be used by

different applications. The result is a context feature model.

The context feature model should be published in a public registry. When an

application developer needs to use context information, they read the XML

files representing the different context features from different perspectives.

The developer is able to understand the context semantics; then they are

able to configure the feature model and use the middleware services to get

the necessary context information.

Although a feature model can represent context commonalities and

variabilities in a concise taxonomic form, features in a feature model are

merely symbols. Mapping features to the context ontology gives them

semantics. In the following section the proposed approach to mapping the

feature model to the ontology context model is described.

87

5.4.2 Annotated Context Model

An overview of the proposed approach is shown in Figure 5.3. A context

model family is represented by the context feature model and the ontology-

based context model (OCM). The elements of OCM namely the context

primitives may be annotated using Existence Conditions (ECs) and Meta-
Statements (MSs). These annotations are defined in terms of features and

feature attributes from the feature model, and can be evaluated with respect

to a feature configuration. An EC attached to a context primitive indicates

whether the primitive should exist in or should be removed from a context

product. MS is mainly used to modify or compute the attributes of context

model element. This is important for managing context variants as we will

see in the case study in Section 5.6. For example, evaluating the following

MS boils down to evaluating its expression which results in modifying the

property value minimumJournalRank of the FMConfiguration entity from 100

to the value of the variable $minimumJournalRankVariable.

<metastatement name="MS1">
 <expression>
 PREFIX cxt:<http://www.napier.ac.uk/candel#>
 PREFIX xsd:<http://www.w3.org/2001/XMLSchema#>
 DELETE
 { cxt:FMConfiguration cxt:minimumJournalRank "100.0"^^xsd:float }
 INSERT
 { cxt:FMConfiguration cxt:minimumJournalRank
"$minimumJournalRankVariable" ^^xsd:float }
 </expression>
</metastatement>

The value of the variable $minimumJournalRankVariable can be calculated

by evaluating the following meta-statement variable expression which refers

to the attribute minimumJournalRank of the feature

HavingJournalPublications in the context feature model.

<metastatementVariable name="minimumJournalRankVariable"
expression="//feature[@id='HavingJournalPublications']/minimumJournalRank">
</metastatementVariable>

88

Figure 5.3 Overview of the proposed approach

An instance of a context model family, which we call context product (CP),

can be specified by creating a feature configuration based on the context

feature model. Based on the context feature model configuration, the

corresponding context product is generated automatically. The generation

process, which is model-to-model transformation, involves evaluating the

ECs and MSs with respect to the feature configuration, removing the context

primitives whose ECs evaluate to false and, possibly doing additional

processing such as removing related context primitives.

Obviously, a particularly interesting form of ECs is a Boolean expression

over a set of variables each of which corresponds to a feature from the

feature model. Given a feature configuration, the value of a feature variable

is true if and only if the corresponding feature is included in the feature

configuration. In the prototype implementation two forms of expressions are

used: (i) Boolean expressions in Disjunctive Normal Form (DNF), or (ii) more

89

general XPath expressions which can access feature attributes and use

other XPath operations, as long as the XPath expression evaluates to a

Boolean value. The EC is represented by one or more stereotypes. For

example, the stereotype «!f1&&f2||f3» in DNF denotes the Boolean

expression ()321. fff + . Once created, the stereotype is available for

annotating context primitives.

On the other hand, the ECs should be interpreted with respect to the OCM

containment hierarchy. In other words, if a context primitive container is

removed all the contained context primitives are removed. For example, if

entity X is a sub-entity of the entity Y, removing Y requires removing X as

well.

5.4.3 Implicit Existence Condition (IEC)

Context primitives that are not explicitly annotated will have Implicit
Existence Condition (IEC). The IEC for a context primitive can be provided

based on the existence conditions of other context primitives and on the

syntax and semantics of the OCM. For example, according to the ontology

syntax, an Object Property requires a class at each of its ends. Thus, a

reasonable choice of IEC for an object property would be the conjunction of

the ECs of both classes. This way, removing any of the classes will also call

for the removal of the object property. IECs reduce the necessary annotation

effort of the developer.

Table 5.1 shows the choice of IECs for the context primitives. An IEC for a

given primitive is assumed based on its type.

Table 5.1 IEC for different context primitives
Primitive Type Implicit Existence Condition

Association Conjunction of the EC of the two Entities associated

with Association type.

SubEntity The EC of the Parent Entity is evaluated to true.

90

SubAssociation The EC of the Parent Association is evaluated to true.

Attribute The EC of the Entity is evaluated to true.

Rule True iff the ECs of all required rules are true and the

ECs of all its excluded rules are false.

5.5 Context Information Generation

A context information generation process involves computing MSs and ECs,

and removing elements whose ECs are false. The complete context product

instantiation algorithm can be summarized as follows:

1- Evaluation of MSs and explicit ECs: The evaluation is done while

traversing the OCM containment hierarchy in depth-first order.

Children of context primitives whose ECs evaluate to false are not

visited because they will be removed.

2- Removal Analysis: Removal analysis involves computing IECs. The

IECs can be computed in a single additional pass after evaluating

explicit ECs. In addition, in this step all the individuals and statements

whose subjects are included in the elements to be removed are also

marked to be removed. For example, if the Room entity is known to

be removed, all its individuals and all triples whose subject is of type

Room should be marked to be removed.

3- Primitive Removal: In this step, primitives whose ECs are false or

which are marked to be removed are removed.

4- Applying Reasoning: In order to interpret the remaining context

information from the perspective specified by the context feature

configuration, it is necessary to apply the corresponding remaining

rules. The result of the reasoner will be the context product.

Different rule-based systems provide different logical inference support for

context reasoning. To reason about ontologies, Pellet2 for example can be

2 http://clarkparsia.com/pellet/

http://clarkparsia.com/pellet/

91

applied a description logic reasoner. The Semantic Web Rule Language

(SWRL3) has been used on top of OWL for interpreting context using domain

specific rules and producing new facts. In the implemented prototype the

rules have been specified by using the SWRL and the Java Expert System

Shell (Jess 4) has been used as the inference engine. However, the

approach could be extended to use other reasoner types.

5.6 Case Study: Conference Advisor Application
5.6.1 Objective

The objective of this case study is to illustrate and evaluate the proposed

approach for product line based context modelling and the service

adaptation. This case study first applies the approach of product line based

context modelling to model the context information available in a conference

venue. Furthermore, it shows how and how effective a customised version of

a service application could be generated using the Apto approach.

For this objective the following scenario is considered: Alice is a researcher

going to attend a conference in London. Once she has arrived at the

conference building, she decides to contact expert researchers. The

expertise of a researcher could be interpreted in different ways e.g.,

depending on her publications in journals, on her patents or awards, etc.

5.6.2 Illustration and Evaluation of Product Line based Context
Model

The key feature of the proposed modelling approach is its ability to support

variable ontology reasoning in a pervasive environment. In this case study

some concepts from the SO4PC ontology [141] have been used for

expressing context information associated with persons, time, and spaces.

3 http://www.w3.org/Submission/SWRL/
4 http://www.jessrules.com

http://www.w3.org/Submission/SWRL/

92

Another ontology has been used for describing the research related

concepts. Figure 5.4 shows a snippet of the classes and properties used in

the ontology. The complete ontology used in this case study can be found in

Appendix B.

Figure 5.4 A snippet of the used ontology

Figure 5.5 (a) shows an example of a context feature model which

represents different features that could be shared among different

applications. For example, if the Location feature has been selected, then

two mutually-exclusive options are available; either as a room resolution; or

as a building resolution. In either case, different concepts, properties,

attributes and rules should be considered. In a similar manner, the Role

feature regroups two features: the static role (e.g. Reviewer and

OrganisingCommitteeMember) or the current role played during the

conference (e.g. Presenter and SessionChair). Figure 5.5 (b) shows one

possible context feature configuration.

93

Figure 5.5 Example of context feature model

Each feature may have several attributes. For example, in Figure 5.6 that

shows a part of the feature model configuration XML file, the

HavingJournalPublications feature has two attributes: value which

indicates the selection of the feature or not, and minimumJournalRank. This

feature allows the retrieval of researchers who have been published in

journals whose rank is superior to the attribute minimumJournalRank value.

(a) Context Feature Model (b) Feature Model Configuration

94

Figure 5.6 Feature model configuration

As aforementioned, in order to link the context feature model to the context

primitives, stereotypes are used to annotate ontology elements as well as

the SWRL rules. Figure 5.7 shows a snippet of the XML file containing the

available stereotypes to be used for annotation. Each stereotype expression

is expressed, as described above, in terms of the features’ values of the

context feature model.

Figure 5.7 Example of available stereotypes

<stereotypes>
<stereotype name="Person" expression="$ConferenceContext"></stereotype>
<stereotype name="RoomResolution" expression="$RoomResolution ||
$BuildingResolution"></stereotype>
<stereotype name="BuildingResolution" expression="$BuildingResolution"></stereotype>
<stereotype name="Paper" expression="$ConferencePapers || $JournalPapers ||
$Experts"></stereotype>
<stereotype name="ConferencePaper" expression="$ConferencePapers"></stereotype>
<stereotype name="Conference" expression="$Conference"></stereotype>
<stereotype name="JournalPaper" expression="$JournalPapers"></stereotype>
<stereotype name="StaticRole" expression="$StaticRole"></stereotype>
<stereotype name="CurrentRole" expression="$CurrentRole"></stereotype>
<stereotype name="Conference" expression="$Conference"></stereotype>
<stereotype name="Location" expression="$Location || $Venue"></stereotype>
<stereotype name="Publications" expression="$Experts || $Publications"></stereotype>
<stereotype name="Experts" expression="$Experts"></stereotype>
<stereotype name="ExpertHavingAwards" expression="$HavingAwards"></stereotype>
<stereotype name="ExpertHavingJournalPublications"
expression="$HavingJournalPublications"></stereotype>
...
</stereotypes>

<configuration model="Context Feature Model">
 <feature id="Person">
 <value>1</value>
 </feature>
 <feature id="Location">
 <value>1</value>
 </feature>
 <feature id="RoomResolution">
 <value>1</value>
 </feature>
 <feature id="BuildingResolution">
 <value>0</value>
 </feature>
 <feature id="Experts">
 <value>1</value>
 </feature>
 <feature id="HavingAwards">
 <value>0</value>
 </feature>
 <feature id="HavingJournalPublications">
 <minimumJournalRank>350</minimumJournalRank>
 <value>1</value>
 </feature>
 ...
</configuration>

95

Figure 5.8 shows a sample of the annotated ontology elements. The Label

property is used to specify the correspondent stereotypes of each element.

Figure 5.8 Example of annotated ontology

On the other hand, as mentioned above, MSs can be expressed using

XPath. As an example, the MS represented in Figure 5.9, uses the SPARQL

Update5 expression to update the datatype property minimumJournalRank

of the entity FMConfiguration (see Appendix B) by a value retrieved from

the variable $minimumJournalRankVariable whose value is determined by

the XPath expression of the variable minimumJournalRankVariable in

Figure 5.10. The result of applying this MS is to change the value of the

5 http://www.w3.org/Submission/SPARQL-Update/

<owl:Class rdf:ID="CompoundPlace">
 <rdfs:subClassOf rdf:resource="#Place"/>
 <rdfs:label>BuildingResolution</rdfs:label>
</owl:Class>
<owl:Class rdf:ID="Building">
 <rdfs:subClassOf rdf:resource="#CompoundPlace"/>
 <rdfs:label>BuildingResolution</rdfs:label>
</owl:Class>
<owl:Class rdf:ID="Room">
 <rdfs:subClassOf rdf:resource="#AtomicPlace"/>
 <rdfs:label>RoomResolution</rdfs:label>
</owl:Class>
<owl:Class rdf:ID="MeetingRoom">
 <rdfs:subClassOf rdf:resource="#Room"/>
 <rdfs:label>RoomResolution</rdfs:label>
</owl:Class>
<owl:Class rdf:ID="RoomHasPresentationHappeningNow">
 <rdfs:stereotype>CurrentRole</rdfs:stereotype>
 <rdfs:subClassOf rdf:resource="#Room"/>
 <rdfs:label>RoomResolution</rdfs:label>
</owl:Class>
<owl:Class rdf:ID="Journal">
 <rdfs:subClassOf rdf:resource="http://www.w3.org/2002/07/owl#Thing"/>
 <rdfs:label>ExpertHavingJournalPublications</rdfs:label>
</owl:Class>
...
<owl:ObjectProperty rdf:ID="relatedToJournal">
 <rdfs:domain rdf:resource="#Artefact"/>
 <rdfs:range rdf:resource="#Journal"/>
 <rdfs:label>ExpertHavingJournalPublications</rdfs:label>
</owl:ObjectProperty>
<owl:ObjectProperty rdf:ID="hasLocation">
 <rdfs:domain rdf:resource="#OrganisedEvent"/>
 <rdfs:range rdf:resource="#Place"/>
 <rdfs:label>Location</rdfs:label>
</owl:ObjectProperty>
...

http://www.w3.org/Submission/SPARQL-Update/

96

minimumJournalRank datatype of the entity FMConfiguration from 100.0

to 350 (as in the configured feature model of Figure 5.5).

Figure 5.9 Example of meta-statement

Figure 5.10 Example of meta-statement variable

Figure 5.11 shows a sample set of the annotated SWRL rules. For example,

Rule1 is used to reason about the paper presentations that are currently

taking place. To determine if the researcher is an expert we have two

options: by choosing the HavingAwards or HavingJournalPublications

features. The Rule4 corresponds to the former option. The Rule2 and Rule3

correspond to the latter option and are used to determine if the researcher

has been published in journals having a specified minimum rank and

minimum influence index respectively. Rule5, Rule6 and Rule7 are among

the rules used to reason about the person location in building resolution. The

stereotype of the rule is specified by the stereotype element.

<metastatementsVariables>
 <metastatementVariable name="minimumJournalRankVariable"
expression="//feature[@id='HavingJournalPublications']/minimumJournalRank">
 </metastatementVariable>
...
</metastatementsVariables>

<metastatements>
 <metastatement name="MS1">
 <expression>
 PREFIX cxt:<http://www.napier.ac.uk/candel#>
 PREFIX xsd:<http://www.w3.org/2001/XMLSchema#>
 DELETE
 { cxt:FMConfiguration cxt:minimumJournalRank "100.0"
 ^^xsd:float }
 INSERT
 { cxt:FMConfiguration cxt:minimumJournalRank
 "$minimumJournalRankVariable" ^^xsd:float }
 </expression>
 <stereotype>ExpertHavingJournalPublications</stereotype>
 </metastatement>
...
<metastatements>

97

Figure 5.11 Example of annotated SWRL rules

Figure 5.12 shows an example of the retrieved context information after

sending the feature model configuration (of Figure 5.5(b)) to the

implemented middleware prototype.

<swrlrules>
 <swrlrule name="Rule1">
 <expression> PaperPresentation(?p) ^ hasStartDateTime(?p, ?s) ^
hasEndDateTime(?p, ?e) ^ swrlb:currentDateTime(?c) ^ swrlb:beforeTime(?s, ?c) ^
swrlb:beforeTime(?c, ?e) -> PaperPresentationHappeningNow(?p) </expression>
 <stereotype>CurrentRole</stereotype>
 </swrlrule>
 <swrlrule name="Rule2">
 <expression>Researcher(?r) ^ authorOf(?r, ?p) ^ relatedToJournal(?p, ?j) ^
hasRank(?j, ?rank) ^ FMConf(?conf) ^ minimumJournalRank(?conf, ?minRank) ^
swrlb:greaterThan(?rank, ?minRank) -> ExpertResearcher(?r)
 </expression>
 <stereotype>ExpertHavingJournalPublications</stereotype>
 </swrlrule>
 <swrlrule name="Rule3">
 <expression>Researcher(?r) ^ authorOf(?r, ?p) ^ relatedToJournal(?p, ?j) ^
hasInfluenceIndex(?j, ?II) ^ FMConf(?conf) ^ minimumInfluenceIndex(?conf, ?minII) ^
swrlb:greaterThan(?II, ?minII) -> ExpertResearcher(?r)</expression>
 <stereotype>ExpertHavingJournalPublications</stereotype>
 </swrlrule>
 <swrlrule name="Rule4">
 <expression>Researcher(?r) ^ authorOf(?r, ?p) ^ hasAward(?p, ?award) ^
FMConf(?conf) ^ topAwardName(?conf, ?award) -> ExpertResearcher(?r)</expression>
 <stereotype>ExpertHavingAwards</stereotype>
 </swrlrule>
 <swrlrule name="Rule5">
 <expression>AtomicPlace(?x) ^ CompoundPlace(?y) ^ isSpatiallySubsumedBy(?x, ?y) -
> spatiallySubsumes(?y, ?x)</expression>
 <stereotype>BuildingResolution</stereotype>
 </swrlrule>
 <swrlrule name="Rule6">
 <expression>AtomicPlace(?x) ^ CompoundPlace(?y) ^ CompoundPlace(?z) ^
isSpatiallySubsumedBy(?x, ?y) ^ isSpatiallySubsumedBy(?y, ?z) ->
isSpatiallySubsumedBy(?x, ?z)</expression>
 <stereotype>BuildingResolution</stereotype>
 </swrlrule>
 <swrlrule name="Rule7">
 <expression>Researcher(?r) ^ locatedInAtomicPlace(?r, ?p) ^
isSpatiallySubsumedBy(?p, ?cp) -> locatedInCompoundPlace(?r, ?cp)</expression>
 <stereotype>BuildingResolution</stereotype>
 </swrlrule>
...
</swrlrules>

98

Figure 5.12 The retrieved context information

5.6.3 Summary

In conclusion, this case study has shown that the context modelling

approach and the related tool are capable of serving different applications’

needs of context information. This is achieved by “promoting” the context

information via a context feature model capable of expressing the context

variability. Using this approach the context modeller is able to devise a

generic context feature model which includes different context features

corresponding to different interpretations of the same fact. For example, in

this case study, the experience of a researcher has been interpreted

according to two criteria corresponding to two features: HavingAwards and

HavingJournalPublications. From the developer point of view it is an

intuitive and easy method to specify and retrieve a version of the available

context corresponding to their perspective. This way the developer is

alleviated from the burden of reasoning about the available context and

specifying context queries. In this case, they need to configure the context

feature model by specifying the features they are interested in and their

attributes. However, this comes with a price. In order to serve different

applications the context modeller has to have a clear understanding of the

context semantics and devise a generic context feature model that covers all

<ExpertResearcher rdf:ID="Alice">
 <rdf:type rdf:resource="#Researcher"/>
 <authorOf>
 <Paper rdf:ID="FirstPaper">
 <relatedToJournal>
 <Journal rdf:ID="JournalOne">
 <hasRank rdf:datatype="http://www.w3.org/2001/XMLSchema#float"
>204.0</hasRank>
 <hasInfluenceIndex rdf:datatype="http://www.w3.org/2001/XMLSchema#float"
>15.83</hasInfluenceIndex>
 <hasName rdf:datatype="http://www.w3.org/2001/XMLSchema#string">JOURNAL
OF THE ACM</hasName>
 </Journal>
 </relatedToJournal>
 <biblioReference
rdf:datatype="http://www.w3.org/2001/XMLSchema#string">Product Line based Context
Modelling </biblioReference>
 </Paper>
 </authorOf>
 <authorOf rdf:resource="#SecondPaper"/>
 <locatedInRoom rdf:resource="#C33"/>
</ExpertResearcher>
...

99

possible interpretations of the different facts. This includes devising one or

more feature models each of which focuses on a different topic. For

example, the case study shows one feature model focusing on the

conference context; another feature model could be devised to focus on the

researcher himself. In addition, the context modeller has to annotate the

ontology with the devised stereotypes which may not be an easy task when

the ontology is huge. However, the concept of the implicit existence

condition (IEC) alleviates the modeller from annotating every context

primitive. The result is facilitating the developer task and obviously by

considering only the context primitives corresponding to the specified

context features the reasoning performance would be improved.

5.7 Conclusion

This chapter has presented an approach for supporting the development of

context-aware services based on a flexible product line based context

model. The proposed approach to model the context information allows the

context modeller to specify the context information in a high-level and logical

way that regroups context variabilities; and provides service developers with

mechanisms (context features configuration) to express their needs from

context information. The novelty of this approach lies in (i) the introduction of

the context variability concept, (ii) a hybrid context modelling approach which

takes advantage of the ontology-based modelling approaches and at the

same time map the available contextual knowledge to a set of context

features that could be shared and reused by different applications, and (iii) a

generative approach to provide applications with the context information they

need according to the chosen context features. The result is a more intuitive

way to represent context and improve overall systems performance.

However, this approach can be applied to “promote” the context information

available in one administrative (spatial) domain. In the next chapter the focus

will be on proposing a context management middleware architecture which

100

allows developers to maintain context queries spanning different domains. In

this respect, a collaboration protocol between context servers available in

different domains for context storage, retrieval, and dissemination is thus

proposed.

101

Chapter 6 ubique: Cross-Domain Efficient and
Privacy-Ensuring Context Management Middleware

In pervasive environments, context-aware services require a global

knowledge of the context information distributed in different spatial domains

in order to establish context-based interactions. Therefore, the design of

distributed storage, retrieval, and dissemination mechanisms of context

information across domains becomes vital. In such environments, there is a

need for the collaboration between different context servers distributed in

different domains; thus, the need for generic APIs and an appropriate

communication protocol allowing context information exchange between

different entities: context servers, context providers, and context consumers.

As a solution this chapter proposes ubique, a distributed middleware for

context-aware computing that allows applications to maintain domain-based

context interests to access context information about users, places, events,

and things - all made available by or brokered through the home domain

server. This chapter proposes also a new cross-domain protocol which

ensures the user’s privacy and the efficiency of context information

dissemination. ubique has been robustly built upon the Jabber protocol

which is widely adopted open protocol for instant messaging and is designed

for near real-time communication. Simulation and experimentation results

show that ubique well supports robust cross-domain context management

and collaboration.

6.1 Introduction

Context-awareness is the cornerstone to achieve the vision of pervasive

computing. It refers to the capability of an application or service being aware

of its physical environment or situation (e.g., context) to respond proactively

and intelligently based on this awareness [142].

102

Context-awareness should be supported by a context management system

that allows the automatic discovery, retrieval and exchange of context

information distributed in different administrative (spatial) domains. Such a

system must perform its functions in a pervasive computing environment that

involves mobile users and devices. The proposed context management

middleware is based on the notion of context domain explained in [29] which

organizes the pervasive environment hierarchically and establishes the

context management scope. A context domain is defined as an abstraction

of a spatial area which has a clear boundary and it is built on top of the

traditional notion of network domain. Essentially, context domain establishes

(i) the place and responsibility of context instances storage; (ii) the

responsibility for managing context providers and consumers inside the

domain; and (iii) a set of sub-domains.

Although users are more interested in the context information related to their

location, other context information from other domains may also be relevant

to the current task at hand. For instance, a dynamic recalculation of the

quickest routes for a trip involves acquiring the latest contextual information

such as traffic congestion from remote sources. In this respect, we can

imagine a domain-based context management system where the context

information available in each domain is managed by a separate context

server. While moving, the user roams across domains. In addition, each

domain may maintain its own sensors and mechanisms for inferring context

related to this user. Consequently, collaborative context management across

domains is needed.

In particular, an efficient cross-domain context management middleware

system for such a setting needs to fulfil key requirements that include (as

mentioned in Section 3.2.1): (i) domains of context perception, (ii) uniform

API interface for accessing context servers, (iii) efficient context information

dissemination, (iv) support of cross-domain reasoning, (v) dynamic matching

between context providers and consumers, and (vi) support for privacy.

103

Therefore, this chapter proposes ubique, a new domain-based context

management infrastructure for context management and dissemination

between context providers, context consumers and context servers, and a

set of APIs for interfacing between these entities. ubique fulfils the above

mentioned key requirements and it forms an underlying robust and generic

infrastructure for context management, which significantly simplifies the

development of context-aware pervasive applications.

6.2 Context Dissemination Problem

Consider a simple context dissemination scenario: a user is subscribed to a

context server (CS) located in domain A; namely CSA. This server maintains

the profile information of its subscribed users and maintains a sensor

infrastructure for domain A. This server is called the home domain server

(HDS) of its subscribed users. Likewise, the context server CSB maintains

the users’ profiles and physical context information of domain B. Obviously

as long as the user is still in the domain A the scenario is rather simple; all

the context information needed by the application about this user exists in

CSA. However, when the user moves from A to B the context information

related to the user maintained by CSA and CSB (such as location or

environment context information) may become relevant to the applications

interested in the user’s context. In this case, the CSB is called the visited

domain server (VDS). Thus, the applications have to be provided by

mechanisms through which they can know the domains visited by the user at

any point of time and the context information gathered about the user in

these visited domains.

One possible solution is to use distributed tuple spaces (e.g., Confab [4]).

Confab architecture structures context information into distributed tuple-

spaces called infospaces, which store tuples about a given entity. An

application interested in a certain context, builds a context query using the

address of the responsible infospace. Although distributed infospaces

104

contribute to decrease the context management overhead in a distributed

environment, this distribution is not kept transparent to applications, which

must know what infospace contains the desired context information. Another

possible solution is to maintain in the HDSs “links” to the VDSs. In this case,

in order to handle the application’s queries about the users (or entities) over

distributed domains, the HDS may have to distribute queries over the VDSs

(e.g. [4][7]). However, this approach requires maintaining the link list of the

VDSs, and may degrade the system performance as it requires distributing

the application query over different servers and regrouping the result.

On the other hand, the notion of home and visited domains are also used by

mobile telephone networks like GSM. The main idea used in these networks

is that users have their “home domains” in which their context is gathered

but when they roam to another domain this domain becomes a “visited

domain”. When a mobile device moves into a different domain, the server of

the visited domain inter-links the mobile device and its home server. The

home server redirects query statements to the server of the visited domain,

which finally dispatches it to the mobile device. This is achieved by using the

Home Location Register (HLR) and Visitor Location Register (VLR)

approach of the GSM user profile database [143]. This approach addresses

the location-awareness problem by minimizing the invocation of multiple

updates in the home node each time a mobile user changes his/her location.

However, the effectiveness of this mechanism is questionable for other types

of context information, as it requires the application to submit their queries

through a web of pointers from the home node to the visited node of the

mobile user [144].

The main problem of context dissemination across domains originates from

the observation that in a distributed system there is an obvious trade-off

between costs of updates and costs of requests; i.e. between the

communication cost introduced by the complete dissemination of the context

data to the home node and the degree of dissemination that is eventually

105

necessary. This has a direct impact on the achieved system performance

and on the provided context precision. For example, when the volume of

context data or the rate of change is high, providing high precision context

value tends to degrade the performance; on the contrary, optimal

performance can only be achieved by sacrificing the precision of the

disseminated context. In the proposed approach, as will be seen, the context

consumers play a decisive role in the process of context dissemination as

well as the update rate of the relevant context data.

6.3 Cross-Domain Context Management

Basically, when a CS receives a query referring to an entity’s context

information stored in the local repository the procedure is straightforward.

