
A Closer Look at Adaptation

Mechanisms in Simulated

Environment-Driven Evolutionary

Swarm Robotics

Andreas Siegfried Wilhelm Steyven

A thesis submitted in partial fulfilment of the requirements of

Edinburgh Napier University, for the award of

Doctor of Philosophy

October 2017

Declaration

I hereby declare that except where specific reference is made to the work of others, the

contents of this dissertation are original and have not been submitted in whole or in part

for consideration for any other degree or qualification in this, or any other university.

This dissertation is my own work and contains nothing which is the outcome of work

done in collaboration with others, except as specified in the text and Acknowledgements.

External examiner Prof. Susan Stepney

Internal examiner Dr. Simon T. Powers

Director of studies Prof. Emma Hart

Second supervisor Prof. Ben Paechter

Andreas Siegfried Wilhelm Steyven

October 2017

iii

Copyright in the text of this thesis rests with the author. Copies (by any process)

either in full, or of extracts, may be made only in accordance with instructions given

by the author and lodged in the Edinburgh Napier University library. Details may

be obtained from the librarian. This page must form part of any such copies made.

Further copies (by any process) of copies made in accordance with such instructions

may not be made without the written permission of the author. The ownership of any

intellectual property rights which may be described in this thesis is vested in Edinburgh

Napier University, subject to any prior agreement to the contrary, and may not be made

available for use by third parties without the written permission of the university, which

will prescribe the terms and conditions of any such agreement.

Abstract

This thesis investigates several aspects of environment-driven adaptation in simulated

evolutionary swarm robotics. It is centred around a specific algorithm for distributed

embodied evolution called mEDEA.

Firstly, mEDEA is extended with an explicit relative fitness measure while still

maintaining the distributed nature of the algorithm. Two ways of using the relative

fitness are investigated: influencing the spreading of genomes and performing an

explicit genome selection. Both methods lead to an improvement in the swarm’s ability

to maintain energy over longer periods.

Secondly, a communication energy model is derived and introduced into the simu-

lator to investigate the influence of accounting for the costs of communication in the

distributed evolutionary algorithm where communication is a key component.

Thirdly, a method is introduced that relates environmental conditions to a measure

of the swarm’s behaviour in a 3-dimensional map to study the environment’s influence

on the emergence of behaviours at the individual and swarm level. Interesting regions

for further experimentation are identified in which algorithm specific characteristics

show effect and can be explored.

Finally, a novel individual learning method is developed and used to investigate how

the most effective balance between evolutionary and lifetime-adaptation mechanisms is

influenced by aspects of the environment a swarm operates in. The results show a clear

link between the effectiveness of different adaptation mechanisms and environmental

conditions, specifically the rate of change and the availability of learning opportunities.

Acknowledgements

I would like to express my sincere gratitude to Prof. Emma Hart for the continuous

support, patience and motivation. Your guidance has made this possible. Also to Prof.

Ben Paechter for his many inputs during thought-provoking scientific discussions. To

my partner Simone, firstly for proof-reading this thesis, but most of all for all your

continuous encouragement, support, patience and understanding. You have made my

life so much richer. To the few close friends I can always count on, thank you for always

being there for me. You have provided a balance between work and life that has kept

me sane. You have made this journey a very enjoyable one. Many thanks to all the

different people who have played a role in my life during the writing of this thesis. You

have contributed in one way or another to me getting here.

And last but not least, my parents and my entire family. Mein aller herzlichster

Dank gilt meinen Eltern und meiner gesamten Familie. Nicht nur für die moralische

und finanzielle Unterstützung, sondern dafür das Ihr immer an mich geglaubt habt. Ihr

habt es möglich gemacht.

— A.S.W.S.

Für Oma und Simone!

Table of contents

List of figures xii

List of tables xvii

1 Introduction 1

1.1 Research Questions . 3

1.2 Contributions . 4

1.3 Methodology . 6

1.4 Publications . 6

1.5 Thesis Overview . 7

2 Background 9

2.1 Robotics . 9

2.2 Evolutionary Robotics . 10

2.2.1 Swarm Robotics . 11

2.2.2 Controller . 12

2.3 From Centralised and Offline to Distributed and Online 14

2.4 Algorithms for Distributed Online Evolution 16

2.4.1 Probabilistic Gene Transfer Algorithm 16

2.4.2 odNEAT . 16

2.4.3 mEDEA . 17

2.5 Drivers of Evolution . 19

Table of contents viii

2.5.1 Fitness Function . 19

2.5.2 Environment-driven Adaptation 20

2.5.3 Environment-driven + Fitness Function 21

2.6 Role of the Environment . 22

2.6.1 Morphology . 23

2.6.2 Influence of the Environment 25

2.7 Combining Learning and Evolution 26

2.7.1 Learning and Adaptation Mechanisms 27

2.7.2 Individual and Social Learning 28

2.8 Summary . 29

3 Using Relative Fitness to Improve Survivability in mEDEA 31

3.1 Contribution . 31

3.2 Introduction . 32

3.3 The mEDEA Algorithm in Detail . 33

3.3.1 Algorithm Outline . 33

3.3.2 A Closer Look at the Key Steps 35

3.4 mEDEA with Relative Fitness . 37

3.4.1 Explicit Selection Mechanisms 38

3.4.2 Biasing Broadcasting of Genomes 38

3.5 Hypotheses . 40

3.6 Experiments . 42

3.6.1 Methodology . 43

3.6.2 Experiment Set 1: Explicit Selection Mechanism 44

3.6.3 Experiment Set 2: Varying the Broadcasting Mechanism . . . 45

3.7 Evaluation and Analysis . 46

3.7.1 Experiment Set 1: Explicit Selection Mechanism 46

3.7.2 Experiment Set 2: Varying the Broadcasting Mechanism . . . 48

Table of contents ix

3.7.3 Combining Explicit Selection with Biased Broadcasting . . . 52

3.8 Summary and Conclusion . 54

3.8.1 Summary . 54

3.8.2 Conclusion . 55

4 Influence of Communication Cost on the Effectiveness of the Broadcasting

Variation Mechanism in mEDEAr f 57

4.1 Contribution . 58

4.2 Introduction . 58

4.3 The Use of Energy in mEDEAr f . 59

4.4 Improving the Energy Model in the Simulator 60

4.4.1 Energy Consumption Characteristics of Hardware Communica-

tion Modules . 61

4.4.2 Free-Space-Model . 62

4.4.3 Calculation of Communication Costs for the Simulation . . . 64

4.4.4 Movement Dependent Living Costs 67

4.4.5 The New Energy Model . 68

4.5 Hypothesis . 68

4.6 Experiments . 68

4.6.1 Methodology . 69

4.7 Evaluation and Analysis . 70

4.7.1 Methodology . 70

4.7.2 Influence of the Energy Model 71

4.8 Summary and Conclusion . 79

5 Influence of the Environment on the Emergence of Behaviour 81

5.1 Contribution . 82

5.2 Introduction . 82

5.3 Hypotheses . 83

Table of contents x

5.4 Experiments . 83

5.4.1 Methodology . 84

5.4.2 Adaptation of mEDEAr f for Experiments 85

5.5 Evaluation and Analysis . 86

5.5.1 Different Performance Regions 87

5.5.2 Environmental Influence on Behaviour 90

5.5.3 Behaviours in the Neutral Region 91

5.5.4 Results of a Different Environment 92

5.6 Summary and Conclusion . 95

6 Influence of the Environment on the Benefit of Lifetime Adaptation 96

6.1 Contribution . 96

6.2 Introduction . 97

6.3 Designing the Lifetime Adaptation Mechanism 98

6.3.1 Scenario Overview . 98

6.3.2 The Individual Learning Mechanism 99

6.4 Hypotheses . 102

6.5 Experiments . 102

6.5.1 Variations of the Adaptation Mechanism 103

6.5.2 Selecting Environmental Configurations 103

6.5.3 Sets of Experiments . 104

6.5.4 Energy Model and Updated Communication Costs 106

6.6 Evaluation and Analysis . 107

6.6.1 Methodology . 107

6.6.2 Adaptation Mechanism . 108

6.6.3 General Observations . 111

6.6.4 Influence of the Adaptation Mechanism 113

6.6.5 Influence of Environmental Parameters 117

Table of contents xi

6.6.6 Influence of Environmental Change 117

6.6.7 Analysis . 119

6.7 Summary and Conclusion . 119

7 Conclusion 121

7.1 Summary . 121

7.2 Answers to Research Questions . 122

7.3 Discussion . 126

7.4 Future Work . 127

References 129

Appendix A Publications 139

A.1 Improving Survivability in Environment-driven Distributed Evolution-

ary Algorithms through Explicit Relative Fitness and Fitness Propor-

tionate Communication . 139

A.2 The Cost of Communication: Environmental Pressure and Survivability

in mEDEA . 148

A.3 Understanding Environmental Influence in an Open-Ended Evolution-

ary Algorithm . 151

A.4 An Investigation of Environmental Influence on the Benefits of Adapta-

tion Mechanisms in Evolutionary Swarm Robotics 162

Appendix B Adaptation Mechanism 171

B.1 Visualisation of Individual Learning Parameter 171

List of figures

2.1 Emergent Behaviour . 23

3.1 Robot in environment with energy token 35

3.2 Explicit selection added to the mEDEA algorithm. Figures show the

energy for experiments E1, E1+t, E1+rw, E1+b. 47

3.3 Explicit selection added to the mEDEA algorithm. Figures shows the

number of active robots for experiments E1, E1+t, E1+rw, E1+b. . . . 48

3.4 mEDEA, control experiments and biased broadcasting: figures show

the energy for each of the experiments E1-E5. 49

3.5 mEDEA, control experiments and biased broadcasting: figures show

the number of active robots for each of the experiments E1-E5. 50

3.6 mEDEA, control experiments and biased broadcasting: figures show

the number of genomes received for each of the experiments E1-E5. . 51

3.7 Combining the biased broadcasting of genomes with explicit selection

by individuals. 52

3.8 Comparison between vanilla mEDEA, mEDEA with explicit selection

by individuals and mEDEAr f with explicit selection by individuals. . 53

List of figures xiii

4.1 Comparison of the median number of received broadcasts per unique

genome between experiments, without (Ex,Ex+rw) and with the com-

munication costs (Ex-em, Ex-em+rw). Violin and box plots showing the

distribution of values over the last three generations of the experiment.

Lines are smoothed to better show trends, with the raw data displayed

in the same colour and thinner lines. 74

4.2 Comparison of the median value for lifetime per unique received

genome at the end of a generation between experiments, without

(Ex,Ex+rw) and with the communication costs (Exem, Exem+rw). Violin

and box plots showing the distribution of values over the last three gen-

erations of the experiment. Lines are smoothed to better show trends,

with the raw data displayed in the same colour and thinner lines. . . . 75

4.3 Comparison of the median energy level at the end of a generation

between experiments, without (Ex,Ex+rw) and with the communication

costs (Exem, Exem+rw). Violin and box plots showing the distribution

of values over the last three generations of the experiment. Lines are

smoothed to better show trends, with the raw data displayed in the same

colour and thinner lines. 76

4.4 Comparison of the median number of active robots at the end of a

generation between experiments, without (Ex,Ex+rw) and with the com-

munication costs (Exem, Exem+rw). Violin and box plots showing the

distribution of values over the last three generations of the experiment.

Lines are smoothed to better show trends, with the raw data displayed

in the same colour and thinner lines. 77

List of figures xiv

4.5 Comparison of the median value for collected tokens at the end of a

generation between experiments, without (Ex,Ex+rw) and with the com-

munication costs (Exem, Exem+rw). Violin and box plots showing the

distribution of values over the last three generations of the experiment.

Lines are smoothed to better show trends, with the raw data displayed

in the same colour and thinner lines. 78

5.1 View on the resulting surface from different angles. The figure was

created by plotting the median δE of the last 2500 iterations of the

experiment. The grey plain marks a value for δE of zero, at which point

robots in an experiment have an energy balance of zero. In other words,

the same amount of energy as they started the experiment with. An

interactive 3D model can be found at [119] 87

5.2 Overview of the landscape (zero contours from 5.1), as plot of the real

data on the left and as a cartoon version on the right. Four different

regions are shown: A) Dead Zone, B) Lean Valley, C) Neutral Line, D)

Excess Energy. 88

5.3 Cuts through different parts of the landscape. Points towards different

behaviours in terms of exploration. a-b) value = 1150, vary count; c-d)

count = value; e-f) count =1150, vary value. 91

List of figures xv

5.4 Cuts through the surface landscape of experiments with 100 robots in

environments that differ in availability and concentration of energy, and

contain equal amounts of positive and negative tokens. Environments

are defined by amount (count) and value per token, with a constant value

of -400 for negative tokens. The coloured lines show the Neutral Line,

the line where the surface plot crosses a plain drawn at delta-energy

(δE)=0, averaged over 2500 iterations at different stages of the experi-

mental run. Red, green and blue ending at iteration 125,000, 250,000

and 375,000 respectively. The three crosses, located just off the line,

mark the identified environments of the previous experiments. The

crosses, located on top of the line, mark the environmental configura-

tions where the extension of the equi-value, equi-count and count=value

lines cross the Neutral Line. 94

6.1 Top down view of the surface plot created using the method introduced

in the previous chapter. The red line shows the Neutral Line, the line

where the surface plot crosses a plane drawn at delta-energy (δE)=0. . 105

6.2 Adaptation mechanism and performance values for Evo + IL in three

different environments, defined by the quantity (c) and value (v) of

energy tokens available in a static setting (a-c) at a seasonal change (s)

of 5k (d - f), 15k (g - i) and 30k (j - l). These intention of these figures

is to demonstrate the general trends and patterns and not the accurate

representation of data. Hence, certain elements, such as legends and

axis descriptions, have been omitted. The reader is referred to figure 6.3

for a more detailed version of sub figure (j) where the omitted details

of the graphs are shown. 109

6.3 Detailed sample figure for adaptation mechanism and performance

values in figure 6.2. 110

List of figures xvi

6.4 Normalised difference between positive and negative tokens collected.

Solid line is the value combined over all seasons, dashed = season 0,

dotted = season 1. 113

List of tables

3.1 mEDEAs evolutionary algorithm parameters for all experiments in this

thesis. 43

3.2 Simulation and experimental parameters for all experiments in this

chapter. 44

3.3 p-values obtained from applying Wilcoxon’s Rank-Sum test across pairs

of experiments, including biased broadcast only and biased broadcasting

coupled with an explicit selection method. 53

4.1 Values taken from the data-sheet for wireless communication module

Texas Instruments CC2420 [125]. 64

4.2 Size of a data message (transmitted genome) in byte. 65

4.3 Values for communication costs used in simulator. 67

4.4 Simulation and experimental parameters for all experiments in this

chapter. 70

4.5 Showing median of end values for energy, active, broadcasts : genome,

age : genome and token collected over the last three generations of

the experiment. The symbols ↓,↔, ↑ indicate how the shown values

compare to the result of the corresponding experiment without the

energy model, with the number of arrows indicating the magnitude

level of the effect size, based on a Vargha and Delaney A test (1 = small,

2 = medium, 3 = large). 72

List of tables xviii

5.1 Simulation and experimental parameters for all experiments in this

chapter. 84

5.2 Communication cost parameters adjusted to reflect change in genome

length. 86

5.3 The environmental configurations sought out for all future experiments. 92

5.4 Results obtained at three configurations within the neutral region. . . 92

5.5 Environmental configurations: description refers to the prevalence of

energy tokens within the environment. 93

6.1 Simulation and experimental parameters for all experiments in this

chapter. 102

6.2 Learning parameters with initial values and ranges in which they can

change during runtime of the experiment. Method of adaptation (through

evolution or lifetime-learning) depends on the experiment. 103

6.3 Learning scenarios investigated showing heritability of information. . 104

6.4 Environmental configurations: description refers to the prevalence of

energy tokens within the environment. 104

6.5 Communication cost parameters. 107

6.6 Showing median of end values by seasonal change and the experiment

for totalTokenRatio over the final 5000 iterations (N:30). 116

6.7 Showing p-values of pairwise comparisons of the learning mechanism

for totalTokenRatio (row vs. column) over the final 5000 iterations. . . 116

6.8 Showing p-values of pairwise comparisons of environments for totalTo-

kenRatio (row vs. column) over the final 5000 iterations. 118

6.9 Showing p-values of pairwise comparisons of seasonal change for

totalTokenRatio (row vs. column) over the final 5000 iterations. . . . 118

Chapter 1

Introduction

Thanks to advances in science and technology machines are now closer to what science

fiction authors have promised us for decades. Companies, like DeepMind1 and Boston

Dynamics2, demonstrate great showmanship when promoting their achievements and

have brought advances in AI and robotics to the public’s attention. Robots in the form

of vacuum cleaners and lawn mowers have taken over household chores and made

their way into everyday life. In manufacturing, industrial robots have replaced humans

for difficult, repetitive or dangerous tasks, such as those that expose the worker to

hazardous substances, extreme temperatures, or require heavy lifting, while maintaining

continuous accuracy, to name but a few. Robotic systems can also operate in hazardous

environments or remote locations, such as inside nuclear contaminated areas, in outer

space, at the bottom of the ocean, or in nano scale in the human body.

Centuries before the use of industrial robots in automation, humanity was fascinated

by automata, the self-operating machines that appeared to be working under their own

command. These earlier versions of autonomous machinery tried to mimic nature by

using clockwork or cams to act out pre-defined programs to produce natural-looking

movements and behaviours [134]. The benefits of taking inspiration from nature have

been recognised in many fields of science and engineering. For example, the way
1https://deepmind.com, accessed 23/10/2017
2https://www.boston-dynamics.com, accessed 23/10/2017

2

feathers at the tip of a bird’s wings break up turbulence has inspired the design of

more efficient aeroplane wings, and water repellent surfaces have been fabricated by

recreating the nano structure of a lotus plant’s leaves.

The field of computer science has taken inspiration from natural systems and

processes many times. Most famously the neural network, a computational model

based on an abstracted model of the nervous system, which forms the basis of the

current successes of deep-learning [106]. Optimisation algorithms and heuristics,

like ant-colony optimisation [76] and genetic and evolutionary algorithms, have been

developed to tackle computationally hard problems [37]. Creating and tuning the control

architecture of a robot is an example of a computationally hard problem. In the field of

evolutionary robotics, evolutionary algorithms are used to evolve the controller, most

commonly in the form of a neural network [85].

Rather than relying on a single robot, which also constitutes a single point of

failure, multiple and potentially simpler robots can be used. Using multiple robots

allows the workload to be distributed across the swarm, and multiple tasks can be

worked on simultaneously [3]. Swarm robotics is a special case in robotics and another

case where nature has inspired research. In a swarm, the global behaviour emerges

from the local interactions of the simple individuals that make up the swarm. The

distributed nature makes it more resilient to failure with no single point of failure. When

considering deployment of robots in remote locations, the ability to autonomously

adapt is a crucial feature, especially in scenarios with a priori unknown environmental

conditions and very limited or no ability to communicate with a remote controller [5].

Hence, adaptation needs to happen right there and then, during runtime and without

supervision.

Evolutionary algorithms fit the bill quite nicely. Often referred to as black-box

optimisers they are well-suited to optimise when the location of the optimal solution in

the search space is unknown [31]. Bredeche and Montanier [19] shifted the focus to

the environment, which constitutes a driving force for the evolutionary process in this

1.1 Research Questions 3

case. Many researchers have followed by investigating several aspects of systems based

around environment-driven evolution, such as the selection pressure [40], balancing

survivability and task performance [95], or the dynamics of the evolutionary process

itself by analysing phylogenetic trees [14]. However, many more questions in this area

remain to be tackled. Considering that the environment is one of the key drivers in the

evolutionary process, a line of research naturally follows to investigate its implications.

The research presented here shows how the selection pressure stemming from the

environment can be focused to emphasise certain attributes of the swarm, as well as

how the environment’s influence on the emerging behaviours in different algorithmic

settings.

1.1 Research Questions

The following research questions address the gaps identified through the literature

review. In this context performance means a robot’s ability to maintain energy and

stay alive for an extended amount of time. In particular, the work extends an existing

environment-driven algorithm called mEDEA [19].

RQ 1 To what extent can adding an explicit relative fitness to mEDEA (creating

mEDEAr f) increase the maintained energy across the swarm in comparison to the

existing algorithm without explicit fitness?

RQ 2 How does accounting for the cost of communication influence the performance

of an evolutionary algorithm that relies on communication?

RQ 3 To what extent does the specific parametrisation of the environment influence the

emergence of behaviour in mEDEAr f ?

RQ 4 To what extent does the environment influence the most appropriate combination

of evolutionary and lifetime-adaptation mechanisms in mEDEAr f ?

1.2 Contributions 4

1.2 Contributions

This thesis makes a number of contributions to the field evolutionary robotics by

investigating several aspects of environment-driven adaptation in simulated evolutionary

swarm robotics and mEDEA in particular.

A novel relative fitness function:

The mEDEA algorithm from [19] is augmented with an explicit fitness measure

(chapter 3, section 3.4). This novel way of calculating a relative fitness function

maintains the algorithm’s distributed nature while providing increased selection

pressure.

Two ways of applying the relative fitness:

Two ways of using the relative fitness are investigated: firstly, influencing the

spread of genomes (section 3.6.3) and, thereby, indirectly increasing the selection

pressure; secondly, moving from a random to an explicit selection of genomes

based on the relative fitness (section 3.6.2). It is shown that both methods lead to

an improvement over the original algorithm in the swarm’s ability to maintain

energy over longer periods.

Explicit communication energy model:

An energy model for communication is derived from the field of wireless sensor

networks research that accounts for communication costs in the robot simulation

(chapter 4, section 4.4). This cost is very important in small battery powered

robots but is usually missing in simulation environments. The experiments

carried out show that accounting for the costs of communication exerts additional

environmental pressure.

Novel methodology to explore environmental influence on performance:

A novel methodology to investigate the environment’s influence on the emergence

of behaviours at the individual and swarm level is introduced (chapter 5, section

1.2 Contributions 5

5.2). A 3-dimensional map is constructed that relates an environmental configu-

ration c, defined by parameters (x,y) to the retained median energy value of the

robot population operating in c. This method can be generalised to any setting

and therefore constitutes a useful contribution to anyone working in evolutionary

robotics.

Analysis of two different experimental settings:

Using the methodology above for the development of performance maps in two

different settings, one with only positive items in the environment, and another

with positive and negative items. The map is used to identify interesting regions

for future experimentation in two different experimental settings (section 5.4 and

5.5.4). This is in contrast to ad-hoc methods currently used in most publications

for parameter setting. These regions provide challenging environments for the

robots while still allowing algorithm specific characteristics to show effect and be

explored.

A novel individual learning mechanism:

An individual learning mechanism is developed that doesn’t require any a priori

knowledge of the environment and can help the evolutionary process to adapt

(chapter 6, section 6.3).

Analysis of environmental influence on the usefulness of different

adaptation mechanisms

The analysis of how environmental parameters influence the best performing

combination of evolutionary and lifetime-adaptation mechanisms in mEDEAr f

(section 6.5). The results show that there is a clear link between environmental

conditions, specifically the rate of change and the availability of learning oppor-

tunities, and the effectiveness of different adaptation mechanisms. Further, the

incentive to learn in form of reward or punishment, in other words, the environ-

1.3 Methodology 6

mental pressure which drives the evolutionary process must be high enough to

make any form of adaptation worthwhile.

1.3 Methodology

This thesis takes a quantitative research approach. Experiments are carried out in

simulation using Roborobo [22], the simulator that was used in the original publication

of mEDEA [19] and many subsequent publications (e.g. [95, 16, 40]). To this date,

the majority of experiments in the field use simulation [83], which allows for the easy

collection of data for analysis. Statistical tests are used to determine the results of

experiments throughout. For the purpose of testing for statistical significance, multiple

independent runs of the same experiment have been performed. The exact number for

each experiment is given in the corresponding methodology section. All analyses have

been performed using the open-source statistical package R.

1.4 Publications

The content of this thesis has been published in the following peer-reviewed publica-

tions:

Hart, E., Steyven, A., & Paechter, B. (2015). Improving Survivability in Environment-

driven Distributed Evolutionary Algorithms through Explicit Relative Fitness and Fit-

ness Proportionate Communication. In S. Silva (Ed.), Proceedings of the 2015 on

Genetic and Evolutionary Computation Conference - GECCO ’15 (pp. 169–176). New

York, New York, USA: ACM Press.

A copy of the publication can be found in the appendix (A.1).

Steyven, A., Hart, E., & Paechter, B. (2015). The Cost of Communication: Envi-

ronmental Pressure and Survivability in mEDEA. In S. Silva (Ed.), Proceedings of

1.5 Thesis Overview 7

the Companion Publication of the 2015 on Genetic and Evolutionary Computation

Conference - GECCO Companion ’15 (pp. 1239–1240). New York, New York, USA:

ACM Press.

A copy of the publication can be found in the appendix (A.2).

Steyven, A., Hart, E., & Paechter, B. (2016). Understanding Environmental Influ-

ence in an Open-Ended Evolutionary Algorithm. In J. Handl, E. Hart, P. R. Lewis, M.

López-Ibáñez, G. Ochoa, & B. Paechter (Eds.), Parallel Problem Solving from Nature –

PPSN XIV (pp. 921–931). Springer International Publishing AG.

A copy of the publication can be found in the appendix (A.3).

Steyven, A., Hart, E., & Paechter, B. (2017). An Investigation of Environmental

Influence on the Benefits of Adaptation Mechanisms in Evolutionary Swarm Robotics.

In G. Ochoa (Ed.), Proceedings of the 2017 on Genetic and Evolutionary Computation

Conference - GECCO ’17 (pp. 155–162). New York, New York, USA: ACM Press.

A copy of the publication can be found in the appendix (A.4).

1.5 Thesis Overview

The remainder of this thesis is structured as follows:

• Chapter 2 discusses the current state of the field and helps further define the scope

of the research by grounding it in the literature.

• Chapter 3 covers the extension of mEDEA with a relative fitness function to

create mEDEAr f , and explores two ways of applying the new relative fitness

measure.

1.5 Thesis Overview 8

• Chapter 4 describes the development of a communication energy model and

evaluates the influence of accounting for the costs of communication in mEDEA

and the newly extended version with relative fitness (mEDEAr f).

• Chapter 5 describes a novel method of exploring the environmental influence on

the performance of mEDEAr f and applies it to identify interesting regions for

future investigation in two experimental settings.

• Chapter 6 introduces a novel individual learning method and goes on to investigate

how the most appropriate balance between evolutionary and lifetime-adaptation

mechanisms is influenced by aspects of the environment a swarm operates in.

• Chapter 7 summarises the contributions of this thesis to the research field, provides

answers to the posed research questions and outlines how the work presented

here can be extended in the future.

Chapter 2

Background

2.1 Robotics

The word robot originates from the Czech word robota meaning ‘forced labour’ [96].

The term was coined in 1920 by K. Čapek in his play “Rossum’s Universal Robots”.

Robotics covers a variety of things, ranging from manufacturing machines to planetary

exploration, and one day nano-scale robots may even circle the human bloodstream.

Nowadays, most robots follow hard wired behaviour: preprogrammed rules that enable

the machine to cope with any scenario imagined by the designer of the robot system.

Winfield [134, p. 11] illustrates this with a robot vacuum cleaner that has only five

preset rules to fulfil its duties. However, if the encountered environment is dynamic

or can’t be predicted at design time, e.g. under water or in space exploration, these

predefined rules can be insufficient. Furthermore, human intervention is typically

limited in said environments, meaning the robot system must be capable of acting and

adapting autonomously to sustain the anticipated behaviour.

Autonomous robots are controlled by a controller, which makes decisions based

on sensory inputs that are usually the sole source of data available to the robot [42].

Factors, such as a changed environment, a faulty sensor in the robot or the transfer of

the control program from simulation into hardware, can make a difference in the data

2.2 Evolutionary Robotics 10

available to the controller. The challenge in adaptable autonomous robots now relies on

developing systems capable of coping with all these uncertainties.

2.2 Evolutionary Robotics

The term evolutionary robotics (ER) has been phrased by Cliff et al. [27] and has been

defined as “Evolutionary Robotics aims to apply evolutionary computation techniques

to evolve the overall design or controllers, or both, for real and simulated autonomous

robots” [128].

The field is at the intersection of artificial life (ALife) and robotics engineering.

ALife tries to explore and understand processes observed in nature. ER has been

used to model evolutionary dynamics, such as the evolution of specialisation [6] and

cooperation [7], altruism [129] and self-organising behaviours [126]. The engineering

side employs nature-inspired concepts to create novel solutions that human engineers

have yet to come up with [42]. Bongard [13] envisions the long term goal of ER to be a

mechanism for creating algorithms that can create autonomous adaptive robot systems.

Evolutionary algorithms (EA) work on population levels where good solutions

evolve over generations [37]. EAs typically use an application specific objective

function to determine the fitness of a candidate solution. In ER the evolved candidate

solution can be the robot’s morphology, controller, or both [72]. The quality of such

solutions is represented by their expressed behaviour over time when the phenotype

interacts with the world [88].

To this date evolutionary robotics experiments have been carried out in terrestrial,

swimming and flying robots [33, 44, 56], as well as a large volume of work in simulation

[73, 83].

2.2 Evolutionary Robotics 11

2.2.1 Swarm Robotics

This thesis focuses on a specialised approach called swarm robotics (SR), which takes

inspiration from swarms of insects as found in nature. The swarm’s behaviour and

ability to perform certain tasks emerges out of the interaction of the simple and quasi

identical1 agents that act asynchronously due to the lack of a central control [5]. Swarm

robotics uses large numbers of autonomous and situated robots with local sensing and

communication capabilities [15]. Şahin [103] defined swarm robotics as "the study of

how large numbers of relatively simple physically embodied agents can be designed

such that a desired collective behaviour emerges from the local interactions among

agents and between the agents and the environment" .

With the inspiration for this approach taken from nature, it comes as no surprise

that SR is often used as a tool to research concepts from nature, such as exploring

biological or ecological models in the area of artificial life [78]. In more engineering

like applications, a swarm of robots offers certain advantages over the use of a single

more complex robot. Due to the large number of robots the workload can be distributed

across the swarm and multiple tasks simultaneously worked on in parallel [3]. It

further offers distributed sensing capabilities and an increased robustness to failure as

demonstrated in the Swarmanoid project [32]. However, these advantages aren’t without

limits as the costs of coordination grow with swarm size. Reliability and robustness to

failure have been shown to quickly fall with increasing numbers of robots [10]. These

limitations add to the complexity of the task to create controllers for the swarm that

lead to the emergence of the desired behaviour.

The swarm’s behaviour is often optimised using evolutionary algorithms. To name

a few, researchers have successfully evolved a swarm’s ability to adapt to unknown

environments [127, 17], its resilience to failure [77] and the planning and following of

formation patterns [104, 32].

1meaning either identical hardware or similar in actuation and sensing capability as well as appearance
as required by the application

2.2 Evolutionary Robotics 12

2.2.2 Controller

A robot’s controller issues control signals to the actuators based on information that

is available through sensory inputs and the internal state of the robot. Its complexity

can vary from a simple reactive mechanism with fixed rules [102], over sophisticated

programs that develop over time to adapt to the current operating conditions the robot

faces [28], to multi-layered control systems such as subsumption architecture [23].

A controller can be optimised using an evolutionary algorithm, a versatile black

box optimiser that can evolve a huge variety of potential controller types. Doncieux et

al. [30] note that in order to not constrain evolution, the control paradigm should be

able to take in raw sensor inputs and output low-level actuator commands. Hence, the

most widely used control paradigm in evolutionary swarm robotics is a graph-based

controller in the form of a neural network (NN), which draws inspiration from a simple

neuron model of the brain [69].

Neural networks can be implemented in many different forms and levels of com-

plexity. A NN is a graph of neurons, often structured in layers, from an input layer to

an output layer, with none, one or more hidden layers inbetween (hidden, as they have

no connections to the outside world) [65]. Each neuron sums all inputs attached to it

and uses an activation function to generate an output. The synapses, the connections

between neurons, have a weight associated with them that changes the relative impor-

tance of the information flowing through it. The simplest form of which is the straight

feed-forward NN, which represents a purely reactive controller. A network is referred to

as straight feed-forward if all connections within the network only point in one direction,

namely from the input layer to the output layer. The network is stateless, meaning in

each computational cycle of the network only the currently available information at the

input layer is used to produce the output signal. Memory can be added to the network

by using recurrent connections [114], where internal loops allow the output signal of a

neuron to travel in the direction of an input of the same or a previous layer. The network

2.2 Evolutionary Robotics 13

is now no longer stateless as the previously generated signal will recur as an input in

the next computational cycle of the network.

Networks can be fully or partially connected. Unless the structure of the network

is evolved, most NN in ER applications use fully connected networks. A widely

used algorithm to evolve the networks structure is Neuro Evolution of Augmenting

Topologies (NEAT) [117] and its variants, e.g. HyperNEAT [116]. These algorithms

remove the need to fix the architecture but rather let them adapt to the complexity level

required [46, 47, 33].

If sufficient training data is available, a neural network can be trained using a super-

vised method, such as back-propagation, where the difference between the expected

output and the actual output is used to gradually reduce the error. However, when using

NNs as low level controllers, as is often the case in evolutionary swarm robotics, it

becomes difficult to obtain labelled data. It would be easy to record all inputs to the net-

work during a robot’s operation, however, determining the appropriate low level action

for each set of inputs and labelling the data accordingly would be a very difficult and

labour intensive task. In most evolutionary robotics applications a different approach

is used. The weights of the neural network are evolved. This unsupervised adaptation

mechanism allows the NN to be tuned without a priori knowledge of the input data.

Evolving the weights of a NN comes with some restrictions. Mutation is often

used as the sole variation operator. This is necessary due to competing conventions

[41] among different solutions in the gene pool. Individual solutions have different

internal conventions to express similar behaviours. Applying crossover might replicate

or eliminate functionality altogether. Algorithms such as NEAT [117] apply a special

technique to ensure that the crossover will lead to functional solutions. However, this

method requires global knowledge of the gene pool, which might not be given if the EA

is decentralised and spread across the swarm.

Although not used in this thesis, many other encoding methods, representations and

algorithms have been explored in the evolutionary robotics community. For example,

2.3 From Centralised and Offline to Distributed and Online 14

direct-encoded methods that are not based on neural networks, e.g. Q-Learning [100],

GP trees [75]. Furthermore, attention has been given to indirect encodings, where the

final structure of the network is the result of a developmental or generative process.

The most prominent examples here are cellular encoding [68], L-Systems [63], gene-

regulatory networks (GRN) [28] and Hyper-cube based NEAT (HyperNEAT) [116].

These methods have all been described in scenarios in which the introduced approach is

superior in comparison to other methods. However, as each method caters to a specific

problem and the demonstrated performance is very scenario dependent, it is impossible

to determine an overall best.

2.3 From Centralised and Offline to Distributed and

Online

An evolutionary algorithm in evolutionary robotics can be deployed in many forms.

Following the taxonomy by Eiben et al. [35], the aspects when, where and how the EA

is run can vary.

When: At runtime (online) [111] or during design time (offline) [46] of the robot.

Where: Inside (on-board/intrinsic) [112] or outside (off-board/extrinsic) of the robot’s

body [43].

And, when employing the evolutionary algorithm in a swarm of robots:

How: Distributed across the swarm (decentralised) [132] or centralised [130].

The criteria for when is the point in time when the individual fitness evaluations and

evolutionary operators are executed.

The concept of how refers on one hand to the location of the individual genomes

of the gene pool, and on the other hand to the algorithm itself [132]. In a classic EA

2.3 From Centralised and Offline to Distributed and Online 15

both components, the gene pool with all genomes and the algorithm, are in the same

place. Especially in the field of evolutionary robotics either of these components can

be distributed. Each robot can carry one genome of the pool, and the algorithm can be

designed in a way that requires the interaction of two or more members of the swarm

to be executed. If both criteria are met the algorithm is referred to as distributed. Of

course, mixed variations can also be imagined, e.g. where the algorithm is distributed

and each individual robot carries a sub-population of the gene pool, much like an island

in a traditional EA [17].

The concept of where refers to the physical location in which the evolutionary

operators (selection, variation and replacement) are executed [35]. However, it does

not refer to the location in which the fitness evaluations take place. In the extrinsic or

off-board approach, the computation is outsourced from the actual robot body to an

external entity. This might be due to constraints in computational power available on

small mobile robots or the availability of a computationally more powerful external

device, e.g. specialised processing hardware. If all the evolutionary operators are

executed inside the robot’s body it is referred to as intrinsic or on-board.

In ER it is not explicit enough to classify algorithms by where the computation

happens alone. The crucial aspect of where the fitness evaluations are performed is

missing. Many researchers, such as Bongard [12] and Stepney [118] and most recently

Bredeche et al. [18], argue the concept of embodiment. This classification does not

contradict the former, but rather shifts the focus onto where the fitness evaluation takes

place:

Embodied: The fitness evaluation is performed inside the body, hence the EA is

immersed into the environment. It can directly sense the environmental impact

on the robot and has direct access to the feedback from the robot’s actions. This

approach implies the use of on-board and online evolution [14].

2.4 Algorithms for Distributed Online Evolution 16

Disembodied: The fitness evaluation is performed outside the body and the EA has

no direct access to the world through the eyes of the robot. This approach might

also make use of variables that are available to an external observer.

Section 2.6.2 will discuss the interaction between embodiment and the evolutionary

process in more detail.

Which form the evolutionary algorithm takes depends on the extrinsic constraints of

the application. For example, in this thesis where the focus is on continuous autonomous

adaptation in a swarm of robots, the algorithm needs to be distributed and online, and

use embodied fitness evaluations.

2.4 Algorithms for Distributed Online Evolution

2.4.1 Probabilistic Gene Transfer Algorithm

Watson et al. [133] proposed a completely decentralised algorithm for embodied

evolution (EE). In their Probabilistic Gene Transfer Algorithm (PGTA), robots exchange

randomly selected genes through short range communication. This algorithm doesn’t

have a dedicated variation and replacement steps. Each robot holds a single genome

of which only individual genes are replaced at runtime. The fact that all genomes

are active makes this evaluation inherently parallel. Transmission frequency and gene

acceptance are based on the explicit fitness value of the respective robot, which reflects

its performance on a task. PGTA has successfully been applied to a photo-taxis task, and

they found that it produced better performing solutions than their best hand-designed

solutions.

2.4.2 odNEAT

Following the success of NEAT [117], Silva et al. [112] extended the algorithm for

use in a decentralised multi-robot application. They evolved the structure and synaptic

2.4 Algorithms for Distributed Online Evolution 17

weights of the neural network, thus adjusting the level of complexity needing to be

specified a priori. The algorithm requires synchronisation of the internal clocks to

allow for the use of timestamps. Similar to NEAT, odNEAT uses timestamps within the

genotypes to mark the addition of elements to the network to allow crossover. To date,

it has been used in simulation and real robot [109] experiments with a number of tasks,

e.g. obstacle avoidance, aggregation, maze navigation and homing [111]. It has been

demonstrated that controllers across the swarm displayed a diverse range of behaviours

and strategies for exploration and aggregation, as well as the ability to adapt to periodic

changes in task requirements.

2.4.3 mEDEA

The completely distributed evolutionary algorithm for environment-driven evolution,

mEDEA, was first proposed in Bredeche and Montanier [19] and has been used [21, 14,

82, 80] and adapted [54, 95, 40, 49] many times. The algorithm was demonstrated to be

both efficient with regard to providing distributed evolutionary adaptation in unknown

environments, and robust to unpredicted changes in the environment.

mEDEA relies on an implicit fitness function that results from two potentially

conflicting motivations for a robot: an extrinsic motivation to cope with environmental

constraints in order to maximise survival ability and an intrinsic motivation to spread

its genome across the population in order to survive. A complex trade-off exists in

which behaviours that maximise mating opportunities might negatively impact survival

efficiency, e.g. failing to maintain stable energy levels; as a result, mEDEA (or an

environment-driven EA) must find some equilibrium between the two states.

The original version of mEDEA exploited a simple strategy in which a robot

continuously broadcasts its genome — this can be received and stored by any robot

within communication range. At the end of a generation, each robot makes a random

selection from its set of stored genomes, applies a mutation operator, and then replaces

2.4 Algorithms for Distributed Online Evolution 18

its current genome, exactly as in a (1,1) Evolution Strategy [8]. Although there is no

selection pressure on an individual basis, from a global perspective, the most widely

spread genomes will, on average, be selected more often. While this achieved success

in evolving stable populations, it is of interest to attempt to improve both the size of the

swarms maintained and their net energy levels to allow for more complex user-defined

tasks to be added in future. It is reasonable to assume that spare energy, over and above

that required to survive, can be exploited to achieve complex tasks, while a large swarm

offers more potential in terms of the tasks that might be accomplished.

Within mEDEA, the evolutionary mechanism differs from natural evolution that

also drives adaptation. All robots broadcast their genome continuously and within a

fixed range, each robot has equal opportunity to pass on its genome, regardless of its

quality. This might create a bias for agents to stay close in order to spread their genome.

The reproduction mechanism is asexual, as can be found in bacteria, which uses no

form or crossover — variation is provided only by a mutation operator — hence the

emphasis is on the spreading of genomes rather than genes.

When mEDEA was first proposed in [19] the system was tested under two scenarios:

the first evaluated mEDEA in an environment providing limited pressure in which

energy is ignored and an agent survives as long as it collects at least one genome. In the

second, environmental pressure is introduced by forcing robots to compete for limited

resources in order to gain energy. The algorithm was demonstrated to be both efficient

with regards to providing distributed evolutionary adaptation in unknown environments,

and robust to unpredicted changes in the environment.

Furthermore, given its lightweight nature, mEDEA was demonstrated to be suitable

for hardware and software setups that have limited computation. Bredeche et al.

[21] implemented mEDEA on a set of E-Puck robots with Linux extension boards

to investigate the emergence of consensus amongst the swarm. This was achieved

by placing an object in the environment and giving robots a virtual sensor for the

object’s location. As there was no benefit or penalty for interacting with the object, the

2.5 Drivers of Evolution 19

controllers were free to evolve to ignore the object or hone in on it. They found that

besides some technical difficulties, the algorithm was able to create a stable population

and in most cases consensus amongst the swarm.

Montanier et al. [82] used mEDEA as a platform to conduct an investigation in the

field of ALife by studying the tragedy of the commons. The experiments demonstrated

that the algorithm naturally evolves altruistic agents with an increasing tendency to

greedy behaviour when it doesn’t impact the population’s chance of survival. The

altruistic agents expressed behaviours that did not harvest the total possible energy

ration amount from the available sources. They concluded that environment-driven

algorithms produce a trade-off between survival and task performance, rather than the

optimum of either of those criteria.

2.5 Drivers of Evolution

When employing evolutionary optimisation, one crucial aspect is the driving force

which guides the process. Intrinsically, it is the mechanism that determines the quality

criteria for solution and therefore the selection pressure. Recently, researchers have

started focusing on identifying and quantifying selection pressure in algorithms used in

evolutionary robotics [31, 51].

This section will explore the two most common drivers in evolutionary robotics: the

explicit fitness function and environment-driven evolution.

2.5.1 Fitness Function

Artificial evolution is guided by an objective, a fitness function that needs to be optimised

to solve a predefined task. In evolutionary robotics this is often referred to as goal- or

task-driven evolution [4]. Other objectives can be chosen to determine the fitness, such

as novelty or diversity of solutions [31], however, in this thesis the focus is on fitness

functions for explicitly defined tasks. Common tasks in evolutionary swarm robotics are

2.5 Drivers of Evolution 20

collaborative manipulation, such as object transportation and assembly, group foraging,

path planning, coordinated motion and collective decision making.

Nelson et al. [88] gave a broad overview of fitness functions in evolutionary

robotics. They found that it is better to incorporate not too much knowledge into the

fitness function as this would create a bias towards a known solution and would limit the

ability of evolution to surprise. The survey focused mainly on a priori knowledge that

had been incorporated into the fitness function. Doncieux and Mouret [31] extended this

overview and introduced categorisation into task-specific and task-agnostic functions.

Defining an explicit fitness function can give a clear definition of the goal robots

should achieve. However, when employing a distributed online adaptation algorithm

the evaluation becomes noisy and it can be challenging to get precise fitness evaluations

[81]. As previously discussed, the evaluation of a genome, i.e. the controller, takes time

in evolutionary robotics. The emergent behaviour needs to be observed for long enough

to get a clear picture of the quality of the controller. When robots operate autonomously

they can’t be repositioned which leads to different starting points for each genome as

the individual’s evaluation begins in the location of the robot’s body left by the previous

controller. Hence, a genome might not be able to display a potentially useful behaviour.

For example, if stuck in a bad starting position it might not be able to move at all. This

makes the fitness evaluation noisy and leads to potentially longer times to find a good

solution.

2.5.2 Environment-driven Adaptation

Future environments in which swarm robots operate will often be unknown and poten-

tially dynamic, e.g. swarms of robots being sent to remote or hazardous places. This

has led to a number of recent efforts to study evolution within a swarm as a mechanism

for driving adaptation, as opposed to a mechanism for optimising an explicit fitness

function, which is common in much work within evolutionary robotics. Montanier [80]

2.5 Drivers of Evolution 21

notes that this step is in fact a pre-requisite to studying any kind of user-driven task

behaviours within a robotic swarm in an open-environment, as the former cannot be

achieved if the integrity of the swarm is compromised.

This type of evolution is often referred to as environment-driven evolution [9].

Typical approaches, such as [112], remove the need for any central control, resulting

in algorithms that perform distributed and online evolution. An additional feature of

environment-driven algorithms is that no explicit fitness function is defined: instead,

mate selection and reproduction depend on selection pressure provided only by the

environment, yet need to lead to stable populations. The mEDEA algorithm as described

above (2.4.3) is another example.

2.5.3 Environment-driven + Fitness Function

Both of the previously introduced drivers of evolution can be combined. Noskov et al

[95] extended mEDEA so that in addition to surviving and operating reliably in an envi-

ronment, a robot could also perform user-defined tasks without compromising its ability

to survive. Survivor selection is driven by the environment, whereas parent selection is

driven by task performance. Their new framework MONEE (Multi-Objective aNd open-

Ended Evolution algorithm) shows that task-driven behaviour can be promoted without

compromising environmental adaptation. Robots accumulate credit for accomplishing

particular tasks — this credit value is transmitted along with a genome, and is utilised

in a fitness function to select parents, replacing the random selection seen in mEDEA.

Fernández et al. [40] augmented mEDEA with an explicit fitness function to study

the impact of four different selection methods on the selection pressure. Two different

tasks were performed, namely obstacle avoidance and collective foraging. For obstacle

avoidance Nolfi and Floreano’s [94] fitness was used, which maximises the distance

travelled and minimises the collision with objects. They found that higher selection

pressure results in improved performances, especially with more challenging tasks.

2.6 Role of the Environment 22

Boumanza [14] examined phylogenetic trees for embodied evolutionary robotics

and selected mEDEA as a representative algorithm for the study. The algorithm was

augmented in a similar fashion to Fernández et al. as mentioned above, using roulette-

wheel selection to select from the received genomes. Through variation of parameters

they investigated the effect of different selection pressures on the properties of the

resulting phylogenetic tree. They demonstrated how the creation of phylogenetic trees

and analysis of the resulting graph gives useful insights into the evolutionary dynamics

of the algorithm.

Although not part of this thesis, there is a current trend towards algorithms like Nov-

elty search [70], or so called quality and diversity (QD) algorithms, such as MapElites

[84]. Novelty search still has an explicit selection criteria, but rather than focusing on

optimising task performance it selects based on the novelty of behaviours. MapElites

helps build up a repertoire of known best solutions in different parts of the search space

that might become relevant at a later stage, e.g. when the objective shifts due to external

influences.

2.6 Role of the Environment

In the previous section it has been shown that the environment can be used as driver

for the evolutionary process. This section will focus on why it is important to take the

environment into account and the ways in which it influences the evolutionary process.

Whether an explicit fitness function is used to shape the solution or a robot’s simple

need to stay alive, the environment in which they are immersed in is always a factor.

The so called sensory-motor interaction describes the relationship between the state of

the environment that is sensed by a robot and the changes its actuators inflict on that

state [91]. In other words, the robot’s controller uses the on-board sensors to gather

information about its surroundings. The controller issues commands based on this

information to its actuators, which leads to an interaction with the environment. The

2.6 Role of the Environment 23

consequences of these actions will influence the information that is now sensed. Even

in a completely static environment, moving just a fraction will already have changed

the perception the controller has of its surrounding world.