When the required context information is not stored in the local repository it

has to be retrieved from a remote CS. An efficient look-up mechanism for

finding this context information is essential for the scalability of the whole

system. To achieve this mechanism, this thesis chooses to disseminate the

context information to the HDS only when there is a consumer for this

information. That is, this context information must have only one copy which

must be published in the HDS. This choice is made for the following

reasons:

(i) Efficient cross-domain query handling: having all context information

related to an entity in one place (HDS) can be exploited during the query

resolution phase in order for the applications to retrieve the context

information more efficiently. That is, handling a query submitted to the

system requires considering the context information in the entity’s HDS

disseminated from different domains instead of sending sub-queries to all

VDSs. Thus, the querying response time decreases significantly.

(ii) Privacy ensuring: the alternative to publish the actual data at the HDS

would be to only keep references to the relevant visited context server.

106

However, this weakens the privacy support as the context data is stored by

the foreign domain that provides the sensor infrastructure. Thus there is a

need to design a protocol between CSs which forces the context information

to be centralized in the HDS. This way, enforcing user’s privacy policy will be

feasible.

(iii) Cross-domain reasoning: it becomes possible to reason about the

context information across different domains (e.g. tracking and

understanding user’s tendency) and to identify the contextual situations

which span different domains (see [119] for example). Moreover, this

enforces the idea that each domain should have its own inference

mechanism and in the home domain a cross-domain inference mechanism

becomes possible.

(iv) High efficiency: it would be more efficient if we disseminate context to

the HDS depending on how often the context change and at the same time

on the context consumers needs. In the case of roaming users across

domains, additional restrictions may arise (e.g. concerning the limited

network connectivity, device power consumption, privacy enforcement, etc.),

rendering imperative the need to establish an optimized mechanism in

support of optimized context dissemination among domains taking into

account the explicit requirements of consumers.

The following subsections present the designed and implemented

middleware, ubique, which aims at optimizing and controlling the amount of

exchanged context information in such a way that context information can

efficiently and easily flow from context providers to consumers. ubique

envisions a highly distributed and loosely coupled solution in order to

exchange context information between context providers, CSs, and

applications. Semantic meaning of the context information exchanged is

added via distributed ontologies attached to it. Therefore, the ubique context

management aims to: (i) enable the discovery of context providers, (ii)

107

standardize context exchange between providers and consumers, (iii)

disseminate contexts among CSs, (iv) share common understanding about

context information elements, (v) standardize and enforce privacy, (vi) allow

context providers to publish on demand where there is a consumer, (vii)

relieve CSs from the burden introduced by frequent updates to the HDS, and

(viii) prohibit overloading the context consumers with context information that

does not interest them for the time being.

6.3.1 ubique Context Meta-Model

Context information can be represented in many ways. For ubique context

modelling, the chosen approach is based on XML and makes use of

ontologies that are described in OWL-DL for more detailed information about

entities and their context types, as well as to support reasoning. As

illustrated in Figure 6.1, the context information is represented in terms of

context elements, which provide information about context entities, context

types and meta-data.

108

Figure 6.1 The proposed context meta-model

The main assumption in the proposed model is the representation of

relationships between entity and information: context entities (such as

persons, places, events, etc.) are identified and classified by an ID and,

optionally, a reference to an ontology concept representing them in order to

establish a common understanding of the semantics of different entities in

the pervasive environment. Each context entity is associated with a set of

context types (such as address, location, etc.) which may include other

context types. Further, each context type may be characterized by a set of

metadata which contains, for example, source of information, timestamps,

expiration time, and any Quality-of-Context information such as accuracy

and confidence.

6.3.2 Context Management Components

The ubique context management middleware is designed for the discovery

of, exchange of, and reasoning on context information across domains. It

provides the relevant context information for the service or application, using

distributed sensing infrastructure and centralized storing mechanisms.

ubique is defined as a set of components which are loosely coupled to

provide relevant context information both by sensing and interpreting

mechanisms. These key components or building blocks are depicted in

Figure 6.2, and described below.

109

Figure 6.2 ubique components

Context Consumer: (CC) is a software entity that uses the CS interface to

register its context interest or query. The CC receives the requested context

information asynchronously by submitting context interest and

synchronously by submitting context query to the CS. A CC exposes

interfaces to start receiving context information from the corresponding CS

when they become available. These interfaces adhere to standards defined

in the Standards Framework (SF).

Context Provider (CP): is a software entity that uses the CS interface to

register its capability of providing context information. A CP exposes

interfaces to publish context information to the corresponding CS on-

demand. These interfaces adhere to standards defined in the SF. It is

registered in the CS so that context consumers can discover and introspect

it. Note that any software agent, reasoner, or storage component can be a

CP as long as it adheres to the interfaces defined in SF. Usually, CPs wrap

context sources such as GPS receiver or temperature sensor to provide their

information.

110

Context Server (CS): provides a registration service for CPs to

register/update/unregister their capabilities that uniquely describe their

functionalities and for CCs to register/update/unregister their context

interests that can be matched against the available CPs, and enables the

discovery of various context providers. Additionally, it provides services to

exchange the CCs’ context interests and CPs’ capabilities between CSs as

will be seen later.

Standards Framework (SF): A set of specifications describing the CP

capabilities, the CC interests and queries, the interfaces to exchange

commands and context information between different components, a format

to exchange an atomic context information element, as well as a format for

privacy tags.

ubique relies on the reasonable assumption that a CS is identified by its

Internet domain name and that the CS is responsible for managing the

context information available in its domain. Additionally, each entity (sensor,

user, application, etc.) has a unique ID that should be registered in one of

the CSs. For example Alice ID could be Alice@merchiston.napier.ac.uk as

she is a registered user in the CS of the domain merchiston.napier.ac.uk

which is Alice’s HDS.

The Context Ontology (CO) describes the logical relations between the

different context concepts in OWL-DL. This ontology is used to get more

detailed information about context types and entities, as well as to support

the Context Reasoning process.

6.3.3 Context Interfaces and Operations

ubique provides three different interfaces which allows the integration of

CSs, CCs, and CPs into the eco-system. In the following the main interfaces

and the main corresponding operations are described.

111

a. Integrating Context Providers: The provided operations allow

registering CPs and their information with the CS as well as providing a

discovery function through which participating components can check for

available CPs.

registerContextProvider: This operation is used by the CP to advertise its

capabilities in terms of the types of context information it can provide and the

relevant entities playing a role in this information. Additionally, the

registration provides a set of available CP meta-data (describing the CP and

the quality of context information it provides). For example, the user’s

location can be measured with different qualities by location sensors like

GPS, CellId, WLAN-in-range, etc. The CP capabilities XML scheme is

depicted in Figure 6.3.

Figure 6.3 CP capabilities XML scheme

Basically, the CP specifies in its capabilities its ID, the domain its information

is originated from, and one or more capabilities. Each capability specifies its

112

ID, the entities playing a role in the context information the CP can provide,

and the supported context types. Optionally, it specifies the meta-data about

these context types, its different attributes (features), and collection policies.

discoverContextProviders operation is used by the CCs to get the list of

available CPs and their capabilities for later query.

sendCPCommand: This operation is used by the CS to command a specific

CP to start/stop publishing its information. The command message contains

a reference (tuple ID) where the context information should be pushed.

b. Integrating Context Consumers: The provided operations allow

registering CCs with the CS, querying (synchronously), as well as

subscribing in order to be notified about context information

(asynchronously).

queryContextServer: This operation is used by the CC to synchronously

request context information. The CC specifies its interest in terms of the

needed context types of specific entity(ies), as well as additional constraints

on the CPs and context types meta-attributes.

subscribeContextConsumer: This operation enables long-lasting monitoring

of the system. Basically, the logic of this operation is similar to the latter

operation, but the requested context information is returned in the form of an

asynchronous “notify” callback operation. Figure 6.4 depicts the CC interest

XML scheme. The CC can specify one or more interests. Each interest

specifies its ID, the entities the CC is interested in to get their context

information, and the interested context types. Optionally, it specifies the

condition(s) on the context types, the domain(s) this information is originated

from, the CP’s required feature(s), and the ID of a specific CP.

113

Figure 6.4 CC interest XML scheme

sendCCCommand: This operation is used by the CS to command a specific

CC to start/stop receiving the information it has subscribed to. The command

message contains a reference (tuple ID) where the context information

should be popped.

c. Collaboration between CSs: as already mentioned, every CS is

responsible of providing and storing context information related to entities

registered in it. Since the sensor infrastructure in each domain may provide

context information about roaming entities, a collaboration protocol is

needed between CSs in order to disseminate this information to the entities’

HDSs. Three types of information exchanged between CSs can be

distinguished:

- CP Capabilities: CPs may advertise their ability to provide context

information about entities not registered in the current domain. For example,

when Alice moves from her home domain (domain1.com) to domain2.com, a

location provider (a registered entity in domain2.com) can advertise its ability

to provide the location information about Alice@domain1.com to the CS of

114

domain2.com. In this case, the CS of domain2.com should disseminate the CP

capability to domain1.com (Alice’s HDS) which is responsible to handle all

queries related to Alice.

- CC Interests: A CS may receive context interest about entities not

registered in it. In this case, the CS should disseminate these interests to the

HDS of the corresponding entities.

- Context information: The idea is that each CS has to maintain a repository

for all CP capabilities able to provide context information about its registered

entities as well as all CC interests related to these entities. Any change in

this repository (i.e. addition, updating, or deletion of a CP capability or CC

interest) should trigger a matching function which tries to bind a CP with a

CC. When a match is found, (i) a new tuple has to be created; (ii) a

startPublishing command message has to be sent to the CP (via

sendCPCommand operation) along with the corresponding CC interest and

tuple ID; and (iii) a startReceiving command has to be sent to the CC (via

sendCCCommand operation) along with the tuple ID. The CP now has all

the information necessary to know what kind of context types, for which

entities, and when to publish to the tuple (e.g. regularly or for a context

changes greater than a specific threshold, etc.). Note here that when, for

example, an application is interested in Alice location in domain2.com, the CS

of domain1.com (Alice’s HDS) will create a tuple in CS of domain1.com and

command the CP of Alice location to start publishing in this tuple. In other

words, all the context information related to Alice, even those emerging from

foreign domains, will be kept in her HDS. This way, the user’s privacy can be

enforced. This mechanism is illustrated in the case study in Section 8.4.

Figure 6.5 depicts the XML scheme of the published context information

which we call a contextlet. Basically, each contextlet specifies the CP ID, the

interest ID, the domain from which this information is originated, the entity in

question, and the list of the requested context types and their values.

115

Figure 6.5 Contextlet XML scheme

6.3.4 Privacy

Privacy is about protecting users’ personal information, which may include

also context information e.g. location, mood, etc. In the ubique approach, to

ensure the confidentiality of the privacy-sensitive information, users have the

flexibility to define their own privacy policy covering all types of context

information that may be distributed in different domains.

Obviously, the sensor infrastructure in each domain may report context

information related to entities out of the scope of the current domain which in

turn weakens the privacy ensuring mechanism and loosens control over the

context originated in different domains. In this case as aforementioned the

context information of the foreign entities must be published in their HDS

with the following conditions: (i) there is a corresponding consumer for this

information, and (ii) revealing this information does not violate the privacy

policy of the corresponding entity. If the request (query) does not violate the

privacy policy then the CS commands the CP to start publishing the required

context information at the entity’s HDS; otherwise, an “access denied”

response is sent to the CC. Figure 6.6 shows the privacy tag scheme used

in ubique. Each user (or each entity in general) has the flexibility to specify

its privacy policy covering the context types and the domains containing the

context information. The privacyTag specifies for each context type the CCs

having the right to get access to the context information and the time

intervals during which this context information can be revealed to them.

116

Figure 6.6 Privacy XML scheme

Finally, secure storage of context information requires proper authentication

and authorization to access it. Therefore, each CC is assumed to be a

computational entity registered in one of the CSs which means that it has a

unique ID and password, and it must be authenticated by its CS.

6.4 ubique Implementation

Figure 6.7 illustrates the proposed domain-based context-aware computing

eco-system. In general, the system should integrate distributed hardware

and software components and provide a naming scheme for those entities.

The eco-system starts from a single system with client-server architecture;

then multiple systems federate together through server-to-server

communication to form the eco-system. A single system usually manages

local clients, such as users and devices in a specific domain.

117

Figure 6.7 Domain-based context-aware eco-system

The server is called Domain Server and Communication Bus. The server

provides core functionalities, such as security and naming, and acts as a

communication infrastructure for clients available in its administrative

domain. The naming scheme is similar to that of e-mail systems. Each

server has a unique domain name; clients have their names concatenated to

the server name. Clients from different systems can also communicate with

each other with the server-to-server communication. Clients could be

devices, such as sensors, and applications that provide services to the user.

Clients can be also services that provide functionalities the server does not

provide such as the context manager (see Figure 6.7). Clients have to be

authenticated by the server to use the system.

Notice that the server does not provide the context management service

itself, leaving that responsibility to a separate client, the context manager.

The context manager can be easily replaced or upgraded without affecting

the whole system. The client-server and server-to-server communication

interfaces are standardized, which facilitates the system extensibility.

In order to robustly implement the ubique approach, relying on a standard or

already established protocol is obviously a preferred choice. As

aforementioned in Section 2.3.4, the eXtensible Messaging and Presence

118

Protocol (XMPP) [145] (also known as a Jabber protocol) is widely adopted

open protocol for instant messaging and is designed for near real-

time communication.

6.4.1 Jabber and Domain-based Context Management

As aforementioned, the proposed domain-based context management

middleware is based on Jabber technologies. Jabber has been chosen

because its design, architecture, and features match our requirements: In

the pervasive environment the interaction between different entities should

be generic and not in a particular format. Jabber provides a rich set of

communication mechanisms. Moreover, the context management

infrastructure should support the interaction between different users,

devices, and software components in a universal way. In Jabber systems,

any entity that implements the XMPP-Core and its extensions protocols can

establish a connection with a Jabber server and interact with other entities

on any Jabber server. Thus the open architecture and standardization of the

Jabber platform ease its adoption to build ubique.

Apart from these capabilities, Jabber has other advantages such as its

increasing popularity and community support; the availability of a set of

servers, clients, and software libraries supporting a low-barrier entry for

developers; and its adoption of XML to communicate messages between

entities make it possible to use existing XML tools and libraries.

6.4.2 Jabber and Context Manager

Jabber entities can be implemented either as clients or as external server

components. Clients use the protocols defined in “XMPP Core” to connect to

the Jabber server; external components use the “Jabber Component

Protocol” (JCP) [XEP-0114] for the connection. These two types of entities

are functionally similar; thus for a given service, we can implement it as

either a client or a component. However, unlike client components whose

119

contact lists and subscription are maintained by the Jabber server, an

external component has to manage its subscriptions and contact lists by

itself. The naming convention for external components is different from client

components. For example, the context manager JID might be

context@merchiston.napier.ac.uk if it is implemented as a client, and

context.merchiston.napier.ac.uk, if it is implemented as an external

component.

In ubique the context manager has been implemented as an external Jabber

component. The choice of considering the context manager as an extension

to the Jabber server functions is more of design decision than a functional

one. Figure 6.8 shows the architecture of the context manager: ContextMgr.

The PubSub server is also a Jabber component. ContextMgr component

connects to a Jabber server using JCP. The ontology that describes the

context is stored in a Web server. The actual context data (contextlets) is

stored in the PubSub so that the PubSub server can notify the subscriber of

any context changes.

Figure 6.8 The context manager external component

In Figure 6.9, two Jabber servers are inter-connected; one of them connects

to a CP and the other connects to a CC. The context manager, ContextMgr,

connects to the Jabber server as a Jabber external component. The

continuous lines represent the transport connections which are the actual

routes for transferring data. On the other hand, the dashed lines indicate

120

logical connections which means the communication between two end

points does not happen directly, but through physical ones.

Figure 6.9 ubique components interactions

When the system starts up, both CP and CC login to their Jabber servers.

Then, the capabilities of each CP and the interests of each CC are

registered with the corresponding Jabber server (Step 1 and 2). Thus the

context manager can match the published CPs’ capabilities with the CCs’

interests or queries (Step 3). If the context manager decides that the CC

interest matches the CP capability and this does not violate any entity’s

privacy, then it creates a tuple space in the local PubSub server and sends

the startPublishing command message to the CP (Step 4) and the

startReceiving command message to the CC (Step 5) along with the tuple

space ID embedded in the message. Once the CP publishes a new

contextlet (Step 6), the CC can receive it asynchronously (Step 7). For the

CC query, when the context manager decides which CP can have the

requested context information it queries that CP and returns the result to the

CC synchronously.

In ubique, the OpenFire [146] has been used as a XMPP server, and the

context manager has been implemented in Java. ubique aims to achieve the

goal of controlling the context information dissemination between

administrative domains in a way that is efficient in terms of saving network

121

bandwidth and devices energy, as well as respecting people privacy in the

pervasive environment. The system has a clear architecture and is highly

extensible.

6.5 Case Study: Smart University System
6.5.1 Objective

This case study illustrates, verifies and evaluates the use of ubique

middleware for context dissemination between different context servers

distributed in different domains. It shows also how the developers can

specify CCs’ queries and CPs’ capabilities, and how users can specify their

privacy policies.

The ubique approach has been realized in one scalable real-life application.

Edinburgh Napier University had the ambition to build an ICT-driven Smart

University system; part of the scheme is to provide cross-campus real-time

virtual collaboration between working groups of staff and students, such as

team members working on a research project, students doing a group

project and committee members within a school, faculty or even the whole

university. University staff and students roam among campuses, and

experience different activities. This ubique-enabled system can be used by

members of the above groups to keep updated about each other’s current

activities, status and interests, and to exchange information so that they can

avoid disturbing and interact more intelligently.

Here one scenario from the Smart University system has been taken to

demonstrate how ubique approach and the system work. Alice and Bob are

professors working on an EPSRC-sponsored research project. They are

both based at the Merchiston campus of Edinburgh Napier University. Alice

has a post-doc, Carol, who is a research assistant on the project and needs

to travel among the campuses for her research. Alice would like to keep

updated about Bob’s activities and Carol’s location.

122

6.5.2 Solution and Implementation

Different components could be identified in this scenario: The context server

available in Merchiston campus (merchiston.napier.ac.uk), the context

server available in Sighthill campus (sighthill.napier.ac.uk), the context

provider which provides information about the activities of entities located in

Merchiston campus, the context provider which provides the location

information of entities available in Sighthill campus, and the application itself

which is considered here as an entity registered in the context server

merchiston.napier.ac.uk.

Figure 6.10 depicts the sequence of exchanging information between

different components: CPs, CCs, and CSs.

123

Figure 6.10 Interaction between different components

This is described as follows: The CP

ActivityProvider@merchiston.napier.ac.uk registers the following

capability in its HDS and wait for confirmation (Step 1).

Figure 6.11 Example of the activity provider’s advertised capability

The CS analyzes the received CP capability to see if any of the supported

entities is not registered in it. Because this CP does not provide context

information about entities not registered in merchiston.napier.ac.uk no

further interaction with other CSs has to be taken. Obviously, any change in

the available CPs or CCs triggers the matching function.

For the sake of simplicity and without loss of generality, the example

application App1@merchiston.napier.ac.uk is registered in Alice’s HDS. It

registers the following CC interest (Step 2):

124

Figure 6.12 Example of an application’s context interest

This CC interest shows that the application is interested to know the location

of Carol in any domain and the activity of Bob in the

merchiston.napier.ac.uk domain. Note here that any CP registered in

merchiston.napier.ac.uk domain or in any of its sub-domains is eligible to

be matched with the interest CCI1. For each context interest, the CS checks

for the corresponding entity privacy before registering it. Figure 6.13 shows

an example of Carol privacy tag.

125

Figure 6.13 Example of a privacy policy

If the privacy is violated, an “access denied” message should be sent to the

application; otherwise the context interest will be registered and a

confirmation message should be sent to the application.

The CS of merchiston.napier.ac.uk finds out that there is a match

between the CP capability whose ID is CPC1 (Figure 6.11) and the CC

interest whose ID is CCI1 (Figure 6.12), therefore, it creates a tuple and

sends the necessary commands so that

ActivityProvider@merchiston.napier.ac.uk starts publishing contextlets in

the created tuple and App1@merchiston.napier.ac.uk starts receiving the

published contextlets. Figure 6.14 shows an example of the contextlet sent

by the activity provider. Alice may like to send Bob a congratulations

message when he finishes his presentation.

Figure 6.14 Example of contextlet received from activity provider

In merchiston.napier.ac.uk there is no provider for Carol location. When

Carol roams to sighthill.napier.ac.uk the CP

LocationProvider@sighthill.napier.ac.uk reports its ability (Figure 6.15)

to provide Carol as well as other entities locations to CS of

sighthill.napier.ac.uk.

mailto:LocationProvider@sighthill.napier.ac.uk

126

Figure 6.15 Example of the location provider advertised capabilities

The CS of sighthill.napier.ac.uk finds out that the location provider is

able to provide Carol location which is not registered in it; thus, it

disseminates the CP capability depicted in Figure 6.16 to Carol HDS:

merchiston.napier.ac.uk (Step 10.4 in Figure 6.10). Notice that this

capability is the same of Figure 6.15 except that the entities not registered in

merchiston.napier.ac.uk have been removed.

Figure 6.16 The location provider capabilities disseminated to Carol HCS

After the re-matching process, the CS of merchiston.napier.ac.uk finds out

that there is a CP able to provide Carol’s position. Therefore, as in the

previous case, it creates a tuple and sends the necessary commands to the

127

corresponding entities; however, this time the locally published contextlets

are pushed by a CP from other domain. Figure 6.17 shows an example of a

contextlet published by the location provider indicating Carol’s location.

Figure 6.17 Example of Carol location contextlet

Figure 6.18 depicts screenshots of the example application. The cyan circles

represent roughly the domain border of each CS. Each small dot circle

represents a contextlet.

128

Figure 6.18 Screenshots of the example application

6.5.3 Summary

This case study has illustrated the usage of the ubique middleware to hide

the increasing complexity of context management available in different

domains from applications. Developers are able to retrieve the interested

context information originated from different spatial domains by specifying

domain-based context queries and interests. Thus, they are alleviated from

finding out which repository (CS) has the context information they need as

well as what context providers capable to deliver this information.

The use of the standard API and schema for the contextlet, CC interests and

queries, and CP capabilities makes it possible for any component to easily

integrate the eco-system. The component has to be a registered entity in

one of the available Jabber servers (CSs) which sometimes prohibit the

spontaneous interaction between the CS and new entities. However, this

requirement is in alignment with the need to enforce the user privacy and to

disclose their context information only to already-known entities.

In a previous work [147], an evaluation of the infinitum middleware (former

version of ubique) has been conducted in terms of the time required for

disseminating contextlets between two CSs. The simulation has shown that

disseminating 100 contextlets simultaneously requires a latency of around

1.8s which is acceptable for a wide-range of applications requiring dynamic

context information e.g. position. However, the results are probably not quite

representative as the latency is dominated by the actual cross-domain

129

network bandwidth as well as the contextlets compression method used if

any.

One of the main advantages of ubique is the enforcement of the user’s

privacy policy spanning different domains. In this respect, for example, Carol

is able to specify the entities eligible to access her context information and

during which periods. This allowed Carol for example to create and define

one privacy policy and publish it in her HDS and thus alleviating her from

defining several policies for different domains.

6.6 Conclusion

The essence of context-awareness is to let applications and users take full

advantage of the available context information e.g., users’ or devices’

locations. The requirement for universal context access demands for a

middleware solution as an essential requirement for building context-aware

systems. Therefore, it is essential to establish innovative data storage and

dissemination mechanisms. The architecture of ubique presented in this

chapter hides the increasing complexity of context management from

applications and incorporates advanced mechanisms that support mobile

users.

The contribution of this chapter lies in the design and implementation of a

distributed context management middleware and the associated context

information dissemination protocol that addresses the requirements of

scalable distributed context management, privacy enforcement, and efficient

context information dissemination and query handling. In ubique, the storage

and dissemination of the context information is performed between

distributed CSs. ubique brings several unique features to cross domain

context management as discussed in Section 9.1.2, all of which have been

verified by case studies. The following chapter aims at taking advantage of

130

the ubique infrastructure to capture and reason about the contextual

situations that span one or more domains.

131

Chapter 7 Contextual Situation Recognition with
Process Mining Techniques

This chapter first provides a formalization of the situation recognition

problem and then focuses on the potential use of process mining techniques

for measuring situation alignment, i.e., comparing the real situations of users

with the expected situation models. To this end, two methods have been

proposed to create and/or maintain the fit between them: LTL analysis and

conformance testing. The effectiveness of the approach has been evaluated

in Section 8.3 using a third party published smart home dataset. The

experiments prove the effectiveness of applying the proposed approach to

recognizing situations in the flow of context information.

7.1 Introduction

Situation awareness is the capability of the entities in pervasive computing

environments to be aware of situation changes and automatically adapt

themselves to such changes to satisfy user requirements, including security

and privacy [12].

Following Dey's context definition, situation is a central notion describing

context. Dey [23] defines situation as a "description of the states of relevant

entities". As aforementioned in section 2.1.5, situations inject meaning into

the application and are more stable, and easier to define and maintain than

basic contextual facts. Thus, adaptations in context-aware applications are

usually caused by the change of situations. A situation represents the

semantic interpretation of context, and is generally derived by combining

several pieces of low-level contexts in some way [148], with potentially many

different contexts being indicative of the same situation. The situation notion

permits a higher-level specification of human behaviour in the scene [9].

132

A natural way to program context-aware behaviour is to use rules which map

a recognized situation to some given action. But a preceding question is how

does one describe and represent the situations that a context-aware system

should recognize? Is it enough to describe the current states, or it is

necessary to consider the previous states? For instance, if we were building

a context-aware application to recognize the different situations in a

conference room, we would like the application to behave appropriately in

certain situations – the application could somehow detect a situation via

some combination of sensors and then adjust the camera direction

accordingly. One could enumerate a set of typical situations (or situation

types) which we are interested in (e.g. the speaker is talking, an audience is

asking, one person is entering, etc.) and have rules to act appropriately in

those situations. In this case it is enough to have some rules to represent

these typical situations in terms of states inferred from sensor readings.

However, for complex situations that call for tracking a user's behaviour we

may need to consider the user's recent state history. For example, deciding

on the appropriate service delivered to a user sitting in the living room

depends on whether he is studying or he has just arrived from work.

Moreover, because context information is naturally distributed in different

domains (areas), understanding the user's current situation may require

considering the different states the user experienced in these domains. For

example, to identify if the current day was busy for the user we need to

consider the different activities and states the user has experienced in work,

shopping, on the road, etc. Unlike some existing context-aware systems

which isolate one context state from another or do not consider context

states identified in different domains, this thesis aims at taking advantage of

ubique to capture and reason about the different contextual situations

spanning one or more domains.