The robot’s behaviour emerges as a result of the interplay between the current robot

configuration, the phenotype in the vocabulary of the evolutionary algorithm and the

environment. This is true whether the controller, the morphology or both are produced

by the evolutionary process. Figure 2.1 illustrates this interaction and the dynamic

processes within the controller and environment.

Controller

Environment

Behaviour

Actuator
Commands

Sensory
Inputs

Intrinsic
System
Dynamic

 Extrinsic
System

Dynamic

Fig. 2.1 A robot’s behaviour emerges from its interaction with the environment. The
schematic (based on [91]) illustrates the interaction relationship between a robot’s
controller, body and the environment. Solid arrows indicate the direct interaction with
the environment. Dotted lines indicate dynamic processes within the controller and the
environment, which also influence the resulting behaviour.

2.6.1 Morphology

The morphology of a robot plays a special role in evolutionary robotics. It hosts the

robot’s controller which is therefore “grounded” in the environment due to its embodied

nature. As a result, the emerging behaviour is a consequence of the interaction with the

2.6 Role of the Environment 24

environment [91]. It comes therefore as no surprise that different concepts for shapes

and forms have been explored. An evolutionary algorithm can be used to optimise all

aspects of the robot’s body [13], from the shape and size to the material composition,

from traditional solid mechanical objects to smart-materials for the production of

soft-robotics [101, 25] to self-assembling robots from many smaller units [48].

Karl Sims’ [113] pioneering work on evolving virtual creatures in simulation set a

milestone for the, back then, quite young field. In his experiments, both the morphology

and the controlling mechanisms were produced by the evolutionary process. Pfeifer and

Bongard later strongly argued the necessity to evolve body and controller at the same

time [97] to achieve more complex and sophisticated machines.

Pollack and Lipson demonstrated the advantage of evolving all parts of the robot

at the same time over designing each part separately. In their Golem project [98] they

introduced an automated process to automatically manufacture the entire robot body

shell to guide evolution running in simulation. Limited by the technology of their time,

electronic components still needed to be attached by hand. New approaches, such as

the 3D printing of different materials and electronics at the same time, could lead to a

completely autonomous process [34].

It is now a well established paradigm that evolving morphology and controller

together leads to better engineered robots [12]. However, when it comes to swarm

robotics, the focus shifts from the individual robot to the formation and size of the

swarm of simple agents [103, 15].

The research conducted for this thesis focuses on the evolution of robot controllers

in a fixed morphology within a swarm of robots. Although all interactions of the robot

occur through its body, the morphology is not subject to any change by the evolutionary

process. It will certainly influence the resulting performance, however, due to its static

nature, the influence will remain the same throughout all experiments and can merely

be seen as a constant offset.

2.6 Role of the Environment 25

2.6.2 Influence of the Environment

The emerging behaviours arising from the interactions of the robot with its environment

are not well understood, perhaps in part due to the time-consuming experimentation that

needs to be done to conduct sweeps of the parameters that define the environment. It is

common in optimisation to explore the relationship between algorithmic parameters and

fitness [67]. However, evolutionary robotics adds an additional dimension in that it is

not only the algorithm’s parameters that change but also the environmental parameters.

Hence, it is crucial to investigate the influence the environment has on the performance

of the algorithm.

Auerbach and Bongard [1] investigated the relationship of environmental and mor-

phological complexity in evolved robots. Much like in the works of Sims [113] or

Pollack and Lipson [98], the morphology and controller were co-evolved. The study fo-

cused on a single robot at a time rather than a swarm. These robots were evaluated in 49

different environments in which evenly spaced low friction bars on high friction ground

varied in height and distance, thus creating a variety of challenges. They analysed the

difference in evolved complexity of the individuals that were able to successfully ma-

noeuvre said environments in a fixed amount of time. They found a direct relationship

between the complexity of the environment and the evolved complexity, leading to the

hypothesis that a gradual increase in complexity of the problem domain will result in

more complex individuals.

Bredeche et al. [19] demonstrate their algorithm’s robustness by introducing a

drastic environmental change in their experiment. This presented the algorithm with a

different type of environment and required a change in behaviour in order to survive.

Although this experiment evaluated their algorithm in two different environmental

settings, it would be very hard to try to generalise a performance prediction from this.

Haasdijk et al. [52] did a thorough analysis of the impact the algorithmic parameters

have on performance in a set environment. Their approach was limited to tuning the

2.7 Combining Learning and Evolution 26

parameters in order to achieve good task performance across four different problems.

However, in this work, as in others, experimental parameters, e.g. the ones defining

the environment, are chosen arbitrarily and the use of actual benchmarking is rare [30].

This is often down to the lack of well defined test-bed applications and metrics [15].

2.7 Combining Learning and Evolution

Evolution and lifetime learning are two adaptation mechanisms that are often combined

in evolutionary robotics [124, 38, 62, 93]. Learning happens within an individual’s

lifetime and benefits the individual directly, whereas evolution gradually produces

better adapted individuals over a much longer time-scale of generations. In ER, the

entirety of a robot controller’s lifetime corresponds to a single fitness evaluation of

the EA. Learning can make use of this evaluation time by improving upon the evolved

behaviour.

Unfortunately, in literature it is not often clear which type of adaptation is actually

employed. The redefinition of concepts leads to blurred lines, for example, when

evolutionary concepts are used in the time-scale usually reserved for learning, and a

distributed evolutionary algorithm is described as social learning [59].

The interaction between learning and evolution is described by the Baldwin Effect

[2]. It describes how the ability to learn can create an evolutionary advantage. A

considerable body of research exists around the interaction of learning and evolution

[124, 38, 62, 93]. Individuals that can adapt through learning during their lifetime have

higher reproductive success compared to those who can’t or take longer to learn. While

the Baldwin Effect can be used to explain the interaction between learning and evolution,

which is investigated in chapter 6, the focus is on the interaction of the adaptation

mechanisms with the environment, rather than the effect itself.

2.7 Combining Learning and Evolution 27

2.7.1 Learning and Adaptation Mechanisms

Many different methods and approaches of learning and adaptation have been introduced

in evolutionary robotics literature. Many different nature-inspired approaches have been

used to introduce plasticity into a neural network, which then allows for a change of

behaviour during runtime.

Noble and Franks [90] demonstrated reinforcement learning in a multi-agent system.

For learning, a variety of social learning strategies were facilitated using Q-Learning as

the underlying mechanism to enable agents to learn not just from direct but also delayed

reward signals. Hebbian Learning [127] is an adaptation mechanism in which learning

rules determine how the weight of a synapse is adjusted, based on the activity of the

neuron located before, after or on either side of it. The evolved adaptation rules for

synapses are then used to adjust a randomly initialised network during runtime. This

approach was evaluated in different environments, in simulation and real robots. It

was demonstrated to outperform evolved fixed-weight NN in a light-switching task.

In Neuromodulation [115], additional modulation neurons are added to the network

that can individually strengthen or suppress the activity of neurons. This allows the

runtime adaptation of the network’s behaviour in parts or as a whole. Neuromodulation

augmented odNEAT outperformed vanilla odNEAT in a simulated concurrent foraging

task in a robot swarm by generating stable controllers in significantly fewer generations

[110]. Artificial hormones are applied in a similar fashion in a Neuro-Endocrine System

[86] to amplify or suppress neuron activity. The sensitivities to different hormones

can vary for each neuron, leading to a range of behavioural patterns created by the

same NN depending on the current hormone concentration in the system. Potentially

competing demands can be managed by switching between behaviours gradually [105].

The Artificial Immune System [24] employs a nature inspired approach that allows

the build up of a behavioural repertoire in which immune cells are used to recognise

2.7 Combining Learning and Evolution 28

and map sensory inputs to actions. Learning occurs over time through stimulation and

suppression of different actions, based on their success.

2.7.2 Individual and Social Learning

As indicated in the section about swarm robotics (2.2.1), in systems with multiple

robots the learning effort can be shared. The effort of learning can be shared and

benefit the learning individual as well as others in the swarm by sharing the acquired

information. This can be achieved through observing other robots [39] or explicitly

sharing information [50]. Having multiple entities learning at the same time can also

help to verify and improve the accuracy of learned concepts [90]. The learning concept

employed in the swarm can then be classed as either individual, learning on your own,

or social-learning from others [50].

Haasdjik et al [53] propose a framework for evolution, individual and social learning

in collective systems, and consider the interaction of evolution and individual learning

in which the latter is achieved by reinforcement learning [123]. Their experiments show

that in a collective system it is possible for learning to counteract evolution. A hiding-

effect can occur in which individual learning acts to mask the ill-adapted nature of

non-optimal agents, and is therefore counter-productive. This can be explained with the

Baldwin Effect. Although a number of environments were investigated that essentially

modified the reward system, all environments were static, and the relationship of the

learning framework to specific parametrisations of the environmental features was not

examined.

Heinermann et al investigate the relationship between evolution, individual and

social learning in a real swarm [58–60]. Here, the evolutionary part focuses on evolving

a suitable sensory layout, while the individual learning runs an evolution strategy-like

mechanism to learn the network weights during the robot’s lifetime. Learnt weight

vectors are broadcast to other robots during the social learning phase. The main focus

2.8 Summary 29

of this work was to investigate the impact of social learning. Individual learning is

required to learn a controller and hence cannot be omitted.

A dynamically changing reward system was investigated by Bredeche and Mon-

tanier [19] who proposed mEDEA, a completely distributed evolutionary algorithm for

environment-driven evolution. Here, efficient adaptation in a changing environment

was demonstrated using a set-up that switched phases: in the free-ride phase there is

no cost to movement, therefore a robot only needs to meet a single other robot to pass

on its genome, while in the alternating phase the robot is required to harvest energy in

order to move and therefore create opportunities for passing on its genome. Noskov

et al extended mEDEA to add explicit task-selection in the MONEE framework [95].

Haasdijk et al [49] extended this work and examined in more detail the relative selection

pressures induced by task performance and survival in different environments, finding

that task performance is optimised even if it reduces the lifetime of robots (and therefore

their ability to reproduce).

2.8 Summary

Evolutionary algorithms are widely used black-box optimisers for solving computation-

ally hard problems. In evolutionary robotics they are used to adapt the controller of

robots in a swarm operating in potentially unknown and changing environments. The

evaluation of a potential solution, a genome of the evolutionary algorithm, requires

a robot to operate in the environment to determine its fitness. This can be very time

consuming. Operating a swarm of robots has the advantage that the evolutionary algo-

rithm can be distributed across the swarm, hence creating the opportunity to evaluate

solutions in parallel. The environment-driven distributed evolutionary adaptation algo-

rithm mEDEA has been identified as a suitable approach as it focuses on survivability

of the swarm, rather than the optimisation of a specific task performance. However, the

algorithm appears to offer scope for improvement. The clever use of a fitness function

2.8 Summary 30

could increase the selection pressure for the evolutionary process while still maintaining

the algorithm’s distributed nature. In addition, the environment has been identified

to influence the path the evolutionary process takes. Many researchers argue for the

concept of embodiment and the influence the environment has when the situated agent

undergoes evolutionary adaptation. However, no clear methodology has been found to

determine the role the environment plays and how it influences an environment-driven

evolutionary adaptation algorithm.

Further, there are additional types of adaptation mechanisms, e.g. different forms of

individual or social learning. The link and influence between evolution and learning

have widely been studied in the Baldwin effect. However, in the context of evolutionary

robotics where different mechanisms can simply be used to get the best possible

adaptation, the focus shifts away from explaining nature, to merely taking inspiration.

This then poses questions, such as under which conditions are those methods beneficial,

and how – if at all – this is linked to the role of the environment. The remainder of this

thesis will address the issues raised by answering the questions posed in chapter 1.

Chapter 3

Using Relative Fitness to Improve

Survivability in mEDEA

In many natural systems an individual’s chance of reproduction is related to their fitness

relative to other individuals in its vicinity. Additionally, individuals mate selectively,

choosing partners based on some estimation of their quality and/or strength. Some

species broadcast their quality through visual or behavioural displays: a peacock

displays its tail feathers; a bird of paradise ‘dances’. Fitter individuals can attract the

attention of a greater number of potential mates. Inspiration can be taken from nature to

implement a similar relative fitness mechanism to improve survival while maintaining

the integrity of a fully distributed algorithm.

3.1 Contribution

Elements of the work described in this chapter have been published in the proceedings

of the Genetic and Evolutionary Computation Conference (GECCO 2015) [55]. A copy

of the publication can be found in the appendix (A.1)

The mEDEA algorithm, an environment-driven distributed adaptation algorithm

for swarm robotics, is augmented with an explicit fitness measure. This novel way of

3.2 Introduction 32

calculating a relative fitness maintains the algorithm’s distributed nature. Two ways of

using the relative fitness are investigated: influencing the spreading of genomes, thereby

indirectly increasing the selection pressure; and moving from a random to an explicit

selection of genomes based on the relative fitness. It is shown that both methods lead to

an improvement over the original algorithm in the swarm’s ability to maintain energy

over longer periods.

3.2 Introduction

The original mEDEA algorithm, as introduced by Bredeche and Montanier [19], uses an

implicit fitness function combined with an indirect selection mechanism that promotes

a higher number of unique robot encounters. Here the mEDEA algorithm is augmented

with a relative fitness function that creates selection pressure for the individual robot

towards behaviours to maintain energy. This has been identified as a pre-requisite to

studying any kind of user-driven task behaviours within the robotic swarm, as the former

cannot be achieved if the integrity of the swarm is compromised.

Inspired by nature, a relative fitness measure is introduced into mEDEA. A robot

makes an estimate of its fitness to maintain energy relative to those within its broadcast

range, thereby maintaining the distributed nature of the algorithm. The thus obtained

fitness value can be used in two ways:

• An individual robot can make an informed rather than random selection from the

genomes it has received, according to the relative fitness value.

• The relative fitness value can be used to influence the broadcasting behaviour of

a robot to provide a bias towards the spread of good genomes.

The latter point changes the nature of the reproductive strategy used in mEDEA from

a ‘promiscuous’ one, in which there is indiscriminate broadcasting of a genome, to one

in which the spread of a genome (and therefore the probability of it being collected) is

3.3 The mEDEA Algorithm in Detail 33

dependent on its quality. Two novel methods for influencing broadcasting are introduced:

the first causes the robot to adapt the probability with which it broadcasts, based on its

fitness, and the second causes the robot to adapt the range over which it broadcasts its

genome. As in the original version of mEDEA, robots still make a random selection

from collected genomes. However, due to the biased broadcasting methods, on average,

good quality genomes are more likely to be collected than poorer ones.

3.3 The mEDEA Algorithm in Detail

The general concept of mEDEA has been introduced in the previous chapter (2.4.3).

Here, the algorithm is described in more technical detail with a special focus on the key

steps in the selection mechanism of the evolutionary algorithm. The original mEDEA

algorithm is defined in algorithm 1.

In order to map the standard terminology of an evolutionary algorithm to the terms

used in this thesis about swarm robotics, the physical (or in this case simulated) body of

the robot is merely an evaluation vessel for genomes. An individual is an instantiated

genome, meaning it is currently being used to define the controller of a robot and

therefore determining its behaviour. The population refers to the unique genomes held

by the swarm of robots, as currently active genomes and those within the list of received

genomes. This is similar to the gene’s eye view of evolution by Dawkins as used with

his selfish gene metaphor [29].

3.3.1 Algorithm Outline

For a fixed number of time steps (or iterations) of one generation, robots move according

to their control algorithm, which is a neural network (a multi-layered perceptron, MLP).

The currently active genome is used to define the neural network controller weights.

Upon an encounter with another robot, the currently active genomes are transmitted

and both robots keep an exact copy of the other’s genome in their local genome storage.

3.3 The mEDEA Algorithm in Detail 34

Therefore, multiple copies of a genome can exist among all robots’ genome storages. At

the end of a generation, when it comes to selecting a new genome, the current active one

is discarded and a replacement randomly selected from the local storage. At this point

the local genome storage is cleared and all encountered genomes removed. In the case

of a robot not picking up any other genomes, it becomes inactive. It removes its current

genome and remains stationary until a passing robot comes into communication range

and passes its genome. Being the only genome in the local storage, it is immediately

selected as a replacement. The selected genome undergoes variation before being

instantiated, meaning it is becoming the current active genome. This variation takes the

form of a Gaussian random mutation operator, inspired from Evolution Strategies [8]

that can easily be tuned through a σ parameter.

At the start of each generation, a robot is initialised with an energy E0.

E(t0) = E0 (3.1)

Every time step, the energy value is decreased by a ‘living’ cost of Eliving = 1 unit.

Energy tokens are scattered in the environment 3.1. If a robot moves over a token, its

energy is increased by an amount Etoken. Equation 3.2 shows the change in energy at

each time step, where n is the number of tokens that have been collected in that step.

Here, t0 refers to the time the current genome is activated.

E(t +1) = E(t)−Eliving +(n×Etoken) (3.2)

A robot with no energy (E(t) = 0) becomes inactive and remains stationary for

the remainder of the generation. To investigate any effects that the necessity of robots

to find energy tokens has on their survival, the parameters E0 and Etoken have to be

selected to be less than the amount required to survive a full generation. This ensures

3.3 The mEDEA Algorithm in Detail 35

that there is a selection pressure that originates from the need to locate tokens, as well

as spreading the genomes.

E

E

E

E

E

E

R

Fig. 3.1 Robot (R) with energy tokens (E) distributed across the environment. The
robot’s front is indicated by the green arrow and the sensor rays are illustrated as black
lines around the circular robot body. The energy token closest to the robot is being
detected (red coloured sensor rays) and now being consumed (as indicated by the fading
blue colour) as soon as the outline of the robot body touches the token surface.

3.3.2 A Closer Look at the Key Steps

As previously mentioned, there are two ways a robot can become inactive: by running

out of energy or not having collected any genomes in the previous generation. Therefore,

the population size of the evolutionary algorithm is dynamic and at any point in time

equal to the number of unique genomes across the robots’ collected genome lists and

currently active genomes.

This has an impact on the genetic diversity within the population as well. A harsh

environment, caused by a drastic change or initial environmental conditions, can lead

to a steep decline in population size. The original experiment from Bredeche and

Montanier shows that mEDEA is able to recover from such drops in population size.

The availability of energy is the controllable factor for harshness in the environments

considered for the experiments. Due to randomly initialised genomes, and therefore

neural network weights, the resulting behaviour of robots is random movement. Hence,

running over an energy token in a scarcely populated environment is merely down to

3.3 The mEDEA Algorithm in Detail 36

1 load(currentGenome = randomInitialisedGenome);
2 while iteration ≤ maxIterations do
3 if hasGenome() then
4 if lifetime ≤ maxLifetime & energy > 0 then
5 move();
6 broadcast(currentGenome);
7 else
8 remove(currentGenome);
9 end

10 end
11 genomeList.addIfUnique(receivedGenome);
12 if genomeList.size() > 0 then
13 genome = select<random>(genomeList);
14 load(currentGenome = applyVariation(genome));
15 genomeList.empty();
16 li f etime = 0;
17 end
18 end
Algorithm 1: Pseudo code of the original mEDEA algorithm by Bredeche et al.
[20] executed within every robot.

chance. The few robots that happen to run over a token, which prolongs their lifetime

enough to meet another robot, or that have a good genome, are now the ones carrying

the population forward. Here, a good genome is one that leads to the expression of

reproductive beneficial behaviours. Robots need to come into communication range

to exchange their genomes. If they become inactive in a remote location, it might take

longer for another robot to venture into its neighbourhood and pass on its genome.

In an evolutionary algorithm a fitness function can be used in two ways: to select

for reproduction and to select for replacement.

The mEDEA algorithm does not possess an explicit selection mechanism that is

based on an explicit fitness value. Selection happens implicitly. The selection from the

local genome storage is completely random, which means that every genome has an

equal chance of being selected. For example, a genome (A) leads its carrying robot to

act poorly by circling in a corner of the arena, avoiding energy tokens and other robots.

Another robot, with a better genome (B), has a more exploratory behaviour, which seeks

3.4 mEDEA with Relative Fitness 37

out multiple robots on its quest for energy. The exchange of genomes is reciprocal. If

genome A is now chosen in the next generation to replace genome B in the second robot

in a more frequented place of the arena than the corner where A originated from, it will

likely be passed on to many more robots. Many more scenarios are imaginable in which

ill-adapted genomes can spread through the population.

3.4 mEDEA with Relative Fitness

From this section onwards new ideas are described. This section focuses on proposed

modifications to the mEDEA algorithm, dubbed mEDEAr f — mEDEA with relative

fitness.

Each robot estimates its fitness in terms of its ability to survive based on the balance

between energy lost and energy gained, delta Energy (δE). This term is initialised to 0

at t = 0, when the current genome was activated. It reflects a robot’s energy balance

and, therefore, undergoes the same changes as stated in equation 3.2. Given δE , a robot

calculates a fitness value that is relative to robots in a range r according to equation

3.3, where f ′i is the relative fitness of robot i at time t, δEri is the mean δE of the robots

within the sub-population defined by all robots in range r of robot i, and σ
δEri

is the

standard deviation of the δEri of the sub-population.

f ′i (t) =
δEi(t)−δEri(t)

σ
δEri

(t)
(3.3)

Note that f ′i is defined in relation to the ability of the robot to survive in the

environment; it records the net energy of a robot, accounting for energy expended and

energy gained by locating tokens.

The new explicit fitness function can be exploited in two ways:

• the fitness value can be transmitted with a genome and used by an individual

within an explicit selection function.

3.4 mEDEA with Relative Fitness 38

• it can be used to influence the rate at which a genome is broadcast, thereby

indirectly affecting its chances of being selected for reproduction.

The two approaches are described below.

3.4.1 Explicit Selection Mechanisms

The selectrandom(genomeList) method in mEDEA (outlined in the pseudo code in

algorithm 1) can easily be replaced with an informed selection method that uses the

relative fitness measure to discriminate between genomes. Three well-known selection

strategies are investigated:

• tournament selection

• roulette-wheel selection

• elitist select-best strategy

3.4.2 Biasing Broadcasting of Genomes

Alternatively, the spread of genomes can be biased by adapting the broadcast() step in

algorithm 1. In mEDEA, robots make a random selection from their list of collected

genomes at the end of each generation. Two new methods are proposed, both of

which bias the spread of genomes throughout the population in favour of higher quality

ones, based on a robot’s estimation of its fitness f ′ relative to those in its immediate

surroundings.

• broadcast_range() adapts the range at which a robot broadcasts depending on f ′

• broadcast_probability() broadcast within a fixed range r with the probability

depending on f ′

3.4 mEDEA with Relative Fitness 39

1 load(currentGenome = randomInitialisedGenome);
2 while iteration ≤ maxIterations do
3 if hasGenome() then
4 if lifetime ≤ maxLifetime & energy > 0 then
5 move();
6 if neighbourhood.isNotEmpty() then
7 r f =calculateRelativeFitness(neighbourhood); // eq. 3.3
8 broadcast(currentGenome,r f);
9 end

10 else
11 remove(currentGenome);
12 end
13 end
14 genomeList.addIfUnique(receivedGenomes);
15 if genomeList.size() > 0 then
16 genome = select<selection−strategy>(genomeList);
17 load(currentGenome = applyVariation(genome));
18 genomeList.empty();
19 li f etime = 0;
20 end
21 end
Algorithm 2: Pseudo code of the adapted version of the mEDEA algorithm with
relative fitness mEDEAr f , used with the explicit selection mechanism.

3.5 Hypotheses 40

Given f ′i , we define the probability of a robot broadcasting using equation 3.4,

which simply describes a function that returns a probability of 0 if f ′i is less than d0,

probability of 1 if f ′i is more than dmax standard deviations away from the mean, and,

otherwise, linearly interpolated between 0 and 1.

pi(t) =

0 f ′i (t)< d0

f ′i (t)−d0
dmax−d0

d0 ≤ f ′i (t)≤ dmax

1 f ′i (t)> dmax

(3.4)

For the Broadcast_probability() method, shown in case1 in algorithm 3, the probabil-

ity pi(t) is used directly to determine whether a robot broadcasts. For Broadcast_range(),

the probability pi(t) is converted to a broadcasting range between 0 and a value rmax

according to equation 3.5 — the higher the relative fitness, the greater the broadcast

range. Note that range increases with the square root of the probability in order to

maintain a proportional increase in broadcast area.

ri(t) = rmax ∗
√

pi(t) (3.5)

Both methods result in robots that have a higher relative fitness, broadcasting their

genome more than those with a lower relative fitness, hence, biasing the quality of

genomes that a receiving robot collects. At the end of each generation, a random

selection of a genome is made from those collected, as in mEDEA.

3.5 Hypotheses

The following hypotheses inform the experimental design and are tested through experi-

mental investigation.

3.5 Hypotheses 41

1 /* Calculating the relative fitness, step 7 in algorithm 2 */

2 Ri← getRobotsWithinRange(rmax);
3 if Ri > 0 then
4 f’i← getRelativeFitness(R); // eq. 3.3
5 pi← getProbability(f’i); // eq. 3.4
6 else
7 pi = 0
8 end

9 /* Varying the broadcasting mechanism, step 8 in algorithm 2
*/

10 switch exp do
11 // vary probability
12 case 1 do
13 if pi > rand() then
14 broadcast(rmax,currentGenome,σ);
15 end
16 end
17 // vary broadcast range
18 case 2 do
19 ri← adjustRange(pi); // eq. 3.5
20 foreach robot j in R do
21 if distance(i, j)< ri then
22 broadcast(ri,currentGenome,σ);
23 end
24 end
25 end
26 end
Algorithm 3: Pseudo code of the algorithm to calculate the relative fitness of
robot i in its current neighbourhood of range rmax, and variation of broadcasting
mechanism based on the relative fitness.

3.6 Experiments 42

Explicit Selection Mechanism

The following alternative hypothesis is used for experiments in which the relative fitness

value is used for explicit selection, described in 3.6.2.

Hypothesis 1 Replacing the random selection method in mEDEA with a selection

method that selects based on the relative fitness value will increase both the average

maintained level of energy (δE) of the population and number of robots active (Nactive)

at the end of the final generation when compared to the original mEDEA algorithm.

Biasing the Spread of Genomes

The following alternative hypotheses are used for experiments in which the relative

fitness value is used for biasing the broadcast of genomes, described in 3.6.3.

Hypothesis 2 Biasing the spread of genomes via adapting the probability that a robot

broadcasts based on its relative fitness will improve the average δE of the population

and Nactive compared to the original mEDEA algorithm.

Hypothesis 3 Biasing the spread of genomes via adapting the range over which a robot

broadcasts based on its relative fitness will improve the average δE of the population

and Nactive compared to the original mEDEA algorithm.

3.6 Experiments

Three sets of experiments were undertaken, exploring the effects of using the explicit

selection mechanism, biasing the spread of genomes through altering the broadcasting

mechanism, and finally biasing the spread and using explicit selection.

3.6 Experiments 43

3.6.1 Methodology

All experiments use Roborobo by Bredeche et al. from [22], as in the original simu-

lations described with mEDEA. Roborobo is a multi-platform, highly portable robot

simulator for large-scale collective robotics experiments. With respect to other robotic

simulators, Roborobo combines (pseudo-)realistic modelling with fast-paced simulation

and thus falls somewhere inbetween very realistic frameworks, such as Player/Stage

[45], that tend to be very slow, and agent-based tools, such as MASON [74], that are

extremely simplified with respect to the environment. It focuses solely on large-scale

swarms of robots in a 2D environment and is based on a Khepera/ePuck model. It has

already been used in more than a dozen published research papers mainly concerned

with evolutionary swarm robotics, including environment-driven self-adaptation and

distributed evolutionary optimisation, as well as online onboard embodied evolution

and embodied morphogenesis.

The genome defines the weights of an Elman recurrent neural network (RNN)

consisting of 43 sensory inputs and 2 motor outputs (translational and rotational speeds).

8 ray-sensors are distributed around the robot’s body. They detect the proximity to the

nearest object, the presence of walls and other robots, whether it belongs to the same

group and the relative orientation between the two robots. An energy level input feeds

the current level into the network. A distance and angle sensor gives the direction to the

nearest energy token. The RNN has 1 hidden layer with 8 nodes, thus 434 weights are

defined by the genome.

Table 3.1 mEDEAs evolutionary algorithm parameters for all experiments in this thesis.

Evolutionary Algorithm parameters

Variation operator Gaussian mutation with σ parameter
σmin value 0.01
σmax value 0.5
σ initial value 0.1
α (ie. σ update parameter) 0.35

3.6 Experiments 44

All parameters used in the experiments are given in table 3.1 and table 3.2. Simula-

tion parameters are based on the original papers. Experimental parameters were chosen

following limited empirical tuning. The maximum broadcasting range requires sensible

selection and should be chosen according to the arena size.

Table 3.2 Simulation and experimental parameters for all experiments in this chapter.

Simulation parameters

Arena size 1024 pixel by 1024 pixel
Number of robots 100
Robot lifetime 1500 iterations
Food regrow time 500 iterations
Sensor range 32 pixel
Chromosome length 434
Agent rotational velocity 30deg/step
Agent translational velocity 2 pixel/step

Experimental parameters

Number of independent runs 30
Maximum generations 500
Number of energy tokens 800
Energy value of token 100
Start energy 1200
Maximum range rmax 64
d0 0
dmax 2

3.6.2 Experiment Set 1: Explicit Selection Mechanism

The first set of experiments investigate the hypothesis that replacing the random se-

lection method in mEDEA with a selection method that selects based on the relative

fitness value, will increase both the average δE of the population and number of robots

alive Nactive at the end of the final generation when compared to the original mEDEA

algorithm. Three selection methods are investigated: binary tournament, roulette-wheel

and an elitist select-best. These experiments are labelled:

3.6 Experiments 45

• E1 (vanilla) mEDEA

• E1+t mEDEA + tournament selection

• E1+rw mEDEA + roulette-wheel selection

• E1+b mEDEA + best selection

to denote the different selection methods.

3.6.3 Experiment Set 2: Varying the Broadcasting Mechanism

The new methods broadcast_probability() and broadcast_range() introduce two modifi-

cations compared to the original algorithm: (1) the broadcast probability (and therefore

range) is variable across the population and (2) the broadcast probability (and therefore

range) is determined by relative fitness. In order to show that any improvement in aver-

age δE can be attributed to the effect of introducing the relative fitness term, rather than

simply a random variation, additional control experiments are performed as follows:

Rather than calculating the relative fitness of a robot according to equation 3.3,

using its own δEri(t), it is simply replaced with xi — a random number drawn from a

normal distribution with mean ∆(t) and sd∆(t), where the ∆ terms refer to the mean

and standard deviation of the fitness of the global population. The global fitness

is used simply to ensure that the random value is drawn from an appropriate range.

New methods broadcast_randomProbability() and broadcast_randomRange() then use

equations 3.4 and 3.5 as previously described. These methods are introduced merely to

perform rigorous control experiments: it is not to suggest that this method be used in

practice as it requires the calculation of a global parameter, contrary to the distributed

nature of the algorithm.

Five different experiments are performed, where E1-E3 are controls and E4 and E5

evaluate the new methods.

3.7 Evaluation and Analysis 46

• E1 records the mean δE of the robot population and the number of active robots

at the end of the final generation using only the original version of mEDEA

• E2 (control for E4) records the same metrics as E1 using broadcast_randomProbability()

• E3 (control for E5) records the same metrics as E1 using broadcast_randomRange()

• E4 records the same metrics as above using broadcast_probability()

• E5 records the same metrics as above using broadcast_range()

3.7 Evaluation and Analysis

Results for all approaches are compared to the original mEDEA algorithm. Experiments

show that both methods perform equally well compared to the original algorithm. Note,

however, that broadcasting in the physical world is an energy consuming operation;

methods that reduce this energy in order to save battery by either reducing the range or

frequency of broadcasting are likely to be of considerable benefit.

3.7.1 Experiment Set 1: Explicit Selection Mechanism

Results from the experiments E1, E1+t, E1+rw, E1+b in which the selectrandom(genome_list)

method in algorithm 1 is replaced with a selection method are shown in figure 3.2 and

3.3, which compares the median1 energy and agents alive over 30 repeated runs for

each of the four experiments listed. Adding an explicit selection method based on a

relative fitness value relating to the ability of another robot to survive over the gen-

eration has a significant effect in the case of roulette-wheel and best selection when

compared to mEDEA. Both of these methods exert high selection pressure. In contrast,

the low-pressure tournament selection method shows little difference to the random

selection method of mEDEA. Wilcoxon rank-sum tests confirm that the roulette-wheel
1A Shapiro-Wilk test showed that the results were not normally distributed.

3.7 Evaluation and Analysis 47

and best methods provide significantly different results for both energy and Nalive, while

no significant difference is observed with the tournament selection method for either

metric. The highest pressure selection method best outperforms roulette-wheel with

statistically significant results at the 0.05 significance level.

0

500

1000

1500

0 100 200 300 400 500
generation

en
er

gy

experiment E1 E1+t E1+rw E1+b

(a) Energy

●●●●●●●●●●●●●●●●●●●●●●●●
●
●●●●●●●●●●●●●●●●● ●●●●●●●● ●●●●●●●● ●●● ●●●●●●● ●●●●●●●●●●●●●●0

500

1000

1500

2000

E1 E1+t E1+rw E1+b
experiment

en
er

gy

(b) Energy at gen. 500

Fig. 3.2 Explicit selection added to the mEDEA algorithm. Figures show the energy
for experiments E1, E1+t, E1+rw, E1+b.

3.7 Evaluation and Analysis 48

40

60

80

100

0 100 200 300 400 500
generation

ac
tiv

e

experiment E1 E1+t E1+rw E1+b

(a) Active robots

●

●

●

●

●

●●

60

70

80

90

100

E1 E1+t E1+rw E1+b
experiment

ac
tiv

e

(b) Active robots at gen. 500

Fig. 3.3 Explicit selection added to the mEDEA algorithm. Figures shows the number
of active robots for experiments E1, E1+t, E1+rw, E1+b.

3.7.2 Experiment Set 2: Varying the Broadcasting Mechanism

The second set of experiments examine the results of using the two new broadcasting

methods, comparing results to the original mEDEA algorithm. Figures 3.4, 3.5 and 3.6

clearly shows that experiments E4 and E5, which introduce the new broadcasting meth-

ods, outperform both the original mEDEA algorithm and the two control experiments.

A Wilcoxon rank-sum test with significance level α = 0.05, shows that the difference in

final energy at generation 500 for both E4 and E5 is statistically different to E1, E2 and

E3, but that there is no statistical difference between E4 and E5. The fact that E4 and

E5 differ significantly from controls E2 and E3 respectively, shows that the differences

3.7 Evaluation and Analysis 49

in performance are not simply attributable to varying the broadcast rate or range. They

must be related to the fact that the broadcast rate and range are adjusted according to

the estimate of fitness f ′ calculated by each robot. A corresponding pattern is observed

when examining the number of active robots. Figure 3.6 clearly show that the number of

genomes broadcast significantly decreases with respect to the original methods, but this

is compensated for by using the higher environmental pressure achieved by adapting

what is broadcast based on the quality estimate f ′.

0

500

1000

1500

0 100 200 300 400 500
generation

en
er

gy

experiment E1 E2 E3 E4 E5

(a) Energy

0

500

1000

1500

2000

E1 E2 E3 E4 E5
experiment

en
er

gy

(b) Energy at gen. 500

Fig. 3.4 mEDEA, control experiments and biased broadcasting: figures show the energy
for each of the experiments E1-E5.

3.7 Evaluation and Analysis 50

40

60

80

100

0 100 200 300 400 500
generation

ac
tiv

e

experiment E1 E2 E3 E4 E5

(a) Active robots

●

●

●

●

●

●

●

60

70

80

90

100

E1 E2 E3 E4 E5
experiment

ac
tiv

e

(b) Active robots at gen. 500

Fig. 3.5 mEDEA, control experiments and biased broadcasting: figures show the
number of active robots for each of the experiments E1-E5.

3.7 Evaluation and Analysis 51

0

5

10

15

20

0 100 200 300 400 500
generation

ge
no

m
es

experiment E1 E2 E3 E4 E5

(a) Genomes broadcast

●

●

●●
●

●
●●
●

●

●

●

●

●

●

●

●
●

●

●

●

● ●

●

●

●

●●
●

●

●

●
●●
●

●

●
●

●
●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●●●
●●
●●
●
●●●

●

●
●

●

●

●
●
●

●●
●

●●

●

●

●

●
●

●●

●

●

●●

●

●
●
●

●

●●

●
●

●

●

●

●

●●
●

0

10

20

30

40

50

E1 E2 E3 E4 E5
experiment

ge
no

m
es

(b) Genomes broadcast at gen. 500

Fig. 3.6 mEDEA, control experiments and biased broadcasting: figures show the
number of genomes received for each of the experiments E1-E5.

In the original mEDEA, all robots broadcast indiscriminately at the same fixed range,

which creates a very weak selection pressure, resulting in genomes spreading more

widely and having more chance of being selected when considering the population as a

whole. Behaviours that lead to a robot coming into contact with more robots will result

in more spreading of genomes and thus, on average, a higher probability of generating

future offspring. In contrast, the more discriminate methods of broadcasting proposed

in this chapter create higher selection-pressure: genomes that have a higher relative

fitness have more chance of being received by other robots than lower fitness ones, and,

thus, are more likely to be randomly selected.

3.7 Evaluation and Analysis 52

3.7.3 Combining Explicit Selection with Biased Broadcasting

Finally, the effect of combining explicit selection within an individual with biased broad-

casting is investigated. Each of the three selection methods are tested in combination

with the two biased broadcasting methods in E4 and E5. Figure 3.7 shows box-plots of

the results obtained from using the two mEDEAr f variants and vanilla mEDEA. Each

of the mEDEAr f variants are significantly better in terms of energy level and active

robots compared to vanilla mEDEA using an explicit selection method, confirmed using

a Wilcoxon Rank-Sum test with a significance level α = 0.05.

●● ●

●

●

●●●●●

●

●●●

●

●●

●

●

●

●●●●●

●

●●●●

●

●●●●●●●

●

●●●●●●●

●

●●●

●

●●●●●●●●

●

●●
●
●●●●●●●

●

●●●●

●●●
●

●●●

●

●

●●●

●

●

●

●●●●●●

●

●

●

●

●

●●●

●●

●

●

●●●●

●

●●●●●●●●

●

●●●●●●●●●

●

●

●

●

●●●0

500

1000

1500

2000

E1 E4 E4+t E4+rw E4+b
experiment

en
er

gy

(a) broadcast_probability(): energy

0

500

1000

1500

2000

E1 E5 E5+t E5+rw E5+b
experiment

en
er

gy

(b) broadcast_range: energy

●

●

●

●

●

60

70

80

90

100

E1 E4 E4+t E4+rw E4+b
experiment

ac
tiv

e

(c) broadcast_probability: active robots

●

●

●

●

●

●

●

0

25

50

75

100

E1 E5 E5+t E5+rw E5+b
experiment

ac
tiv

e

(d) broadcast_range(): active robots

Fig. 3.7 Combining the biased broadcasting of genomes with explicit selection by
individuals.

3.7 Evaluation and Analysis 53

●

●

●

●

●

25

50

75

100

E1 E1+rw E4+rw E5+rw
experiment

ac
tiv

e

(a) Active robots at gen. 500

●

●

●

●●●●●

●

●●●

●

●●

●

●

●

●●●●●

●

●●●●

●

●●●●●●●

●

●●●●●●●

●

●●●

●

●●●●●●●●

●

●●
●
●●●●●●●

●

●●●●

●●●
●

●●●

●

●

●●●

●

●

●

●●●●●●

●

●

●

●

●

●●●

●●

●

●

●●●●

●

●●●●●●●●

●

●●●●●●●●●

●

●

●

●

●●●0

500

1000

1500

2000

E1 E1+rw E4+rw E5+rw
experiment

en
er

gy

(b) Energy at gen. 500

Fig. 3.8 Comparison between vanilla mEDEA, mEDEA with explicit selection by
individuals and mEDEAr f with explicit selection by individuals.

In order to easily contrast the new methods to the original algorithm, figure 3.8

compares mEDEA, mEDEA+rw and the two new broadcasting methods combined with

roulette-wheel selection. Further, in table 3.3 we use the Wilcoxon’s Rank-Sum test to

compare pairs of experiments with and without explicit selection (indicated by Ei+ s

Ei respectively). Statistically significant results are shown in bold.

Table 3.3 p-values obtained from applying Wilcoxon’s Rank-Sum test across pairs of
experiments, including biased broadcast only and biased broadcasting coupled with an
explicit selection method.

E1 E4 E5

E4
Energy < 2.2e-16

Alive 3.079e-10

E5
Energy < 2.2e-16 0.3521

Alive 4.112e-10 0.4885

E1+s
Energy < 2.2e-16 2.13e-05 1.963e-07

Alive 6.207e-08 0.0684 0.1994

E4+s
Energy < 2.2e-16 1.227e-07 1.007e-05

Alive 1.222e-10 0.1076 0.2793

E5+s
Energy < 2.2e-16 0.5267 0.1288

Alive 3.287e-09 0.7715 0.7658

3.8 Summary and Conclusion 54

3.8 Summary and Conclusion

3.8.1 Summary

The following comments can be made to summarise all experiments. Where claims are

made, they are evidenced by data that is statistically significant as shown in table 3.3.

• Coupling the standard mEDEA algorithm with a high-pressure explicit selection

method results in a more robust and sustainable population (higher energy and

more active robots) than the standard mEDEA. However, using a low-pressure

explicit selection method does not result in any statistical difference.

• The new methods of biasing the spread of genomes based on relative fitness

combined with a random selection method by individual robots (E4, E5) results

in a more robust and sustainable population than mEDEA (higher energy and

more active robots). However, there are no discernible differences between the

two new methods.

• Coupling the methods for biasing the spread of genomes (E4, E5) with an explicit

selection method by individual robots improves on the standard mEDEA, but in

most cases does not provide any significant advantage over biasing the spread

and using random selection, with the exception of improving energy levels in the

case of E4+ s when compared to E4 alone.

• Using roulette-wheel selection combined with standard mEDEA outperforms

the two experiments in which the spread of genomes is biased but individuals

apply random selection in terms of sustaining higher levels of energy within the

population. However, this has no significant effect on the number of active robots.

Note that using the explicit selection method comes at a potentially high cost in

terms of the number and range of broadcasts required to implement this when

compared to the biased broadcasting methods.

3.8 Summary and Conclusion 55

In summary, the results show that using mEDEA with a relative fitness function

that either promotes the spread of good genomes (via biasing what is transmitted) or

promotes the selection of genomes with high energy values (explicit selection) results

in swarms that sustain high energy levels and high percentages of active robots when

compared to the original version.

However, when considering real, physical robots, it should be clear that broadcasting

comes with an overhead in terms of the energy required to communicate. Two factors

influence the cost of broadcasting in energy terms — the number of broadcasts made

and the broadcast range. For the explicit selection and broadcast_range() methods,

the same number of broadcasts are made — however, broadcast_range() results in a

range of broadcast distances r ≤ rmax, whereas the explicit selection method combined

with mEDEA always broadcasts at rmax, thus utilising greater energy. The broad-

cast_probability() method directly reduces the number of broadcasts made with respect

to mEDEA as weaker robots broadcast less on average, thus saving energy.

3.8.2 Conclusion

A number of extensions have been introduced to an existing Environment-driven Dis-

tributed Evolutionary Adaptation algorithm — mEDEA. The goal of the work is to

show that the integrity of the swarm can be maintained in a more robust manner than in

the original work, while still retaining the original distributed and online flavour of the

algorithm by using a fitness function that indicates fitness to survive. Having introduced

the new fitness function, two new methods are described that adapt either the broadcast

range or the probability of broadcasting of a robot, based on its estimate of its own

relative fitness.

This biases the spread of genomes through the population. Robots that are relatively

fitter than their neighbours are able to spread their genomes more: individual robots

perform a random selection from their local store of (now biased) genomes. A thorough

3.8 Summary and Conclusion 56

analysis of the experimental results shows that a considerable gain in performance is

achieved, both in the number of active robots at the end of a fixed period of evaluation,

and in the energy levels sustained by these robots.

The new fitness function was also evaluated within an explicit selection method.

Experiments show that this also provides significant improvements over mEDEA, and

slightly outperforms the biased broadcast methods in terms of energy sustained.

However, as described above, this comes with a higher cost than either of the biased

broadcast methods in terms of the energy used in transmitting. When considering

real robots this factor can have a significant impact on survival ability — in many

real-life scenarios, the ability to prolong battery life by reducing energy usage might

well be critical. An obvious extension to this work is therefore to account for the cost

of broadcasting when calculating the net energy of a robot that is used by the fitness

function. The next chapter describes an experimental approach to test whether this

hypothesis will differentiate results from the two sets of experiments described here.

Chapter 4

Influence of Communication Cost on

the Effectiveness of the Broadcasting

Variation Mechanism in mEDEAr f

In the previous chapter a fitness measure was introduced into mEDEA that is based

on the individual’s energy level. It was used to vary the broadcasting mechanism for

the spread of genomes. In real robot hardware communication comes at a cost, in the

form of energy consumption. Varying the broadcasting mechanism will therefore have

a direct impact on the amount of energy consumed by a robot. Since the fitness measure

is based on an individual’s energy level, this creates a circular dependency between

fitness measure and the behaviour influencing the fitness.

4.1 Contribution 58

4.1 Contribution

The work described in this chapter has in parts been published1 in the proceedings

companion of the Genetic and Evolutionary Computation Conference (GECCO 2015)

[120]. A copy of the publication can be found in the appendix (A.2).

It is shown from the literature that in real robot hardware communication comes

at a cost in the form of energy consumption. In this chapter an energy model for

communication is derived from the field of wireless sensor networks research, which

accounts for the cost of communication in the robot simulation. The experiments carried

out show that accounting for the costs of communication exerts additional environmental

pressure. Results show that under these new conditions, biasing the broadcasting of

genomes has a negative effect on survivability.

4.2 Introduction

When a simulator is used in evolutionary robotics experiments it is important that the

simulation environment provides enough detail of the features that affect the evolu-

tionary process. The underlying evolutionary algorithm always exploits the particular

features of the environment. If those features differ in simulation and the real world

then it is not guaranteed that insights gained in one world will hold true in the other

[83]. This is an important aspect of the reality gap. In real, physical robots, any type of

communication comes at a cost in the form of energy. It is therefore important that the

simulator reflects these costs as accurately as possible.

The reality gap is not just a problem in evolutionary robotics, but exists wherever

a simulator is used to approximate the behaviour of a real system in a simulated

environment. In wireless sensor networks research the same type of hardware is used

1 Some experimental parameters presented in this chapter vary from the published work to enable a
better comparison with the experiments of the previous chapter. Details about these changes are given in
the experiment methodology section (4.6.1).

4.3 The Use of Energy in mEDEAr f 59

that research robot platforms (e.g. ePuck [79]) are commonly equipped with [26]. The

field focuses on all aspects of mobile communication using low powered devices, with

one main focus to prolong the battery lifetime and therefore lifetime of the application.

Hence, accurate simulation of energy consumption plays an important role [57]. Since

long term autonomy in robotics application is usually based on battery power, this

commonality makes those aspects of research directly transferable to this research.

The relative fitness function that was introduced in the previous chapter uses a

robot’s energy-level as a fitness measure. The robot’s broadcasting mechanism is then

varied using this fitness to bias the spread of genomes across the swarm. As mentioned

above, all communication comes at a cost in the form of energy, hence the way in which

the relative fitness function is used directly influences the fitness measure itself. Focus

here lies on reflecting the energy consumption on which the fitness measure is based on,

rather then optimising the performance of the adaptation algorithm.

The goal here is to investigate how the previously obtained results change when an

improved energy model is used, specifically, when accounting for the energy consumed

by communication. To this end a new energy model has been developed and imple-

mented into Roborobo which so far lacked an accurate energy model. A suitable energy

model has been borrowed from wireless sensor networks research and the appropriate

parameters have been derived using values from real communication modules.

4.3 The Use of Energy in mEDEAr f

The current energy model of the simulation software Roborobo [22] is fairly simplistic.

Every time-step, the energy value is decreased by a ‘living’ cost Eliving = 1 unit. Energy

tokens are scattered throughout the environment. If a robot moves over a token, its

energy is increased by an amount Etoken.

In the previous chapter about mEDEAr f , two methods were introduced to influ-

ence the broadcasting of robots: varying the frequency and range depending on the

4.4 Improving the Energy Model in the Simulator 60

individual’s relative fitness f ′i . As this fitness value is based on the energy level of a

robot, which is then used to directly influence its broadcasting mechanism, it is crucial

to account for the energy being used for these communications.