On the other hand, in pervasive environments, both mobility and ubiquity are

supported by electronic means such as mobile phones and PDAs and

133

technologies such as RFID, Bluetooth, WLAN, etc. These can be used to

automatically record human activities and events in detail. The availability of

this contextual information provides an interesting application domain for

process mining. The goal of process mining is to discover process models

from event logs, i.e. the basic idea of process mining is to identify user

processes (behaviours) and extract information about this behaviour by

mining event logs for knowledge. In fact, the task of manually constructing

templates for complex behaviour is, naturally, a complex task. The developer

needs to have a very precise knowledge of what the modelled behaviour

consists of, and what it does not consist of. Therefore, this chapter focuses

on the potential use of process mining for firstly mining the actual behaviour

and secondly measuring behavioural alignment, i.e., comparing the real

situation of the user with the expected situation.

7.2 Contextual Situation Recognition

Contextual situation recognition –the task of tracking states and identifying

situations– is an important factor to achieve the situation awareness. The

purpose of situation recognition is to aid pervasive systems to detect

potentially interesting situations. In pervasive environments, context

management systems are expected to administrate large volumes of

contextual information originating from different domains. Therefore, in order

to achieve enhanced situation awareness we need to introduce support

capabilities for automatically analyzing and recognizing situations.

To translate the aforementioned Dey’s definition of situation, a fact is

considered as a relation between entities which in turn have properties, and

the situation is considered as a collection of spatiotemporal facts that are

related to each other. An example of a relation could be

),(21 humanhumanearisLocatedN which would translate to a fact describing one

human is located beside another (where earisLocatedN is defined

appropriately). Each of the humans would be entities (possibly having

134

properties) and earisLocatedN is the relation which binds them together. As

above mentioned, situation recognition can be informally referred to as the

task of tracking a specific sequence of states comprising complex

arrangement of entities and/or relations in the flow of context information.

A situation assessment is traditionally considered to be a snapshot picture of

the system at a given time. This type of situation assessment does not

model past states, it does not model the processes that have generated the

current state, and it does not allow for prediction into the future.

Furthermore, the situations of interest may not be determined from a single

snapshot picture, as they are identified by distinct states, which may be

separated in time. For example, a busy day situation develops over time and

cannot be determined from the system state at a given moment. Finally, the

ingredients (e.g. states) used in situation recognition could be originated

from different domains the user visits.

Therefore, a situation-aware system has to capture a set of features from

distributed context sources and to continuously process these features to

derive the overall situation. Thus, major challenges for the creation of

situation-aware systems are; to handle the complexity of recognizing a

situation, to manage a domain-based sensing infrastructure and to find

appropriate reasoning schemes that efficiently derive the overall situation

from low-level context features. In the following section a conceptual

architecture for the creation of situation-aware systems is presented.

7.2.1 Definitions

We continuously estimate the real-world by using sensor infrastructures.

This includes estimating various properties of distinct objects experiencing

some behaviour in the environment. In a building or home scenario, we use,

for example, temperature, lighting and position sensors to estimate the

environment characteristics and people positions. These properties

135

constantly change as people follow their courses of actions. From the user

point of view, a process is undertaken which aims at reaching a specific

goal, and from the developer point of view a partial part of this process is

estimated as it progresses through time.

An event describes a change in state and a series of these states is called a

history. A state s can be defined as a set of properties describing a process

P during an interval of time, and an event E as a change in state s for a

process P at a specific point in time. As discussed above, when representing

situations we can either do it directly in an observable state space, or we can

use abstractions on top of this. To this end, we need to resort to relations for

describing more complex concepts. A relation could be for example,

),(21 eeearisLocatedN which translates to entities 1e and 2e being in close

proximity (by some definition). A relation can describe relations between an

arbitrary numbers of entities; however, this thesis only considers binary

relations. Furthermore, when a relation is evaluated and inserted into a

system, it becomes a fact),(: 21 eerf . Assigning a value to an entity’s

attribute could be considered as a fact as well:),(: veaf where v is the

value of the attribute a of the entity e. Inspired by the definitions in [149]

process, state and event can be defined as follows:

Definition 1. A process P is an abstract model of the user behaviour over a

period of time with the aim of achieving a certain objective. Technically, a

process is a directed graph of states.

Let },...,{ 1 neeE = a set of entities available in a pervasive environment, and

},...,{ 1 mrrR = a set of relations between these entities where jr is a binary

relation),(qpj eer . A fact if is either a relation from R over a pair of entities

qp ee , from E, or a specified value nx assigned to an entity’s attribute la :

),(||),(: nklqpji xeaeerf . Therefore the state of a process P can now be defined

as:

136

Definition 2. A state s is a set of facts },...,{ 1 uffs = describing a process P

during an interval of time.

∈∈∈∀
∈∈∀

=
))(,),((,,),(

),,(,,),(

klklnlknnkl

qpiqpjqpj
i eAaandEeaTxaexxea

EeeandRreereer
s

Where)(laT is the type of the attribute la , and)(keA is the set of ke entity

attributes.

Definition 3. An event E is a change in state s for a process P at a specific

point in time.

For example, consider a process consisting of three entities 21,ee and 3e . At

time t, entity 1e is close to 2e , while 3e is not close to any of the other

entities. The state of the process could be described as a vector

><),(),,(),,(323121 eeisFarFromeeisFarFromeeearisLocatedN .

Definition 4. A state sequence Q is a vector of states >=< nsssQ ...,,, 21

describing the evolution of a process P.

The state sequence definition allows us to capture relations, the state of a

process at any particular time, and the changes over time as well. For

example, consider Alice in a conference presentation scenario. At the

beginning Alice starts presenting, and then Carol asks a question.

Meanwhile, Bob enters the conference room. Finally, Alice finishes her

presentation and has her coffee. This is illustrated in Table 7.1.

Table 7.1 State Sequence in the Conference Room Scenario

Time State is

1 {Inside(Alice, ConferenceRoom)}
5 {Inside(Alice, ConferenceRoom), Activity(Alice, Presenting)}
15 {Inside(Alice, ConferenceRoom), Activity(Alice, Presenting),

Activity(Alice, Talking)}
25 {Inside(Alice, ConferenceRoom), Activity(Alice, Presenting),

Activity(Carol, Talking)}
28 {Inside(Alice, ConferenceRoom), Activity(Alice, Presenting),

137

Activity(Carol, Talking), Activity(Bob, EnteringConferenceRoom)}
30 {Inside(Alice, ConferenceRoom), Activity(Alice, Presenting),

Activity(Carol, Talking)}
32 Inside(Alice, ConferenceRoom), Activity(Alice, Presenting),

Activity(Alice, Talking)}
40 Inside(Alice, Lounge), Activity(Alice, HavingCoffee)}

As shown in Table 7.1, there are eight entities (three persons, two locations,

and three activities), and two distinct relations (Inside and Activity). From

this state sequence we can extract a number of different situations that could

be interesting. For example, one situation could be that Alice is inside the

conference room. This situation would cover distinct parts of the state

sequence, namely when the relation Inside(Alice, ConferenceRoom) exists,

which is between time 1 and time 40. Another interesting situation could be

that Alice is interrupted by Carol while presenting. This would be another

part of the state sequence which in logical notation could be expressed as
Activity(Alice, Interrupted) = Inside(Alice, ConferenceRoom) AND

Activity(Carol, Talking) AND Activity(Alice, Presenting) which is

between time 25 and time 32. Another more complex situation, which goes

beyond the logical constraints between states, could be identifying if Alice is

almost finished her presentation. In this case, she is expected to pass

through different states (Presenting, Talking, and Interrupted) in a

specified order and repetitions which develops over time. In fact, there is

possibly an interesting situation for each possible combination of facts in a

state sequence. Therefore, a situation can be defined as follows:

Definition 5. A situation S in a state sequence >=< nsssQ ...,,, 21 of a

process P is a vector of states >=< ''
2

'
1 ...,,, msssS where each state '

is in S is

a subset of a state ks : i.e. ki ss ⊆' and Qsk ∈ .

This definition makes it possible to model every potential situation in a state

sequence.

138

7.2.2 Conceptual Architecture

The proposed conceptual architecture consists of five layers: a sensing

layer, a facts extraction layer, a reasoning layer, a filtering layer and a

situation recognition layer. These layers are depicted in Figure 7.1. Each of

these layers is described below.

Figure 7.1 Layered Conceptual Architecture

1- Sensing Layer: There is a broad range of different sensors which can be

considered for gathering context information like audio, video, a whole

wireless-sensor network, etc. These sensors have to be accessed with the

help of a specific programming interface provided by the manufacturer of the

sensors. So the sensors deliver different types of raw data.

2- Facts Extraction Layer: A classifier is needed in this layer to divide the

sensor data into individual classes which are labelled with a symbolic name.

Classification could be done simply by a quantization over data or by using

more advanced techniques e.g. Rule-Sets, Bayesian-Nets, etc. Therefore,

the result of the classifiers is a set of facts which are forwarded to the

reasoning steps.

139

3- Reasoning Layer: Based on the facts resulting from classification, new

facts are inferred. This is done with the help of different reasoning schemes,

which can be deployed separately or work in parallel. Example reasoning

schemes are ontology reasoning, applying description logics reasoners, or

rule-based reasoning. The resulting new facts can be further used to identify

the different context states. As we will see later, the state is a set of facts.

4- Filtering Layer: In pervasive environments, context-aware systems are

expected to manage a large number of contextual facts and states. To

facilitate the complexity of recognizing the interesting situations, different

situation recognition modules have to be created. Each module is

responsible for recognizing a specific situation among the flow of contextual

facts. Because each module is concerned with a sub-set of the available

states, different filters are needed for different modules. For example, to

reason about a meeting situation, we may need to consider only the states:

standing, presenting, and talking. In this case, different filtering mechanisms

are required to filter out the "noise" states which are not required to reason

about a specific situation.

5- Situation Recognition Layer: The main purpose of the situation recognition

layer is to recognize the occurrence of an interesting situation among the

flow of contextual facts. Because the proposed approach is intended to be

generic, the situation recognition module may need to consider different

states identified in different domains (areas).

To create situation-aware systems according to the proposed conceptual

architecture, the developer can intuitively decompose the relevant situation

into different states. Then they can define the different constraints on a sub-

set of these states to define the situation as will be seen later. In the

following section, the proposed conceptual model that defines the

relationships between states, situations, and context elements is described.

140

7.2.3 Conceptual Model

The concepts of the conceptual metamodel were identified and grouped into

two different parts (see Figure 7.2): the context related concepts (white), and

the situation related concepts (shaded). As mentioned in [10], the main

construct for representing context knowledge is the Relation which

represents the base context construct that links the context elements: Entity

and Attribute.

Figure 7.2 Conceptual Model

The above concepts provide the elementary conceptual data pieces to

provide the definition of entities, their attributes and relationships between

them. However, it is unable to represent complex knowledge, such as the

"ready-to-leave-home" situation. To define the situation two concepts are

required:

- State class: represents the current state of a specific entity i.e. it is

composed of a set of relationships between the entity and other entities as

well as a set of attributes values of the entity.

- Situation class: define the situation as a set of states having correlation

relationships among them.

141

The correlations between states can be summarized into three classes:

(1) Dependency: two types of dependencies are identified: Implication and

Exclusion. Implication is used to express the causality between two states.

For example, if a person state is studying he must have another state: busy.

Exclusion is used to express the conflict between two states. For example,

one cannot have a state cooking and at the same time he is located in a

LivingRoom.

(2) Logical Relationship: (e.g. AND, OR, NOT) are used in their usual

meaning to express different compositions of states: (i) conjunction state

(represented by the AND class), i.e. when the states 1s and 2s are active,

then a third state 3s should be active (213 sANDss =), (ii) union state

(represented by OR class), i.e. the state 3s is active if either 1s or 2s is active

(213 sORss =), and finally (iii) negation state (represented by NOT class),

which allow to describe that 3s is active if 1s is inactive and vice-versa (

13 sNOTs = and 31 sNOTs =).

(3) Temporal Relationship: A temporal relation is a relation between two

states. Since a state is represented by an interval in time, Allen’s interval

logic [64] is used to handle different possibilities, which are: before, equal,

meets, overlaps, during, starts, and finishes.

7.2.4 Contextual Situation Recognition Algorithm

Having defined the situation, the question now is how to identify situations

algorithmically. Two different approaches can be distinguished here: (1)

exact matching techniques and (2) approximate matching techniques. In

exact techniques (e.g., [59][58]) , all states in a situation need to be found in

the context information flow. In approximate techniques, the matching does

not need to be exact. Instead, the aim is to determine some degree to which

the context information flow matches the expected flow. Approximate

142

techniques require that we establish some form of similarity measures for

comparing the extracted context information with the expected one.

Obviously specifying every ingredient in situations that we are interested in

finding is a hard task. For example, in the previous scenario, Alice may be

interrupted because her presenting laptop has crashed or she may be

interrupted by the audience from the beginning before starting her

presentation. Furthermore, in pervasive systems we do not often have exact

and perfect context information. Thus this thesis focuses on approximate

techniques.

To achieve approximate matching two types of constraints can be proposed:

(i) constraints (X) on the relations between entities and on their attributes

values, and (ii) constraints (Y) on the temporal ordering of the constraints X.

The state sequence >=< nsssQ ...,,, 21 for a process P defines the space in

which we would like to do the situation recognition. To do approximate

matching between the expected situation and observed one we need to

have a predefined situation model reference (or template) that imposes

certain constraints. A constraint in this model can be defined in three ways.

The first option is to define a constraint ic from a relation in R for a pair of

entities. The second option is to define a constraint on the value of an entity

attribute. Finally, a constraint ic can be defined from a set of temporal

relations },...,,{ 21 utrtrtrTR = , where each temporal relation itr implies an

ordering in time between two constraints),(bai cctr . For example, itr could be

after, before, during, etc.

The Expected Situation Model ESM can be defined as ESM = (Z, C), where

},...,,{ 21 szzzZ = is a set of variables which during matching will be bound to

real entities from E, and C is a set of constraints },...,,{ 21 hcccC = in which

each constrain ic is defined as:

143

)},(||),(||),({ bajnklqpji cctrxzazzrc =

The situation recognition problem in the sense of exact matching can be

defined as a search for all situations S in state sequence Q, for which all

constraints in an ESM are fulfilled in the situation S. However, as we are

looking for an approximate matching solution the situation recognition

problem could be defined as:

Definition 6 : An approximate solution to a contextual situation recognition

problem consists of finding the list of situations S in a state sequence Q

where the value of a similarity function sf between an expected situation

model ESM and the situation S (]1,0[),(∈= SESMfsf) is larger than some

threshold value.

The following section describes how process mining techniques (e.g.

conformance checking) can be leveraged to define the similarity function.

7.3 Process Mining for Pervasive Environments

State log data resulting from the reasoning layer has been used to

investigate the applicability of process mining techniques to recognizing

situations. In this context, the whole approach can be summarized in three

steps:

(1) Self-analysis with the aim to extract the process model. A rich set of

detailed entities’ state data is recorded over time as a result of the reasoning

layer. A systematic and more high-level analysis of these states logs can

help to obtain an overall picture of the actual process and understand the

user’s behaviour. The result of this step is a process model that regroups all

potential situations.

(2) Defining the models for the interesting situations. A situation model could

be viewed as a sub process model. In this case, the developer has to

144

manually review the obtained process model and try to identify the possible

interesting situations. The result is a situation model called the Expected

Situation Model (ESM) which could be viewed as a template model.

(3) Conforming analysis. Having specified the ESM, and based on the

observed (recorded) states log, this step considers calculating the degree to

which there is a match between the ESM and the observed process model.

The following section describes these steps in more detail.

Figure 7.3 gives an overview of the architecture of a traditional process

discovery and represents how the proposed approach is integrated to this

architecture. The environment consists of context repositories distributed in

the environment. The context information regarding users and other entities,

their interactions and relations are maintained by the repositories. In the

traditional scheme, the context modeller (or the application developer)

designs the ESM using her experience and existing approaches (e.g. Petri

Net). According to her, this model represents the potential interested

situation to track or identify. Then, the model is instantiated and the users or

the entities in the environment are expected to follow it during the time,

indicated by the grey arrows in Figure 7.3. In this scheme, however, the

designed model does not necessarily reflect the actual behaviour the user or

entity usually follows as they are not involved in the design of the situation

model.

145

Figure 7.3 Process Mining

The main idea of the process mining is to go in the other direction, as shown

by black arrows in Figure 7.3. The states logs correspond to the process

instances (particular executions of the process which could be during a

certain time interval, in a certain domain, etc.). The process model can be

derived from these states logs by using one of the process mining

algorithms. Then, the process model can be analyzed by the developer.

In pervasive environments, it is usually difficult to introduce a process model

directly from scratch. Using the proposed approach, the existing states logs

of several process instances are gathered and automatically generate a

model from them. The accuracy of the generated model depends on (i) the

number of process instances considered when applying the process mining,

and (ii) the chosen process mining algorithm. Obviously the more instances

we have, the more accurate the model is.

7.3.1 Abstraction on the States Log Level

These states logs produced by the reasoning layer reflect the different states

(or activities) the entities are experiencing in different domains (areas) of the

pervasive environment. The focus of this thesis is on control flow mining

algorithms which are described at the end of this section.

146

Sometimes the states logs available in the context repositories contain many

details which are not relevant for the process mining algorithms. Thus, we

need a technique to abstract from the low level details or even to ignore

some state information. This is called abstraction on the states log level. The

ProM tool [91] contains a set of filters, which help solve this problem. Table

7.2 shows an example of the recorded states log. In this example, the aim is

to understand the user behaviour at home. Thus, here we need to ignore the

Originator field, filter out the states not corresponding to the Home domain,

and to map the entities’ names to more abstract names. For this purpose,

the remap filter can be used to map the entity name to the entity type. Table

7.3 shows the result of this filtering applied to the log of Table 7.2. It shows

the corresponding process instances that will be used during the process

mining.

Table 7.2 Example of the recorded states log

State Subject Domain Timestamp Originator

1 WokenUp Alice Home 2010-01-02T08:23:00.000+01:00 Reasoner1

2 BrushingTeeth Alice Home 2010-01-02T08:35:00.000+01:00 Reasoner1

3 WokenUp Bob Home 2010-01-02T08:40:00.000+01:00 Reasoner1

4 DrinkingCoffee Alice Home 2010-01-02T08:45:00.000+01:00 Reasoner2

5 Shaving Bob Home 2010-01-02T08:46:00.000+01:00 Reasoner1

6 Dressing Alice Home 2010-01-02T09:00:00.000+01:00 Reasoner1

7 DrivingCar Alice Car 2010-01-02T09:15:00.000+01:00 Reasoner3

8 CallingSomeone Alice Car 2010-01-02T09:17:00.000+01:00 Reasoner3

9 Working Alice Office 2010-01-02T09:30:00.000+01:00 Reasoner4

10 Meeting Alice Office 2010-01-02T11:45:00.000+01:00 Reasoner4

… … … … … …

32 Asleep Alice Home 2010-01-02T22:20:00.000+01:00 Reasoner1

33 WokenUp Alice Home 2010-01-03T08:30:00.000+01:00 Reasoner1

… … … … … …

Table 7.3 Example of the process instances in Home domain
Alice day1 – (instance 1) … Alice Day n – (instance n) … Bob Day1– (instance m) …

147

State Subject

1 WokenUp Person

2 BrushingTeeth Person

3 DrinkingCoffee Person

4 Dressing Person

State Subject

1 WokenUp Person

2 DrinkingCoffee Person

3 BrushingTeeth Person

4 MakeUp Person

5 Dressing Person

State Subject

1 WokenUp Person

2 BrushingTeeth Person

3 Shaving Person

4 Dressing Person

Note that during log abstraction different views of the process can be taken,

since the definition of what is to be considered a process instance

determines the scope of the process to be analyzed. For example, in the

context of the conference scenario one could be interested in the overall

Alice situations over multiple locations, as well as individual Alice situations

within a single room. Thus, different abstractions can be leveraged to obtain

different views of the same process.

Since ProM uses the Mining XML (MXML) format to read logs, the states

data needs to be converted into this format. The basic structure of MXML is

as follows: a process log consists of a set of process instances, which in turn

each contains a sequence of events (in our case events correspond to

states). A process instance also referred to as case, trace, or audit trail, is

one particular realization of the process, while events correspond to

concrete steps that are undertaken in the context of that process for the

particular process instance. Furthermore, each event carries a timestamp

and may contain additional data. An excerpt of a state in such a states log is

shown in the following MXML:

<Process id="DEFAULT" description="Simulated process">
 <ProcessInstance id="1" description="Simulated process instance">
 <AuditTrailEntry>
 <Data>
 <Attribute name = "subject">Bob</Attribute>
 <Attribute name = "domain">LivingRoom1</Attribute>
 </Data>
 <WorkflowModelElement>DrinkingCoffee</WorkflowModelElement>
 <EventType>started</EventType>
 <Timestamp>2010-01-02T08:23:00.000-07:00</Timestamp>
 <Originator>Reasoner1</Originator>
 </AuditTrailEntry>
 ...
 </ProcessInstance>
 ...
</Process>

148

The state (AuditTrailEntry) was recorded in the context of monitoring Bob’s

activities in the first day (Process instance ID is 1) on 2 January 2010 at

08:23:00 according to Pacific Time Zone (Timestamp), and refers to Bob’s

domain "LivingRoom1". The dots indicate that the log contains further

process instances, and the process instance contains further states.

7.3.2 Control-flow Mining

When dealing with the control flow, the log can be represented as a set of

sequences of states (i.e. process instances), see Table 7.3. These instances

could be recorded in a time frame, or in a domain. For example, as

aforementioned, Table 7.3 shows examples of process instances recorded

on different days.

In the process mining area a number of algorithms for control flow mining

have been developed, which have different characteristics. The Alpha

algorithm [150] can derive a Petri net model from a state log. Another

algorithm, the Multi-phase approach [151], creates Event-driven Process

Chain (EPC) models from a log, while it first generates a model for each

process instance and later aggregates these to a global model. Both the

Alpha and the Multi-phase algorithms share the generation and synthesis

approach’s precision, i.e. the generated model accurately reflects all

ordering relations discovered in the log. While sophisticated filtering of logs

can remove noise partially, there are also process mining algorithms which

are designed to be more robust in the presence of noise e.g. the heuristics

miner [152]. The heuristics miner employs heuristics which, based on the

frequency of discovered ordering relations, attempts to discard exceptional

behaviour. Because of this feature the heuristics miner has been used in the

proposed approach.

Based on the states log depicted in Table 7.3, the heuristics miner has been

used to automatically construct a process model shown in Petri Net format in

Figure 7.4. It shows the causal dependencies between states and provides

149

an overview about the process model of the user behaviour at home. Having

specified the process model, the next step is to identify the interesting

situations, i.e. defining the ESMs.

Figure 7.4 Petri Net model of the observed process

7.4 Defining the Expected Situation Model (ESM)

The process model obtained in the first step gives the developer a clear and

global idea about the observed behaviour. They can then try to identify and

design the model of the interesting situations in which the system can help

users fulfilling their tasks. In the previous example, for instance, we may

identify the "ready-to-leave-home" situation. The user will be in this situation

if he experienced different states e.g. WokenUp, BrushingTeeth,

DrinkingCoffee, and Dressing. This situation considers the context

information available in one domain: Home. Recognizing this situation allows

the context-aware system to provide users with relevant services e.g.

sending a “to do” list to their mobile phone, and switching on the user’s car

engine and the air conditioner if necessary.

As mentioned above, the ESM could be viewed as a sub model of the

obtained process model. To keep the example as simple as possible and

without loss of generality, the ESM is assumed to be identical to the

obtained process model.

Recognizing a situation requires a subset of the observed states; therefore,

a filter mechanism (Figure 7.1) is needed to filter out the "noise" states when

recognizing different situations. Therefore, to recognize the former situation,

150

we need to consider only the domain: Home and states whose subjects are of

type Person and thus we obtain the states log illustrated in Table 7.3.

Another interesting situation which spans different domains could be for

example, a "busy-day" situation. This situation considers the different states

the user experienced in different domains. For this situation, another filter is

implemented that considers all physical domains (e.g. Home, Office, Shop,

and Car), and the entities of type Person.

Having specified the ESM and the corresponding filters, the next step is to

match the filtered states log with the corresponding ESM. For this purpose

ideas from the process mining and analysis domain have been leveraged.

7.5 Conformance Analysis

Process mining is a helpful tool for context-aware application developers

who want to get an overview of how the process is executed i.e. the user

behaviour. The question which arises here is how we can determine whether

the current observed process is in alignment with our expectation. To

answer this question, there exists a set of analysis and verification methods

in the process mining domain. One of these techniques is Conformance

Checking [153], which takes a log and a process model, e.g. a Petri net, as

input. The goal is to analyze the extent to which the observed process

execution corresponds to the given process model. In the context of

conformance testing this means to measure the “distance” between the

behaviour described by the process model and the behaviour actually

observed in the log. If the distance is zero, i.e., the observed process exactly

matches the ESM specified behaviour, one can say that the log fits the

model. Another technique is LTL Checking [56], which analyses the log for

compliance with specific constraints, where the latter are specified by means

of linear-temporal logic (LTL) formulas. Therefore, the proposed approach

151

considers dual modes of operation: ESM conformance checking mode and

LTL constraint checking mode.

7.5.1 ESM Conformance Checking Mode

In this mode, the developer is expected to design the ESM by using the

available tools (e.g., Petri nets). This model can be designed in two ways: (i)

from scratch i.e. on the basis of the developer experience of designing and

understanding the expected behaviour, and (ii) as aforementioned by using

one of the process mining algorithms to automatically construct the process

model which shows the causal dependencies between states [87][86]. The

question that arises now is: does the observed states log conform to the

designed ESM? To answer this question, two dimensions of conformances

could be distinguished [153]:

- Fitness, i.e., the extent to which the states log can be associated with

execution paths specified by the process model, and

- Appropriateness, i.e., the degree of accuracy in which the process model

describes the observed behaviour, combined with the degree of clarity in

which it is represented.

This thesis assumes that the ESM is checked and evaluated by measuring

some "appropriateness" metrics which is beyond the scope of this thesis.

The focus here is on measuring the degree to which the observed behaviour

fits with ESM. For this purpose the Fitness metric f described in [153] has

been used. The value of f is between 0 (complete mismatch) and 1

(complete match). Measuring the fitness dimension requires recording

several instances of the same process and for each newly recorded instance

the fitness is re-measured. For this reason the fitness may have the value of

1 if all the instances could be replayed in the model. However, in our case,

one instance of the process is considered i.e. the currently observed

process. The different states (resulting from the reasoning phase) are

152

continuously recorded thus we need to re-measure the fitness every time a

new state is recorded. Obviously, if the currently observed process

"deviates" significantly from the ESM the fitness will be low. Moreover, as

only one instance is considered, the fitness value may not reach the value 1;

therefore, the observed process is considered to matches the ESM if the

fitness is greater that a specified threshold which could be estimated

experimentally.

To illustrate this, consider the situation of leaving home illustrated in Figure

7.4. Using the metric f we can now calculate the fitness between the states

logs 321 ,, LLL , and the ESM, respectively. Figure 7.5 (a) shows one possible

scenario where there is a strong similarity with the ESM model and the

fitness measurement yields 0.1),(1 =LESMf . Note here that this ESM does

not consider the order between Shaving state and other states; thus; even if

the Shaving state is observed any time before the Dressing state the fitness

remains 1.0.