Section 3.4 describes the mEDEAr f algorithm in detail. In short, given f ′i , the

probability of a robot broadcasting is defined using equation 3.4 that simply describes

a function that returns a probability of 0 if f ′i is less than d0, a probability of 1 if f ′i is

greater than dmax standard deviations away from the mean, and linearly interpolated

between 0 and 1 otherwise.

pi(t) =

0 f ′i (t)< d0

f ′i (t)−d0
dmax−d0

d0 ≤ f ′i (t)≤ dmax

1 f ′i (t)> dmax

(3.4 revisited)

The probability pi(t) is used in two ways: to determine whether a robot broadcasts,

and to convert to a broadcasting range between 0 and a value rmax, determined by

equation 3.5

ri(t) = rmax ∗
√

pi(t) (3.5 revisited)

The higher the relative fitness, the greater the broadcast range. Note that range

increases with the square root of the probability in order to maintain a proportional

increase in broadcast area.

Using the above method, the energy a real robot would use for communication

would be reflected in its energy level, and therefore directly influence its fitness. This

demonstrates the necessity to improve the energy model used in the simulator Roborobo.

4.4 Improving the Energy Model in the Simulator

As outlined in the previous section, the energy model needs to reflect the cost of

communication in order to accurately reflect the relative fitness in mEDEAr f . To base

4.4 Improving the Energy Model in the Simulator 61

the new model on the correct assumptions, first, the energy usage characteristics of real

hardware wireless modules is assessed and an established and a widely used model

is borrowed from the wireless sensor networks literature. Using the actual energy

consumption data, appropriate values are calculated to be used in the simulator.

4.4.1 Energy Consumption Characteristics of Hardware Commu-

nication Modules

As argued in 4.3, the relative fitness function introduced in mEDEAr f is based on the

robot’s energy level and used to influence its communication. Therefore, the energy

used for communication would directly influence the robot’s fitness and needs to be

accounted for. Furthermore, Heinzelman et al. [61] demonstrates that by not accounting

for the energy usage of communication huge errors can occur in simulations. Although

their research was conducted with a focus on communication protocols in the field of

wireless sensor networks (WSN), it is highly relevant to the assessment revolving around

communication in mobile robots. The technical requirements for data exchange in WSN

and swarm robotics platforms are virtually the same: both employ low powered, mostly

battery powered, systems with low bandwidth data transmissions between multiple

entities to cover a large area [108, 71, 15]. It comes, therefore, as no surprise that

both fields of research use the same low power communication technologies, such as

IEEE 802.15.4 Wireless Personal Area Network protocol and Bluetooth [64, 99]. For

example, Cianci et al. [26] used the microchips from Texas Instruments CC2420 and

Mondada et al. [79] used the Bluetooth module LMX9820a in their experiments using

the ePuck robot platform.

Experiments using the new communication energy model, in this and following

chapters, are based on Cianci et al. [26], where a specific technical setup is used to

simulate having only close range communication in a wider field. An additional signal

4.4 Improving the Energy Model in the Simulator 62

attenuation module is used that limits its reach (from rmax ≈ 50m to rmax = 4.85m), so

that even in a small arena robots can be outside the maximum broadcast range.

When it comes to the actual wireless communication between robots, certain prop-

erties need to be considered that influence directly or indirectly the energy consumption

of the involved communication partners [89, 61]. Data exchange between robots is

purely based on broadcasts. Everyone within reach receives a broadcast message and

therefore has to pay the cost for receiving it. In fact, using low-powered communication

modules, receiving requires more energy than transmitting [131]. This is due to the

low-powered nature of the signal, which requires expensive reconstruction. Even if

no communication takes place, a wireless chip in listen mode still consumes energy.

The same information is often sent and received multiple times, but then discarded as

only unique information is kept. For example, this happens when the same genome

in mEDEAr f is received multiple times. Here, it is important that every successful

transmission incurs the cost of communication, even if the information is discarded. All

these effects need to be taken into account when looking for a suitable energy model.

The Free-Space Model [61] is a simple model from the WSN literature that is able

to address all of the criteria above. A much more detailed power consumption model

was proposed by Wang et al. [131] that further considers internal effects of the power

source, such as loss in conversion, non-linearities, noise in the channel, etc. However,

these finer details go beyond what can be addressed and modelled in the simple robot

simulator, Roborobo. When removing these details, the latter model is simplified to the

point at which both models are equivalent [131], thus, the Free-Space Model is selected

here.

4.4.2 Free-Space-Model

As discussed, a simple model used in wireless sensor network simulations is the

Free-Space Model [61]. This model assumes homogeneous network nodes with no

4.4 Improving the Energy Model in the Simulator 63

specialised base station or relay nodes. It resembles the ad-hoc networks created

during communication among the robots within the communication range. The model

assumes quadratic growth with distance for energy consumption. Blom et al. [11]

compared energy models using quadratic and cubic growth for energy consumption in

relation to distance and data size. They concluded that cubic growth is a more accurate

model for distances above 103 meters, which is way beyond the range considered here

(rmax = 4.85m).

The equations 4.1 and 4.2 are used to calculate the energy required for receiving

and transmitting respectively.

Erx(n) = nbit×Eelec (4.1)

Etx(n,d) = nbit×Eelec +nbit× εamp×d2 (4.2)

Eelec is the basic charge to run the module, and εamp is the cost for signal amplifi-

cation which is multiplied by the distance squared. In both equations, the terms are

multiplied by nbit, which represents the number of bit in a transmission. Note, n is

constant as genome broadcasts only vary in content, not length.

The model assumes that the transmitter and receiver circuits consume the same

amount of energy to run the module. However, as discussed in the previous section, this

is not the case for the modules used in silico swarm robotics experiments. It is therefore

differentiated between Erx-elec and Etx-elec in equation 4.3 and 4.4 respectively.

Erx(n) = nbit×Erx-elec (4.3)

Etx(n,d) = nbit×Etx-elec +nbit× εtx-amp×d2 (4.4)

4.4 Improving the Energy Model in the Simulator 64

4.4.3 Calculation of Communication Costs for the Simulation

Based on the chosen representation and parameter settings of the previous experiments

in 3.6, the additional energy costs can now be calculated.

Each transmission contains a genome and a few parameter values regarding the

sender. As all genomes have the same length and consist of the same data type, the

number of transmitted bits can be assumed to be constant. Equations 4.3 and 4.4 can

therefore be simplified to

Erx = arx (4.5)

Etx(d) = atx +btx×d2 (4.6)

where a...x = nbit×E...x-elec is the basic cost for for receiving or transmitting, and

btx = nbit×εtx-amp is an amplification cost that only occurs in the case of a transmission.

Table 4.1 Values taken from the data-sheet for wireless communication module Texas
Instruments CC2420 [125].

Parameter Value Unit

Operating Voltage 3 V
Current RX mode 18.8 mA
Current TX mode, min. 8.5 mA
Current TX mode, max. 17.4 mA
Data rate 250 kbit

s
Distance with min
amplification dmin 0.5 m
Distance with maximum
amplification dmax 4.85 m

Using equations 4.5 and 4.6, and the electrical specifications for the communications

module used by Cianci et al. [26] (Chipcon CC2420, see table 4.1), the values for arx,

atx and btx can be calculated as follows:

4.4 Improving the Energy Model in the Simulator 65

Erx = nbit×Erx-elec

= arx

= 1767
byte

message
×8

bit
byte
× 3V×18.8mA

250kbit
s

= 14136
bit

message
×225.6

nJ
bit

= 3.189
mJ

message

(4.7)

Table 4.2 Size of a data message (transmitted genome) in byte.

Variable Size in byte

Genome (434 float values) 1736
Sigma 4
Fitness 4
Age 4
Robot ID 4
Genome ID 4
Wireless Protocol Overhead 11

Total = 1767

According to the proposed energy model, the receiving costs are constant while the

costs for transmission have a variable part. Besides the constant base energy required to

operate the radio module in transmission mode, the signal can be amplified to cover a

greater distance. The further the signal should reach, the more it needs to be amplified

and the higher the energy consumption of the radio module. As the power consumption

at minimum and maximum amplification levels are known, the fixed (atx) and variable

4.4 Improving the Energy Model in the Simulator 66

part (btx) of equation 4.6 can be calculated as follows:

atx = nbit×Etx-elec

= 1767
byte

message
×8

bit
byte
× 3V×8.5mA

250kbit
s

= 14136
bit

message
×102

nJ
bit

= 1.442
mJ

message

(4.8)

With maximum amplification the signal can reach dmax = 4.85m. Etx(d) is therefore

highest at this distance and b is calculated to reflect the quadratic growth. εamp-max is

the energy required for maximum amplification.

εamp-max =
3V× (17.4−8.5)mA

250kbit
s

= 106.8
nJ
bit

(4.9)

btx = nbit×
εamp-max

r2
max

= 1767
byte

message
×8

bit
byte
× 106.8 nJ

bit
(4.85m)2

= 14136
bit

message
×4.54

pJ
message×m2

= 64.18
nJ

message×m2

(4.10)

Which leads to the final equation 4.11

Etx(d) = atx +btx×d2

= 1.442
mJ

message
+64.18

nJ
message×m2 ×d2

(4.11)

The ePuck’s battery has a capacity of 5Wh [79], which translates to 18.000J. As-

suming that the battery lasts the length of an experiment with 150 generations, of 1500

4.4 Improving the Energy Model in the Simulator 67

iterations each, the cost for broadcasting and receiving a message can be determined in

relation to that. In previous experiments the median number of transmitted and received

broadcasts per generation and robot, using dmax, was 1100 and 2200 respectively. Given

the previously calculated values for Etx(dmax) and Erx, the average energy consumption

is about 1540J, leaving 16460J to be used for the radio listen mode and all other sensors,

actuators and computation of the controller. Table 4.3 lists the energy model related

values.

Table 4.3 Values for communication costs used in simulator.

Parameter Value (in Energy Units)

arx-Simulator 0.04022
atx-Simulator 0.01818
btx-amp-Simulator 0.000809
btx-amp-max-Simulator 0.01904

The amount of energy spent on communication Ecom is calculated using equation

4.12, where i and j are the number of genomes received and transmitted respectively.

Ecom =
i

∑
k=0

arx-Simulator +
j

∑
k=0

(
atx-Simulator +btx-amp-Simulator×d2) (4.12)

4.4.4 Movement Dependent Living Costs

The fixed cost of ‘living’ Eliving = 1 Energy Unit is independent of a robot’s speed.

Equation 4.13 shows how this is changed to stipulate a more diverse range of movements

among the evolving robots. There is a fixed cost to ‘living’ of 0.5 units per time-step,

regardless of whether the robot moves or not. A moving robot consumes an amount

of energy that is related to its rotational speed vrot, translational speed vtrans and their

respective maximum values vrot-max and vtrans-max.

Eliving = 0.5+
(

vrot

vrot-max
+

vtrans

vtrans-max

)
/4 (4.13)

4.5 Hypothesis 68

4.4.5 The New Energy Model

A change in energy from one time-step to another now includes the cost of communi-

cation, as well as an updated cost for ‘living’ that partially depends on the increased

power consumption through movement. Equation 3.2, from the previous chapter, is

amended to account for the cost of communication using Ecom.

Ei(t +1) = Ei(t)−Eliving-i +(ntoken-i×Etoken)

Ei(t +1) = Ei(t)−Eliving-i−Ecom-i +(ntoken-i×Etoken) (4.14)

Equation 4.14 shows the change in energy at each time-step for robot i, where n is

the number of tokens that have been collected in that step. Here, t0 refers to the time the

current genome is activated.

4.5 Hypothesis

After augmenting the algorithm with the derived energy model to account for the cost

of communication, its influences are tested using the following hypothesis.

Hypothesis 4 Biasing the spread of genomes in mEDEAr f , combined with an explicit

selection, outperforms continuous broadcast in terms of active robots and the main-

tained energy level at the end of the last generation when accounting for the cost of

communication.

4.6 Experiments

Experiments are carried out using mEDEAr f , as described in 3.4. The previously

derived energy model is used to account for the energy consumption that stems from

communication. Two different methods were introduced in mEDEAr f , which change

the broadcasting mechanism in mEDEA by a) varying the probability to broadcast and

4.6 Experiments 69

b) adjusting the broadcast range in proportion to the fitness value. Both mechanisms

bias the broadcast towards fitter individuals.

The set of experiments from the previous chapter, described in detail in 3.6, are the

basis for the experiments outlined here, with the addition of the newly developed energy

model. The same notation is used as in the previous chapter for direct comparison of

the results.

E1em: baseline experiment, vanilla mEDEA using the energy model with random

individual selection;

E4em: using a fitness proportionate probability to broadcast;

E5em: varying the broadcast range proportionate to the fitness.

Each of the three experiments above were then repeated with the random individual

selection method being replaced with a fitness-proportionate selection method (roulette-

wheel selection). These experiments are denoted as E1em+rw, E4em+rw and E5em+rw.

Note that the experiments E2 and E3 conducted previously were control experiments to

determine whether any improvement could be contributed to using the relative fitness

value in mEDEAr f to influence the range and probability of a broadcast, rather than a

random value. Therefore, they do not need to be repeated here.

4.6.1 Methodology

The experiments outlined above were run in the simulator Roborobo [22] using the

energy model derived in the earlier section. Compared to the published experiments in

[120], the following adjustments have been made to allow for a direct comparison with

the experiments conducted in the previous chapter:

• same value for energy tokens (from 75 to 100 Energy Units)

• same initial energy for robots (from 750 to 1200 Energy Units)

4.7 Evaluation and Analysis 70

Note, not only has the cost of communication (Ecom) been introduced, but also

the living costs (Eliving) have been changed in the new energy model. Hence, experi-

ments E1, E4 and E5 from the previous chapter have been re-run to allow for a direct

comparison between Ex and Exem, which only differ in the addition of communication

costs.

All parameters used in the experiments are given in table 4.4.

Table 4.4 Simulation and experimental parameters for all experiments in this chapter.

Simulation parameters

Arena size 1024 px × 1024 px
Number of robots 100
Robot lifetime 1500 iterations
Food regrow time 500 iterations
Sensor range 32 pixel
Chromosome length 434
Agent rotational velocity 30 deg/step
Agent translational velocity 2 pixel/step

Experimental parameters

Number of independent runs 30
Maximum generations 500
Number of energy tokens 800
Energy value of token 100
Start energy 1200
Maximum range rmax 64
d0 0
dmax 2

4.7 Evaluation and Analysis

4.7.1 Methodology

Following 30 runs of each experiment, statistical analysis was conducted based on the

method in [107] using a significance level of 5%.

4.7 Evaluation and Analysis 71

The distributions of two results were checked using a Shapiro-Wilk test. If one of

the results followed a non-Gaussian distribution then the p-value is determined using

a Kruskal-Wallis rank sum test. Otherwise the homogeneity of variance of the two

results was performed using a Levene’s test for homogeneity of variance. For unequal

variances the p-value was determined using a Welch test, otherwise using an ANOVA

test.

4.7.2 Influence of the Energy Model

Table 4.5 quantifies how the median values for energy, active, broadcasts : genome, age

: genome and token collected compare to the result of the corresponding experiment

without the energy model.

Figures 4.1, 4.2, 4.3, 4.4 and 4.5 further allows the visual comparisons of the me-

dian energy values and median number of active robots between the three experiments

without (E1em, E4em, E5em) and with (E1em+rw, E4em+rw, E5em+rw) the fitness pro-

portionate selection mechanism (roulette-wheel selection). Lineplots are smoothed to

emphasise the trends, with the original data plotted in same coloured thinner lines. The

violin-boxplots show the respective distribution of values over the last three generations

of the experiments.

For vanilla mEDEA (E1em) and mEDEA using the explicit selection method

(E1em+rw) the median energy value and age : genome (the average time spent be-

tween receiving unique genomes) went up and the number of broadcasts : genome

(received broadcasts per unique genome) went down. At the same time the number of

token collected remained unchanged, which points to a change in behaviour that avoids

costly communication.

For the experiments using mEDEAr f alone (E4em, E5em) and with the addition of

the explicit selection method (E4em+rw, E5em+rw), the most prominent change is the

decrease in the number of active robots at the end of the generation. Directly related to

4.7 Evaluation and Analysis 72

Table 4.5 Showing median of end values for energy, active, broadcasts : genome, age
: genome and token collected over the last three generations of the experiment. The
symbols ↓,↔, ↑ indicate how the shown values compare to the result of the correspond-
ing experiment without the energy model, with the number of arrows indicating the
magnitude level of the effect size, based on a Vargha and Delaney A test (1 = small, 2 =
medium, 3 = large).

energy active broadcasts
genome

age
genome token

E1em ↑↑ 917.1 ↓ 99.0 ↓↓↓ 83.2 ↑↑↑ 249.8 ↔ 8.0
E1em+rw ↑↑ 919.7 ↓↓ 99.0 ↓↓↓ 86.4 ↑↑↑ 249.8 ↔ 10.0
E4em ↑ 964.6 ↓↓↓ 99.0 ↔ 37.6 ↑↑↑ 299.8 ↔ 10.0
E4em+rw ↔ 931.2 ↓↓↓ 99.0 ↓ 37.0 ↑↑↑ 299.8 ↔ 8.5
E5em ↓ 946.6 ↓↓↓ 94.0 ↔ 57.0 ↑↑↑ 374.8 ↓ 6.0
E5em+rw ↓↓↓ 612.8 ↓↓↓ 45.5 ↑ 54.6 ↑↑↑ 374.8 ↓↓ 0.0

this is the overall rising values for age : genome, which reflects the average lifetime it

took to pick up a unique genome. The fewer active robots in the arena, the more time

robots have to spend looking for other robots to exchange their genome.

Figure 4.4 (d-f) shows a large spread of values in the number of active robots,

with extinction events happening in every experiment using the new energy model.

Although the difference for the median value in active robots for E1em, E1em+rw, E4em

and E4em+rw are fairly close, they significantly differ from their respective baseline

experiment, without the energy model. In contrast, for experiments E5em and E5em+rw

this difference is quite obvious and figure 4.4 c) shows the reason. Following a sharp

drop within the first generations, the numbers recover after a few more generations.

Where E5em slowly recovers to over 90%, E5em+rw breaks back down to finally settle

below 50%.

Both energy and the number of collected tokens are down as well in E5em and

E5em+rw. The lower number of collected tokens can be explained by the fact that fewer

robots are active to collect tokens. The median energy values are calculated across all

robots independent of whether they are active. Hence a large number of inactive robots

with energy values of zero bring the number down.

4.7 Evaluation and Analysis 73

The dip in active robots within the first few generations is visible in all experiments,

independent of the use of the energy model, however, in experiments using the energy

model this effect is much larger. This is due to the increased selection pressure coming

from the environment. The “cost of living” under these new conditions is larger, hence

it requires better adaptation of the individuals to cope with these conditions. Where

individuals previously could just get by, under the new energy model these behaviours

are no longer sufficient to survive long enough to spread one’s genome.

In E4 and E4+rw, where the frequency of broadcasts with maximum range is varied,

no significant change in median energy levels is found compared to experiments without

the energy model. However, the distribution of energy levels changed as can be seen in

4.3 due to the increased environmental selection pressure.

4.7 Evaluation and Analysis 74

100

200

300

400

0 50 100 150

generation

br
oa

dc
as

ts
 R

x
: g

en
om

e

E1 E1−em E1−em+rw E1+rw

a)

●

●
●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

200

400

600

E1 E1−em E1−em+rw E1+rw
Experiment

br
oa

dc
as

ts
 R

x
: g

en
om

e

d)

50

70

90

0 50 100 150

generation

br
oa

dc
as

ts
 R

x
: g

en
om

e

E4 E4−em E4−em+rw E4+rw

b)

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

25

50

75

100

125

E4 E4−em E4−em+rw E4+rw
Experiment

br
oa

dc
as

ts
 R

x
: g

en
om

e

e)

50

75

100

125

150

0 50 100 150

generation

br
oa

dc
as

ts
 R

x
: g

en
om

e

E5 E5−em E5−em+rw E5+rw

c)

●

●

●

●

●

●

●

●

●

●

●

40

60

80

100

E5 E5−em E5−em+rw E5+rw
Experiment

br
oa

dc
as

ts
 R

x
: g

en
om

e

f)

Fig. 4.1 Comparison of the median number of received broadcasts per unique genome
between experiments, without (Ex,Ex+rw) and with the communication costs (Ex-em,
Ex-em+rw). Violin and box plots showing the distribution of values over the last three
generations of the experiment. Lines are smoothed to better show trends, with the raw
data displayed in the same colour and thinner lines.

4.7 Evaluation and Analysis 75

0

200

400

600

0 50 100 150

generation

ag
e

: g
en

om
e

E1 E1−em E1−em+rw E1+rw

a)

●

●●

●

●

●

●●

●

●●● ●●

100

200

300

400

500

E1 E1−em E1−em+rw E1+rw
Experiment

ag
e

: g
en

om
e

d)

200

400

600

0 50 100 150

generation

ag
e

: g
en

om
e

E4 E4−em E4−em+rw E4+rw

b)

●
●

●

●

●

●●●

●

200

400

600

E4 E4−em E4−em+rw E4+rw
Experiment

ag
e

: g
en

om
e

e)

0

200

400

600

0 50 100 150

generation

ag
e

: g
en

om
e

E5 E5−em E5−em+rw E5+rw

c)

●

●

●

●

●

●●

●

●

●●

●●

●●●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●●

●

●

●●●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●●

●●

●●

●

●

●●

●

●

●

●

200

400

600

E5 E5−em E5−em+rw E5+rw
Experiment

ag
e

: g
en

om
e

f)

Fig. 4.2 Comparison of the median value for lifetime per unique received genome
at the end of a generation between experiments, without (Ex,Ex+rw) and with the
communication costs (Exem, Exem+rw). Violin and box plots showing the distribution
of values over the last three generations of the experiment. Lines are smoothed to better
show trends, with the raw data displayed in the same colour and thinner lines.

4.7 Evaluation and Analysis 76

400

600

800

1000

0 50 100 150

generation

en
er

gy

E1 E1−em E1−em+rw E1+rw

a)

0

500

1000

1500

2000

E1 E1−em E1−em+rw E1+rw
Experiment

en
er

gy

d)

400

600

800

1000

0 50 100 150

generation

en
er

gy

E4 E4−em E4−em+rw E4+rw

b)

0

500

1000

1500

2000

E4 E4−em E4−em+rw E4+rw
Experiment

en
er

gy

e)

400

600

800

1000

0 50 100 150

generation

en
er

gy

E5 E5−em E5−em+rw E5+rw

c)

0

500

1000

1500

2000

E5 E5−em E5−em+rw E5+rw
Experiment

en
er

gy

f)

Fig. 4.3 Comparison of the median energy level at the end of a generation between
experiments, without (Ex,Ex+rw) and with the communication costs (Exem, Exem+rw).
Violin and box plots showing the distribution of values over the last three generations of
the experiment. Lines are smoothed to better show trends, with the raw data displayed
in the same colour and thinner lines.

4.7 Evaluation and Analysis 77

20

40

60

80

100

0 50 100 150

generation

ac
tiv

e

E1 E1−em E1−em+rw E1+rw

a)
●
●
●●

●

●
●

●●●●●●●●●●●●●●● ●

●

●

●●

●

●

●

●

●

●●

●

●
●
●●
●
●●●●●●●●●●●

0

25

50

75

100

E1 E1−em E1−em+rw E1+rw
Experiment

ac
tiv

e

d)

20

40

60

80

100

0 50 100 150

generation

ac
tiv

e

E4 E4−em E4−em+rw E4+rw

b)
●

●●●●●● ●●●●●●●●●●●

●

●

●●●●●●●●●●●●●●●●●
●
●●●●

0

25

50

75

100

E4 E4−em E4−em+rw E4+rw
Experiment

ac
tiv

e

e)

20

40

60

80

100

0 50 100 150

generation

ac
tiv

e

E5 E5−em E5−em+rw E5+rw

c)
●

●

0

25

50

75

100

E5 E5−em E5−em+rw E5+rw
Experiment

ac
tiv

e

f)

Fig. 4.4 Comparison of the median number of active robots at the end of a generation
between experiments, without (Ex,Ex+rw) and with the communication costs (Exem,
Exem+rw). Violin and box plots showing the distribution of values over the last three
generations of the experiment. Lines are smoothed to better show trends, with the raw
data displayed in the same colour and thinner lines.

4.7 Evaluation and Analysis 78

0.0

2.5

5.0

7.5

10.0

12.5

0 50 100 150

generation

pu
ck

s

E1 E1−em E1−em+rw E1+rw

a)
●

0

5

10

15

20

E1 E1−em E1−em+rw E1+rw
Experiment

pu
ck

s

d)

0

4

8

12

0 50 100 150

generation

pu
ck

s

E4 E4−em E4−em+rw E4+rw

b)

●

●

●

0

5

10

15

20

25

E4 E4−em E4−em+rw E4+rw
Experiment

pu
ck

s

e)

0.0

2.5

5.0

7.5

10.0

12.5

0 50 100 150

generation

pu
ck

s

E5 E5−em E5−em+rw E5+rw

c)
●

0

5

10

15

20

25

E5 E5−em E5−em+rw E5+rw
Experiment

pu
ck

s

f)

Fig. 4.5 Comparison of the median value for collected tokens at the end of a generation
between experiments, without (Ex,Ex+rw) and with the communication costs (Exem,
Exem+rw). Violin and box plots showing the distribution of values over the last three
generations of the experiment. Lines are smoothed to better show trends, with the raw
data displayed in the same colour and thinner lines.

4.8 Summary and Conclusion 79

4.8 Summary and Conclusion

The following comments can be made that summarise all experiments. Where claims

are made, they are evidenced by data that is statistically significant as shown in the table

in the previous section.

A new energy model based on the Free-Space Model was introduced to account

for the cost of communication. Experimental results showed this exerts environmental

pressure to implicitly select for genomes that maintain high energy levels. Comparing

the method of varying the broadcasting based on fitness to mEDEA alone and with

roulette-wheel genome selection shows that although marginal, the latter approaches

outperform the mEDEAr f methods. Hence, hypothesis 4 as stated earlier in this chapter

is not true. This is due to the fact that biasing the broadcasting based on fitness, which

is directly linked to the energy level, partially reverses the effect of the environmental

pressure.

The difference in active robots is largest for the experiment where the fitness measure

is used for both mechanisms, varying broadcasting and the explicit selection. This effect

is smaller for the two experiments E1em and E1em+rw, where no or just the explicit

selection mechanism is active. The additional environmental pressure of the added cost

of communication leads to more efficient behaviour that avoids costly communication.

Although fewer robots are active at the end of the generation, it is argued that the

method of biasing what to broadcast has a benefit as it clearly shows that robots spend

less time collecting tokens. This is a crucial advantage if a task is added in the future,

as more time could be allocated to the task than to maintaining energy levels.

The emergent behaviour of robots in the swarm have changed with the introduction

of an energy-model that reflects more accurately the incurred energy costs in reality. It

can be seen that the performance of an algorithm depends not just on its own parameters,

but the external conditions in which the swarm is deployed. The next chapter explores

4.8 Summary and Conclusion 80

the relationship of the parameters defining the environment and the emergent behaviour

of the swarm.

Chapter 5

Influence of the Environment on the

Emergence of Behaviour

As discussed in chapter 3, a crucial trait of the robots is to be able to maintain the

integrity of the swarm. The ability to maintain one’s energy level is identified as a goal

for individual robots. However, this specification might lead to the emergence of a

different behaviour on the swarm level.

It is common in optimisation to explore the relationship between algorithmic param-

eters and fitness. However, evolutionary robotics adds an additional dimension in that it

is not only the algorithm’s parameters that influence the behaviour, but also environmen-

tal parameters. Especially when using an embodied online approach, the environment

is the external driving force that shapes the evolutionary path. To function reliably, the

algorithm should produce the same overall behaviour independent of the environmental

conditions it is exposed to. Most research in the field to date has a shortfall in this

regard, as often environmental parameters are chosen adhoc or deliberately to present

favourable results.

5.1 Contribution 82

5.1 Contribution

The work presented in this chapter is based on work presented in [121]. A copy of the

publication can be found in the appendix (A.3)

The environment’s influence on the emergence of behaviour is analysed in different

environmental conditions. This is achieved through a map that represents the perfor-

mance as a surface plot that further allows the identification of regions of interest. The

contribution described in this chapter is the methodology by which this map is created

and used to perform the analysis.

5.2 Introduction

Particularly in simulation, it is easy to arbitrarily select environmental parameters,

such as the number of available energy sources or their corresponding energy-values.

However, arbitrary choices can inadvertently create environments that have a major

influence on the evolution of behaviour. For example, assume a researcher wishes

to investigate whether individual learning speeds up environment-driven evolution:

if an environment is created that has too much energy available then it is unlikely

to exert sufficient pressure for individual learning to be beneficial or even emerge.

Quantifying ‘too much’ (or ‘too little’) is of course difficult and in order to address this

an analysis of an environment-driven distributed algorithm is analysed operating in a

variable environment. In this context environments are defined by the concentration and

availability of energy. These two parameters are varied in order to investigate the effect

on the robot’s behaviour.

Using a 3-dimensional visualisation, which is created from experimental results of

the median-energy balance landscape for the algorithm mEDEAr f , it can be shown that:

• the energy landscape contains three distinct regions: energy-poor, energy-neutral

and energy-rich, as well as a ‘dead-zone’ in which robots cannot survive

5.3 Hypotheses 83

• the energy-rich region is relatively large compared to other regions, but is very

rugged

• that on the energy-neutral line, distinct behaviours evolve at different places along

the line

It follows that the energy-neutral region provides the most obvious settings for

conducting experimentation that aims to extend a robot’s ability to survive or accomplish

tasks.

5.3 Hypotheses

The following alternative hypotheses inform the experimental design and are tested

through experimental investigation.

Hypothesis 5 The specific configuration of an environment, defined by availability and

concentration of energy, will affect the emergent behaviour at the end of the experiment,

measured through the level of δEnergy maintained.

Hypothesis 6 The specific configuration of an environment, defined by availability and

concentration of energy, will affect the emergent behaviour at the end of the experiment,

measured through the number of broadcasts.

5.4 Experiments

The goal of the experiments is to understand the energy landscape in terms of the

median δEnergy of a robot in the population as a function of the energy concentration

and distribution in the environment, defined by the two parameters: count, the number

of energy tokens available, and value, the energy value of each token. Energy tokens

are randomly scattered in the environment. If a robot moves over a token, its energy

5.4 Experiments 84

Table 5.1 Simulation and experimental parameters for all experiments in this chapter.

Simulation parameters
Arena size 1024 pixel by 1024 pixel
Max. robot lifetime 2500 iterations
Token re-spawn time 500 iterations
Sensor range 196 pixel
Variable Parameters
Number of robots 50, 75, 100
Number of tokens (count) 0 - 1300 (in steps of 50)
Energy value per token (value) 0 - 1400 (in steps of 50)
Experimental parameters
Number of runs 5
Max. iterations 375,000 (= 150x2500)
Start energy 500
Max. communication range rmax 128 pixel

is increased by an amount Etoken. The energy token disappears when consumed and

reappears after a fixed amount of time later at a different random location.

5.4.1 Methodology

Similar to the previous chapters, all experiments are conducted in simulation using

Roborobo by Bredeche et al. from [22]. The same algorithm mEDEAr f is used as in

previous chapters, without biasing of broadcasting and with roulette-wheel selection

as explicit selection method, using the communication energy model derived in the

previous chapter (E1em+rw).

Table 5.1 shows the ranges of values considered for each parameter. Parameters

are set before the beginning of the experiment and remain fixed throughout. Each

experiment was repeated over 5 independent runs. This number is rather low for a noisy

application of this type, but was chosen to speed up computation due to the high number

of experiments that had to be run in total. It is to be noted here again, that the focus of

this analysis is not the evaluation of a set of (potentially) randomly chosen parameters,

but the influence the environment has on the emergence of behaviours.

5.4 Experiments 85

The energy model remains the same as used in experiments in the previous chapter.

Referring to the derived energy model in section 4.4, equation 4.14 shows the change in

energy at each simulation step, where n is the number of tokens that have been collected

in that step.

Ei(t +1) = Ei(t)−Eliving-i−Ecom-i +(ntoken-i×Etoken) (4.14 revisited)

There is a fixed cost of ‘living’ of 0.5 units per timestep, regardless of whether the

robot moves or not. A robot moving consumes an amount of energy that is related to

its rotational speed vrot, translational speed vtrans, and their respective maximum values

vrot-max and vtrans-max

Eliving = 0.5+
(

vrot

vrot-max
+

vtrans

vtrans-max

)
/4 (4.13 revisited)

5.4.2 Adaptation of mEDEAr f for Experiments

The algorithm mEDEAr f has been taken from experiments described in the previous

chapters. However, certain changes have been made to the implementation of the neural

network controller in order to simplify the experimental setup. The number of inputs has

been lowered by removing inputs from robots that would pose a challenge to implement

in real hardware.

The genome defines the weights of an Elman recurrent neural network (RNN)

consisting of 16 sensory inputs, one bias node (feeding into the hidden layer) and 2

motor outputs (translational and rotational speeds). 8 ray-sensors are distributed around

the robot’s body. They detect the proximity to the nearest object and its type. The RNN

has 1 hidden layer with 16 nodes, thus 322 weights are defined by the genome.

So far, robots have chosen a genome after a set amount of time, which leads to

a synchronous switch of generations across the swarm. This has been changed to be

asynchronous, in keeping with the paradigm of a distributed algorithm without central

5.5 Evaluation and Analysis 86

control. If a robot runs out of energy and has an empty genome list it temporarily

becomes inactive, thus reducing the population size. It remains stationary until it

receives a new genome from a passing robot, at which point it starts a new lifetime.

Thus at any time-step, each robot potentially has a different ‘age’.

Due to the change in length of the genome, which impacts the values used in

the derived model for communication costs (Ecom), the associated values have to

be recalculated. Table 5.2 lists those values calculated with the method introduced

previously in 4.4.3.

Table 5.2 Communication cost parameters adjusted to reflect change in genome length.

Parameter Value

Genome length, n 10392 bit
arx-Simulator 0.02950
atx-Simulator 0.01334

btx-amp-Simulator 0.000594

5.5 Evaluation and Analysis

Data is gathered from the robots every 2500 iterations. Recall from section 5.4.2

that each robot chooses a new genome once it has depleted all its energy or reached

the maximum lifetime, leading to asynchronous generation changes throughout the

population. Hence, the data gathered at each interval represents a snapshot across robots

of multiple ages and therefore does not necessarily capture the peak performance of

each robot (i.e. it may include very ‘young’ robots). However, given that the goal of

the experiment is to understand the interplay of the specific algorithm and environment

under consideration, this is not a relevant factor.

Figure 5.1 shows three rotated 3-dimensional plots of surface obtained using 100

robots after 375,000 iterations. The x and y axes represent the count and value variables,

while the z axis represent the median δE of the robot population over the last 2500

5.5 Evaluation and Analysis 87

(a) rotated 90° right (b) centred (c) rotated 90° left

Fig. 5.1 View on the resulting surface from different angles. The figure was created
by plotting the median δE of the last 2500 iterations of the experiment. The grey
plain marks a value for δE of zero, at which point robots in an experiment have an
energy balance of zero. In other words, the same amount of energy as they started the
experiment with. An interactive 3D model can be found at [119]

iterations. The grey plain marks a value for δE of zero, at which point robots have an

energy balance of zero, i.e. the same amount of energy as they started the experiment

with. Three broad regions are noticeable: a large region in which the robots have

positive δE (green and blue values above the grey plain), a region lying on the plain

itself, and finally a region below the plain in which robots are spending more energy than

they are collecting, i.e. δE< 0. In order to explore this in more detail, a 2-dimensional

top-down projection is shown in figure 5.2, obtained from populations of 50, 75 and

100 robots, and is discussed in detail below.

5.5.1 Different Performance Regions

Figure 5.2 shows clearly that the landscape is defined by four different regions:

A) Dead Zone: In this region, the environment does not provide enough energy for

the algorithm to evolve a controller that can survive a full run. Low values for both

parameters, count and value, result in the extinction of the whole robot population

within a few generations. The random genomes that the controllers are initialised with

generally result in a random spinning behaviour rather than movement. This random

5.5 Evaluation and Analysis 88

(a) Real data plot (b) Cartoon

Fig. 5.2 Overview of the landscape (zero contours from 5.1), as plot of the real data
on the left and as a cartoon version on the right. Four different regions are shown: A)
Dead Zone, B) Lean Valley, C) Neutral Line, D) Excess Energy.

behaviour, combined with the lack of energy tokens in the immediate vicinity in which

the robot is born, means that robots cannot survive given their inability to move.

B) Lean Valley (negative δE): This region starts at the edge of the dead zone that

marks the point where there is just enough energy available that some robots survive

until the end of the experiment, i.e. it marks the point where a robot has spent all

its initial energy and started picking up tokens from the environment. Moving down

towards the bottom of the valley, an increasing number of robots survive as there is

more energy in the environment, with the corollary that each robot has less total energy

— the energy available is shared between more robots. The bottom of the valley marks

the minimum δE that still enables survival. Moving upwards out of the valley on the

other side, robots gradually get better in both harvesting energy from the environment

and managing their residual energy as a result of evolving better strategies. For example,

good strategies optimise movement, or avoid moving towards tokens in which there are

other robots close by.

C) Neutral Line (δE=0): This line marks the points in the environment where the

environment provides exactly enough energy to enable a robot to maintain an energy

5.5 Evaluation and Analysis 89

balance of zero, i.e. the costs of moving and communicating are just balanced by energy

harvested.

D) Excess Energy (δE> 0): In the final region, in which both cost and value are high,

robots are able to locate more energy in the environment than is required to maintain

their initial energy E0, either due to the abundance of tokens or the high energy value of

tokens.

The main contribution here is the insight gained into the algorithm’s behaviour as a

function of the parameter defining the environment, which is distilled out in the cartoon

figure in 5.2b. Especially the identification of low and high performing regions that

surround the narrow band of optimal conditions for the evolutionary process. Within

this band, the neutral line, the conditions are so that the population of robots can keep

operating indefinitely. Here, the environment supplies enough energy for the robots to

just create the perfect conditions for creative strategies and behaviours to evolve that

make the best use of the current environment.

Hoverd and Stepney [66] also found different environmental configurations in their

simulation. They observed the influence of adding an energy model into their simulation

of Turk’s Sticky Feet and varying the level of available energy on the diversity of evolved

creatures. Their findings are similar to those presented in this chapter. Similar to the

neutral line, they found a ‘critical’ energy level that leads to the evolution of the widest

diversity of creatures. Above this level, in high energy worlds with little evolutionary

pressure they observed sessile behaviours. Below the ‘critical’ level either extinctions

or predatory behaviours were observed, which leads to diminished diversity.

The approach introduced in this chapter allows different insights into the algorithm’s

performance than could be obtained if the algorithm was tweaked to outperform the

competition on a single or set of tasks. It demonstrates the diversity of resulting

behaviours obtained from the same set of algorithmic parameters and allows a better

judgement about the reliability of the algorithm in different environments.

5.5 Evaluation and Analysis 90

5.5.2 Environmental Influence on Behaviour

In order to properly understand the evolved behaviours that lead to the landscapes

just described, a more detailed analysis is required. Figure 5.3 examines pairings of

(count,value) along the three dashed lines in 5.2, i.e. equivalent-value (a-b), equivalent-

count (c-d) and the diagonal in which count = value line (e-f). The figure shows

boxplots of the δE values at specific pairings of (count,value) and the ratio of genome

broadcasts made to unique genomes received over a lifetime. The latter quantity leads

to insights into behaviour as it relates to the number of unique robots encountered by an

individual robot: a robot will broadcast indiscriminately to any robot in its range but

will only collect unique genomes. At the equivalent-count and equivalent-value lines,

we fix the parameter count and value respectively, and successively increase the other

parameter in steps of 50.

Each graph shows five points. The first point on sub-figure (a) (c50v150) corre-

sponds to a total energy Etot that is the same as the first points on the two sub-figures

(c) and (e) below1. For a specific value of Etot , it is clear that high value combined

with low count leads to robots that have increased δE when compared to robots with

high count but low value (graph (a) compared to graph (e)). Robots must therefore

evolve behaviours that enable them to seek out the rare but high-value tokens. These

robots also have high broadcast:genome ratios, suggesting the robots are frequently

coming into contact with the same robots. A possible explanation lies in the fact that

the robots appear to travel in small groups, thus broadcasting continually to the same

robots; the rare occurrence of tokens leads to many robots having to travel towards the

same regions of the space. On the other hand, a high count leads to robots that receive

more unique genomes than in the high value case: this is suggestive of a more random

movement pattern that enables each robot to encounter more unique robots during its

1while this is exactly true for the first and third rows, in the middle row which represents equal
count/value it is necessary to approximate.

5.5 Evaluation and Analysis 91

lifetime. In this case there is low selection pressure to evolve focused movement due to

the abundance of tokens.

0

1000

2000

3000

4000

c50
v1150

c100
v1150

c150
v1150

c200
v1150

c250
v1150

Count & Value

de
lta

E
ne

rg
y

robots
50
75
100

deltaEnergy
a)

0

50

100

150

200

250

c50
v1150

c100
v1150

c150
v1150

c200
v1150

c250
v1150

Count & Value

br
oa

dc
as

ts
:g

en
om

es

robots
50
75
100

broadcasts:genomes
b)

0

1000

2000

3000

4000

c250
v250

c350
v350

c400
v400

c450
v450

c550
v550

Count & Value

de
lta

E
ne

rg
y

robots
50
75
100

deltaEnergy
c)

0

50

100

150

200

250

c250
v250

c350
v350

c400
v400

c450
v450

c550
v550

Count & Value

br
oa

dc
as

ts
:g

en
om

es
robots

50
75
100

broadcasts:genomes
d)

0

1000

2000

3000

4000

c1150
v50

c1150
v100

c1150
v150

c1150
v200

c1150
v250

Count & Value

de
lta

E
ne

rg
y

robots
50
75
100

deltaEnergy
e)

0

50

100

150

200

250

c1150
v50

c1150
v100

c1150
v150

c1150
v200

c1150
v250

Count & Value

br
oa

dc
as

ts
:g

en
om

es

robots
50
75
100

broadcasts:genomes
f)

Fig. 5.3 Cuts through different parts of the landscape. Points towards different be-
haviours in terms of exploration. a-b) value = 1150, vary count; c-d) count = value;
e-f) count =1150, vary value.

5.5.3 Behaviours in the Neutral Region

The energy neutral region is of greatest interest for researchers wishing to conduct

research moving beyond genetic evolution of survival, for example, using individual

or social learning [59] or task-driven research [49]. In this region, on the one hand,

robots are able to survive, while on the other, the environment does not over-provide,

ensuring that there is scope for robots to learn novel behaviours. Three specific points

5.5 Evaluation and Analysis 92

Table 5.3 The environmental configurations sought out for all future experiments.

Number of tokens Value per token Description
200 1150 High competition environment
500 500 Comfortable environment
1150 200 Cluttered/abundant environment

Table 5.4 Results obtained at three configurations within the neutral region.

Robots
50 75 100

Count Value Age Age
Genome

Brodcasts
Genome Age Age

Genome
Brodcasts
Genome Age Age

Genome
Brodcasts
Genome

200 1150 770 107.94 46.61 767.5 63.86 28.99 667 49.97 21.18
500 500 1026.5 86.12 39.11 1038.5 52.39 25.93 928.5 41.26 19.67

1150 200 1173.5 79.83 33.43 1093 47.39 21.95 1059 36.52 15.49

within this region are further investigated where there is approximately the same amount

of energy available in the environment (table 5.4). The table shows the median age

increases with increasing count — it is easier to maintain sufficient energy to survive

as availability increases. The lower median observed at low count reflects the fact

that many robots do not survive for very long. The time to find a new unique genome

(age:genome) is shortest at high count, reflecting frequent encounters with novel robots.

Broadcast:genomes is highest at low count as observed in the previous section. All

three configurations lead to the same energy balance of 0, but diverse behaviours result

in the gain in energy being offset by movement and broadcasting in each case.

5.5.4 Results of a Different Environment

The environments considered so far only contain one type of energy token. A straight-

forward way to introduce a significant change, is to introduce a different type of energy

token. By changing the composition of the environment it is shown how crucial an

analysis of the resulting landscape is.

Using the method described above, a new set of experiments is conducted in an

environment parameterised by two variables: the number of energy tokens available,

5.5 Evaluation and Analysis 93

Table 5.5 Environmental configurations: description refers to the prevalence of energy
tokens within the environment.

Number of tokens Value per token Description

300 1150 Scarce
625 625 Balanced

1150 425 Abundant

and the value of the energy token. In each environment tested, there are n positive

tokens with value v, and n negative tokens with value -400, which is 80% of a robot’s

initial energy. To reduce the amount of experiments, all environments are only used

with 100 robots, compared to the previous setting where 50, 75 and 100 robots were

used. All other parameters remain exactly the same as in the previous experiments and

are listed in table 5.1.

The delta-energy δE , i.e. difference between start and end energy is recorded for

multiple points in the parameter space, resulting in the plot shown in figure 5.4. The

three crosses off the line toward the axes mark the identified environments of the

previous experiments. The crosses on the line mark the environmental configurations

where the extension of the equi-value, equi-count and count=value lines cross the neutral

line. From the shift of the crosses along the lines it is evident that the environment has

changed in comparison to the previously considered environment.

From this plot, we identify three points to conduct experiments along the energy

neutral line, i.e the region in which robots expend as much energy as they acquire.

This represents a region in which selection-pressure from the environment to survive is

neither too small or too large to mask the behaviours we are interested in investigating.

The points identified are specified in table 5.5.

5.5 Evaluation and Analysis 94

0 200 400 600 800 1000 1200

0
20

0
40

0
60

0
80

0
10

00
12

00
deltaEnergy. equilibrium line

count

va
lu

e

Iteration 1.25 e5
Iteration 2.5 e5
Iteration 3.75 e5

Fig. 5.4 Cuts through the surface landscape of experiments with 100 robots in environ-
ments that differ in availability and concentration of energy, and contain equal amounts
of positive and negative tokens. Environments are defined by amount (count) and value
per token, with a constant value of -400 for negative tokens. The coloured lines show
the Neutral Line, the line where the surface plot crosses a plain drawn at delta-energy
(δE)=0, averaged over 2500 iterations at different stages of the experimental run. Red,
green and blue ending at iteration 125,000, 250,000 and 375,000 respectively. The
three crosses, located just off the line, mark the identified environments of the previous
experiments. The crosses, located on top of the line, mark the environmental configura-
tions where the extension of the equi-value, equi-count and count=value lines cross the
Neutral Line.

5.6 Summary and Conclusion 95

5.6 Summary and Conclusion

This chapter introduced a novel methodology to create performance maps for evolution-

ary robotics algorithms as functions of environmental parameters. The method is used

to analyse the performance map that results from running an environment-driven evolu-

tionary algorithm (mEDEAr f) in an environment that is parameterised by two values

that control the distribution of energy in the environment. Adjusting the availability and

value of energy tokens results in the evolution of a range of different behaviours. Rather

than arbitrarily selecting parameters in which to study evolution, it is suggested that it

is vital to understand how these choices will direct evolution, by changing the selection

pressure exerted by the environment.

Three distinct regions are observed in which the final energy balance can be negative,

neutral, or positive. A fourth region is found in which robots cannot survive. The energy

neutral region appears to be a good region in which to undertake experiments. It

provides an environment in which robots are able to survive, enabling experimentation,

while at the same time, rewarding new behaviours which are able to more efficiently

harness energy from the environment. It is clear that the environment plays a key role in

influencing what kind of behaviours emerge, in that it is not the total amount of energy

available that matters but also the manner in which it is spread.

Introducing a change into the experimental setting showed a shift in the identified

regions. From this it is evident that such analysis is beneficial to identify regions of

interest.

Chapter 6

Influence of the Environment on the

Benefit of Lifetime Adaptation

In the previous chapters adaptation was achieved through evolution alone. However,

the time robots spent evaluating genomes while moving through the environment can

be used to further adapt the individual. Lifetime adaptation in the form of individual

learning has been used many times to augment evolutionary algorithms in evolutionary

swarm robotics. Here, the benefits are not in question. The goal is to explore the

relationship between the environment and the value of different types of adaptation.

6.1 Contribution

The work presented in this chapter has partly been published in the Genetic and Evolu-

tionary Computation Conference (GECCO 2017) [122]. A copy of the publication can

be found in the appendix (A.4).

An individual learning mechanism is developed that doesn’t require any a priori

knowledge of the environment and can help the evolutionary process to adapt. It is

investigated how environmental parameters (token count, value and the rate of change)

6.2 Introduction 97

influence the effectiveness of the adaptation mechanism and how the nature of the

adaptation mechanism influences performance in different environments.