Figure 7.5 Conformance Analysis

Although from a logical point of view 2L fits well the ESM, replaying the

states log 2L fails since the model requires state Shaving being achieved;

153

the fitness can be measured as 857.0),(2 =LESMf . As the last log 3L

corresponds to an ongoing process (two states have been achieved so far)

the fitness measurement should yield a low value 533.0),(3 =LESMf .

Therefore, if the matching threshold is equal 0.8 for example, then only 1L

and 2L match the "ready-to-leave-home" situation.

7.5.2 LTL Constraint Checking Mode

In contrast to the model conformance, linear temporal logic (LTL) checking

does not assume the existence of a fully defined ESM. Therefore, it can be

used to successively introduce, and check for the states succession or

dependencies (as described in section 6.2.2 and in the formal definition in

section 6.2.4). In this case, the developer can define a set of "rules" using

LTL for defining the situation. As an example of the LTL usage in situation

definition, Table 7.4 illustrates some LTL expressions and an example for

each of them.

Table 7.4 Examples of LTL Analysis

LTL Formula name
LTL Formula

Parameter(s) Example
Description

is_last_state_A A=Dressing

Is the last state equal to A? This formula can be

used to define the “ready-to-leave-home”

situation without considering the states’ history.

when_A_then_eventually_B
A=Presenting

B=Interrupted

If state A occurs, does state B occur after state A

occurred? In this example, we may consider that

we have a discussion situation.

does_person_P_the_last_state P=Alice

Is the activity of the last state done by person P?

We may consider for this example that if a

Person has covered the last state then he

achieved a certain situation.

enventually_state_A_and_event

ually_B

A=Shaving

B=BrushingTeeth

Does state B occur and A too? When measuring

the fitness f, we may not be able to know if a

certain state has been achieved. In this example,

we may conclude that the user is a male.

eventually_state_A_next_B_nex

t_C

A=Dressing

B=LeavingHome

Does state C occur after state B occur after state

A? In this example, the situation could be

154

Figure 7.6 illustrates the result of LTL checking if the two logs 1L and 2L of

Figure 7.5 satisfies the LTL formula eventually_state_A_and_ eventually_B

where A=Shaving and B=BrushingTeeth. As can be seen in Figure 7.5 the

above formula has been evaluated to false for the log 2L since the shaving

activity has not occurred. Whereas the log 1L states that the activity shaving

has occurred and followed by the activity BrushingTeeth thus rendering the

formula result true.

Figure 7.6 Results of LTL checker

C=Driving “heading-to-work”.

always_between_time_T_and_

U

T=2010-01-02T09:00:00

U=2010-01-02T10:00:00

Always the timestamp is between T and U. This

could be used in combination with other formulas

to check if an LTL formula is verified during a

certain time interval.

155

7.6 Case Study: Leave-to-Work Situation Recognition
7.6.1 Objective

In this section, a case study has been done to demonstrate that the

proposed process-mining based approach is capable of recognizing

situations with reasonable accuracy. For this purpose, the following scenario

is considered: Alice is a university lecturer. She drives everyday to the

university. Alice lives in a cold city; therefore she needs to warm up the car

every time she goes to work. In this scenario Alice could be in a "ready-to-

leave-home" situation if she experienced different states e.g. UseToilet,

PrepareBreakfast and TakeShower. Recognizing this situation allows the

context-aware system to provide Alice with relevant services e.g. switching

on her car engine and the air conditioner if necessary.

The case study evaluates the approach with the use of a third party smart

home dataset, captured in a real-life home environment. The main purpose

of this evaluation is to measure the accuracy of the approach for situation

recognition.

7.6.2 Background

A fundamental requirement for a pervasive application to be able to act

intelligently is the continuous monitoring and understanding of the current

situation it is involved in. In addition, the application must recognize

situations as they are evolving, that is, in an online fashion. Knowing what is

going on is relevant for predicting what will happen, which in turn can be

used to make decisions and improve the system performance. To this end,

the proposed situation recognition approach does not require the existence

of all situation ingredients (states) to perform successfully. Therefore, the

aim is to measure the matching between the ESM and an ongoing process

that potentially has a situation modelled by this ESM. The goal is to label the

156

situations that an inhabitant is experiencing in a smart environment based on

the activity data that is collected by the environment.

To meet these aims, two experiments have been done. In the first

experiment, states log describing the different activities performed by an

inhabitant during several days is used to mine her daily process and to

identify interesting situations. Then, given a labelled set of situation

instances, the accuracy of recognizing the situation of interest is measured

by measuring the matching between its ESM and their corresponding

models. Results show an accuracy of 91.30% for a threshold of 0.75.

Secondly, the previous experiments are repeated with situation instances

not having all the required states. Results show an accuracy of 73.91% for a

threshold of 0.75. These two figures correspond to "leave-to-work" situation

as we will see.

7.6.3 Dataset

In this case study a real-life smart home dataset has been used. This

dataset contains activities with discernible time durations over a time period.

Van Kasteren’s dataset [154] is a public third party dataset that originates

from the intelligent autonomous systems group in the University of

Amsterdam. It has been widely used by other researchers for smart home

experimental evaluations (e.g. [155]). The data is recorded in the home of a

26 year old man over 24 days in his apartment. Annotation was done by the

inhabitant via voice recognition from a headset. Over the 24 days, 2120

activities were annotated, resulting in 245 activity instances. Seven different

activities were recorded: "leave house", "use toilet", "take shower", "go to

bed", "prepare breakfast", "prepare dinner", and "get drink". Only one activity

is defined as occurring at any point in time. Fourteen state change digital

sensors were installed in doors, kitchen cupboards and kitchen appliances.

Each sensor transmits binary values only. A "0" indicates the sensor is not in

use, a "1" indicates that the sensor is firing, such as a cupboard sensor

157

indicating that the cupboard is open. Recall that generally speaking we can

consider the situation as a specified succession of a set of states

corresponding to a set of activities. Part of the activity log of this dataset is

as follows:

Start time End time Activity ID
25-Feb-2008 00:22:46 25-Feb-2008 09:34:12 10
25-Feb-2008 09:37:17 25-Feb-2008 09:38:02 4
25-Feb-2008 09:49:23 25-Feb-2008 09:53:28 13
...
26-Feb-2008 00:39:24 26-Feb-2008 00:39:40 4
26-Feb-2008 03:13:40 26-Feb-2008 03:14:41 4
...

7.6.4 Set up and Methodology

Most of the situation recognition research that has been conducted to date

focuses on recognizing situations when activities are performed sequentially

or when they happen at one point of time. In contrast, the focus here is on

recognizing situations in real world when their related activities are omitted

and happen in any order. In addition, unlike other works that use the

aforementioned dataset for activity recognition, the recognized activities

have been used to mine the inhabitant daily process. Knowing this process,

different interesting situations could be identified.

As we are interested in mining the daily inhabitant process (behaviour), all

the activities in one day are considered as a process instance. By using the

heuristics miner, the resulting process model is obtained and shown in

Figure 7.7. It shows the causal dependencies between activities and

provides an overview about the actual flow of the process, whereas each

rectangle corresponds to an activity (the numbers reflect the frequencies at

which the activities and their transitions were observed). Note here that as

only one activity is defined as occurring at any point in time, and for

simplifying process model visualization, Figure 7.7 defines one state type

("complete") for each activity instead of considering two state types "start"

and "complete". The ESM of the "leave-to-work" situation, part of the

process model, is shown in Figure 7.8.

158

Figure 7.7 The daily inhabitant process model

Figure 7.8 The "leave-to-work" situation model

7.6.5 Experiments

To identify the performance of proposed situation recognition, the activity log

has been separated into 23 distinct process instances (experiencing leave-

159

to-work situation) corresponding to the activities the user has experienced in

23 days. One-third of these instances have been used to learn the process

model shown in Figure 7.7. Then these instances have been used to

measure the fitness between each of them and the ESM of the "leave-to-

work" situation. Figure 7.9 illustrates the experiment results. It shows that for

a threshold of 0.75, 91.30% of the situation cases are recognized. In the

second experiment, from each process instance all the activities starting

from the activity ID 1 ("leave house") have been dropped, in order to

measure the ability of the approach to predict that the inhabitant situation will

be most probably that he is leaving to work. Note here that leave-to-work

situation is different from "leave house" activity. "Leave house" activity may

not be because the user is going to work. Thus, in leave-to-work situation a

context history as well as its temporal aspect is considered in the proposed

approach. In this respect, the previous experiment has been repeated

considering the new process instances and the results are illustrated in

Figure 7.10. The figure shows that for a threshold of 0.75, the accuracy of

predicting this situation is 73.91%.

Figure 7.9 Leave-to-work situation matching measure

160

Figure 7.10 Incomplete leave-to-work situation matching measure

7.6.6 Summary

One goal of this thesis is to design an algorithmic approach to recognize

situations performed in a real-time, smart pervasive environment. This case

study has shown that it is possible to recognize situations that are performed

in a smart home and to label an activity stream with high accuracy.

Obviously, the accuracy level varied by situation as well as by the threshold

considered. This highlights the fact that not only smart environment

algorithms are needed to perform automated situation recognition and

tracking, but also a reasonable threshold should be determined from

experiments on a situation basis.

7.7 Conclusion

Contextual situation recognition is a crucial issue for enhancing the situation

awareness of pervasive applications. In this study three essential issues to

accomplish situation recognition have been addressed: (1) contextual

knowledge gathering - how to gather context knowledge using the

conceptual architecture, (2) context knowledge representation - how to

represent context data and knowledge concerning situations using the

introduced conceptual model, and (3) the algorithm issue - how to track and

161

identify situations. Moreover, it has been argued that approaches that find an

approximate matching between an expected behaviour and the observed

one are the most suited but require a form of similarity measurement. To this

end, it has been shown the potential of structured states log analysis to gain

more high-level insight into the user behaviour. Some of the mining

algorithms that are included in the ProM framework have been discussed.

The extracted process model is then compared with the expected situation

model using the conformance and LTL analysis.

Thus, the contribution of this chapter is the introduction of a formalism for the

situation recognition problem and the leverage of process mining techniques

for measuring situation alignment, i.e., comparing the real situations of users

with the expected situations which span one or more domains.

So far the different parts presented in the previous chapters provide the

developer with the necessary infrastructure (ubique middleware) to acquire

the context information of interest for his application. The situation

recognition presented in this chapter also enhances the ubique middleware

to reason about the user behaviour spanning different domains. The next

step is to provide the developer with the tools necessary to develop

services-oriented applications that takes into consideration the relevant

context information to dynamically adapt their behaviour accordingly. Thus,

in the next chapter a model-driven approach for service adaptation is

proposed.

162

Chapter 8 Apto: A Model Driven Generative
Mechanism for Context-aware Adaptive Services

In this chapter, an MDD-based mechanism called Apto (the Latin word for

adapt) is proposed. It aims at applying an adaptation to services modelled or

developed without any adaptation possibility in mind and independently of

specific usage contexts. The notion of an evolution fragment and evolution

primitive is introduced to capture the variability in a logical way. Finally, the

proposed approach intends to support the viewpoint of context-aware

adaptation as a crosscutting concern with respect to the core “business

logic” of the service. In this way, the design of the service core can be

decoupled from the design of the adaptation logic.

Apto contributes to a solution to automatically generate a customized service

based on the current context. Another feature is that Apto supplies a set of

automated tools for generating and deploying executable service definitions

e.g. WS-BPEL (OASIS, 2007) which in turn significantly reduces the

development cost.

8.1 The Rationale behind Apto

This thesis defines the context-aware service adaptation as the action that

modifies the service in a way that causes service behaviour to evolve

according to the evolution of business and users’ requirements, and the

context considered relevant to that service.

Typically the application developer has to include not only business process

in a process (service) language (such as BPEL), but also business rules,

policies, constraints, as well as customization mechanisms [156]. Obviously,

mixing service with business rules and customization issues weakens the

modularity of the system. According to the separation of concern principle,

the application developer has to focus on the core application business logic

163

and then define separately the customization and business rules, and weave

them to the core application. Therefore, modularization and separation of

concerns are the driving principles of the Apto approach to target service

adaptation.

Further, as the number of services involved in a service-based application

grows, the complexity of developing and maintaining these applications also

increases. One of the successful approaches to managing this complexity is

to represent the application by different architectural views [157]. Examples

of these views are orchestration view, control flow view, and component

view (see Figure 8.1). This modelling respects the separation of concern

principle so that we have multiple views of the system; each view models a

specific concern. This chapter focuses on the control flow view; however the

proposed approach could be extended to consider the other views.

Figure 8.1 Levelled views of service

On the other hand, the process of developing context-aware adaptive

services should incorporate facilities to describe the adaptation requirements

from early development phases i.e. analysis, design, and implementation to

the service execution. This requires languages and modelling approaches

that are capable of representing adaptation-specific aspects, i.e., how the

164

service will adapt itself in response to the relevant conditions, events or

situations. Therefore, Apto adopts MDD methodology. MDD emphasizes

using models to capture the application knowledge that is independent of

any underlying computing infrastructure (e.g. middleware, programming

languages operating systems etc.) which will ease the reuse, adaptation,

and evolution of applications.

8.2 Apto Approach

The traditional service life cycle, as depicted in Figure 8.2, consists of three

phases, namely the design and modelling of the service, the selection or

configuration of a particular service variant, and the deployment of this

variant in the runtime environment [158]. As the service may evolve over

time there should be a feedback loop during which a service is continuously

re-adjusted or optimized.

Figure 8.2 Service life cycle

Typically, the developer first focuses on the functional (business logic)

aspect of the service which yields a basic model of the service. Then, as will

be seen later, they define the evolution fragments and the different possible

context scenarios. "Weaving" a group of evolution fragments with the basic

model will yield a new service variant. The Apto approach is structured in

four main sections that address, respectively; the modelling of the control

flow, context information, evolution fragments and the linkage model that

links between evolution model and context model (Figure 8.3).

165

Figure 8.3 Apto Approach

During runtime, the user and environmental context will be gathered when

the service is invoked by the user. The “Analysis Process” module evaluates

all context constraints of the context model. Using the constraints elements

evaluated to “true” and the linkage model the “Customisation Process” is

able to determine the relevant evolution fragments (see Section 7.3) and the

order in which they should be applied to the basic control flow model.

According to the mapping between the evolution fragments and context

elements, the set of evolution fragments to be applied to the service could

be determined. The “Composition Process” combines these fragments to the

control flow model. The result is a new control flow model which corresponds

to the current context. All these operations are fulfilled in the model level.

Thus, the resulting service model has to be translated to concrete artefacts

(e.g. BPEL). It is the role of the infrastructure to create a new instance

corresponding to the new control flow model which satisfies the user

requirements and context. This transformation from the model to the code is

achieved using one of the model-to-text transformation tools.

166

In the following sections, the conceptual model of the Apto approach is

introduced; then Apto is described in the light of the service development

phases: modelling, configuration/instantiation, and deployment.

8.3 A Conceptual Model of Context-aware Adaptive
Services

The proposed conceptual model is structured in four main sections that

address, respectively, the modelling of the service, context, evolution, and

linkage models (see Figure 8.4).

Figure 8.4 Apto conceptual model

8.3.1 Basic Service Model

In Apto the original service (i.e. an existing service or a newly created one) is

denoted as a basic service. The basic service could be defined for the most

frequently executed variant of a service family. For illustration purposes,

Figure 8.4 depicts some of the main meta-classes representing the key

elements of BPEL service model (e.g. Activity, Flow, Sequence, etc.), and

their relationships. The service is composed of one or more activities.

167

8.3.2 Context Model

The main assumption in the proposed model is the representation of

relationships between entity and information: entities (such as persons,

places, events, etc.) are identified and classified by an ID. Each entity is

associated with a set of contexts (such as address, location, etc.).

A Context is a class that models the context information. The type Context

is further distinguished into two subtypes AtomicContext and

CompositeContext. Atomic contexts are low-level contexts that do not rely

on other contexts and can be provided directly by context sources. In

contrast, composite contexts are high-level contexts that may not have direct

context source. A composite context aggregates multiple contexts elements,

either atomic or composite. For instance, Temperature and

RainLikelihood are atomic contexts provided by e.g. two Web services;

whereas, BadWeather is a composite context that aggregates these two

contexts. The Name and ContextType properties define the context name

and its type and are used in model-to-code generation as will be seen later.

In the context model, a context-dependent constraint concept has been

introduced which allows specifying conditions on context elements that must

hold to. These constraints correspond to a specified set of evolution

fragments that should be applied to the service model in a certain context

usage.

8.3.3 Evolution Model

The adaptation in a service usually involves adding, deleting and replacing

tasks in the service. In this respect, and in order to achieve a deep change

ability, this thesis proposes to add for each class X in the BPEL metamodel

three classes: AddedX, DeletedX, and ChangedX describing the difference

between the basic service model and the respective variant model (see

168

Figure 8.5). Other change types can be mapped to variations and

combinations of these ones. For instance, moving an activity is achieved by

deleting the activity and inserting it at a later position of the service.

Figure 8.5 Generating evolution metamodel

The evolution metamodel (Figure 8.4) consists of an EvolutionStrategy

class that contains one or more EvolutionFragments. The

EvolutionFragment in turn consolidates related EvolutionPrimitives (a

set of elements of type ChangeableElement) into a single conceptual

variation. The Apto approach promotes evolution fragments (EFs) to be first-

class entities consisting of closely-related additions, deletions and changes

performed on the basic service model.

The evolution metamodel could be automatically generated from the BPEL

model. One possible approach is to use the ATL transformation language6

as in the script of Figure 8.6. Figure 8.4 shows only one example of the three

generated classes from the Flow class (AddedFlow, DeletedFlow and

ChangedFlow).

6 ATL Language http://www.eclipse.org/m2m/atl/

http://www.eclipse.org/m2m/atl/

169

Figure 8.6 Evolution metamodel generation script

8.3.4 Linkage Model

Because in the MDD world everything should be a model, the mapping

between the context constraints and the EFs is represented by a linkage

model. The linkage model is used for three purposes:

(i) Providing context-awareness mechanism. A ContextBinding models the

automatic binding of contexts to service’s input variables. The concept of

context binding allows to automatically retrieving available context

information. For example, suppose that we have two contexts

ChildrenCount and AdultsCount that represents the number of children

and adults using a multi-user service application. These numbers are used

by a tourism service to retrieve travel offers from different tourist agents.

Thus, a context binding can be built between input parameters of the service

create OUT : EvolutionMM from IN1 : BPELMM, IN2 : MinimalEvolutionMM;
helper def: changeableElement: MinimalEvolutionMM!EClass =
MinimalEvolutionMM!EClass.allInstances()->select(i | i.name = 'ChangeableElement');

rule copyMinimalEvolutionMM {
 from s : MinimalEvolutionMM!EClass
 to t: EvolutionMM!EClass (
 name <- s.name,
 interface <- s.interface,
 eSuperTypes <- s.eSuperTypes,
 eStructuralFeatures <- Sequence {s.eStructuralFeatures}
 ...
)
}
rule generateEvolutionMMElements {
 from s : BPELMM!EClass (s.name <> 'Service' and not s.abstract)
 to t: EvolutionMM!EClass (
 name <- s.name,
 interface <- s.interface,
 eSuperTypes <- s.eSuperTypes,
 eStructuralFeatures <- Sequence {s.eStructuralFeatures}
 ...
),
 added_element: EvolutionMM!EClass (
 name <- 'Added' + s.name,
 eSuperTypes <- Sequence {t, thisModule.changeableElement}
),
 changed_element: EvolutionMM!EClass (
 name <- 'Changed' + s.name,
 eSuperTypes <- Sequence {t, thisModule.changeableElement}
),
 deleted_element: EvolutionMM!EClass (
 name <- 'Deleted' + s.name,
 eSuperTypes <- thisModule.changeableElement
)
}

170

and these contexts. The result is that whenever the service is invoked, it will

automatically retrieve the number of children and adults and adjust itself

accordingly.

(ii) Mapping between the context constraints and the EFs which will be used

as information for driving the model transformation. AdaptationBinding is

actually used as a mapping between a context and an EF. The semantics is

that the EFs which have to be applied to the basic service are determined by

the value of the context.

(iii) Representing the dependencies between the EFs in order to constrain

their use. Each dependency has at least one source EF and exactly one

target EF. The relations supported in Apto are as follows: dependency

(Require), compatibility (Exclude), execution order constraint (Follow), and

hierarchy (SubSet). Require arises when elements introduced by one EF

depend on elements introduced by another. The Exclude relationship

dictates which EFs are incompatible with each another, based on conceptual

design knowledge of the service engineer. SubSet denotes composition

relationship which means that when choosing the child EF the parent EF

must be applied first. As one EF might insert an activity whose attributes are

changed by a second one, the execution order of these EFs becomes

important. Therefore, the Follow relationship enables the order in which EFs

are applied to the basic service.

8.4 Service Adaptation and Instantiation

The selection of a service variant should take into consideration the service

context in which this selection takes place. In addition, this selection should

be done automatically. To this end, the basic service model, the defined

EFs, the context and the linkage models are used to configure the models of

the different variants. A single service variant is created by applying a

number of EFs and their related evolution primitives to the basic service.

171

Step 1. Select EFs: the EFs that are relevant to configuring a particular

variant are selected based on the current values of the context model; i.e.,

an EF will be selected if all context constraints associated with it –via the

linkage model– evaluate to “true”.

Step 2. Check EFs relations: EFs relations are considered to ensure

service consistency. The selected EFs have to be extended if dependent

EFs are missing. Also, it could happen that some of these EFs are mutually

exclusive; in this case the service variant cannot be generated. In addition,

the EFs are sorted by the order in which they should be applied to the basic

service.

Step 3. Apply the EFs: After defining and evaluating the relevant set of

EFs, the corresponding evolution primitives are applied to the model of the

basic service.

Step 4. Consistency Check: Although the EFs are validated, applying

these EFs in combination with each other may result in a deadlock or data

inconsistency in the resultant service variant. Therefore, a consistency check

is necessary and it is considered in the future work.

Two types of change can be distinguished here: “instance level changes”

that should be made on a user request basis and the “permanent changes”

that are due to changes of the regulation or the business rules. In the latter

case, Apto is flexible enough to accommodate this type of evolution by

assigning it to a context constraint always evaluated to true. One of the

advantages of the Apto approach is that the evolution in the service

definition can be easily documented.

Further, the evolution fragment concept is used to specify the service

adaptation during runtime namely the adaptation strategy. But what about

the evolution of the adaptation strategy? Here comes the role of the

AdaptStrategyBinding concept. An example of the strategy evolution is

172

that the business owner may choose to apply a different adaptation strategy

during the Christmas holidays which require them to eliminate, add or

change some activities and later to return to the basic strategy. To this end,

the evolution strategy could also be linked to a specific context constraint.

8.5 Deployment and Execution

After the adaptation and instantiation, the resultant service variant model has

to be transformed into an executable artefact (e.g. specified by BPEL). As

the user context as well as the business requirements is in constant change,

the evolution and context models should be kept in the runtime as well. This

gives the ability to switch between variants during runtime. Obviously for

non-long running services the service context is unlikely to change at

runtime. However, for long running services, the change in the user or the

environmental context may trigger the need to change the service business

logic (such as adding or changing activities, variables, or conditional

expressions, etc.) i.e. to switch to another service variant. In this respect we

can distinguish between two cases:

In the first case, the changes resulting from applying the corresponding EFs

to the basic service affect the logic of the service before the current position

in the service execution. In this case, the currently running service instance

could be considered an obsolete and invalid instance; therefore, a new

service variant must be generated and deployed which conforms to the

newly operating context. In the second case, changes resulting from

applying the EFs affect only the logic of the service after the current position

in the service execution. In this case, the instance migration becomes a

crucial issue. Recently WebSphere Process Server V7 7 introduced the

service instance migration feature that enables service instances to be

migrated to a new version of a business service.

7 http://www.ibm.com/developerworks/websphere/library/techarticles/1008_xie/1008_xie.html?ca=drs-

http://www.ibm.com/developerworks/websphere/library/techarticles/1008_xie/1008_xie.html?ca=drs-

173

8.6 Apto Tool Realization

As a proof-of-concept, two prototypes have been built to facilitate the

proposed approach one on Java platform and the other on .NET platform.

8.6.1 Prototype on Java platform

The Eclipse Modelling Framework (EMF) has been used to model the

aforementioned models. Having specified these models, the Apto tool is able

to deliver the context-aware adaptive service (CAAS) on the basis of the

user request as follows (see Figure 8.7). The user’s request for the service is

intercepted by the Process Proxy service which in turn triggers the Context

Analysis module. The Context Analysis module evaluates all context

constraints of the context model. Using the constraints elements evaluated

to “true” and the linkage model we are able to determine the relevant EFs

and the order in which they should be applied to the basic service model.

These relevant EFs are used by the Model Composer module which

supports context-aware service configuration; i.e., it allows for the

configuration of a service variant by applying only those EFs relevant in the

service context. The result is the CAAS Model.

This model is automatically transformed, using a set of transformation rules,

to generate the executable specification of the target platform. At this time,

the proxy service creates a new virtual end point which will be bound to the

resulting deployed service. Then it invokes the service deployment of the

corresponding execution engine (ODE 8 in the prototype) to deploy the

generated service. The user’s request is then transferred to the new end

point; and the user will be provided with a personalized service that takes

into account their context and preferences.

8 Apache ODE http://ode.apache.org/user-guide.html

http://ode.apache.org/user-guide.html

174

Figure 8.7 Apto Java-based tool architecture

For the proxy service, the Apache Synapse9 has been employed which is

designed to be a simple, lightweight and high performance Enterprise

Service Bus (ESB). One of the key features of Synapse is that it is easily

extended via a custom Java class (mediator); therefore the Synapse engine

is configured with a simple XML format to use the proxy service as the

mediator. This mediator is responsible for coordinating and running all the

above-mentioned modules. The Context Analysis and Model Composer

modules are implemented via a Java application. The engine used to run the

service is ODE which is an engine for executing services described using

the WS-BPEL 2.0 standard. One possible deployment option that is used in

the prototype is to deploy ODE as a simple service in Axis 2 (the Apache

Web Services/SOAP/WSDL engine) which is invoked using plain

SOAP/HTTP and deployed in the Tomcat application server10.

In Apto, the model-to-code transformation has been used which takes as

input the CAAS model and generates code in an executable language (i.e.

BPEL). In the literature there are numerous code generation techniques

9 Apache Synapse (ESB), http://synapse.apache.org/
10 Apache Tomcat, http://tomcat.apache.org/

http://synapse.apache.org/
http://tomcat.apache.org/

175

such as templates+filtering, template+metamodel, inline generation, code

weaving, etc. [157]. In the Apto prototype, the template+metamodel

technique has been used which is realized in the openArchitectureWare

framework (oAW) 11 to implement the model transformations. But any of

above-mentioned techniques can be utilized in the proposed approach with

reasonable modifications.

8.6.2 .NET Framework based prototype

A platform has been developed to provide an environment where a service

engineer specifies the required contexts and services using high-level and

visual modelling languages (see Figure 8.8).

Figure 8.8 .NET based Apto tool

11 openArchitectureWare, http://www.openarchitectureware.org

176

The Apto modeller (part of Apto tool) provides a graphical user interface

(GUI) allowing service engineers to specify services using AptoML language

(see Appendix C). In the implementation, this tool has been developed in

C# on top of the .NET framework. A key component of the .NET framework

is the Windows Workflow Foundation (WF). WF provides a common

framework for building workflows into Microsoft Windows applications. WF

itself is a programming model, along with an engine and a set of tools for

building workflow-enabled applications. The programming model is made up

of exposed APIs that other programming languages can use to interact with

the workflow engine. The workflow designer has been leveraged to allow

service engineers to design the basic service and the evolution model.

Visual Studio Visualization and Modelling SDK (VMSDK) has been used to

create model-based development tools that has been integrated into Visual

Studio. VMSDK has been leveraged to the definition of a model that

represents AptoML concepts. More precisely, it has been used to represent

the concepts of context and linkage models. The model has been

surrounded with a variety of tools, such as a diagrammatic view, the ability to

generate code and other artefacts. This model has been combined with

other models (basic service and evolution model) and tools to form the Apto

toolset.

VMSDK allows us to develop the model in the form of a domain-specific

language (DSL). This is achieved by using a specialized editor to define a

schema or abstract syntax together with a graphical notation. From this

definition we could generate a graphical editor in which users can view and

edit the model, serialization methods that save the model in readable XML,

and program code and other artefacts using text templating.

In this prototype, service engineers use XAML (Extensible Application

Markup Language) [159] to define the service (workflow) and its variants by

specifying the evolution fragments. XAML is a markup language for

177

declarative application programming. XAML is used extensively in .NET

Framework technologies, particularly WPF (Windows Presentation

Framework) and WF. In WPF, XAML is used as a user interface markup

language to define UI elements, data binding, eventing, and other features.

In WF, workflow definitions can be serialized to XAML. These serialized

definitions can be reloaded for editing or inspection, passed to a build

system for compilation, or loaded and invoked.

XAML is quite interesting because: (i) it does allow us to model the service

from the workflow and UI perspectives in a unified declarative language, (ii)

XAML simplifies creating a UI for a .NET Framework application. Visible UI

elements can be created in the declarative XAML markup, and thus the UI

definition is separated from the run-time logic. Therefore, XAML facilitate the

development of services where separate parties can work on the UI and the

logic of an application, using potentially different tools. (iii) Standardized by

the Organization for the Advancement of Structured Information Standards

(OASIS), BPEL is a language for defining system workflows, which is a

subset of the more general approach taken by WF [160]. However, the

transition from BPEL to WF and vice versa is still possible by using the

BPEL Activity Library that implements the constructs defined by version 1.1

of the BPEL specification.

The Context Analysis and Model Composer modules (Figure 8.3) are

implemented via a C# application. After weaving the evolution fragments

with the basic service model, it loads the new service variant into the

workflow engine. It is worth mentioning here that although XAML is used in

this case study as a modelling language, the Apto approach does not restrict

the usage of any specific modelling language; for example, Eclipse

Modelling Framework (EMF) can be used instead of XAML (see for example

[161]).

178

8.7 Case Study: Tourism Service Application
8.7.1 Objective

In order to verify and evaluate the Apto approach, a case study for a tourism

service application running in a multi-touch multi-user table that provides an

“intelligent” offering of tourism information is presented here. The aim of this

application is to provide users with tailored information and personalized

experience when booking for their holidays. Obviously, since usually

different users use this type of application simultaneously, considering and

resolving conflicts between users’ preferences (part of the application

context) becomes important. This application runs in a travel agency which

has some agreements with other travel agents distributed in different cities.

These agents provide a Web service interface for others to get offers and

book for their trip. For simplicity the Web services provided by these agents

are assumed to have the same interface. In addition, the application displays

customized information about the city e.g. historic buildings, art museums,

etc. according to the users’ preferences.

8.7.2 Solution and Implementation

The basic service model illustrated in Figure 8.9, starts after initialization

activity by ParallelForEach activity which, given the number of adults and

children willing to have a tourist tour, retrieves agents’ offers. An activity to

show the current discount rate is then launched followed by an activity to

show the obtained offers. Next, different tourism information about the city is

retrieved and displayed i.e. general city information and available outdoor

activities.

179

Figure 8.9 Basic service model

The AptoML language is used to help service engineers create intuitive

service variant models. This section demonstrates: (i) how to specify

contexts, (ii) how to define an intelligent tourism service using the AptoML

language, and (iii) how to automatically transform the service model into

executable artefacts.

8.7.2.1 Context-awareness

The specifications of the contexts, including context name and type, are

stored in a XAML document, for subsequent usage in the specification of the

180

service. We start by declaring the contexts used in the service, namely

ChildrenCount, AdultsCount, UsersLikeBarsCount, UsersLikeWineCount,

and ChildrenOriented. The former four are atomic contexts that are

represented by UML classes with the stereotype AtomicContext (see Figure

8.10). Figure 8.10 shows the specified context of the tourism service. The

atomic contexts ChildrenCount and AdultsCount are used as input

parameters for the service by leveraging the ContextBinding mechanism.

The UsersLikeBars and UsersLikeWine context constraints will be evaluated

to true if at least one of the users likes wine or bars respectively. During the

Christmas holidays the SalesDay constraint is evaluated to true. The context

constraint ChildrenInvolved returns true if the ChildrenOriented composite

context value is true. The ChildrenOriented is a composite context

represented by a UML class with the stereotype CompositeContext; it is

used to determine if the majority of the users are children. The business

logic of the aggregation (i.e., how to compute the value of a composite

context from its aggregated contexts) is implemented via the

CalculateContextValue operation of the composite context class.

181

Figure 8.10 Context and linkage models

The Apto tool generates a class skeleton so that the service engineer can

add the necessary code for the retrieval of the context. For example, Figure

8.11 depicts the generated class for the ChildrenCount and ChildrenOriented

contexts.

Figure 8.11 The generated context class

8.7.2.2 Service Adaptation

After having specified the service context and having designed the basic

service model, the service engineer should specify the different evolution

fragments. This is illustrated in the following table.

Table 8.1 Evolution fragments and their evolution primitives
Context

Constraint
Evolution
Fragment

Evolution Primitives

UsersLikeWine EF-Wine - AddedActivity: ShowWineTasting activity should be added as

a child of GetCityInfo.

UsersLikeBars EF-Bars - AddedActivity: ShowBars activity should be added as a child

182

of GetCityInfo.

ChildrenInvolved EF-Children - DeletedActivity: ShowWineTasting

- AddedActivity: ShowKidsActivities activity should be added

as a child of GetCityInfo.

SalesDay EF-Sales - ChangedActivity: Discount activity should be changed to

reflect the new discount value.

True EF-

Promotion

- AddedActivity: Promotion activity should be added after the

GetCityInfo activity.

The “True” constraint means that this is a permanent change that should be

applied to the basic service model. Table 8.2 shows the different

dependencies between the specified evolution fragments. The dependency

1 means that the EF-Children should be applied after applying the EF-Wine

i.e. the ShowWineTasting should be dropped and then the

ShowKidsActivities should be added. If users like going to the bars then they

presumably like wine. This is expressed by the dependency 2 which means

that if one user likes going to the bars two activities will be added ShowBars

and ShowWineTasting. Finally, since the EF-Children and EF-Bars are

assumed to be mutually exclusive, the generation of a service variant is not

possible if these fragments should be applied simultaneously (dependency

3).

Table 8.2 Evolution fragments dependency
Dependency

1 EF-Children follow EF-Wine

2 EF-Bars require EF-Wine

3 EF-Children exclude EF-Bars

Figure 8.12 depicts a part of the service model after applying EF-Children,

EF-Sales, and EF-Promotion evolution fragments to the basic service model.

183

Figure 8.12 Example of a service variant model

8.7.2.3 Transforming Service into Executable Artefacts

After having defined the service using the Apto tool, the model transformer

comes into play during the model transformation process. This process

takes as input the XAML document of the service model -produced by the

Apto tool- and applies the relevant EFs according to the retrieved context

values to derive the correspondent service variant. Then it converts the

service model into executable Web service specifications (i.e. BPEL and the

relevant configuration files). However, since the .NET workflow engine is

used in this case study to execute the service this step is omitted.

8.7.3 Summary

This case study has illustrated the model driven approach for the

development and evolution of context-aware services, realised by Apto

platform. The approach is also supported by AptoML language and tools

conceived to ease and to increase the automation in developing and

evolving of such services as well as decoupling service development from

context handling layer.

The case study shows that using Apto tool the developer is able to logically

see the service adaptation as deriving a service variant by applying to a

184

basic service a set of EFs corresponding to different usage contexts leaving

the resolution of the EFs dependencies to the implemented tool. Resolving

the conflicts and dependencies between EFs is simple in this case study;

however, it could require a rule-based system or modelling the EFs in a

semantic language for more complex scenarios.

The generative aspect of the approach (e.g. Figure 8.11) saves the

developer time as they focus, with the help of the tool, on the business logic

of the service and its variants in different contexts leaving the task of

acquiring the relevant context, and choosing and instantiating the service

variant to the implemented tool.

The result shows that the approach and its supporting platform are effective

for the problem and promising for real-life applications.

8.8 Conclusion

Change is the only constant in the software/service development world due

to the evolution of business or user requirements. Therefore, there is a need

to customize services by generating a service variant that corresponds to the

change in the business and user requirements. The Apto model-driven

approach for managing and generating service variants has been described.

The novelty in this chapter lies in (i) the introduction of the concepts of

evolution fragments and evolution primitive to enable the developer to

logically view the service variant i.e. in terms of the features that determine

the difference between service variants in each usage context, (ii) and the

generative aspect of the approach to automatically derive the service variant

corresponding to the available context.

One of the advantages of using MDD is that the context management and

adaptation logic are included in models rather than directly implemented in

code. Based on logically-viewed well-defined evolution fragments and

185

evolution primitive constructs; on the ability to group evolution fragments in

components; and on the ability to regroup these components in a

constrained way, necessary adjustments of the basic service can be

correctly and easily realized when creating or configuring a service variant.

Finally, Apto adopts the viewpoint that this kind of adaptation can often be

considered as a crosscutting concern with respect to the core service logic.

Hence, one of the Apto’s main goals has been the decoupling of the design

and implementation of the adaptation logic from the design and

implementation of the main service logic.

186

Chapter 9 Conclusions and Future Work

The main outcome of the research undertaken for this thesis was the

development of a new approach for the development and evolution of

context-aware services which regroups four main parts: a new context

modelling approach, a cross-domain context management middleware, a

contextual situation recognition algorithm, as well as a mechanism for

generating context-aware adaptive services. To achieve these objectives

different techniques have been leveraged such as the software product line,

model driven development, process mining, and the Jabber protocol.

This chapter discusses three parts of the work that merit further examination

and discussion. Firstly, the evaluation of the proposed approach is carried

out in terms of their strong and weak points. Secondly, the conclusions are

reached and the main contributions are summarised. Thirdly, the future

directions of the research are discussed.

9.1 Critical Analysis
9.1.1 Context as a Dynamic Product Line

The proposed context modelling approach can be seen from two

perspectives: (i) identifying context features and giving them semantics by

mapping context feature models to OCM; and (ii) using feature models to

provide a representation of variability in context models. The proposed

meets the requirements mentioned in Section 3.1.1:

R1- Efficient applicability of context reasoning: unlike the reasoning on

monolithic context information proposed for example in CoBrA [31] and

CONON [33], the proposed approach provide a mechanism (i.e. context

feature model configuration) for pre-selection of context information relevant

to an application. This could speed up the reasoning process by reducing

the size of the knowledge base.

187

R2- Ease of context querying: in the existing approaches (such as CoOL

[98], CONON [33], GAS [99], and CoDAMoS [100]) queries are defined in

general-purpose querying mechanisms (e.g. SPARQL) or a domain-specific

query language (such as [44]). On the other hand, Gaia [1] introduced the

context file system to construct a virtual directory hierarchy, based on the

types of context associated with particular files. This virtual directory

hierarchy forms a simple query language to determine what types of context

are attached to files. On the other hand, the proposed context feature model

allows the context modeller to devise context-specific features that can be

shared among all applications. Moreover, retrieving context information

using general-purpose query mechanisms remains possible by devising a

special context feature.

R3- Providing different levels of abstractions: As aforementioned in

section 3.1.3, the only approach that provide the developers with

mechanisms to specify the abstraction level of the context information of

interest is the context model of ACAI [113]. In ACAI the highest level of

abstraction is the ContextView which represents the different types of

context that belong to a given entity. Thus ContextView represents the

primary dimension which will be used to access the secondary context.

ContextView has two properties contains, and invokes. The classes

ContextFeatures and ContextEngagements are the respective ranges of

those properties. These classes are considered to be the second level of

expressiveness in the ontology. However, ACAI ontology is rather

elementary with regards to the context features and types defined. In

addition, the proposed approach in this thesis is more generic since it does

not impose any restriction either on the number of these dependencies or on

the number of context features. Finally, it gives the possibility to provide the

context information on arbitrary levels of abstraction thanks to the arbitrary

composition of context primitives e.g. inference rules.

188

R4- Efficient context provisioning: In order for the applications to access

the relevant context information, most of the existing approaches present

suitable access paths in the context modelling. For example, by using the

context file system of Gaia, primary dimensions which will be used to access

the secondary context can be easily identified and mapped to file paths.

However, from the context modeller usability perspective, the proposed

approach in this thesis is more intuitive and it allows the modeller to think

about the context information from different perspectives. Thus he is able to

use the feature model available tools to design different context feature

models corresponding to context access paths.

R5- Provide constructs to model context variability: None of surveyed

modelling approaches provide constructs to model context variability. The

only exception is the CoOL model which partially supports context variability

by introducing the aspect-scale model. However, it is not generic enough to

model the aspects hierarchy and their dependency. In addition, CoOL is less

practical for expressing aspects’ scales with regards to more non-material

context data, such as user preference or activity. On the other hand, the

feature-based context modelling uses the context features, their

relationships and dependencies to provide more generic solution to address

the context variability. In addition, the use of context-specific features would

improve the overall performance of the system, since it might decrease the

number of network interactions between an application and the context

provider. Finally, it might reduce the reasoning time by considering only the

relevant context primitives.

However, although the proposed approach provides the application with a

customized view of the available context information after receiving its

queries, it is the application’s responsibility to further query this acquired

information using, for example, the SPARQL language. In addition, any

189

change in the available context information triggers the context information

generation process and thus delivering the newly available context

information to the application which may not be efficient in terms of the

network bandwidth usage. Thus there is a need for extending the work to

consider delivering only the context information corresponding to the context

features affected.

Finally, in its current implementation the proposed approach does not reflect

the dependencies between the different context features in a semantic way.

Thus, there is a need to extend the proposed approach to model these

dependencies using a semantic language.

9.1.2 ubique Middleware

In this section, the ubique approach is analyzed with respect to the

requirements set out in section 3.2.1:

Domains of context perception: This requirement, which is compliant with

the principle of system boundary of pervasive applications, is achieved by

using CS in each domain and the dissemination between CSs across

different domains. Classical work in context-aware computing has developed

centralized and application-specific solutions such as Context Toolkit [32]

and Gaia [1]. These approaches offer solutions for restricted and small-size

smart space environments, with localized scalability. More recent

middleware offer access to context information in distributed repositories e.g.

Confab [4], PACE [120], CAMUS [5], and GLOSS [6]. However, unlike these

approaches, the notion of home domain CS in the ubique approach

simplifies application developments as it is the reference point for any

context information related to the entities registered in it.

Uniform API interface and protocol: By providing the ubique’s set of open

and generic APIs, context is made available to third party application

developers to build new services without having to define specific

190

mechanisms for context distribution and management between domains. In

addition, these APIs and the proposed protocol between different entities

enable external providers and consumers to be integrated into the ubique

system to provide or consume context information.

Efficient context information dissemination: Since communication

resources are limited, and since most context information gathered by a

context server will not necessarily be used by any application, ubique

considers filtering and disseminating only the context information that is

explicitly required by an application.

Cross-domain reasoning: Usually, when the user roams between different

domains his context information is stored in the context repositories

available in the visited domains. In this scenario, recognizing contextual

situations spanning more than one domain may be a difficult task for the

developer using the exiting context management middleware. This is

because the developer has to identify and resister the required queries in the

context repositories holding the context information of interest (e.g. PACE

[120] and Confab [4]). Then he has to use the acquired context information

from different domains to recognize contextual situations. Unlike the existing

approaches, ubique provides an enabling infrastructure to support reasoning

about the context information across different domains and to identify the

contextual situations which span different domains. Moreover, this enforces

the idea that each domain should have its own inference mechanism

whereas in the HDS a cross-domain inference becomes possible.

Dynamic matching between context providers and consumers: In

ubique the matching function of the context manager ensures efficient

context information dissemination. In addition, since the CPs specify their

capabilities in providing context information that correspond to different

domains, an application can specify in its interests or queries the domain(s)

from which it is interested in retrieving the context information.

191

Support for privacy: The most representative example of approaches

addressing the privacy issue in the context management is the Context

Fabric (Confab) [4]. It provides architecture for privacy-sensitive systems, as

well as a set of privacy mechanisms that can be used by application

developers. However, the user has to define and submit a separate privacy

policy for each domain. In addition, as the context information is distributed

in different repositories enforcing the user’s privacy may not be an easy task.

On the other hand, in ubique approach, since the context information is

centralized in one CS (HDS), enforcing the user’s privacy policy which spans

different domains is feasible. In addition, the dissemination protocol between

CPs and CSs on one hand, and between CSs on the other hand, ensures

that the context information will not be stored everywhere and that this

information will be disseminated only if the receiver has the privilege to get it.

However, ubique still has some limitations. For example in its current

implementation only ID-based queries are supported which are answered by

the HDS; however, queries like "give me all users in the train 123 that are

reading" would also need to be answered by the respective domain server.

In this case the privacy argument may not be sufficient as it is only valid

when we have ID-based access.

In addition, in the ubique approach the concepts of ownership and ID are

closely linked but in reality they should be considered as separate aspects.

For example, although Alice could be always automatically considered as

the owner of information pertaining to her, it is not the case for the object

entities. Further, additional evaluation of the ubique approach is needed in

terms of its scalability and its applicability in more complex real-life

scenarios. In terms of the dissemination latency of contextlets among

servers it is probably not quite representative as the latency is dominated by

actual cross-domain network bandwidth and the middleware implementation

optimization.

192

Finally, although the definition of the domain has been already established in

the literature, additional questions remain to be answered such as: how does

the user find the domain he is currently in? What kind of infrastructure is

needed to support that? Can there be overlapping domains?

9.1.3 Situation Recognition Approach

One goal of this work is to design an algorithmic approach to recognize

situations performed in real-time and in a smart pervasive environment.

Three features for recognizing situations in pervasive computing have been

identified: the use of context history, the use of context in different domains,

and approximate matching. Based on these features, a process mining

based approach has been proposed to derive the process model of the user

activities from recorded state logs.

The existing rule-based (e.g. [10][11]) and ontology-based (e.g. [33])

approaches provide the flexibility to represent a situation in multiple ways. In

addition, the modularity of representing situations emphasizes the

incremental approach and reuse when building a knowledge base of

situations. However, in the domain of context-aware computing, these

approaches are error-prone due to the incompleteness and ambiguity of

context information. In addition, they use exact matching techniques (e.g.

[59][58]), where all states in a situation need to be found in the context

information flow. Thus they are not suitable for inference from imprecise and

incomplete contexts as they are designed for exact reasoning. The proposed

approach in this thesis follows an approximate technique where the

matching does not need to be exact. Instead, the aim is to determine some

degree to which the context information flow matches the expected flow.

The machine learning techniques (e.g. [60]), on the other hand, have at their

core a probabilistic reasoning method to, in the first instance, learn

behaviour patterns and follow this to recognise situations. Typically the

existing approaches to situation detection require constructing sequence-

193

based models of low-level activity features. However, this thesis argues that

activities may have a distinct series of activities but with no particular

sequence. Therefore, the proposed approach in this thesis uses process

mining techniques to situation recognition by relying on the relevance

weights of activities rather than on sequence information.

Some of the existing approaches (e.g. [60]) rely on the training data to learn

the behavioural patterns which requires large amounts of activity historical

data which can be difficult and costly to acquire. Other approach reduces the

reliance on training data by incorporating domain knowledge into their

approaches (e.g. [15][128][129][130]).

On the other hand, the proposed approach in this thesis has the advantage

of allowing context modellers to create models (from scratch or inspired by

the derived process model) for user’s situations which take into

consideration the different activities the user may experience in the different

domains they visit. For this purpose, context modellers have to design for

each situation the necessary filters to filter out the “noise” activities which are

not related to the recognition of the situation in question. The recognition is

conducted in the conformance testing technique that evaluates if the current

observed state is in alignment with the created (expected) model.

The experimental results indicate that it is possible to recognize situations

that are performed in a smart home and to label an activity stream with high

accuracy. As aforementioned in section 2.3.2, the process mining can deal

with various forms of concurrency. Additionally, the accuracy level varied,

obviously, by situation as well as by the threshold considered. This highlights

the fact that it is not only smart environment algorithms that are needed to

perform automated situation recognition and tracking, but also a reasonable

threshold should be determined from experiments on a situation basis.

The evaluation of the approach uses the activity data in a widely-used data

set, and infers the "leave-to-work" situation. However, the evaluation should

194

be extended to include not only other types of situations but also it should

consider using the whole architecture layers. Currently the case study uses

the activity data but does not consider using the sensor data to identify these

activities. In addition, similar to the learning based techniques, deriving the

user process model requires large amounts of activity historical data which

can be difficult and costly to acquire. However, the contextual situation

model could be build from scratch based on the domain expert knowledge.

9.1.4 Apto Approach

Unlike the existing approaches which address the adaptability in the code

level (e.g. eFlow [133], Context Oriented Programming [139], AO4BPEL

[132], and VxBPEL [20]), Apto presents a model-driven approach to support

the adaptation of the service.

Some approaches (e.g. [20][82][137]) incorporate variabilities into the

service model. They tackle the service adaptation on the service instance or

definition level by explicitly specifying some form of variations (i.e. variation

points and variants) in the service model that will be determined at design

time or runtime according to the operating context. For example, in VxBPEL

[20] the variation points and variants are embedded in the service logic itself

which weakens the system modularity and violates the separation of concern

principle. In addition, the constructs used to specify the service variant (i.e.

variation points and variants) do not reflect the way the developer or

designer logically view the difference in the service model in each context

usage. On the other hand, Apto captures the service variability in a logical

and intuitive way by introducing the notions of evolution fragment and

evolution primitive.

Further, unlike some approaches such as AdaptiveBPEL [131] AO4BPEL

[132], which requires modifying the BPEL engine, the Apto approach

generates the adaptive service artefacts in the standard BPEL language and

does not require the extension or modification of the BPEL engine. In

195

addition, the proposed mechanism could apply an adaptation to services

modelled or developed without any adaptation possibility in mind and

independently of specific usage contexts.

Context management and adaptation logic can be embedded into design-

time models and can therefore be managed and reused more flexibly. At

runtime Apto is able to generate an adaptive service corresponding to the

new context. However, Apto does not address the instance migration issue

which has been already addressed in the literature.

In its current implementation Apto lacks a validation tool for consistency

check (in case one or more evolution fragments have to be applied to the

original service) to ensure that this will not lead to a dead-lock and thus

produce a valid service. Additionally the approach takes advantage of the

MDD to transfer the service model and automatically generate the adapted

service; however, it assumes that the service has been already modelled

which is not always the case.

On the other hand, the service model represents BPEL at the syntactic level.

While being separated, the evolution fragments and evolution primitives are

low-level and service specific. In order to ease the design of service variants

that need to be sound on a business-level, the Apto idea could be extended

to be applied to the business-level model as well. In this case, the service

adaptation takes part in two areas: (i) generating the adapted abstract

business-level service, and (ii) transforming this service model into different

concrete service artefacts according to different infrastructures or

requirements.

Moreover, although the case study provides evidence of the usefulness of

the approach from the design/implementation perspective, other evaluations

in terms of the results gathered during the usage of the approach and the

tool by a number of users and the number of cases the approach is able to

cover are also needed.

196

Finally, Apto must be extended to accommodate more complex service

variants scenarios. That is, if there are many dependencies between

different evolution fragments that compose a variant, this has to be reflected

in a semantic way. For example, if EF1 requires EF2, EF2 requires EF5, …,

EF5 requires EFn, to efficiently resolve this EFs dependency Apto should be

extended to model the dependency between evolution fragments using a

semantic language.

9.2 Conclusions and Main Contributions
9.2.1 Conclusions

Despite the success and impressive research progress in the pervasive

computing field, there are still problems and challenges to address which

continue to be a major factor hindering the wide-spread adoption of a

pervasive computing paradigm and therefore applicability. From a technical

perspective, the reason is largely due to the difficulty the developer

experiences in developing context-aware applications and adapting these

applications to meet the specific needs of the user. The research during this

study was based on the observation that existing approaches and tools are

weak in providing a mechanism to adapt services at an adequately deep

level and with sufficient automation. In addition, the existing approaches for

context management are weak in providing a generic and robust context

management infrastructure that facilitates the task of acquiring the context

information related to the user and available in different domains they visit.

The study aims towards a software engineering approach which takes into

consideration the ease of developing context-aware services. The following

work has been undertaken during the study:

Approach

Based on the successful application of existing technologies, such as MDD,

Jabber protocol, generative programming, and software product line, a new

197

approach has been proposed to facilitate context modelling and

management in distributed pervasive computing environment, situation

recognition, as well as to adapt the context-aware services.

Implemented Prototypes

As a proof of concepts of the proposed approach, different prototypes have

been developed to support the distributed domain-based context

management and service adaptation, and to demonstrate and evaluate their

applicability. In the design phase, after creating the service model, linkage

model, evolution model, and context model, the Apto is able to automatically

generate and deploy at runtime the new service definition corresponding to

the current context. This is achieved by using the Apto implemented

algorithm and the model-to-code transformation techniques imported from

MDE.

The context model can be populated by using the ubique context

management middleware services. This can be done either by configuring

the context feature model or by specifying the context query which could

span multiple domains. To implement the ubique approach, Jabber protocol

has been leveraged to build upon and use its communication benefits.

Individual context managers are deployed as context servers and their

responsibility is limited to a specific domain. A collection of drivers for

sensors and sensor agents for multiple purposes have been implemented

which have been used to test a number of context aware applications. The

aim is to make accessible the user’s context information related to the

domains they visit.

Case Studies

Four case studies (Chapter 8) have been undertaken to illustrate and

evaluate the usability, correctness, and applicability of the proposed

approach, in terms of its capability of building context-aware adaptive

198

service applications. These applications are able to define context queries

that span one or more domains and to specify the context features they are

interested in.

9.2.2 Contributions

The proposed approach in this study enables application developers to

design and implement context-aware adaptive services. From a

development point of view the original contribution of this thesis is the

automation and deep level adaptation of services. From the context

acquisition point of view the original contribution is a middleware

infrastructure that enables application developers to specify the context

information they need even if it is distributed in different domains. The key

technique contributions are summarised below:

Product line Based Context Model

This study presents an approach for context-aware service development

based on a flexible product line based context model which significantly

enhances reusability of context information by providing context variability

constructs (i.e. context features) to satisfy different application needs. This

approach allows the context modeller to represent context in a high-level

and in a more intuitive way and to improve overall systems performance.