The results show that there is a clear link between environmental conditions, specif-

ically the rate of change and the availability of learning opportunities, and the effec-

tiveness of different adaptation mechanisms. Further, the incentive to learn in form

of reward or punishment, in other words, the environmental pressure which drives the

evolutionary process, must be high enough to make any form of adaptation worthwhile.

6.2 Introduction

Many environments will be unknown to the designer a priori and are potentially

dynamic, the swarm must be able to continuously adapt its behaviour to ensure it both

maintains sufficient energy to survive and to successfully perform tasks.

The importance of being able to adapt over time has been a subject of research

within Evolutionary Robotics for some time, e.g. [130]. In previous chapters, evolution

was the sole engine for adaptation. In evolutionary adaptation, information encoded on

the genome adapts through selection and reproductive operators over many generations.

To evaluate a genome, the robot carrying the genome needs to experience and interact

with the world to derive a fitness value. This time can be used by the robot to further

adapt its behaviour using individual learning.

The goal here is to investigate the interplay between evolution, individual learning

and environmental characteristics in depth. A swarm is considered that undergoes

distributed evolution of a neural-network based controller, and is augmented with

an individual learning mechanism: this modifies the information gleaned from the

environment and fed to the controller over the lifetime of a robot. Specifically, the

considered swarm is operating in an environment that is unknown a priori, and in

which robots must learn relative values of positive and negative energy tokens. Each

environment contains n positive and n negative energy tokens. Positive tokens increase

6.3 Designing the Lifetime Adaptation Mechanism 98

the robot’s energy by v units of energy when collected, while negative ones reduce it

by a fixed amount. As n and v vary, each environment presents different opportunities

for learning in that either there are a small number of high value tokens or a large

number of low value tokens. In addition, tokens change their nature across ’seasons’,

i.e. tokens of a specific colour switch value from negative to positive on a cyclical basis.

This forces the swarm to have to re-learn the effect of any given colour of token every

season. Various settings for individual learning are investigated in which the learning

mechanism is either fixed or has components that can be simultaneously evolved.

The distributed evolutionary algorithm mEDEAr f from chapter 3 is augmented with

mechanisms for individual learning in order to conduct experiments. Note that the goal

is not to propose a novel method of either individual learning or evolutionary adaptation,

but to explore the relationship between the environment and value of different types of

adaptation. To this end, it is investigated how environmental parameters (token count,

value and the rate of seasonal change) influence the effectiveness of the adaptation

mechanisms and how the nature of the adaptation mechanism influences performance

in different environments.

6.3 Designing the Lifetime Adaptation Mechanism

6.3.1 Scenario Overview

A swarm operates in a simulated environment in which there are two types of coloured

tokens: driving over one colour increases robots’ energy while the other decreases

it. Robots should learn to avoid negative tokens. However, a ”seasonal” change is

imposed where the value of tokens is reversed, i.e. red becomes positive and blue

negative or vice versa. A robot must thus adapt any previously evolved behaviour.

All robots in the swarm evolve a neural network that controls their behaviour through

the distributed evolutionary algorithm mEDEAr f (3.3). The algorithm mEDEAr f is

6.3 Designing the Lifetime Adaptation Mechanism 99

used without biasing of broadcasting and with roulette-wheel selection as explicit the

selection method (E1em+rw), using the communication energy model derived in the

previous chapter. In addition, they can exploit an individual adaptation mechanism

that can potentially learn the current value of a given token colour. This information

modifies an input to the evolved neural network. A number of types of individual

learning are investigated in which some components of the learning mechanism can be

heritable, fixed or absent.

Here, the same simulation environment (Roborobo by Bredeche et al. [22]) as in

the previous chapters is used. To briefly recap, the simulated robots have 8 ray-sensors

distributed around the body and detect proximity to the nearest object and its type. Each

robot is controlled by an evolved Elman recurrent neural network (RNN). The network

has 16 sensory inputs and 2 motor outputs (translational and rotational speeds). The 16

inputs comprise of two pieces of information for each of the 8 ray-sensors: proximity

and whether or not the object is an energy token. Although the colour/type of the object

is also detected by the robot, it is not fed into the RNN as an input, but only used in the

adaptation mechanism1.

6.3.2 The Individual Learning Mechanism

The neural network described above has a set of binary inputs (one for each ray-

sensor) that denote the presence (1) or absence (0) of a token (independent of its type).

Therefore, in an environment in which there are multiple types of tokens, the only way

for an individual to distinguish between them is to pick them up and observe the change

in energy. If the environment in which the robot operates is known a priori, then clearly,

the neural network could be designed in order to include relevant information about

each token type. However, if the environment is unknown, then the robot must learn to

adapt to the different types and values of tokens it may encounter.

1The information cannot be encoded directly to the network without a priori knowledge of the number
of potential colours.

6.3 Designing the Lifetime Adaptation Mechanism 100

The lifetime-learning mechanism proposed here adds qualitative information about

the detected token instead of just a binary indicator. It extends a robot’s ability from

previously only detecting the presence of a token to being able to distinguish between

different types and their relative importance. This is achieved by adding a multiplier to

each of the NN’s token detection inputs. Like a set of filters, the appropriate multiplier

value is chosen based on the detected token type. The multiplier for each type of token

can be a continuous value in the range of −1 and 1 and therefore allow the input to

carry more information than just binary.

Every time a previously unseen type of token is encountered (detected by a sensor

ray or through consumption), a new value is added to the set. As tokens are usually2

detected before they are consumed, no information regarding the token’s value is known:

the robot therefore randomly initialises a value to associate with the type (x) of detected

token. Following consumption, the resulting change of energy is detected by the robot

and its learning mechanism can modify the corresponding multiplier value (mx).

All multiplier values are adjusted every time a token is consumed according to

equation 6.1:

mx‘ = mx +LS×
(

LR− Cx

Ctotal

)
×
(Vx

Vmax−Vmin

)
(6.1)

mx is the current value for the multiplier for type x; Cx is the number of tokens of

type x collected; Ctotal is the total number of all tokens collected; Vx is the value of

the token that has just been consumed and is therefore now known to the robot (being

equivalent to the change in energy); Vmax and Vmin define the minimum and maximum

values of all tokens encountered so far. LR is a learning rate that controls the magnitude

of the change, and LS is either−1 or +1 and simply inverts the direction of change; this

is required to adjust the learning mechanism to the internal value notation of the neural

2 As robots only have a discrete number of ray-sensors and not a full field of detection around their
body, only objects crossing a sensor ray can be detected. This can lead to a situation in which a robot
drives over a token before any of the ray-sensors detect it.

6.3 Designing the Lifetime Adaptation Mechanism 101

network and is adapted via evolution alongside the genome. The learning mechanism is

shown in algorithm 4.

1 if tokenx is unknown then
2 multipliers.add(tokenx);
3 end
4 if tokenx is consumed then
5 tokenCounterx.update(tokenx);
6 totalTokenCount.update();
7 tokenValuex.update(δE(t)−δE(t−1));
8 totalValueRange.update();
9 for mx in multipliers do

10 mx.update(); // eq. 6.1
11 end
12 end
Algorithm 4: Pseudo code of the steps carried out to update all multipliers every
time a token is encountered.

Three factors influence the learning mechanism: the initial value assigned to a token

Vx, the learning rate LR and the associated sign LS. These factors can be randomly

assigned, fixed to some specific value or can themselves be subject to evolution. Al-

lowing the learning sign to co-evolve enables the learning mechanism to self-adapt

to the internal value convention of the neural network. Finally, enabling the robot to

evolve an appropriate starting value for each type of token based on its experience

may speed-up learning in some circumstances. Even though token values change over

seasons, inheriting a good starting value may be beneficial and, presumably, dependent

on the rate of change of the environment. This algorithm makes use of the Baldwin

Effect [2], by intertwining the learning mechanism with the evolutionary process and

making the adaptable parameters heritable.

Note that in no case is any Lamarkian evolution used, i.e. although the multiplier

starting values are adapted over the course of a lifetime, they are never written back to

the genome and are therefore not inherited.

6.4 Hypotheses 102

6.4 Hypotheses

The following alternative hypotheses inform the experimental design and are tested

through experimental investigation.

Hypothesis 7 The effectiveness of different individual adaptation settings is influenced

by the parameters of the environment (token count, token value).

Hypothesis 8 The rate of change of a given environment influences the effectiveness of

the individual adaptation mechanism.

Hypothesis 9 The nature of the individual adaptation mechanism influences perfor-

mance in different environments.

6.5 Experiments

Experiments are carried out using mEDEAr f as described in 3.4. Experimental and

simulation parameters are given in table 6.1. Parameters associated with the learning

mechanism are given in table 6.2. The values for LRinitial and LRmax were selected

following limited empirical exploration.

Table 6.1 Simulation and experimental parameters for all experiments in this chapter.

Simulation parameters

Arena size 1024 px × 1024 px
Max. robot lifetime 2500 iterations
Token re-spawn time 500 iterations
Sensor range 196 pixel
Max. communication range rmax 128 pixel

Experimental parameters

Number of independent runs 30
Number of robots 100
Max. iterations 1,000,000
Start energy 500

6.5 Experiments 103

Table 6.2 Learning parameters with initial values and ranges in which they can change
during runtime of the experiment. Method of adaptation (through evolution or lifetime-
learning) depends on the experiment.

Parameter Init. Value Value Range

Learning rate, LR 1.02 [LRmin,LRmax]
Minimum LR, LRmin 1 fixed
Maximum LR, LRmax 1.5 fixed
Multiplier of type x, mx random [−1,1]
Inherited multiplier, imx random [−1,1]
Learning sign, LS random [−1,1]

6.5.1 Variations of the Adaptation Mechanism

Four variants of the adaptation mechanism are investigated as detailed below.

• Evo: evolves multiplier values but has no adaptation during lifetime

• IL: pure lifetime learning with random initialisation of multiplier values

• Evo + IL: evolves the LR, LS and the multiplier values, and also adjusts the latter

during lifetime

• Baseline: adaptation mechanism is disabled and robots can only detect the

presence of a token but not its type

Note that in the baseline experiments, the multipliers for all tokens have a fixed

value of 1 and therefore the robots cannot distinguish between tokens of different types.

Table 6.3 lists the heritability of parts of the adaptation mechanism for the four variants

of the algorithm and shows how multipliers are initialised when a genome is deployed

in a robot. These four variants of the algorithm are investigated in conjunction with the

three environments described in the following section.

6.5.2 Selecting Environmental Configurations

In the previous chapter in section 5.5.4, an environment was established that is suitable

for an individual learning experiment. Having two different types of tokens provides the

6.5 Experiments 104

Table 6.3 Learning scenarios investigated showing heritability of information.

Initial Value of Multiplier LR LS

Baseline 1 (all tokens) none n/a
IL random fixed evolved

EVO evolved none n/a
EVO+IL evolved evolved evolved

opportunity to learn to distinguish between them. An environment is parameterised by

two variables: the number of energy tokens available and the value of the energy token.

In each environment tested, there are n positive tokens with value v, and n negative

tokens with value -400, which is 80% of a robot’s initial energy.

The delta-energy δE , i.e. the difference between start and end energy is recorded for

multiple points in the parameter space, resulting in the plot shown in figure 6.1. From

this plot, three points have been identified to conduct experiments along the energy

neutral line, i.e the region in which the robot expends as much energy as it acquires.

This represents a region in which selection-pressure from the environment to survive is

neither too small or too large to mask the behaviours under investigation. What’s more,

individual learning has the potential to improve evolved behaviours, but is not essential.

The points that were identified in the previous chapter in 5.5.4 are listed in table 6.4.

Table 6.4 Environmental configurations: description refers to the prevalence of energy
tokens within the environment.

Number of tokens Value per token Description

300 1150 Scarce
625 625 Balanced

1150 425 Abundant

6.5.3 Sets of Experiments

An experiment is defined by a tuple <environment, seasonal change rate, algorithm>.

Three environments are specified in section 6.5.2. Three different rates of seasonal

6.5 Experiments 105

0 200 400 600 800 1000 1200

0
20

0
40

0
60

0
80

0
10

00
12

00

count

va
lu

e

Fig. 6.1 Top down view of the surface plot created using the method introduced in the
previous chapter. The red line shows the Neutral Line, the line where the surface plot
crosses a plane drawn at delta-energy (δE)=0.

change are investigated: 0 (no change, i.e. static environment), every 5000 iterations

and every 15000 iterations. Note that the maximum lifetime of a genome before it is

replaced is 2500 iterations, so every robot should go through at least one evolutionary

generation during the shorter (5000 iterations) season, and at least 5 generations during

the 15000 season. In practice, as robots tend to die before their maximum lifetime,

more evolutionary cycles are likely to occur.

Four algorithms are investigated as detailed in table 6.3. Thus, in total 36 (=3x3x4)

experiments are conducted. In each experiment, the totalTokenRatio is recorded at the

end of the season. This value is the ratio of the number of collected tokens with positive

values divided by the sum of all collected tokens within that season. A ratio of 0.5

6.5 Experiments 106

shows that an equal amount of positive and negative tokens were collected, below 0.5

more negative and above more positive tokens, respectively.

6.5.4 Energy Model and Updated Communication Costs

Referring to the derived energy model in section 4.4 in an earlier chapter, equation 4.14

shows the change in energy at each simulation step, where n is the number of tokens

that have been collected in that step.

E(t +1) = E(t)−Eliving−Ecom +(ntoken×Etoken) (4.14 revisited)

The energy model remains the same as used in the experiments in the previous

chapter. To recap from 4.3, there is a fixed cost of ‘living’ of 0.5 units per timestep,

regardless of whether the robot moves or not. A robot moving consumes an amount

of energy that is related to its rotational speed vrot, translational speed vtrans, and their

respective maximum values vrot-max and vtrans-max

Eliving = 0.5+
(

vrot

vrot-max
+

vtrans

vtrans-max

)
/4 (4.13 revisited)

However, due to the additional genes of the adaptation algorithm the genomes

lengths have changed, which impacts the values used in the derived model for com-

munication costs (Ecom). Recall from 4.4 that the energy required for transmitting

and receiving is based on the length of a message (here, the length of the transmitted

genome). The genome now includes 1335 byte of information (322 neural network

weights, sigma, fitness, age, genome ID, robot ID, learning rate (LR), learning sign (LS),

and the inherited multiplier for type x (imx) of 4 byte each). The parameters imx, LS

and LR are always included in the message, but only used in experiments where the

learning parameters are inherited.

6.6 Evaluation and Analysis 107

Using the following equations derived in a previous chapter (section 4.4.3) and the

values from the data sheet in table 4.1, the adjusted values listed in table 6.5 can be

calculated.

Erx = nbit×Erx-elec

= arx-Simulator (4.5 revisited)

Etx(d) = nbit×Etx-elec +nbit× εtx-amp×d2

= atx-Simulator +btx-amp-Simulator×d2 (4.6 revisited)

Table 6.5 Communication cost parameters.

Parameter Value

Genome length, n 10774 bit
arx-Simulator 0.03050
atx-Simulator 0.01379

btx-amp-Simulator 0.000614

6.6 Evaluation and Analysis

6.6.1 Methodology

Following 30 runs of each experiment, statistical analysis was conducted based on the

method in [107], using a significance level of 5%. The distributions of two results

were checked using a Shapiro-Wilk test. If one of the results followed a non-Gaussian

distribution then the p-value is determined using a Kruskal-Wallis rank sum test. Other-

wise, the homogeneity of variance of the two results is performed using a Levene’s test

for homogeneity of variance. For unequal variances the p-value is determined using a

Welch test, otherwise using an ANOVA test.

6.6 Evaluation and Analysis 108

6.6.2 Adaptation Mechanism

Figure 6.2 shows the algorithm variation EVO + IL deployed in three different envi-

ronments (scarce: count = 300, value = 1150; balanced: count = 625, value = 625;

abundant: count = 1150, value = 425) in a static setting and at seasonal change rates of

5k, 15k and 30k. The plots for all application variants of the algorithm can be found in

appendix B.

As these plots are quite dense and hard to digest, a larger and more detailed version

is shown in 6.3. The plots show data as follows:

Data plotted in the individual scatter plots represents 10% of the population (ran-

domly sampled) and is taken from a single randomly selected run of the experiment.

Each of the two sub-graphs is a scatter plot, showing the value of the positive and

negative multipliers respectively. Note, the names "positive", for the upper sub-graph,

and "negative", for the lower sub-graph, refer to the initial value of the corresponding

token at the beginning of the experiment. Every genome has a data point on either of

the two sub-graphs. The values end-of-lifetime (x position), distance travelled (y-value)

and reproductive success (transparency; measured in number of offspring) are the same

in each sub-graph. The value of the multiplier (colour; a continues scale from -1 = red

to +1 = green) is unique to the corresponding sub-graph. The size of the dot shows the

adaptation success of the individual genome: positive tokens collected per lifetime in

the upper sub-graph and the inverse ratio for negative tokens in the lower sub-graph.

The red/green lines below the y-axes is made up of dots, each representing the learning

sign LS of the individuals: red=negative and green=positive. Note that LS is negated in

the lower sub-graph.

Overall the graph shows that the individual learning mechanism works. In the three

static environments shown in the sub-figures (a - c), each multiplier settles on a distinct

value. In sub-figure (b) the evolved value notation is reversed compared to (a) and (c),

6.6 Evaluation and Analysis 109

(a) static; c: 300, v: 1150 (b) static; c: 625, v: 625 (c) static; c: 1150, v: 425

(d) s: 5k; c: 300, v: 1150 (e) s: 5k; c: 625, v: 625 (f) s: 5k; c: 1150, v: 425

(g) s: 15k; c: 300, v: 1150 (h) s: 15k; c: 625, v: 625 (i) s: 15k; c: 1150, v: 425

(j) s: 30k; c: 300, v: 1150 (k) s: 30k; c: 625, v: 625 (l) s: 30k; c: 1150, v: 425

Fig. 6.2 Adaptation mechanism and performance values for Evo + IL in three different
environments, defined by the quantity (c) and value (v) of energy tokens available in
a static setting (a-c) at a seasonal change (s) of 5k (d - f), 15k (g - i) and 30k (j - l).
These intention of these figures is to demonstrate the general trends and patterns and
not the accurate representation of data. Hence, certain elements, such as legends and
axis descriptions, have been omitted. The reader is referred to figure 6.3 for a more
detailed version of sub figure (j) where the omitted details of the graphs are shown.

6.6 Evaluation and Analysis 110

Fig. 6.3 Detailed sample figure for adaptation mechanism and performance values in
figure 6.2. The figure shows a randomly selected run of the experiment for the algorithm
configuration Evo + IL in a scarce environment with a seasonal change rate of 30k.
As the resulting plot is quite dense, only 10% of the robots (sampled at random) are
shown. The top and bottom half of the figure shows data from the multipliers of the
first and second token types respectively. Each dot represents a multiplier value of an
individual at the end of its lifetime. Distance travelled by the individual is shown on the
y-axis, the colour indicates the value of the respective multiplier. The size represents the
success in collecting and avoiding tokens of said types and the transparency represents
the reproductive success of the individual using these multipliers. The change in colour
from one extreme to another in value (-1: red; 1: green), indicates successful adaptation
to the environmental change every 30k iterations when token types swap values (positive
becomes negative and vice versa).

which demonstrates the need for the learning sign (LS) that co-evolves alongside the

neural network weights to adjust the learning mechanism’s direction of change.

Comparing the three environments (columns of sub-figures) against each other it

can be seen that as the number of tokens increases, the distance robots travel decreases.

With an increased number of positive tokens available, the distance an individual has

to travel to gather them decreases. There is an equal amount of positive and negative

6.6 Evaluation and Analysis 111

tokens available. Therefore, the chance to accidentally collect a negative token is also

more likely and decreases the lifetime. Recall that the ray-sensors are spaced around

the robot’s body, which allows for the situation that the robot can drive over a token

without detecting it first.

The same correlation between number of available tokens in the environment and

distance travelled can be observed for the dynamic environments (d - l). Further, it can

be observed that the adaptation mechanism in fact adapts to the change in environment.

It allows the robot to adjust the multipliers to correspond with the changed token values

after a seasonal change. The resulting colour-bands are most distinct in sub-figures

(j - l), representing the longest seasonal change rate of 30k. They also appear in the

sub-figures for 5k and 15k, but are less clear than in 30k.

6.6.3 General Observations

Figure 6.4 shows the normalised difference between the number of positive tokens (p)

and the number of negative tokens (n) collected per season over time (i.e. p-n). It shows

(scarce, balanced, abundant) environments for the two cases in which the values of the

tokens change dynamically with the seasons. The solid lines on the graph represent

this value combined over both seasons, while the dashed and dotted lines represent the

value in season 0 and season 1 respectively. All lines are smoothed over the relevant

points. In every experiment the oscillation of the plotted lines can be observed. The

following observations offer an explanation for this behaviour.

Recall that tokens respawn after 500 iterations and that tokens waiting to respawn

are also affected by seasonal change. Therefore, if a change happens during a token

being consumed and being placed back in the arena, the token respawns as the opposite

type. The frequency of respawning and the seasonal change interact; like two wave

signals with different frequencies. While one oscillates quickly, the other changes

slowly. The product of their interaction and the magnitude of the resulting wave will

6.6 Evaluation and Analysis 112

oscillate as well. At times both waves will cancel each other out, and at others they will

lead to a very high amplitude. In this particular case, the faster changing respawn time

interacts with the much slower rate of seasonal change. There are times when there is

an ever increasing availability of positive tokens until the number of available tokens

peaks, followed by a decline. Furthermore, the used adaptation algorithm determines

the ability of robots to distinguish between tokens and thus the amount of each type

being consumed and consequently respawning.

In the baseline experiment, where robots can’t distinguish between different types,

there is, theoretically, equal likelihood of either type being picked up. For example,

3 positive and 1 negative is equally likely to 1 positive and 3 negative. However, a

negative token takes energy away from a robot. Recall that robots start the evaluation

of a new genome with 500 energy units and a negative token is always fixed at -400.

Hence, 80% of its initial energy is taken as a result of the encounter with a negative

token. Therefore, collecting more negative tokens than positive ones is much less likely

than vice versa. Despite being unable to distinguish between token types, on average,

this gives a bias towards collecting more positive than negative tokens.

This bias is true for all experiments. Although the adaptation algorithm enables the

robot to learn/evolve to distinguish between token types, the results shown reflect the

whole population, including ill adapted individuals. To enable a genome to be evaluated

a robot begins every generation with a starting energy of 500 energy units. A necessary

mechanism that has the unfortunate effect of diluting the selection pressure for the

desired behaviour to be able to distinguish.

This given starting energy is free, meaning it is independent of an individual’s

fitness. It can be used for any kind of behaviour, including only picking up negative

tokens. Genomes are selected using a fitness proportionate selection mechanism based

on a comparison of the energy balance at the time of the genome exchange. A young

genome that might have evolved to consume negative tokens with a token count of zero

outranks another genome with the desired behaviour of preferring positive tokens that

6.6 Evaluation and Analysis 113

30k, Evo 30k, IL 30k, Evo + IL 30k, Baseline

15k, Evo 15k, IL 15k, Evo + IL 15k, Baseline

5k, Evo 5k, IL 5k, Evo + IL 5k, Baseline

0.0e+00 2.5e+05 5.0e+05 7.5e+05 1.0e+06 0.0e+00 2.5e+05 5.0e+05 7.5e+05 1.0e+06 0.0e+00 2.5e+05 5.0e+05 7.5e+05 1.0e+06 0.0e+00 2.5e+05 5.0e+05 7.5e+05 1.0e+06

−0.005

0.000

0.005

0.010

−0.008

−0.004

0.000

0.004

−0.006

−0.003

0.000

0.003

0.00

0.01

0.02

0.03

0.04

0.00

0.02

0.04

0.06

0.000

0.025

0.050

0.075

−0.005

0.000

0.005

0.010

−0.0050

−0.0025

0.0000

0.0025

0.0050

0.0075

−0.005

0.000

0.005

0.010

−0.004

0.000

0.004

−0.005

0.000

0.005

−0.005

0.000

0.005

0.010

iteration

no
rm

al
is

ed
 d

iff
 (

p−
n)

/s

Count & Value c300v1150 c625v625 c1150v425

Fig. 6.4 Normalised difference between positive and negative tokens collected. Solid
line is the value combined over all seasons, dashed = season 0, dotted = season 1.

has consumed a negative token by accident. Many similar scenarios are imaginable,

which could lead to a counter productive strategy spreading through the population.

All these factors lead to varying oscillations that can be observed in figure 6.4.