Domain-based Context Management Middleware

The architecture of ubique hides the increasing complexity of context

management from application developers and incorporates advanced

mechanisms for the support of mobile users. In ubique, the classification and

storage of the context information is performed in distributed context tuple

spaces hosted in different context servers the hierarchy of which reflects the

geographical structure of the physical world. A key point in ubique is that for

each piece of monitored context information (contextlet) only one copy is

199

maintained at a central point of access, the home domain. Additionally

ubique meets most of the requirements presented in Section 3.2.1.

Process Mining Based Contextual Situation Recognition

The situation recognition approach focuses on the potential use of process

mining techniques for measuring situation alignment, i.e., comparing the real

situations of users with the expected situations. This approach is both based

on and takes advantage of the ubique in order to reason about user’s

behaviour (situation) which may span different domains. It has been shown

that approximate matching between an expected behaviour and the

observed one requires a form of similarity measurement for comparing them.

To this end, different process mining techniques have been leveraged to

mine the user behaviour and to match it with the expected one. The

approach has been shown to be effective at identifying contextual situations

within pervasive computing applications.

MDD-based Mechanism for Context-aware Adaptive Services

The Apto approach proposed here aims to apply an adaptation to services

modelled without any adaptation possibility in mind and independently of

specific usage contexts. The notion of an evolution fragment and evolution

primitive to capture the variability has been introduced. Finally, the Apto

approach intends to support the viewpoint of context-aware adaptation as a

crosscutting concern with respect to the core “business logic” of the service.

In this way, the design of the service core can be decoupled from the design

of the adaptation logic.

9.3 Future Work

Further research plans involve exploring the usage of the proposed

approach in more complex scenarios; thus several points should be

considered:

200

1- Currently, the idea of the product line based context model is applied for

the context information available in the local domain the context server

manages. In order to extend the proposed approach to the distributed

context management architecture, two main points have to be addressed.

Firstly, for the purpose of interoperability, we need a formal common

semantics for context feature models managed by different context

managers.

Secondly, the user has to be involved in determining the context information

the application is allowed to acquire from different domains. Therefore, the

user should be able to specify this information in her privacy policy. To this

end, the system should allow the user to have several configurations of the

context feature model available in each domain. In each configuration, which

corresponds to a specific privacy policy, the user determines which context

features are allowed to be acquired by the application and during which time

period(s). This way, any application access to the user context information

available in any domain would be controlled according to the privacy policy

corresponding to that domain. This can be achieved either by asking the

user to configure the context feature model or to use already-saved

configurations. Then the context manager middleware is able to eliminate all

context features that are not allowed to be acquired by the application.

Furthermore, as aforementioned, since the communication resources are

limited, instant dissemination of the distributed context to the HDS cannot be

achieved when the volume of data or the rate of change is high. One

possible solution is to make a trade-off; that is to fine tune the context

dissemination precision by specifying the time window interval to acquire the

context or the threshold of the change value. The objective in the future work

is to find mechanisms to include this tuning in the context feature model.

This way, the application will be able to choose the degree of performance

desired by configuring the context feature model.

201

2- In ubique, a Jabber-based context information dissemination protocol has

been adopted. The storage and dissemination of the context information is

performed by dissemination between distributed CSs. However, further

research has to be done which involves exploring the use of the ubique

middleware in more complex scenarios, extending ubique to support the

geographic location based access to context information, the extension of

the privacy protection scheme to consider not only specified domains but

also domain types (e.g. a restaurant or a swimming pool), and a ubique

extension to support context queries on the basis of the entities’ and

domains’ types.

3- While the study of process mining based situation recognition revealed

that process mining techniques are effective tools for recognizing situations,

there are even more complex monitoring scenarios that need to be

considered. In particular, the proposed approach needs to be extended to

perform accurate situation recognition and tracking for environments that

house multiple residents.

In addition, the proposed approach deals with mining the control flow, which

is only one perspective addressed in process mining. Such information as

the timestamp of a state or its subject (the person having experienced this

state) can be used to derive high-level information about the process also in

other perspectives. For example, the resource perspective looks at the set of

users involved in the process, and their relationships. The social perspective

can generate the social network, which may highlight different relationships

between the users involved in the process. Therefore, the future work aims

at leveraging these perspectives for providing users with more personalized

services in pervasive environments, and integrating this work with Apto tool

to provide a comprehensive software engineering framework for situation-

aware systems.

202

4- The Apto tool could be enhanced by a graphical user interface which

facilitates creating the evolution models and link the evolution fragments to

the service elements. In addition, the Apto idea will be implemented as an

extension to WebSphere Process Server V7 to take advantage of the

instance migration feature.

On the other hand, in order to achieve the possibility of making deep

changes to the service definition, in future work the Apto approach will be

extended to regroup different service views’ models. In this case, automated

tools are needed to verify the integrity of the changes in the different views

and generate the adapted service variant artefacts accordingly. Finally, the

dependency between evolution fragments will be modelled using a semantic

language to realise their dependency resolution.

203

References

[1] M. Román, C. Hess, R. Cerqueira, and R. H. Campbell, “A Middleware Infrastructure
for Active Spaces,” IEEE Pervasive Computing, vol. 1(4), pp. 74-83, 2002.

[2] A. Chan and S.-N. Chuang, “MobiPADS: a reflective middleware for context-aware
mobile computing,” IEEE Transactions on Software Engineering, vol. 29, no. 12, pp.
1072-1085, Dec. 2003.

[3] M. Grossmann, M. Bauer, N. Hönle, U.-P. Käppeler, D. Nicklas, and T. Schwarz,
“Efficiently Managing Context Information for Large-Scale Scenarios,” in Third IEEE
International Conference on Pervasive Computing and Communications, 2005, no.
PerCom, pp. 331-340.

[4] J. I. Hong and J. A. Landay, “architecture for privacy-sensitive ubiquitous computing,”
in 2nd International Conference on Mobile Systems, Applications, and Services,
2004, vol. p, pp. 177-189.

[5] S. L. Kiani, M. Riaz, S. Lee, and Y.-K. Lee, “Context Awareness in Large Scale
Ubiquitous Environments with a Service Oriented Distributed Middleware Approach,”
in Fourth Annual ACIS International Conference on Computer and Information
Science (ICIS’05), 2005, vol. 5, pp. 513-518.

[6] A. Dearle et al., “Architectural Support for Global Smart Spaces,” in Lecture Notes In
Computer Science; Vol. 2574. Proceedings of the 4th International Conference on
Mobile Data Management, 2003, pp. 153-164.

[7] G. Chen, M. Li, and D. Kotz, “Data-centric middleware for context-aware pervasive
computing,” Pervasive and Mobile Computing, vol. 4, no. 2, pp. 216-253, 2008.

[8] S. W. Loke, “Representing and reasoning with situations for context-aware pervasive
computing: a logic programming perspective,” The Knowledge Engineering Review,
vol. 19, no. 3, pp. 213-233, Jun. 2005.

[9] C. Bettini et al., “A survey of context modelling and reasoning techniques,” Pervasive
and Mobile Computing, vol. 6, no. 2, pp. 161-180, Jun. 2009.

[10] S. W. Loke, “On representing situations for context-aware pervasive computing : six
ways to tell if you are in a meeting,” in Proceedings of PerCom Workshops, 2006, pp.
1-5.

[11] A. Ranganathan and R. H. Campbell, “An infrastructure for context-awareness based
on first order logic,” Personal and Ubiquitous Computing, vol. 7, no. 6, pp. 353-364,
Dec. 2003.

[12] S. S. Yau and J. Liu, “Hierarchical Situation Modeling and Reasoning for Pervasive
Computing,” in In Proceedings of the the Fourth IEEE Workshop on Software
Technologies For Future Embedded and Ubiquitous Systems, and the Second
international Workshop on Collaborative Computing, integration, and Assurance
(Seus-Wccia’06), 2006, pp. 5-10.

[13] T. van Kasteren, A. Noulas, G. Englebienne, and B. Kröse, “Accurate activity
recognition in a home setting,” Proceedings of the 10th international conference on
Ubiquitous computing - UbiComp ’08, p. 1, 2008.

[14] J. Modayil, T. Bai, and H. Kautz, “Improving the recognition of interleaved activities,”
in Proceedings of the 10th international conference on Ubiquitous computing -
UbiComp ’08, 2008, p. 40.

204

[15] S. Mckeever, J. Ye, L. Coyle, C. Bleakley, and S. Dobson, “Activity recognition using
temporal evidence theory,” Journal of Ambient Intelligence and Smart Environments,
vol. 2, no. 3, pp. 253-269, 2010.

[16] O. Brdiczka, J. L. Crowley, and P. Reignier, “Learning Situation Models for Providing
Context-Aware Services,” Proceedings of Universal Access in Human-Computer
Interaction, UAHCI 2007, in: Lecture Notes in Computer Science, vol. 4555, pp. 23-
32, 2007.

[17] P. Palmes, H. K. Pung, T. Gu, W. Xue, and S. Chen, “Object relevance weight
pattern mining for activity recognition and segmentation☆,” Pervasive and Mobile
Computing, vol. 6, no. 1, pp. 43-57, Feb. 2010.

[18] G. M. Kapitsaki, G. N. Prezerakos, N. D. Tselikas, and I. S. Venieris, “Context-aware
service engineering: A survey,” Journal of Systems and Software, vol. 82, no. 8, pp.
1285-1297, Aug. 2009.

[19] T. Asikainen, T. Mannisto, and T. Soininen, “Kumbang: A domain ontology for
modelling variability in software product families,” Advanced Engineering Informatics,
vol. 21, no. 1, pp. 23-40, 2007.

[20] M. Koning, C. Sun, M. Sinnema, and P. Avgeriou, “VxBPEL: Supporting variability for
Web services in BPEL☆,” Information and Software Technology, vol. 51, no. 2, pp.
258-269, Feb. 2009.

[21] M. Weiser, “The Computer for the 21st Century,” Communications, vol. 3, no. 3, pp.
3-11, 1991.

[22] E. Niemelä and J. Latvakoski, “Survey of requirements and solutions for ubiquitous
software,” in Proceedings of the 3rd international conference on Mobile and
ubiquitous multimedia - MUM ’04, 2004, no. October, pp. 71-78.

[23] A. K. Dey, “Understanding and Using Context,” Personal and Ubiquitous Computing,
vol. 5, no. 1, pp. 4-7, 2001.

[24] K. Boukadi, C. Ghedira, S. Chaari, L. Vincent, and E. Bataineh, “CWSC4EC: how to
employ context, web service, and community in enterprise collaboration,” in
Proceedings of the 8th international conference on new technologies in distributed
systems, 2008, pp. 27-38.

[25] T. Winograd, “Architectures for Context,” Human-Computer Interaction, vol. 16, no. 2,
pp. 401-419, 2001.

[26] V. Viera, P. Brézillon, A. C. Salgado, and P. Tedesco, “A Context-Oriented Model for
Domain-Independent Context Management,” Revue d’intelligence artificielle, vol. 22,
no. 5, pp. 609-627, Oct. 2008.

[27] W. X. Htb, “The Context Gateway : A Pervasive Computing Infrastructure for Context
Aware Services,” Report submitted to School of Computing, National University of
Singapore & Context -Aware Dept., Institute for Infocomm Research, 2003.

[28] R. C. A. D. Rocha, M. Endler, and T. S. de Siqueira, “Middleware for ubiquitous
context-awareness,” in Proceedings of the 6th international workshop on Middleware
for pervasive and ad-hoc computing - MPAC ’08, 2008, pp. 43-48.

[29] R. C. A. da Rocha, “Context Management for Distributed and Dynamic Context-
Aware Computing,” PhD Thesis, 2009.

[30] R. J. Orr and G. D. Abowd, “The Smart Floor : A Mechanism for Natural User
Identification and Tracking,” in Conference on Human Factors in Computing Systems,
2000, pp. 275 - 276.

205

[31] H. Chen, T. Finin, and A. Joshi, “An Ontology for Context-Aware Pervasive
Computing Environments,” The Knowledge Engineering Review, vol. 18, no. 3, pp.
197-207, 2004.

[32] A. K. Dey, G. D. Abowd, and D. Salber, “A conceptual Framework and a Toolkit for
Supporting the Rapid Prototyping of Context-Aware Applications,” Human-Computer
Interaction, vol. 16, no. 2, pp. 97-166, 2001.

[33] X. H. Wang, T. Gu, D. Q. Zhang, and H. K. Pung, “Ontology Based Context Modeling
and Reasoning using OWL,” in Proceedings of the Second IEEE Annual Conference
on Pervasive Computing and Communications Workshops, 2004, vol. pp, pp. 18-22.

[34] N. Weienberg, A. Voisard, and R. Gartmann, “Using ontologies in personalized
mobile applications,” in Proceedings of the 12th annual ACM international workshop
on Geographic information systems - GIS ’04, 2004, no. 1, p. 2.

[35] F. Wang and K. J. Turner, “Towards personalised home care systems,” in
Proceedings of the 1st ACM international conference on PErvasive Technologies
Related to Assistive Environments - PETRA ’08, 2008.

[36] T. Gu, H. K. Pung, and D. Q. Zhang, “A middleware for building context-aware
mobile services,” in IEEE 59th Vehicular Technology Conference., 2004, pp. 2656-
2660.

[37] B. Schilit, N. Adams, and R. Want, “Context-aware computing applications,” in
Workshop on Mobile Computing Systems and Applications, 1995, pp. 85-90.

[38] G. Klyne et al., Composite Capability/Preference Profiles (CC/PP): Structure and
Vocabularies 1.0. 2004, p. W3C Recommendation.

[39] J. Indulska, R. Robinson, A. Rakotonirainy, and K. Henricksen, “Experiences in
Using CC/PP in Context-Aware Systems,” in Proceedings of the 4th international
Conference on Mobile Data Management, 2003, pp. 247-261.

[40] A. Held, D. Ag, S. Buchholz, and A. Schill, “Modeling of Context Information for
Pervasive Computing Applications,” in Proceedings of SCI 2002/ISAS 2002, 2002,
pp. 1-6.

[41] Http://www.openmobilealliance.org/Technical/wapindex.aspx, “WAPFORUM. User
Agent Profile (UAProf).” .

[42] D. Ayed, D. Delanote, and Y. Berbers, “MDD Approach for the Development of
Context-Aware Applications,” Lecture Notes in Computer Science, vol. 4635/2007,
pp. 15-28, 2007.

[43] K. Henricksen, J. Indulska, and A. Rakotonirainy, “Generating context management
infrastructure from highlevel context models,” in In Industrial Track proceedings of
the 4th International Conference on Mobile Data Management (MDM2003), 2003, pp.
1-6.

[44] J. Indulska and R. Robinson, “Modelling Weiser’s ‘Sal’ scenario with CML,” in The
6th Workshop on Context Modelling and Reasoning (CoMoRea’09) affiliated with
IEEE PerCom'09, 2009, pp. 1-6.

[45] T. Halpin, Information Modeling and Relational Databases: From Conceptual
Analysis to Logical Design. 2001.

[46] A. Schmidt and K. V. Laerhoven, “How to Build Smart Appliances,” Ieee Personal
Communications, no. August, pp. 66-71, 2001.

[47] K. Cheverst, “Design of an object model for a context sensitive tourist GUIDE,”
Computers & Graphics, vol. 23, no. 6, pp. 883-891, Dec. 1999.

206

[48] V. Akman and M. Surav, “The Use of Situation Theory in Context Modeling,”
Computational Intelligence, vol. 13, no. 3, pp. 427-438, Aug. 1997.

[49] P. Gray and D. Salber, “Modelling and Using Sensed Context Information in the
Design of Interactive Applications,” In LNCS 2254: Proceedings of 8th IFIP
International Conference on Engineering for Human-Computer Interaction (EHCI
2001), no. 1, pp. 317-335, 2001.

[50] G. Castelli, A. Rosi, M. Mamei, and F. Zambonelli, “A Simple Model and
Infrastructure for Context-Aware Browsing of the World,” in Fifth Annual IEEE
International Conference on Pervasive Computing and Communications
(PerCom’07), 2007, pp. 229-238.

[51] D. Nicklas, M. Großmann, T. Schwarz, S. Volz, and B. Mitschang, “A Model-Based ,
Open Architecture for Mobile , Spatially Aware Applications,” Lecture Notes in
Computer Science, vol. 2121, pp. 117-135, 2001.

[52] N. Cipriani, M. Wieland, M. Großmann, and D. Nicklas, “Tool support for the design
and management of context models,” Information Systems, Jul. 2010.

[53] J. Coutaz, J. L. Crowley, S. Dobson, and D. Garlan, “Context is Key,”
Communications of the ACM, vol. 48, no. 3, pp. 49-53, 2005.

[54] “Web Ontology Language (OWL) homepage,” http://www.w3.org/2004/OWL/. .

[55] I. Horrocks, P. F. Patel-Schneider, H. Boley, S. Tabet, B. Grosof, and M. Dean,
“SWRL: A Semantic Web Rule Language Combining OWL and RuleML,” W3C
Member Submission 21 May 2004, no. 3, 2004.

[56] W. M. P. V. D. Aalst, H. T. D. Beer, and B. F. V. Dongen, “Process Mining and
Verification of Properties : An Approach based on Temporal Logic,” in On the Move
to Meaningful Internet Systems 2005: CoopIS, DOA, and ODBASE: OTM
Confederated International Conferences, CoopIS, DOA, and ODBASE 2005, 2005,
pp. 130-147.

[57] T. Strang and C. Linnhoff-Popien, “A Context Modeling Survey,” in Workshop on
Advanced Context Modelling, Reasoning and Management as part of UbiComp 2004
- The Sixth International Conference on Ubiquitous Computing, 2004.

[58] S. W. LOKE, “Representing and reasoning with situations for context-aware
pervasive computing : a logic programming perspective,” The Knowledge
Engineering Review, vol. 19, no. 3, pp. 213-233, 2004.

[59] T. Springer, P. Wustmann, I. Braun, W. Dargie, and M. Berger, “A Comprehensive
Approach for Situation-Awareness based on Sensing and Reasoning about Context,”
in Proceedings of the 5th international conference on Ubiquitous Intelligence and
Computing, 2008, pp. 143 - 157.

[60] I. McCowan, D. Gatica-Perez, S. Bengio, G. Lathoud, M. Barnard, and D. Zhang,
“Automatic analysis of multimodal group actions in meetings.,” IEEE transactions on
pattern analysis and machine intelligence, vol. 27, no. 3, pp. 305-17, Mar. 2005.

[61] W. Qin, Y. Shi, and Y. Suo, “Ontology-Based Context-Aware Middleware for Smart
Spaces,” Tsinghua Science & Technology, vol. 12, no. 6, pp. 707-713, Dec. 2007.

[62] P. Reignier, O. Brdiczka, D. Vaufreydaz, J. L. Crowley, and J. Maisonnasse,
“Context-aware environments: from specification to implementation,” Expert Systems,
vol. 24, no. 5, pp. 305-320, 2007.

[63] J. Sun, Y. Zhang, and K. He, “A Petri-Net Based Context Representation in Smart
Car Environment,” Lecture Notes in Computer Science, vol. 6104, no. 0302-9743, pp.
162-173, 2010.

207

[64] J. F. Allen, “Maintaining knowledge about temporal intervals,” Communications of the
ACM, vol. 26, no. 11, pp. 832-843, Nov. 1983.

[65] H. Schmidt and F. J. Hauck, “SAMProc : Middleware for Self-adaptive Mobile
Processes in Heterogeneous Ubiquitous Environments Categories and Subject
Descriptors,” in MDS ’07: Proceedings of the 4th on Middleware doctoral
symposium, 2007.

[66] V. Issarny, M. Caporuscio, and N. Georgantas, “A Perspective on the Future of
Middleware-based Software Engineering A Perspective on the Future of Middleware-
based Software Engineering,” in FOSE ’07: 2007 Future of Software Engineering,
2007, pp. 244 - 258.

[67] P. T. Eugster, P. a Felber, R. Guerraoui, and A.-M. Kermarrec, “The many faces of
publish/subscribe,” ACM Computing Surveys, vol. 35, no. 2, pp. 114-131, Jun. 2003.

[68] P. Wyckoff, S. Mclaughry, T. Lehman, and D. Ford, “T Spaces,” IBM Systems
Journal, vol. 37, no. 3, 1998.

[69] N. K. Mukhi, R. Konuru, and F. Curbera, “Cooperative middleware specialization for
service oriented architectures,” in Proceedings of the 13th international World Wide
Web conference on Alternate track papers & posters - WWW Alt. ’04, 2004, p. 206.

[70] V. Grassi and A. Sindico, “Towards model driven design of service-based context-
aware applications,” International workshop on Engineering of software services for
pervasive environments in conjunction with the 6th ESEC/FSE joint meeting -
ESSPE ’07, no. 11, pp. 69-74, 2007.

[71] Z. Maamar, D. Benslimane, and N. C. Narendra, “What can context do for web
services?,” Communications of the ACM, vol. 49, no. 12, pp. 98-103, Dec. 2006.

[72] P. Bellavista and A. Corradi, The Handbook of Mobile Middleware. Auerbach
Publications, 2006.

[73] L. O. B. Silva Santos, M. van Sinderen, and L. F. Pires, “Dynamic service discovery
and composition for ubiquitous networks applications,” in Proceedings of the 2006
ACM CoNEXT conference on - CoNEXT ’06, 2006.

[74] D. Chakraborty, A. Joshi, T. Finin, and Y. Yesha, “Service Composition for Mobile
Environments,” Mobile Networks and Applications, vol. 10, no. 4, pp. 435-451, Aug.
2005.

[75] I. Jørstad, D. V. Thanh, and S. Dustdar, “Personalisation of Future Mobile Services,”
in 9th International Conference on Intelligence in service delivery Networks, 2004.

[76] S. M. Sadjadi, P. K. McKinley, and B. H. C. Cheng, “Transparent shaping of existing
software to support pervasive and autonomic computing,” in Proceedings of the 2005
workshop on Design and evolution of autonomic application software - DEAS ’05,
2005.

[77] J. Kramer and J. Magee, “Self-Managed Systems : an Architectural Challenge,” in
Proceeding FOSE ’07 2007 Future of Software Engineering, 2007.

[78] S. Smanchat, S. Ling, and M. Indrawan, “A survey on context-aware workflow
adaptations,” in Proceedings of the 6th International Conference on Advances in
Mobile Computing and Multimedia - MoMM ’08, 2008, p. 414.

[79] V. Andrikopoulos et al., S-CUBE project: State of the art report on software
engineering design knowledge and Survey of HCI and contextual Knowledge, vol.
215483. 2008, pp. 1-115.

[80] G. Chafle, K. Dasgupta, A. Kumar, S. Mittal, and B. Srivastava, “Adaptation in Web
Service Composition and Execution,” in Proceedings of International Conference on
Web Services (ICWS), 2006.

208

[81] J. Camara, C. Canal, J. Cubo, and J. Murillo, “An Aspect-Oriented Adaptation
Framework for Dynamic Component Evolution1,” Electronic Notes in Theoretical
Computer Science, vol. 189, pp. 21-34, Jul. 2007.

[82] R. Mietzner and F. Leymann, “Generation of BPEL Customization Processes for
SaaS Applications from Variability Descriptors,” 2008 IEEE International Conference
on Services Computing, pp. 359-366, 2008.

[83] A. Carton, S. Clarke, A. Senart, and V. Cahill, “Aspect-Oriented Model-Driven
Development for Mobile Context-Aware Computing,” in First International Workshop
on Software Engineering for Pervasive Computing Applications, Systems, and
Environments (SEPCASE ’07), 2007.

[84] Q. Z. Sheng, S. Pohlenz, J. Yu, H. S. Wong, A. H. H. Ngu, and Z. Maamar,
“ContextServ: A platform for rapid and flexible development of context-aware Web
services,” 2009 IEEE 31st International Conference on Software Engineering, no.
Mdd, pp. 619-622, May. 2009.

[85] “Model-Driven Architecture homepage,” http://www.omg.org/mda. .

[86] W. Vanderaalst et al., “Business process mining: An industrial application,”
Information Systems, vol. 32, no. 5, pp. 713-732, Jul. 2007.

[87] W. M. P. V. D. Aalst and B. F. V. Dongen, “ProM 4 . 0 : Comprehensive Support for
Real,” pp. 484-494, 2007.

[88] W. M. P. V. D. Aalst et al., “ProM 4 . 0 : Comprehensive Support for Real Process
Analysis,” vol. 4546, no. 2007, pp. 484-494, 2007.

[89] A. Rozinat, S. Zickler, M. Veloso, and W. M. P. V. D. Aalst, “Analyzing Multi-agent
Activity Logs Using Process Mining Techniques,” in Distributed Autonomous Robotic
System 8, 2009, pp. 251-260.

[90] V. Rubin, C. W. G, W. M. P. V. D. Aalst, E. Kindler, B. F. van Dongen, and W.
Schafer, “Process Mining Framework for Software Processes,” in Proceedings of the
2007 international conference on Software process, 2007, pp. 19-20.

[91] B. F. V. Dongen, A. K. A. D. Medeiros, H. M. W. Verbeek, A. J. M. M. Weijters, and
W. M. P. V. D. Aalst, “The ProM Framework : A New Era in Process Mining Tool
Support,” vol. 3536, no. 2005, pp. 444-454, 2005.

[92] L. M. Northrop, “SEI’s software product line tenets,” IEEE Software, vol. 19, no. 4, pp.
32-40, Jul. 2002.

[93] A. van der Hoek, “Design-time product line architectures for any-time variability,”
Science of Computer Programming, vol. 53, no. 3, pp. 285-304, Dec. 2004.

[94] K. C. Kang, S. G. Cohen, J. A. Hess, W. E. Novak, and S. A. Peterson, “Feature-
oriented domain analysis (FODA) - feasibility study,” Technical Report CMU/SEI-90-
TR-21, Software Engineering Institute, Carnegie Mellon University, 1990.

[95] P. Saint-Andre, “Extensible Messaging and Presence Protocol (XMPP): Core,”
http://www.ietf.org/rfc/rfc3920.txt, 2004. .

[96] “XMPP Standards Foundation (XSF). XMPP Extensions,” http://xmpp.org/xmpp-
protocols/xmpp-extensions/, 2010. .

[97] M. Roman, C. Hess, R. Cerqueira, a Ranganathan, R. H. Campbell, and K.
Nahrstedt, “A middleware infrastructure for active spaces,” IEEE Pervasive
Computing, vol. 1, no. 4, pp. 74-83, Oct. 2002.

[98] T. Strang, C. Linnhoff-popien, and K. Frank, “CoOL: A Context Ontology Language
to enable Contextual Interoperability,” 4 th IFIP Int. Conf. on Distributed Applications
and Interoperable Systems, (DAIS, vol. vol, pp. 2893pp236-247, 2003.

209

[99] E. Christopoulou and A. Kameas, “GAS Ontology: An ontology for collaboration
among ubiquitous computing devices,” International Journal of Human-Computer
Studies, vol. 62, no. 5, pp. 664-685, May. 2005.

[100] D. Preuveneers et al., “Towards an extensible context ontology for Ambient
Intelligence,” in 2nd European Symposium on Ambient Intelligence (EUSAI 2004),
2004, pp. 148–159.

[101] P. Moore, B. Hu, X. Zhu, W. Campbell, and M. Ratcliffe, “A Survey of Context
Modeling for Pervasive Cooperative Learning,” in IEEE Proceedings of the First
International Symposium on Information Technologies and Applications in Education
(ISITAE ’07), 2007, pp. K5-1-K5-6.

[102] J. Ye, L. Coyle, S. Dobson, and P. Nixon, “Ontology-based models in pervasive
computing systems,” The Knowledge Engineering Review, vol. 22, no. 4, pp. 315-
347, 2007.

[103] R. Krummenacher, H. Lausen, T. Strang, and J. Kopecky, “Analyzing the Modeling
of Context with Ontologies,” in International Workshop on Context-Awareness for
Self-Managing Systems (Devices, Applications and Networks) - CASEMANS 2007 -
as part of Pervasive 2007, 2007, pp. 11 - 22.

[104] Z. Jaroucheh, X. Liu, and S. Smith, “CANDEL: Product Line Based Dynamic Context
Management for Pervasive Applications,” in International Conference on Complex,
Intelligent and Software Intensive Systems (ARES/CISIS 2010), 2010, pp. 209-216.

[105] H. Chen, F. Perich, T. Finin, and A. Joshi, “Soupa: Standard Ontology for Ubiquitous
and Pervasive Applications,” in International Conference on Mobile and Ubiquitous
Systems: Networking and Services, 2004.

[106] H. Chen, T. Finin, and A. Joshi, “Semantic Web in the context broker architecture,” in
Second IEEE Annual Conference on Pervasive Computing and Communications,
2004. Proceedings of the, 2004, pp. 277-286.

[107] D. Connolly, F. V. Harmelen, I. Horrocks, D. L. McGuinness, P. F. Patel-Schneider,
and L. A. Stein, “DAML+OIL (March 2001) Reference Description,” W3C Note 18
December 2001, p. http://www.w3.org/TR/daml+oil-reference, 2001.

[108] T. Strang, C. Linnhoff-Popien, and K. Frank, “CoOL: Context Ontology Language to
enable Contextual Interoperability,” Lecture Notes in Computer Science, vol. 2893,
pp. 236-247, 2003.

[109] M. Kifer, G. Lausen, and J. Wu, “Logical Foundations of Object-Oriented and
Languages,” Journal of ACM, vol. 42, no. 4, pp. 741–843, 1995.

[110] X. Wang, J. S. Dong, C. Chin, and S. R. Hettiarachchi, “Semantic Space: an
infrastructure for smart spaces,” IEEE Pervasive Computing, vol. 3, no. 3, 2004.

[111] M. A. Strimpakou, I. G. Roussaki, and M. E. Anagnostou, “A Context Ontology for
Pervasive Service Provision,” in 20th International Conference on Advanced
Information Networking and Applications - Volume 1 (AINA’06), 2006, pp. 775-779.

[112] T. Gu, X. H. Wang, H. K. Pung, and D. Q. Zhang, “An Ontology-based Context
Model in Intelligent Environments,” in Proceedings of Communication Networks and
Distributed Systems Modeling and Simulation Conference, 2004.

[113] M. Khedr, “ACAI: agent-based context-aware infrastructure for spontaneous
applications,” Journal of Network and Computer Applications, vol. 28, no. 1, pp. 19-
44, Jan. 2005.

[114] “European IST-FP6 project MUSIC (Self-Adapting Applications for Mobile Users in
Ubiquitous Computing Environments),” http://ist-music.eu. .

210

[115] R. Reichle et al., “A Comprehensive Context Modeling Framework for Pervasive
Computing Systems,” DISTRIBUTED APPLICATIONS AND INTEROPERABLE
SYSTEMS, Lecture Notes in Computer Science, vol. 5053, pp. 281-295, 2008.

[116] R. Reichle et al., “A Context Query Language for Pervasive Computing
Environments,” 2008 Sixth Annual IEEE International Conference on Pervasive
Computing and Communications (PerCom), pp. 434-440, Mar. 2008.

[117] T. Kindberg and A. Fox, “System Software for Ubiquitous Computing,” Pervasive
Computing, IEEE, vol. 1, pp. 70–81, 2002.

[118] M. Valla et al., “The Context API in the OMA Next Generation Service Interface,” in
Proceedings of ICIN 2010, 2010.

[119] Z. Jaroucheh, X. Liu, and S. Smith, “Recognize contextual situation in pervasive
environments using process mining techniques,” Journal of Ambient Intelligence and
Humanized Computing, vol. 2, no. 1, pp. 53-69, Dec. 2010.

[120] K. Henricksen, J. Indulska, T. McFadden, and S. Balasubramaniam, “Middleware for
Distributed Context-Aware Systems,” in On the Move to Meaningful Internet Systems
2005: CoopIS, DOA. Proceedings of the OTM Confederated International
Conferences: CoopIS, DOA and ODBASE 2005, Part 1., 2005, vol. 3760, pp. 846-
863.

[121] D. Lee and R. Meier, “A hybrid approach to context modelling in large-scale
pervasive computing environments,” Proceedings of the Fourth International ICST
Conference on COMmunication System softWAre and middlewaRE -
COMSWARE ’09, p. 1, 2009.

[122] M. Strohbach, M. Bauer, E. Kovacs, C. Villalonga, and N. Richter, “Context Sessions
– A Novel Approach for Scalable Context Management in NGN Networks,” in
MNCNA ’07 Proceedings of the 2007 Workshop on Middleware for next-generation
converged networks and applications, 2007, pp. 1-6.

[123] P. Floreen et al., “Towards a Context Management Framework for MobiLife,” in In
IST Mobile & Wireless Communications Summit, 2005.

[124] M. Klemettinen, Enabling Technologies for Mobile Services: The MobiLife Book.
2007.

[125] J. Zebedee, P. Martin, K. Wilson, and W. Powley, “An Adaptable Context
Management Framework for Pervasive Computing,” in Context-Aware Mobile and
Ubiquitous Computing for Enhanced Usability, 2009, pp. 114-146.

[126] G. Percivall, C. Reed, and J. Davidson, Open Geospatial Consortium Inc . OGC
White Paper OGC ® Sensor Web Enablement : Overview And High Level
Architecture ., no. December. 2007, pp. 1-14.

[127] G. Castelli and F. Zambonelli, “Contextual Data Management and Retrieval : a Self-
organized Approach,” in 2009 IEEE/WIC/ACM International Conference on Web
Intelligence and Intelligent Agent Technology, 2009, pp. 535-538.

[128] D. Zhang, M. Guo, J. Zhou, D. Kang, and J. Cao, “Context reasoning using extended
evidence theory in pervasive computing environments,” Future Generation Computer
Systems, vol. 26, no. 2, pp. 207-216, Feb. 2010.

[129] X. Hong, C. Nugent, M. Mulvenna, S. McClean, B. Scotney, and S. Devlin,
“Evidential fusion of sensor data for activity recognition in smart homes,” Pervasive
and Mobile Computing, vol. 5, no. 3, pp. 236-252, Jun. 2009.

[130] J. Ye, L. Coyle, S. Dobson, and P. Nixon, “Using situation lattices in sensor analysis,”
in 2009 IEEE International Conference on Pervasive Computing and
Communications, 2009, pp. 1-11.

211

[131] A. Erradi and P. Maheshwari, “AdaptiveBPEL : a Policy-Driven Middleware for
Flexible Web Services Composition,” in Proceedings of Middleware for Web
Services (MWS) 2005, 2005, pp. 5-12.

[132] A. Charfi and M. Mezini, “AO4BPEL: An Aspect-oriented Extension to BPEL,” World
Wide Web, vol. 10, no. 3, pp. 309-344, 2007.

[133] F. Casati, S. Ilnicki, L. Jin, K. Vasudev, and M.-C. Shan, “Adaptive and Dynamic
Service Composition in eFlow,” in CAISE 2000, 2000, pp. 13-31.

[134] O. Ezenwoye and S. M. Sadjadi, “TRAP/BPEL: A framework for dynamic adaptation
of composite services,” in In Proceedings of the International Conference on Web
Information Systems and Technologies (WEBIST 2007, 2007.

[135] a Erradi and P. Maheshwari, “A broker-based approach for improving Web services
reliability,” in IEEE International Conference on Web Services (ICWS’05), 2005, vol.
1, pp. 355-362.

[136] M. Reichert, S. Rechtenbach, A. Hallerbach, and T. Bauer, “Extending a Business
Process Modeling Tool with Process Configuration Facilities: The Provop
Demonstrator,” in BPM’09 Demonstration Track, Business Process Management
Conference, 2009, vol. 1.

[137] J. Choi, Y. Cho, K. Shin, and J. Choi, “A Context-Aware Workflow System for
Dynamic Service Adaptation,” in Computational Science and Its Applications –
ICCSA 2007, 2007, pp. 335-345.

[138] R. M, U. Greiner, and E. Rahm, “A G E N T W O R K : a workflow system supporting
rule-based workflow adaptation,” Data & Knowledge Engineering, vol. 51, no. 0169-
023X, pp. 223-256, 2004.

[139] P. Costanza, R. Hirschfeld, and O. Nierstrasz, “Context-oriented Programming,”
Journal of Object Technology, vol. 7, no. 3, pp. 125-151, 2008.

[140] K. Czarnecki, C. Hwan, and K. T. Kalleberg, “Feature Models are Views on
Ontologies,” in Proceedings of the 10th International on Software Product Line
Conference, 2006, vol. 1, pp. 41-51.

[141] J. Man, A. Yang, and X. Sun, “Shared Ontology for Pervasive Computing,” Lecture
Notes in Computer Science, vol. 3818, pp. 64 - 78, 2005.

[142] M. Baldauf, S. Dustdar, and F. Rosenberg, “A survey on context-aware systems,” Int.
J. Ad Hoc and Ubiquitous Computing, vol. 2, no. 4, pp. 263-277, 2007.

[143] A. Mehrotra, GSM System Engineering. Mobile Communications Series, Artech
House Publishers., 1997.

[144] I. Roussaki, M. Strimpakou, C. Pils, N. Kalatzis, and N. Liampotis, “Distributed
Context Management in Support of Multiple Remote Users,” in Context-Aware
Mobile and Ubiquitous Computing for Enhanced Usability, 2009, pp. 84-113.

[145] XMPP, “XMPP Standards Foundation,” http://www.xmpp.org/, 2004. .

[146] OpenFire, “OpenFire Server,”
http://www.igniterealtime.org/projects/openfire/index.jsp, 2010. .

[147] Z. Jaroucheh, X. Liu, and S. Smith, “An approach to domain-based scalable context
management architecture in pervasive environments,” Personal and Ubiquitous
Computing, vol. 1617-4917, no. 3, pp. 1-15, Jun. 2011.

[148] S. Dobson and J. Ye, “Using fibrations for situation identification,” in Proceedings of
Pervasive 2006 Workshops, Springer, 2006.

212

[149] A. Dahlbom, L. Niklasson, G. Falkman, and A. Loutfi, “Towards template-based
situation recognition,” Proceedings of SPIE Symposium Defense, Security, and
Sensing, vol. 7352, 2009.

[150] W. van Der Aalst, T. Weijters, and L. Maruster, “Workflow mining: discovering
process models from event logs,” IEEE Transactions on Knowledge and Data
Engineering, vol. 16, no. 9, pp. 1128-1142, Sep. 2004.

[151] B. F. V. Dongen and W. M. P. V. D. Aalst, “Multi-phase Process mining: Building
Instance Graphs,” in International Conference on Conceptual Modeling (ER 2004),
volume 3288 of Lecture Notes in Computer Science., 2004, pp. 362-376.

[152] A. J. M. M. Weijters and W. M. P. V. D. Aalst, “Rediscovering Workflow Models from
Event-Based Data using Little Thumb,” Integrated Computer-Aided Engineering, vol.
10, no. 2 (April 2003), pp. 151 - 162, 2003.

[153] A. Rozinat and W. M. P. V. D. Aalst, “Conformance Testing : Measuring the Fit and
Appropriateness of Event Logs and Process Models,” in BPM 2005 Workshops
(Workshop on Business Process Intelligence, 2006, pp. 163-176.

[154] T. van Kasteren, A. Noulas, G. Englebienne, and B. Kröse, “Accurate activity
recognition in a home setting,” in Proceedings of the 10th international conference
on Ubiquitous computing - UbiComp ’08, 2008.

[155] A. Jehad Sarkar, Y.-K. Lee, and S. Lee, “A Smoothed Naive Bayes-Based Classifier
for Activity Recognition,” IETE Technical Review, vol. 27, no. 2, pp. 107-119, 2010.

[156] J. Yu, Q. Z. Sheng, P. Falcarin, and M. Morisio, “Weaving Business Processes and
Rules: A Petri Net Approach,” in Information Systems: Modeling, Development, and
Integration, Third International United Information Systems Conference, UNISCON
2009, 2009, pp. 121-126.

[157] H. Tran, U. Zdun, and S. Dustdar, “View-based and Model-driven Approach for
Reducing the Development Complexity in Process-Driven SOA,” in Internaltional
Working Conference on Business Process and Services Computing (BPSC’07),
2007, pp. 105-124.

[158] A. Hallerbach, T. Bauer, and M. Reichert, “Managing process variants in the process
life cycle,” in 10th Int’l Conf. on Enterprise Information Systems (ICEIS'08), 2008.

[159] Microsoft-MSDN, “XAML Overview,” http://msdn.microsoft.com/en-
us/library/ms752059.aspx, 2010. .

[160] D. Chappell, “Introducing Microsoft Windows Workflow Foundation: An Early Look,”
http://msdn.microsoft.com/en-us/library/aa480215.aspx, 2005. .

[161] Z. Jaroucheh, X. Liu, and S. Smith, “Apto : A MDD-based Generic Framework for
Context-aware Deeply Adaptive Service-based Processes,” in ICWS, The IEEE 8th
International Conference on Web Services, 2010, pp. 219 - 226.

213

Appendix A : Abbreviations and Acronyms

All the abbreviations and acronyms used in this thesis are defined below.

Abbreviation/Acronyms Description
AOP Aspect Oriented Programming.

BPEL Business Process Execution Language.

BPEL4WS Business Process Execution Language for Web Services.

HTTP Hyper Text Transfer Protocol.
OMG Object Management Group.

OOP Object Oriented Programming.
QoS Quality of Service.

SOAP Simple Object Access Protocol.
SPL Software Product Line.
UDDI Universal Description, Discovery and Integration.
UML Unified Modelling Language.
WSDL Web Service Description Language.
RDF Resource Description Framework.
OWL Web Ontology Language.

CC/PP Composite Capabilities/Preference Profile.

MDA Model Driven Architecture.

MDD Model Driven Development.

OCM Ontology-based Context Model

214

Appendix B : Ontology-based Context Model

<?xml version="1.0" encoding="UTF-8"?>
<rdf:RDF
 xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
 xmlns:rdfs="http://www.w3.org/2000/01/rdf-schema#"
 xmlns:owl="http://www.w3.org/2002/07/owl#"
 xmlns:dc="http://purl.org/dc/elements/1.1/"
 xmlns="http://www.napier.ac.uk/candel#"
 xml:base="http://www.napier.ac.uk/candel">

<!-- Classes -->

 <owl:Class rdf:ID="FMConf">
 <rdfs:subClassOf rdf:resource="http://www.w3.org/2002/07/owl#Thing"/>
 <rdfs:label>Always</rdfs:label>
 </owl:Class>

 <!-- Person Related Classes -->

 <owl:Class rdf:ID="ContactInformation">
 <rdfs:subClassOf rdf:resource="http://www.w3.org/2002/07/owl#Thing"/>
 <rdfs:label>ContactDetails</rdfs:label>
 </owl:Class>

 <owl:Class rdf:ID="PhDStudent">
 <rdfs:subClassOf rdf:resource="Researcher"/>
 <rdfs:label>PhDStudent</rdfs:label>
 </owl:Class>

 <owl:Class rdf:ID="ExpertResearcher">
 <rdfs:subClassOf rdf:resource="http://xmlns.com/foaf/0.1/Person"/>
 <rdfs:label>Experts</rdfs:label>
 </owl:Class>

 <owl:Class rdf:ID="Researcher">
 <rdfs:subClassOf rdf:resource="http://xmlns.com/foaf/0.1/Person"/>
 <rdfs:label>Publications</rdfs:label>
 </owl:Class>

 <owl:Class rdf:ID="PersonFillsPresenterRole">
 <rdfs:subClassOf rdf:resource="http://xmlns.com/foaf/0.1/Person"/>
 <rdfs:label>CurrentRole</rdfs:label>
 </owl:Class>

 <owl:Class rdf:ID="PersonFillsSessionChairRole">
 <rdfs:subClassOf rdf:resource="http://xmlns.com/foaf/0.1/Person"/>
 <rdfs:label>CurrentRole</rdfs:label>
 </owl:Class>

 <owl:Class rdf:ID="ParticipantOfPresentationHappeningNow">
 <rdfs:subClassOf rdf:resource="http://xmlns.com/foaf/0.1/Person"/>
 <rdfs:label>CurrentRole</rdfs:label>
 </owl:Class>

 <owl:Class rdf:ID="PresenterOfPresentationHappeningNow">
 <rdfs:subClassOf rdf:resource="http://xmlns.com/foaf/0.1/Person"/>
 <rdfs:label>CurrentRole</rdfs:label>
 </owl:Class>

 <!-- Place Related Classes -->

 <owl:Class rdf:ID="Place">
 <rdfs:label>Location</rdfs:label>
 </owl:Class>

 <owl:Class rdf:ID="AtomicPlace">
 <rdfs:subClassOf rdf:resource="#Place"/>
 <rdfs:label>RoomResolution</rdfs:label>
 </owl:Class>

 <owl:Class rdf:ID="CompoundPlace">
 <rdfs:subClassOf rdf:resource="#Place"/>
 <rdfs:label>BuildingResolution</rdfs:label>
 </owl:Class>

 <owl:Class rdf:ID="Building">
 <rdfs:subClassOf rdf:resource="#CompoundPlace"/>
 <rdfs:label>BuildingResolution</rdfs:label>
 </owl:Class>

 <owl:Class rdf:ID="Campus">
 <rdfs:subClassOf rdf:resource="#CompoundPlace"/>
 <rdfs:label>BuildingResolution</rdfs:label>
 </owl:Class>

 <owl:Class rdf:ID="Room">
 <rdfs:subClassOf rdf:resource="#AtomicPlace"/>
 <rdfs:label>RoomResolution</rdfs:label>
 </owl:Class>

 <owl:Class rdf:ID="OtherPlaceInBuilding">
 <rdfs:subClassOf rdf:resource="#AtomicPlace"/>
 <rdfs:label>Location</rdfs:label>
 </owl:Class>

 <owl:Class rdf:ID="MeetingRoom">
 <rdfs:subClassOf rdf:resource="#Room"/>
 <rdfs:label>RoomResolution</rdfs:label>
 </owl:Class>

 <owl:Class rdf:ID="RoomHasPresentationHappeningNow">
 <rdfs:subClassOf rdf:resource="#Room"/>
 <rdfs:label>RoomResolution</rdfs:label>
 <rdfs:label>CurrentRole</rdfs:label>

 </owl:Class>

 <owl:Class rdf:ID="Journal">
 <rdfs:subClassOf rdf:resource="http://www.w3.org/2002/07/owl#Thing"/>
 <rdfs:label>Publications</rdfs:label>
 </owl:Class>

 <owl:Class rdf:ID="APlusJournal">
 <rdfs:subClassOf rdf:resource="#Journal"/>
 <rdfs:label>Publications</rdfs:label>
 </owl:Class>

 <owl:Class rdf:ID="BPlusJournal">
 <rdfs:subClassOf rdf:resource="#Journal"/>
 <rdfs:label>Publications</rdfs:label>
 </owl:Class>

 <owl:Class rdf:ID="CPlusJournal">
 <rdfs:subClassOf rdf:resource="#Journal"/>
 <rdfs:label>Publications</rdfs:label>
 </owl:Class>

 <!-- Event Related Classes -->

 <owl:Class rdf:ID="Artefact">
 <rdfs:subClassOf rdf:resource="http://xmlns.com/wordnet/1.6/Document"/>
 <rdfs:label>Publications</rdfs:label>
 </owl:Class>

 <owl:Class rdf:ID="Paper">
 <rdfs:subClassOf rdf:resource="#Artefact"/>
 <rdfs:label>Publications</rdfs:label>
 </owl:Class>

 <owl:Class rdf:ID="Award">
 <rdfs:subClassOf rdf:resource="#Artefact"/>
 <rdfs:label>ExpertHavingAwards</rdfs:label>
 </owl:Class>

 <owl:Class rdf:ID="Event">
 <rdfs:subClassOf rdf:resource="http://xmlns.com/wordnet/1.6/Event-1"/>
 <rdfs:label>Conference</rdfs:label>
 </owl:Class>

 <owl:Class rdf:ID="OrganisedEvent">
 <rdfs:subClassOf rdf:resource="#Event"/>
 <rdfs:label>Conference</rdfs:label>
 </owl:Class>

 <owl:Class rdf:ID="AcademicEvent">
 <rdfs:subClassOf rdf:resource="#OrganisedEvent"/>
 <rdfs:label>Conference</rdfs:label>
 </owl:Class>

 <owl:Class rdf:ID="ConferenceEvent">
 <rdfs:subClassOf rdf:resource="#AcademicEvent"/>
 <rdfs:label>Conference</rdfs:label>
 </owl:Class>

 <owl:Class rdf:ID="SessionEvent">
 <rdfs:subClassOf rdf:resource="#AcademicEvent"/>
 <rdfs:label>Conference</rdfs:label>
 </owl:Class>

 <owl:Class rdf:ID="PaperSession">
 <rdfs:subClassOf rdf:resource="#SessionEvent"/>
 <rdfs:label>Conference</rdfs:label>
 </owl:Class>

 <owl:Class rdf:ID="PosterSession">
 <rdfs:subClassOf rdf:resource="#SessionEvent"/>
 <rdfs:label>Conference</rdfs:label>
 </owl:Class>

 <owl:Class rdf:ID="TalkEvent">
 <rdfs:subClassOf rdf:resource="#AcademicEvent"/>
 <rdfs:label>Conference</rdfs:label>
 </owl:Class>

 <owl:Class rdf:ID="PaperPresentation">
 <rdfs:subClassOf rdf:resource="#TalkEvent"/>
 <rdfs:label>CurrentRole</rdfs:label>
 </owl:Class>

 <owl:Class rdf:ID="PaperPresentationHappeningNow">
 <rdfs:subClassOf rdf:resource="#PaperPresentation"/>
 <rdfs:label>CurrentRole</rdfs:label>
 </owl:Class>

 <owl:Class rdf:ID="PosterPresentation">
 <rdfs:subClassOf rdf:resource="#TalkEvent"/>
 <rdfs:label>CurrentRole</rdfs:label>
 </owl:Class>

 <owl:Class rdf:ID="PosterPresentationHappeningNow">
 <rdfs:subClassOf rdf:resource="#PaperPresentation"/>
 <rdfs:label>CurrentRole</rdfs:label>
 </owl:Class>

 <owl:Class rdf:ID="NonAcademicEvent">
 <rdfs:subClassOf rdf:resource="#OrganisedEvent"/>
 <rdfs:label>Conference</rdfs:label>
 </owl:Class>

 <owl:Class rdf:ID="BreakEvent">

2

 <rdfs:subClassOf rdf:resource="#NonAcademicEvent"/>
 <rdfs:label>Conference</rdfs:label>
 </owl:Class>

 <owl:Class rdf:ID="CoffeeBreak">
 <rdfs:subClassOf rdf:resource="#BreakEvent"/>
 <rdfs:label>Conference</rdfs:label>
 </owl:Class>

 <owl:Class rdf:ID="TalkEventSchedule">
 <rdfs:subClassOf rdf:resource="http://www.w3.org/2002/07/owl#Thing"/>
 <rdfs:label>Conference</rdfs:label>
 </owl:Class>

 <!-- Role Related Classes -->

 <owl:Class rdf:ID="Role">
 <rdfs:subClassOf rdf:resource="http://xmlns.com/wordnet/1.6/Role-1"/>
 <rdfs:label>CurrentRole</rdfs:label>
 <rdfs:label>StaticRole</rdfs:label>
 </owl:Class>

 <owl:Class rdf:ID="ConferenceChair">
 <rdfs:subClassOf rdf:resource="#Role"/>
 <rdfs:label>StaticRole</rdfs:label>
 </owl:Class>

 <owl:Class rdf:ID="OrganisingCommitteeMember">
 <rdfs:subClassOf rdf:resource="#Role"/>
 <rdfs:label>StaticRole</rdfs:label>
 </owl:Class>

 <owl:Class rdf:ID="ProgrammeCommitteeMember">
 <rdfs:subClassOf rdf:resource="#Role"/>
 <rdfs:label>StaticRole</rdfs:label>
 </owl:Class>

 <owl:Class rdf:ID="SessionChair">
 <rdfs:subClassOf rdf:resource="#Role"/>
 <rdfs:label>StaticRole</rdfs:label>
 <rdfs:label>StaticRole</rdfs:label>
 </owl:Class>

 <owl:Class rdf:ID="Presenter">
 <rdfs:subClassOf rdf:resource="#Role"/>
 <rdfs:label>CurrentRole</rdfs:label>
 </owl:Class>

 <owl:Class rdf:ID="Reviewer">
 <rdfs:subClassOf rdf:resource="#Role"/>
 <rdfs:label>StaticRole</rdfs:label>
 </owl:Class>

<!-- Object Properties -->

 <!-- Event Related Object Properties -->

 <owl:ObjectProperty rdf:ID="hasAttendee">
 <rdfs:domain rdf:resource="#OrganisedEvent"/>
 <rdfs:range rdf:resource="http://xmlns.com/foaf/0.1/Person"/>
 <rdfs:label>ParticipatingPeople</rdfs:label>
 <!-- inverse of #attendeeAt -->
 </owl:ObjectProperty>

 <owl:ObjectProperty rdf:ID="invitedSpeaker">
 <rdfs:domain rdf:resource="#TalkEvent"/>
 <rdfs:range rdf:resource="http://xmlns.com/foaf/0.1/Person"/>
 <rdfs:label>ParticipatingPeople</rdfs:label>
 <!-- inverse of #attendeeAt -->
 </owl:ObjectProperty>

 <owl:ObjectProperty rdf:ID="hasSchedule">
 <rdfs:domain rdf:resource="#PaperPresentation"/>
 <rdfs:range rdf:resource="#TalkEventSchedule"/>
 <rdfs:label>Conference</rdfs:label>
 <rdfs:label>CurrentRole</rdfs:label>
 </owl:ObjectProperty>

 <owl:ObjectProperty rdf:ID="relatedToEvent">
 <rdfs:domain rdf:resource="#Artefact"/>
 <rdfs:range rdf:resource="#AcademicEvent"/>
 <rdfs:label>Conference</rdfs:label>
 </owl:ObjectProperty>

 <owl:ObjectProperty rdf:ID="relatedToJournal">
 <rdfs:domain rdf:resource="#Artefact"/>
 <rdfs:range rdf:resource="#Journal"/>
 <rdfs:label>Publications</rdfs:label>
 </owl:ObjectProperty>

 <owl:ObjectProperty rdf:ID="hasLocation">
 <rdfs:domain rdf:resource="#OrganisedEvent"/>
 <rdfs:range rdf:resource="#Place"/>
 <rdfs:label>Location</rdfs:label>
 <!-- has inverse isLocationFor -->
 </owl:ObjectProperty>

 <owl:ObjectProperty rdf:ID="hasRole">
 <rdfs:domain rdf:resource="#AcademicEvent"/>
 <rdfs:range rdf:resource="#Role"/>
 <rdfs:label>CurrentRole</rdfs:label>
 <rdfs:label>StaticRole</rdfs:label>
 <!-- inverse of #isRoleAt -->
 </owl:ObjectProperty>

 <owl:ObjectProperty rdf:ID="hasArtefact">
 <rdfs:domain rdf:resource="#AcademicEvent"/>

 <rdfs:range rdf:resource="#Artefact"/>
 <rdfs:label>BookChapter</rdfs:label>
 <rdfs:label>Paper</rdfs:label>
 <!-- inverse of #relatedToEvent -->
 </owl:ObjectProperty>

 <owl:ObjectProperty rdf:ID="hasRelatedArtefact">
 <rdfs:domain rdf:resource="#Journal"/>
 <rdfs:range rdf:resource="#Artefact"/>
 <rdfs:label>ExpertHavingJournalPublications</rdfs:label>
 <!-- inverse of #relatedToEvent -->
 </owl:ObjectProperty>

 <!-- Place Related Object Properties -->

 <owl:ObjectProperty rdf:ID="spatiallySubsumes">
 <rdfs:domain rdf:resource="#CompoundPlace"/>
 <rdfs:range rdf:resource="#Place"/>
 <rdfs:label>Location</rdfs:label>
 <rdfs:label>BuildingResolution</rdfs:label>
 <!-- inverse of #isSpatiallySubsumedBy -->
 </owl:ObjectProperty>

 <owl:ObjectProperty rdf:ID="isSpatiallySubsumedBy">
 <rdfs:domain rdf:resource="#AtomicPlace"/>
 <rdfs:range rdf:resource="#CompoundPlace"/>
 <rdfs:label>Location</rdfs:label>
 <rdfs:label>BuildingResolution</rdfs:label>
 <!-- inverse of #spatiallySubsumes -->
 </owl:ObjectProperty>

 <owl:ObjectProperty rdf:ID="isLocationFor">
 <rdfs:domain rdf:resource="#Place"/>
 <rdfs:range rdf:resource="#OrganisedEvent"/>
 <rdfs:label>Location</rdfs:label>
 </owl:ObjectProperty>

 <!-- Role Related Object Properties -->

 <owl:ObjectProperty rdf:ID="isRoleAt">
 <rdfs:domain rdf:resource="#Role"/>
 <rdfs:range rdf:resource="#AcademicEvent"/>
 <rdfs:label>StaticRole</rdfs:label>
 <!-- has inverse #hasRole -->
 </owl:ObjectProperty>

 <owl:ObjectProperty rdf:ID="heldBy">
 <rdfs:domain rdf:resource="#Role"/>
 <rdfs:range rdf:resource="http://xmlns.com/foaf/0.1/Person"/>
 <rdfs:label>StaticRole</rdfs:label>
 <rdfs:label>CurrentRole</rdfs:label>
 <!-- has inverse #holdsRole -->
 </owl:ObjectProperty>

 <owl:ObjectProperty rdf:ID="holdsRole">
 <rdfs:domain rdf:resource="http://xmlns.com/foaf/0.1/Person"/>
 <rdfs:range rdf:resource="#Role"/>
 <rdfs:label>StaticRole</rdfs:label>
 <!-- has inverse #heldBy -->
 </owl:ObjectProperty>

 <owl:ObjectProperty rdf:ID="isFilledBy">
 <rdfs:domain rdf:resource="#Role"/>
 <rdfs:range rdf:resource="http://xmlns.com/foaf/0.1/Person"/>
 <rdfs:label>StaticRole</rdfs:label>
 <rdfs:label>CurrentRole</rdfs:label>
 </owl:ObjectProperty>

 <!-- Person Related Object Properties -->

 <owl:ObjectProperty rdf:ID="participatesIn">
 <rdfs:domain rdf:resource="http://xmlns.com/foaf/0.1/Person"/>
 <rdfs:range rdf:resource="#OrganisedEvent"/>
 <rdfs:label>ParticipatingPeople</rdfs:label>
 </owl:ObjectProperty>

 <owl:ObjectProperty rdf:ID="fillsRole">
 <rdfs:domain rdf:resource="http://xmlns.com/foaf/0.1/Person"/>
 <rdfs:range rdf:resource="#Role"/>
 <rdfs:label>CurrentRole</rdfs:label>
 </owl:ObjectProperty>

 <owl:ObjectProperty rdf:ID="hasContactInformation">
 <rdfs:domain rdf:resource="http://xmlns.com/foaf/0.1/Person"/>
 <rdfs:range rdf:resource="#ContactInformation"/>
 <rdfs:label>ContactDetails</rdfs:label>
 </owl:ObjectProperty>

 <owl:ObjectProperty rdf:ID="locatedInRoom">
 <rdfs:subPropertyOf rdf:resource="#locatedInAtomicPlace" />
 <rdfs:domain rdf:resource="http://xmlns.com/foaf/0.1/Person"/>
 <rdfs:range rdf:resource="#Room"/>
 <rdfs:label>RoomResolution</rdfs:label>
 </owl:ObjectProperty>

 <owl:ObjectProperty rdf:ID="locatedInCompoundPlace">
 <rdfs:domain rdf:resource="http://xmlns.com/foaf/0.1/Person"/>
 <rdfs:range rdf:resource="#CompoundPlace"/>
 <rdfs:label>BuildingResolution</rdfs:label>
 </owl:ObjectProperty>

 <owl:ObjectProperty rdf:ID="locatedInAtomicPlace">
 <rdfs:subPropertyOf rdf:resource="#locatedInCompoundPlace" />
 <rdfs:domain rdf:resource="http://xmlns.com/foaf/0.1/Person"/>
 <rdfs:range rdf:resource="#AtomicPlace"/>
 <rdfs:label>BuildingResolution</rdfs:label>
 </owl:ObjectProperty>

 <owl:ObjectProperty rdf:ID="hasAward">
 <rdfs:domain rdf:resource="#Paper"/>

3

 <rdfs:range rdf:resource="#Award"/>
 <rdfs:label>ExpertHavingAwards</rdfs:label>
 </owl:ObjectProperty>

 <owl:ObjectProperty rdf:ID="authorOf">
 <rdfs:domain rdf:resource="#Researcher"/>
 <rdfs:range rdf:resource="#Paper"/>
 <rdfs:label>Publications</rdfs:label>
 </owl:ObjectProperty>

<!-- Datatype Properties -->

 <owl:DatatypeProperty rdf:ID="eventHasStartDateTime">
 <rdfs:domain rdf:resource="#OrganisedEvent"/>
 <rdfs:range rdf:resource="http://www.w3.org/2001/XMLSchema#string"/>
 <rdfs:label>CurrentRole</rdfs:label>
 </owl:DatatypeProperty>

 <owl:DatatypeProperty rdf:ID="eventHasEndDateTime">
 <rdfs:domain rdf:resource="#OrganisedEvent"/>
 <rdfs:range rdf:resource="http://www.w3.org/2001/XMLSchema#string"/>
 <rdfs:label>CurrentRole</rdfs:label>
 </owl:DatatypeProperty>

 <owl:DatatypeProperty rdf:ID="hasStartDateTime">
 <rdfs:domain rdf:resource="#PaperPresentation"/>
 <rdfs:range rdf:resource="http://www.w3.org/2001/XMLSchema#string"/>
 <rdfs:label>CurrentRole</rdfs:label>
 </owl:DatatypeProperty>

 <owl:DatatypeProperty rdf:ID="hasEndDateTime">
 <rdfs:domain rdf:resource="#PaperPresentation"/>
 <rdfs:range rdf:resource="http://www.w3.org/2001/XMLSchema#string"/>
 <rdfs:label>CurrentRole</rdfs:label>
 </owl:DatatypeProperty>

 <owl:DatatypeProperty rdf:ID="biblioReference">
 <rdfs:domain rdf:resource="#Artefact"/>
 <rdfs:range rdf:resource="http://www.w3.org/2001/XMLSchema#string"/>
 <rdfs:label>Paper</rdfs:label>
 </owl:DatatypeProperty>

 <owl:DatatypeProperty rdf:ID="hasLatitude">
 <rdfs:domain rdf:resource="#Place"/>
 <rdfs:range rdf:resource="http://www.w3.org/2001/XMLSchema#float"/>
 <rdfs:label>Location</rdfs:label>
 </owl:DatatypeProperty>

 <owl:DatatypeProperty rdf:ID="hasLongitude">
 <rdfs:domain rdf:resource="#Place"/>
 <rdfs:range rdf:resource="http://www.w3.org/2001/XMLSchema#float"/>
 <rdfs:label>Location</rdfs:label>
 </owl:DatatypeProperty>

 <owl:DatatypeProperty rdf:ID="hasPrettyName">
 <rdfs:domain rdf:resource="#Place"/>
 <rdfs:range rdf:resource="http://www.w3.org/2001/XMLSchema#string"/>
 <rdfs:label>Location</rdfs:label>
 </owl:DatatypeProperty>

 <owl:DatatypeProperty rdf:ID="hasName">
 <rdfs:stereotype>Publications</rdfs:stereotype>
 <rdfs:domain rdf:resource="#Journal"/>
 <rdfs:range rdf:resource="http://www.w3.org/2001/XMLSchema#string"/>
 <rdfs:label>Publications</rdfs:label>
 </owl:DatatypeProperty>

 <owl:DatatypeProperty rdf:ID="hasRank">
 <rdfs:domain rdf:resource="#Journal"/>
 <rdfs:range rdf:resource="http://www.w3.org/2001/XMLSchema#float"/>
 <rdfs:label>ExpertHavingJournalPublications</rdfs:label>
 </owl:DatatypeProperty>

 <owl:DatatypeProperty rdf:ID="hasInfluenceIndex">
 <rdfs:domain rdf:resource="#Journal"/>
 <rdfs:range rdf:resource="http://www.w3.org/2001/XMLSchema#float"/>
 <rdfs:label>ExpertHavingJournalPublications</rdfs:label>
 </owl:DatatypeProperty>

 <owl:DatatypeProperty rdf:ID="minimumJournalRank">
 <rdfs:domain rdf:resource="#FMConf"/>
 <rdfs:range rdf:resource="http://www.w3.org/2001/XMLSchema#float"/>
 <rdfs:label>ExpertHavingJournalPublications</rdfs:label>
 </owl:DatatypeProperty>

 <owl:DatatypeProperty rdf:ID="minimumInfluenceIndex">
 <rdfs:domain rdf:resource="#FMConf"/>
 <rdfs:range rdf:resource="http://www.w3.org/2001/XMLSchema#float"/>
 <rdfs:label>ExpertHavingJournalPublications</rdfs:label>
 </owl:DatatypeProperty>

 <owl:ObjectProperty rdf:ID="topAwardName">
 <rdfs:domain rdf:resource="#FMConf"/>
 <rdfs:range rdf:resource="#Award"/>
 <rdfs:label>Publications</rdfs:label>
 </owl:ObjectProperty>

 <FMConf rdf:ID="FMConfiguration">
 <minimumJournalRank
rdf:datatype="http://www.w3.org/2001/XMLSchema#float">100.0</minimumJournal
Rank>
 <minimumInfluenceIndex
rdf:datatype="http://www.w3.org/2001/XMLSchema#float">10.0</minimumInfluenceI
ndex>
 <topAwardName rdf:resource="#IEEE_Award"/>
 <rdfs:label>Always</rdfs:label>
 </FMConf>

 <Award rdf:ID="IEEE_Award">
 <rdfs:subClassOf rdf:resource="http://www.w3.org/2002/07/owl#Thing"/>
 </Award>

 <Award rdf:ID="ACM_Award">
 <rdfs:subClassOf rdf:resource="http://www.w3.org/2002/07/owl#Thing"/>
 </Award>

 <ConferenceEvent rdf:ID="Conference1">
 </ConferenceEvent>

 <ConferenceEvent rdf:ID="Conference2">
 </ConferenceEvent>

 <ConferenceEvent rdf:ID="Conference3">
 </ConferenceEvent>

 <Journal rdf:ID="JournalOne">
 <hasName rdf:datatype="http://www.w3.org/2001/XMLSchema#string">JOURNAL
OF THE ACM</hasName>
 <hasRank
rdf:datatype="http://www.w3.org/2001/XMLSchema#float">204.0</hasRank>
 <hasInfluenceIndex
rdf:datatype="http://www.w3.org/2001/XMLSchema#float">15.83</hasInfluenceInde
x>
 </Journal>

 <Journal rdf:ID="JournalTwo">
 <hasName rdf:datatype="http://www.w3.org/2001/XMLSchema#string">ACM
COMPUTING SURVEYS</hasName>
 <hasRank
rdf:datatype="http://www.w3.org/2001/XMLSchema#float">382.0</hasRank>
 <hasInfluenceIndex
rdf:datatype="http://www.w3.org/2001/XMLSchema#float">3.45</hasInfluenceIndex
>
 </Journal>

 <Journal rdf:ID="JournalThree">
 <hasName rdf:datatype="http://www.w3.org/2001/XMLSchema#string">ACM
TRANSACTIONS ON COMPUTER SYSTEMS</hasName>
 <hasRank
rdf:datatype="http://www.w3.org/2001/XMLSchema#float">462.0</hasRank>
 <hasInfluenceIndex
rdf:datatype="http://www.w3.org/2001/XMLSchema#float">2.78</hasInfluenceIndex
>
 </Journal>

 <Journal rdf:ID="JournalFour">
 <hasName rdf:datatype="http://www.w3.org/2001/XMLSchema#string">IEEE-
ACM TRANSACTIONS ON NETWORKING</hasName>
 <hasRank
rdf:datatype="http://www.w3.org/2001/XMLSchema#float">669.0</hasRank>
 <hasInfluenceIndex
rdf:datatype="http://www.w3.org/2001/XMLSchema#float">16.40</hasInfluenceInde
x>
 </Journal>

<Paper rdf:ID="FirstPaper">
 <hasAward rdf:resource="#IEEE_Award"/>
 <hasAward rdf:resource="#ACM_Award"/>
 <relatedToJournal rdf:resource="#JournalOne"/>
 <biblioReference
rdf:datatype="http://www.w3.org/2001/XMLSchema#string">Product Line based
Context Modelling </biblioReference>
 </Paper>

 <Paper rdf:ID="SecondPaper">
 <hasAward rdf:resource="#IEEE_Award"/>
 <relatedToJournal rdf:resource="#JournalThree"/>
 <biblioReference
rdf:datatype="http://www.w3.org/2001/XMLSchema#string"> Second Paper Title
</biblioReference>
 </Paper>

 <Paper rdf:ID="ThirdPaper">
 <relatedToEvent rdf:resource="#Conference2"/>
 <biblioReference
rdf:datatype="http://www.w3.org/2001/XMLSchema#string"> Third Paper
Title</biblioReference>
 </Paper>

 <Researcher rdf:ID="Alice">
 <locatedInRoom rdf:resource="#C33"/>
 <authorOf rdf:resource="#FirstPaper"/>
 <authorOf rdf:resource="#SecondPaper"/>
 </Researcher>

 <Researcher rdf:ID="Bob">
 <authorOf rdf:resource="#FirstPaper"/>
 </Researcher>

 <Researcher rdf:ID="John">
 <authorOf rdf:resource="#ThirdPaper"/>
 </Researcher>

 <Building rdf:ID="ComputingBuilding">
 </Building>

 <Building rdf:ID="CivilEngineeringBuilding">
 </Building>

 <Building rdf:ID="MedicineBuilding">
 </Building>

 <Room rdf:ID="CThirty">
 <isSpatiallySubsumedBy rdf:resource="#ComputingBuilding"/>
 </Room>
 <Room rdf:ID="CThirtyOne">
 <isSpatiallySubsumedBy rdf:resource="#ComputingBuilding"/>
 </Room>

4

 <Room rdf:ID="CThirtyTwo">
 <isSpatiallySubsumedBy rdf:resource="#ComputingBuilding"/>
 </Room>
 <Room rdf:ID="CThirtyThree">
 <isSpatiallySubsumedBy rdf:resource="#ComputingBuilding"/>
 </Room>

 <Room rdf:ID="EFifty">
 <isSpatiallySubsumedBy
rdf:resource="#CivilEngineeringBuilding"/>
 </Room>
 <Room rdf:ID="EFiftyOne">
 <isSpatiallySubsumedBy
rdf:resource="#CivilEngineeringBuilding"/>
 </Room>
 <Room rdf:ID="EFiftyTwo">
 <isSpatiallySubsumedBy
rdf:resource="#CivilEngineeringBuilding"/>
 </Room>
 <Room rdf:ID="EFiftyThree">
 <isSpatiallySubsumedBy
rdf:resource="#CivilEngineeringBuilding"/>
 </Room>

 <PaperPresentation rdf:ID="FirstPaperPresentation">
 <hasStartDateTime
rdf:datatype="http://www.w3.org/2001/XMLSchema#string">2010-03-
22GMT10:00:00</hasStartDateTime>
 <hasEndDateTime
rdf:datatype="http://www.w3.org/2001/XMLSchema#string">2010-03-
22GMT21:00:00</hasEndDateTime>
 <!-- <invitedSpeaker rdf:resource="#Alice"/> -->
 </PaperPresentation>

<!-- OWL hacks -->
 <owl:Class rdf:about="http://swrc.ontoware.org/ontology#ResearchTopic"/>
 <!-- <owl:Class rdf:about="http://www.w3.org/2001/XMLSchema#string"/>
 <owl:Class rdf:about="http://www.w3.org/2001/XMLSchema#integer"/>-->
 <owl:Class rdf:about="http://www.w3.org/2003/01/geo/wgs84_pos#SpatialThing">
 <rdfs:label>Always</rdfs:label>
 </owl:Class>

 <owl:Class rdf:about="http://xmlns.com/foaf/0.1/Organisation">
 <rdfs:label>Always</rdfs:label>
 </owl:Class>

 <owl:Class rdf:about="http://xmlns.com/foaf/0.1/Person">
 <rdfs:label>Always</rdfs:label>
 </owl:Class>

 <owl:Class rdf:about="http://xmlns.com/wordnet/1.6/Announcement"/>

 <owl:Class rdf:about="http://xmlns.com/wordnet/1.6/Document">

 <rdfs:label>Always</rdfs:label>
 </owl:Class>

 <owl:Class rdf:about="http://xmlns.com/wordnet/1.6/Event-1">
 <rdfs:label>Always</rdfs:label>
 </owl:Class>

 <owl:Class rdf:about="http://xmlns.com/wordnet/1.6/Menu"/>
 <owl:Class rdf:about="http://xmlns.com/wordnet/1.6/Role-1">
 <rdfs:label>Always</rdfs:label>
 </owl:Class>

 <owl:Class rdf:about="http://xmlns.com/wordnet/1.6/Sponsorship"/>

 <owl:DatatypeProperty rdf:about="http://purl.org/dc/elements/1.1/contributor"/>
 <owl:DatatypeProperty rdf:about="http://purl.org/dc/elements/1.1/creator"/>
 <owl:DatatypeProperty rdf:about="http://purl.org/dc/elements/1.1/date"/>
 <owl:DatatypeProperty rdf:about="http://purl.org/dc/elements/1.1/description"/>
 <owl:DatatypeProperty rdf:about="http://purl.org/dc/elements/1.1/title"/>
<!-- -->

<!-- OWL/RDFS compatibility hacks by Denny Vrandecic
 (so RDFS only tools can handle OWL ontologies)
 deploy where necessary
The following three axioms provide a mapping of the OWL terms to the RDFS
terms. So
if a tool is not able to read the OWL ontology as it is, uncomment these axioms
(or better, load an ontology with only these three axioms and merge them) and if the
tool
fulfills the RDFS specification it will magically be able to deal with the whole
ontology.
Mind you, you may not add this tool to the OWL ontology, or else you move to OWL
Full.
-->
<!--
 <owl:Class rdf:about="http://www.w3.org/2002/07/owl#Class">
 <rdfs:subClassOf rdf:resource="http://www.w3.org/2000/01/rdf-schema#Class"
/>
 </owl:Class>

 <rdfs:Property rdf:about="http://www.w3.org/2002/07/owl#DatatypeProperty">
 <rdfs:subPropertyOf rdf:resource="http://www.w3.org/2000/01/rdf-
schema#Property" />
 </rdfs:Property>

 <rdfs:Property rdf:about="http://www.w3.org/2002/07/owl#ObjectProperty">
 <rdfs:subPropertyOf rdf:resource="http://www.w3.org/2000/01/rdf-
schema#Property" />
 </rdfs:Property>
-->

</rdf:RDF>

1

Appendix C : AptoML Language

2

3

	Abstract
	Acknowledgments
	Publications from the PhD Work
	Table of Contents
	List of Figures
	List of Tables
	Chapter 1 Introduction
	1.1 Problem Statement
	1.2 Aim and Objectives of the Research
	1.3 Contributions to Knowledge
	1.4 Statement of Methodology
	1.5 Criteria of Success
	1.6 The Structure of the Thesis

	Chapter 2 Literature Review
	2.1 Current State of Context Modelling and Management
	2.1.1 Introduction
	2.1.2 Defining Context-awareness
	2.1.3 General Concepts
	2.1.4 Classification of Context Modelling Approaches
	2.1.5 Context Information Abstractions
	2.1.6 Context Management Middleware

	2.2 Current State of Service Adaptation
	2.2.1 Introduction
	2.2.2 Context-aware Service Discovery
	2.2.3 Context-aware Service Composition
	2.2.4 Context-aware Service Adaptation
	2.2.5 Adaptation Mechanisms

	2.3 Current State of Enabling Technologies
	2.3.1 Model Driven Architecture
	2.3.2 Process Mining
	2.3.3 Software Product Line
	2.3.4 Jabber Overview

	2.4 Conclusions

	Chapter 3 Related Work
	3.1 Context Modelling
	3.1.1 Requirements of Context Modelling
	3.1.2 Context Modelling Approaches
	3.1.2.1 Context Model of CoBrA
	3.1.2.2 Context Model of Gaia
	3.1.2.3 ASC Context Model
	3.1.2.4 Context Model of SOCAM
	3.1.2.5 Context Model of ACAI
	3.1.2.6 The MUSIC context modelling

	3.1.3 Evaluation of the Context Modelling Approaches

	3.2 Context Management Architectures
	3.2.1 Driving Requirements
	3.2.2 Existing Context Management Architectures

	3.3 Situation Recognition Approaches
	3.3.1 Specification-Based Approaches
	3.3.2 Machine Learning Based Approaches
	3.3.3 Hybrid Approaches

	3.4 Service Adaptation Approaches
	3.5 Conclusions

	Chapter 4 Overview on the Proposed Approach
	4.1 Context Modelling, Abstraction and Management
	4.2 Contribution to Service Adaptation

	Chapter 5 Generative Feature-Based Context Model
	5.1 Introduction
	5.2 The Rationale of the Proposed Approach
	5.3 The Conceptual Model for Context Management
	5.4 Context as a Dynamic Product Line
	5.4.1 Feature-based Context Modelling
	5.4.2 Annotated Context Model
	5.4.3 Implicit Existence Condition (IEC)

	5.5 Context Information Generation
	5.6 Case Study: Conference Advisor Application
	5.6.1 Objective
	5.6.2 Illustration and Evaluation of Product Line based Context Model
	5.6.3 Summary

	5.7 Conclusion

	Chapter 6 ubique: Cross-Domain Efficient and Privacy-Ensuring Context Management Middleware
	6.1 Introduction
	6.2 Context Dissemination Problem
	6.3 Cross-Domain Context Management
	6.3.1 ubique Context Meta-Model
	6.3.2 Context Management Components
	6.3.3 Context Interfaces and Operations
	6.3.4 Privacy

	6.4 ubique Implementation
	6.4.1 Jabber and Domain-based Context Management
	6.4.2 Jabber and Context Manager

	6.5 Case Study: Smart University System
	6.5.1 Objective
	6.5.2 Solution and Implementation
	6.5.3 Summary

	6.6 Conclusion

	Chapter 7 Contextual Situation Recognition with Process Mining Techniques
	7.1 Introduction
	7.2 Contextual Situation Recognition
	7.2.1 Definitions
	7.2.2 Conceptual Architecture
	7.2.3 Conceptual Model
	7.2.4 Contextual Situation Recognition Algorithm

	7.3 Process Mining for Pervasive Environments
	7.3.1 Abstraction on the States Log Level
	7.3.2 Control-flow Mining

	7.4 Defining the Expected Situation Model (ESM)
	7.5 Conformance Analysis
	7.5.1 ESM Conformance Checking Mode
	7.5.2 LTL Constraint Checking Mode

	7.6 Case Study: Leave-to-Work Situation Recognition
	7.6.1 Objective
	7.6.2 Background
	7.6.3 Dataset
	7.6.4 Set up and Methodology
	7.6.5 Experiments
	7.6.6 Summary

	7.7 Conclusion

	Chapter 8 Apto: A Model Driven Generative Mechanism for Context-aware Adaptive Services
	8.1 The Rationale behind Apto
	8.2 Apto Approach
	8.3 A Conceptual Model of Context-aware Adaptive Services
	8.3.1 Basic Service Model
	8.3.2 Context Model
	8.3.3 Evolution Model
	8.3.4 Linkage Model

	8.4 Service Adaptation and Instantiation
	8.5 Deployment and Execution
	8.6 Apto Tool Realization
	8.6.1 Prototype on Java platform
	8.6.2 .NET Framework based prototype

	8.7 Case Study: Tourism Service Application
	8.7.1 Objective
	8.7.2 Solution and Implementation
	8.7.2.1 Context-awareness
	8.7.2.2 Service Adaptation
	8.7.2.3 Transforming Service into Executable Artefacts

	8.7.3 Summary

	8.8 Conclusion

	Chapter 9 Conclusions and Future Work
	9.1 Critical Analysis
	9.1.1 Context as a Dynamic Product Line
	9.1.2 ubique Middleware
	9.1.3 Situation Recognition Approach
	9.1.4 Apto Approach

	9.2 Conclusions and Main Contributions
	9.2.1 Conclusions
	9.2.2 Contributions

	9.3 Future Work

	References
	Appendix A : Abbreviations and Acronyms
	Appendix B : Ontology-based Context Model
	Appendix C : AptoML Language