6.6.4 Influence of the Adaptation Mechanism

Table 6.6 shows the median totalTokenRatio for each of the three adaptation mechanisms

(EVO, EVO+IL, IL) in each of the three environments and for each value of seasonal

change. The values are compared to the result from the baseline experiment for each

case.

The EVO method (that evolves multiplier values but has no adaptation during a life-

time) outperforms the baseline method in all three static environments (season change

= 0). Here, evolution is able to determine appropriate values for each multiplier type.

6.6 Evaluation and Analysis 114

However, in the dynamic environment, evolving the multiplier values is detrimental.

In the first season, evolution can find appropriate multiplier values (particularly in a

long season). However, as soon as the season changes, these become irrelevant; if these

values have spread sufficiently through the population it may take considerable time

for evolution to reverse this change, while in the meantime, the robot will continue to

collect negative tokens.

In this experimental setup, where a genome is supplied with an amount of energy to

start with, it stands to reason that negative token have a higher impact on the adaptation

mechanism and facilitate quicker learning.

The IL method (fixed learning rate and random initialisation of values) never

outperforms the baseline method in the static environment, and is worse than the

baseline in the dynamic environments. The magnitude of the effect is highest in the

seasonal change = 5000 environment for a balanced environment. It appears that the

learning rate is not sufficient to adapt a randomly initialised multiplier to a suitable

value, while the randomness can actually bias the robot towards collecting a particular

type. On average, this is worse than the baseline case in which the robot has equal

preference for both types.

In contrast, with the exception of the two dynamic and scarce environments, the

EVO+IL method that evolves the LR, LS and the multiplier values, and also adjusts the

latter during lifetime, a significant improvement is observed with respect to the baseline

method. In the scarce environments, the robots have little information available to them

to inform learning as there are few tokens. When the environment is changing rapidly

this is particularly detrimental. In the other environments, there are more tokens to learn

from. When this is coupled with the ability to both evolve useful multiplier values and

adapt them at an appropriate rate, the robots learn to adapt to the changing environments

and improve their behaviour in the static environment.

Table 6.7 provides a pairwise comparison of learning mechanisms within different

environments. 22/27 comparisons are significant.

6.6 Evaluation and Analysis 115

In this table and subsequent ones, the symbols =, <,> indicate whether the median

values for totalTokenRatio are not significantly different, significantly smaller or larger

respectively. p-values below the significance level of 0.05 are written in bold.

For the scarce environment, the general pattern is that EVO+IL outperforms the

other two methods in 4/6 cases, with no statistical difference in the other two cases.

In the balanced environment, EVO+IL also clearly dominates both EVO and IL. EVO

dominates IL in the static and 5k experiments. Finally, in the abundant environment,

the supremacy of EVO+IL is again observed, while IL dominates EVO in both of the

dynamic environments.

6.6 Evaluation and Analysis 116

Ta
bl

e
6.

6
Sh

ow
in

g
m

ed
ia

n
of

en
d

va
lu

es
by

se
as

on
al

ch
an

ge
an

d
th

e
ex

pe
ri

m
en

tf
or

to
ta

lT
ok

en
R

at
io

ov
er

th
e

fin
al

50
00

ite
ra

tio
ns

(N
:3

0)
.

↓,
↔

,↑
in

di
ca

te
w

he
th

er
th

e
va

lu
e

is
lo

w
er

,n
ot

di
ff

er
en

to
rh

ig
he

rr
es

pe
ct

iv
el

y
co

m
pa

re
d

to
th

e
ba

se
lin

e
ex

pe
rim

en
t.

Th
e

nu
m

be
ro

fa
rr

ow
s

co
rr

es
po

nd
s

to
th

e
m

ag
ni

tu
de

le
ve

lo
ft

he
ef

fe
ct

si
ze

ba
se

d
on

a
V

ar
gh

a
an

d
D

el
an

ey
A

te
st

.(
1

=
sm

al
l,

2
=

m
ed

iu
m

,3
=

la
rg

e)
E

xp
er

im
en

t
E

vo
IL

E
vo

+
IL

co
un

t
30

0
62

5
11

50
30

0
62

5
11

50
30

0
62

5
11

50
Se

as
on

va
lu

e
11

50
62

5
42

5
11

50
62

5
42

5
11

50
62

5
42

5
0

↑↑
↑0

.5
30

1
↑↑
↑0

.5
41

1
↑↑
↑0

.5
66

2
↔

0.
50

34
↔

0.
50

56
↓0

.4
99

7
↑↑
↑0

.5
30

6
↑↑
↑0

.5
38

8
↑↑
↑0

.5
70

5
5k

↔
0.

49
95

↓0
.4

98
2

↓0
.4

98
9
↓0

.5
00

6
↓↓

0.
49

75
↔

0.
50

23
↔

0.
50

29
↑↑

0.
51

34
↑↑
↑0

.5
19

1
15

k
↓↓

0.
49

6
↓↓

0.
49

5
↓0

.4
98

1
↓0

.4
97

3
↓0

.4
99

3
↓0

.5
01

1
↔

0.
49

81
↑↑

0.
51

36
↑↑
↑0

.5
12

1

*

Ta
bl

e
6.

7
Sh

ow
in

g
p-

va
lu

es
of

pa
ir

w
is

e
co

m
pa

ri
so

ns
of

th
e

le
ar

ni
ng

m
ec

ha
ni

sm
fo

rt
ot

al
To

ke
nR

at
io

(r
ow

vs
.c

ol
um

n)
ov

er
th

e
fin

al
50

00
ite

ra
tio

ns
.

E
nv

ir
on

m
en

t
co

un
t:

30
0

va
lu

e:
11

50
co

un
t:

62
5

va
lu

e:
62

5
co

un
t:

11
50

va
lu

e:
42

5
Se

as
on

E
xp

er
im

en
t

IL
E

vo
+

IL
IL

E
vo

+
IL

IL
E

vo
+

IL
0

E
vo

>
6.

04
e-

35
=

6.
64

e-
01

>
8.

51
e-

77
=

4.
32

e-
01

>
4.

44
e-

82
<

1.
5e

-0
3

IL
<

3.
6e

-2
6

<
6.

66
e-

59
<

6.
7e

-1
50

5k
E

vo
=

8.
45

e-
01

<
3.

18
e-

05
>

4.
42

e-
06

<
3.

36
e-

55
<

4.
22

e-
15

<
9.

94
e-

12
2

IL
<

1.
27

e-
04

<
3.

6e
-7

0
<

2.
9e

-8
0

15
k

E
vo

=
7.

84
e-

02
<

8.
55

e-
04

<
7.

4e
-0

3
<

1.
09

e-
41

<
1.

28
e-

08
<

3.
11

e-
77

IL
=

5.
27

e-
02

<
5.

83
e-

42
<

2.
23

e-
72

6.6 Evaluation and Analysis 117

6.6.5 Influence of Environmental Parameters

Table 6.8 provides a pairwise comparison of environments for totalTokenRatio obtained

at the end of each experiment.

The data clearly indicates that for the methods that include an evolutionary com-

ponent with the learning algorithm in the static environment: abundant > balanced

> scarce. In contrast, when only a fixed individual learning mechanism is used with

no adaptation of learning rate, then the reverse appears true: the token ratio is higher

in the balanced and scarce environments than in the abundant environment, with no

significant difference between balanced and abundant.

In the slow changing environment (15k), the general trend is that abundant >

balanced > scarce for all three mechanisms. In the rapidly changing environment,

a mixed picture emerges. For the EVO+IL mechanism, it is clear that abundant >

balanced > scarce. For EVO, the scarce environment does not provide significantly

different results to the other two, whereas for IL, both scarce and balanced prove harder

than abundant, but scarce outperforms balanced.

6.6.6 Influence of Environmental Change

Next, in table 6.9, it is considered how the rate of change of a given environment

influences the interaction between environmental parameters and learning mechanisms.

In 21/27 pairwise comparisons, statistically significant results are observed.

In the scarce environments, there is a general pattern in terms of rate of change:

static > 5k > 15k for all mechanisms. In the balanced environments, the same general

pattern is observed, with the exception that for the IL and EVO+IL mechanisms, no

statistical differences are noted between the 5k and 15k environments. In the abundant

environments, the same general pattern as above can be noted, except for IL, where the

only significant result shows that 5k>15k, while in contrast, for EVO, 5k<15k.

6.6 Evaluation and Analysis 118

Ta
bl

e
6.

8
Sh

ow
in

g
p-

va
lu

es
of

pa
ir

w
is

e
co

m
pa

ri
so

ns
of

en
vi

ro
nm

en
ts

fo
rt

ot
al

To
ke

nR
at

io
(r

ow
vs

.c
ol

um
n)

ov
er

th
e

fin
al

50
00

ite
ra

tio
ns

.

E
xp

er
im

en
t

E
vo

IL
E

vo
+

IL
co

un
t

62
5

11
50

62
5

11
50

62
5

11
50

Se
as

on
va

lu
e

62
5

42
5

62
5

42
5

62
5

42
5

0
30

0
11

50
<

1.
24

e-
07

<
3.

02
e-

27
=

5.
78

e-
01

>
7.

33
e-

05
<

3.
27

e-
02

<
1.

44
e-

40
62

5
62

5
<

9.
37

e-
16

>
7.

87
e-

11
<

1.
33

e-
32

5k
30

0
11

50
=

4.
55

e-
01

=
3.

08
e-

01
>

7.
89

e-
05

<
1.

99
e-

02
<

3.
87

e-
19

<
1.

5e
-3

2
62

5
62

5
>

1.
22

e-
03

<
1.

81
e-

17
<

5.
88

e-
04

15
k

30
0

11
50

<
4.

78
e-

02
<

1.
58

e-
04

=
6.

51
e-

01
<

4.
11

e-
04

<
1.

94
e-

16
<

9.
56

e-
30

62
5

62
5

<
1.

09
e-

08
<

1.
44

e-
12

=
2.

61
e-

01

*

Ta
bl

e
6.

9
Sh

ow
in

g
p-

va
lu

es
of

pa
irw

is
e

co
m

pa
ris

on
s

of
se

as
on

al
ch

an
ge

fo
rt

ot
al

To
ke

nR
at

io
(r

ow
vs

.c
ol

um
n)

ov
er

th
e

fin
al

50
00

ite
ra

tio
ns

.

E
nv

ir
on

m
en

t
co

un
t:

30
0

va
lu

e:
11

50
co

un
t:

62
5

va
lu

e:
62

5
co

un
t:

11
50

va
lu

e:
42

5
E

xp
er

im
en

t
Se

as
on

5k
15

k
5k

15
k

5k
15

k
E

vo
0

>
9.

09
e-

69
>

6.
76

e-
55

>
1.

2e
-1

31
>

4.
34

e-
99

>
6.

91
e-

12
0

>
9.

94
e-

88
5k

>
1.

89
e-

02
>

1.
67

e-
05

<
6.

04
e-

03
IL

0
>

2.
54

e-
05

>
6.

93
e-

09
>

4.
05

e-
27

>
4.

43
e-

20
=

1.
03

e-
01

=
7.

08
e-

01
5k

=
7.

61
e-

02
=

8.
51

e-
02

>
8.

33
e-

03
E

vo
+

IL
0

>
2.

82
e-

35
>

1.
37

e-
31

>
1.

76
e-

32
>

4.
15

e-
32

>
3.

41
e-

17
8

>
3.

54
e-

11
8

5k
>

1.
7e

-0
2

=
4.

38
e-

01
=

7.
19

e-
01

6.7 Summary and Conclusion 119

6.6.7 Analysis

The previous section shows that the EVO+IL clearly outperforms IL and EVO in all

parametrisations of the environment and for all rates of change. Its behaviour can be

examined more closely by plotting the normalised difference between the number of

positive tokens (p) and the number of negative tokens (n) collected per season over time

(i.e. p-n). This is shown in figure 6.4 for the (scarce, balanced, abundant) environments

for the two cases in which the values of the tokens change dynamically with the seasons.

The solid lines on the graph represent this value combined over both seasons, while

the dashed and dotted lines represent the value in season 0 and season 1 respectively.

All lines are smoothed over the relevant points. The continuous improvement in this

metric is clearly identified for EVO+IL, showing a generally robust response to the

changes in token value (i.e. an upward trend). The abundant environment proves

most straightforward to learn in: having a large quantity of information of low-value

outweighs the situation in which a small quantity of high-value information is available.

In contrast, in the baseline experiment in which no information is available as to token

value, the (p-n) metric continuously cycles. In this case, the best that evolution can do

is learn a token-avoidance behaviour, as there is no means of distinguishing between

tokens.

6.7 Summary and Conclusion

In this chapter the performance of a number of adaptation mechanisms that augment

evolution of a neural network controller were investigated. Adaptation mechanisms that

included heritable and fixed components were analysed in three different environments

in which both the number of learning opportunities and the impact of the learning

opportunities varied.

It is shown that an adaptation mechanism in which all components evolve and are

heritable (EVO+IL) copes well in static and dynamic environments, and is able to learn

6.7 Summary and Conclusion 120

to distinguish between tokens of different values. In dynamic environments, the greatest

effect is observed when the environment contains a large number of small learning

opportunities. The fewer the learning opportunities, the less effective the mechanism

becomes, despite the fact that the opportunities provide more energy and therefore more

information to the learning mechanism.

In contrast, the EVO and IL mechanisms both prove to be detrimental in a changing

environment when compared to the baseline scenario. However, no clear pattern

emerges in terms of the magnitude of the effect with respect to the number of learning

opportunities present. The IL method never outperforms the baseline experiments,

whereas EVO is beneficial only in a static environment. In the latter case, performance

is greatest in the environment with most tokens, and decreases as the number of tokens

decreases.

The results clearly demonstrate the interaction between the learning mechanism and

environmental parameters. This is of particular relevance for distributed algorithms,

such as mEDEA, in which environmental pressure influences reproductive abilities. The

huge varieties of behaviours that were displayed in different environments highlight

how fundamental it is to not just select parameters at random, but to perform a more

thorough analysis. The emerging behaviours using a single set of algorithmic parameters

varied from giving a huge advantage, to showing no difference, to even being counter

productive.

Chapter 7

Conclusion

7.1 Summary

This thesis investigates several aspects of environment-driven adaptation in simulated

evolutionary swarm robotics and mEDEA in particular. Firstly, mEDEA is augmented

with an explicit fitness measure. It is shown that both methods lead to an improvement

over the original algorithm in the swarm’s ability to maintain energy over longer periods.

Secondly, an energy model is derived from the field of wireless sensor networks research

that accounts for communication costs in the robot simulation. Under these new

conditions, biasing the broadcasting of genomes has a negative effect on survivability.

Thirdly, the environment’s influence on the emergence of behaviours at the individual

and swarm level is investigated using a 3-dimensional map. This map is used to identify

interesting regions for future experimentation, in contrast to ad-hoc methods currently

used for parameter settings. These regions provide challenging environments for the

swarm while still allowing algorithm specific characteristics to show effect and be

explored. Finally, an individual learning mechanism is developed that does not require

any a priori knowledge of the environment and can help the evolutionary process

to adapt. It is investigated how environmental parameters (number of items in the

environment, their respective values and the rate of change of said values) influence

7.2 Answers to Research Questions 122

the effectiveness of adaptation mechanisms and how the nature of the adaptation

mechanisms themselves influences performance in different environments. The results

show that there is a clear link between environmental conditions, specifically the

rate of change and the availability of learning opportunities, and the effectiveness of

different adaptation mechanisms. Further, the incentive to learn in the form of reward

or punishment, in other words, the environmental pressure that drives the evolutionary

process must be high enough to make any form of adaptation worthwhile.

7.2 Answers to Research Questions

RQ 1: To what extent can adding an explicit relative fitness to mEDEA (creating

mEDEAr f) increase the maintained energy across the swarm in comparison to

the existing algorithm without explicit fitness?

A number of extensions have been introduced to an existing Environment-driven

Distributed Evolutionary Adaptation algorithm — mEDEA. The goal of this work

is to show that the integrity of the swarm can be maintained in a more robust

manner than in the original work, while still retaining the original distributed and

online flavour of the algorithm by using a fitness function that indicates fitness to

survive. Having introduced the new fitness function, two new methods were de-

scribed that adapted either the broadcast range or the probability of broadcasting

of a robot, based on its estimate of its own relative fitness.

This biases the spread of genomes through the population. Robots that are

relatively fitter than their neighbours are able to spread their genomes more:

individual robots perform a random selection from their local store of (now

biased) genomes. A thorough analysis of the experimental results shows that a

considerable gain in performance is achieved, both in the number of active robots

7.2 Answers to Research Questions 123

at the end of a fixed period of evaluation, and in the energy levels sustained by

those robots.

The new fitness function was also evaluated within an explicit selection method.

Experiments showed that this also provided significant improvements over mEDEA,

and slightly outperformed the biased broadcast methods in terms of energy sus-

tained.

RQ 2: How does accounting for the cost of communication influence the performance

of an evolutionary algorithm that relies on communication?

A new energy model based on the Free-Space model was introduced to ac-

count for the cost of communication. Experimental results showed this exerts

environmental pressure to implicitly select for genomes that maintain high energy

levels. Comparing the method of varying the broadcasting based on fitness to

mEDEA alone and with explicit roulette-wheel genome selection shows that

although marginal, the latter approaches outperform the mEDEAr f methods as

they partially reverse the effect of the environmental pressure.

The difference in active robots is largest for the experiment where the fitness

measure is used for both mechanisms, varying broadcasting and the explicit

selection. This effect is smaller for the two experiments where no or just the

explicit selection mechanism is active. The additional environmental pressure of

the added cost of communication leads to more efficient behaviour that avoids

costly communication.

Although fewer robots are active at the end of the generation, it is argued that the

method of biasing what to broadcast has a benefit as it clearly shows that robots

spend less time collecting tokens. A crucial advantage if a task is added in the

future.

7.2 Answers to Research Questions 124

The emergent behaviours of robots in the swarm has changed with the introduction

of an energy-model that reflects more accurately the incurred energy costs in

reality. It can be seen that the performance of an algorithm depends not just on its

own parameters, but the external conditions in which the swarm is deployed.

RQ 3: To what extent does the specific parametrisation of the environment influence

the emergence of behaviour in mEDEAr f ?

The specific environmental conditions affect the selection pressure exerted onto

the evolutionary process. Adjusting the availability and value of energy tokens in

the environment results in the evolution of a range of different behaviours. Three

distinct regions are observed when analysing the performance map that results

from running an environment-driven evolutionary algorithm (mEDEAr f) in an

environment that is parameterised by two aforementioned values that control the

distribution of energy in the environment. In these three distinct regions the final

energy balance can be negative, neutral or positive. A fourth region is found in

which robots cannot survive. The energy neutral region appears to be a good

region in which to undertake experiments. It provides an environment in which

robots are able to survive, enabling experimentation, while at the same time re-

warding new behaviours that are able to more efficiently harness energy from the

environment. It is clear that the environment plays a key role in influencing what

kind of behaviours emerge, in that it is not the total amount of energy available

that matters, but also the manner in which it is distributed.

Introducing a change into the experimental setting showed a shift in the identified

regions. From this it is evident that such analysis is beneficial to identify regions

of interest.

RQ 4: To what extent does the environment influence the most appropriate combina-

tion of evolutionary and lifetime-adaptation mechanisms in mEDEAr f ?

7.2 Answers to Research Questions 125

Adaptation mechanisms that included heritable and fixed components were anal-

ysed in three different environments in which both the number of learning oppor-

tunities and the impact of the learning opportunities varied.

It is shown that an adaptation mechanism in which all components evolve and

are heritable and are adapted during lifetime (EVO+IL) copes well in static

and dynamic environments, and is able to learn to distinguish between tokens

of different values. In dynamic environments, the greatest effect is observed

when the environment contains a large number of small learning opportunities.

The fewer the learning opportunities, the less effective the mechanism becomes,

despite the fact that the opportunities provide greater rewards or punishments and

therefore more information to the learning mechanism.

In contrast, the EVO and IL mechanisms both prove to be detrimental in a

changing environment when compared to the baseline scenario. However, no

clear pattern emerges in terms of the magnitude of the effect with respect to the

number of learning opportunities present. The IL method never outperforms the

baseline experiments, whereas EVO is beneficial only in a static environment. In

the latter case, performance is greatest in the environment with most tokens, and

decreases as the number of tokens decreases.

The results clearly demonstrate the interaction between the learning mechanism

and environmental parameters. This is of particular relevance for distributed

algorithms such as mEDEAr f , in which environmental pressure influences repro-

ductive abilities. The huge variety of behaviours that were displayed in different

environments highlight how fundamental it is to not just select parameters at

random, but to perform a more thorough analysis. The emerging behaviours using

a single set of algorithmic parameters varied from giving a massive advantage, to

showing no difference, to even being counter productive.

7.3 Discussion 126

7.3 Discussion

A reasonable body of research exists around the mEDEA algorithm [19], which is

a distributed evolutionary algorithm for swarm robotics. It has been studied in its

original form, with no explicit fitness function [82, 20, 16], and in extended forms with

explicit fitness functions [95, 40, 14]. In future applications in remote areas, e.g. the

bottom of the ocean or in outer space, local adaptation to unforeseen changes or a priori

unknown environments is a crucial aspect. In this thesis the mEDEA algorithm was

extended with a relative fitness function that is based on a robot’s ability to maintain

energy in comparison to its current neighbours. Using only local rather than global

information and making relative comparisons maintains the distributed nature of the

mEDEA algorithm and allows for niching to occur within the population. This is

particularly useful under varying conditions across the environment where different

traits are beneficial.

The field of evolutionary robotics benefits from recent technological advances, which

allows more and more experiments to be performed in hardware [92]. Despite that,

many experiments are being carried out in simulation, which can offer many advantages.

Experimental settings can be changed with a push of a button, the complexity of the

robots is not limited to the available hardware, and huge speed ups can be achieved by

running multiple instances in parallel. However, solutions that work in one universe can

often not be transferred to the other, a problem referred to as the reality gap [83]. It is

caused by differences between the simulated world and reality. One aspect that is often

overlooked is the cost of communication, which takes the form of energy consumption

in real robots. In common robot simulators where the physics model focuses on the

accuracy of movement this is mostly ignored. For applications where communication

plays only a minor role, the resulting effect could be negligible. However, in mEDEAr f

the exchange of information is a fundamental part of the algorithm. In addition, the

small robots have only a limited energy supply and the optimisation criteria is based on

7.4 Future Work 127

the robots’ energy levels. Thus, it is crucial to account for these costs as experiments

have shown.

Despite this increased interest in evolutionary robotics, experimental practices are

not as rigorous as in other areas of evolutionary computation. For example, routing

algorithms or bin-packing heuristics are commonly compared on equal grounds through

the use of benchmark sets [36]. In comparison, evolutionary robotics experiments

are often performed using a single environment that is chosen ad-hoc, e.g. to suit the

experimental setup or maybe even purely random [87]. What follows is an arbitrary

presentation of results with respect to environmental parameters, which makes it hard

or impossible to compare algorithms without recreating whole sets of experiments in

the same environmental setting. This process requires a lot of extra effort and can lead

to results that are only representative of a specific area of the problem space, e.g. if the

environment is deliberately chosen in a way that demonstrates the superiority of one

algorithm over the other.

The method of creating performance maps, which is introduced in this thesis,

helps standardise the way results are presented. In addition it can help direct further

experimentation and give a better overview of performance in different environments,

thus allowing statements about stability and reliability of the algorithm. This has

been demonstrated in this thesis on two different occasions where interesting regions

for further experimentation have been identified. Although the process of creating

performance maps is time consuming and requires effort, it helps represent results in a

more consistent way.

7.4 Future Work

While conducting the research presented here, some more or less obvious extensions

have presented themselves. Some were natural extensions that stemmed from the

limitations of experimental settings, others from illuminating discussions with peers.

7.4 Future Work 128

The relative fitness function introduced into mEDEA to form mEDEAr f was demon-

strated to outperform vanilla mEDEA in a set of experiments (chapter 3). The algorithm

could be implemented in a real swarm of robots to investigate its performance under

reality constraints.

The evolutionary process in the mEDEAr f algorithm relies heavily on communica-

tion. Communication in real robots is not free and comes at a cost in the form of energy

usage. However, this is rarely accounted for in simulations. One of the contributions

in this thesis was to introduce a communication energy model into the simulator to

account for this cost (chapter 4). Hence, a logical step would be to verify the results

gathered from simulation with real world experiments.

The method introduced in chapter 5 creates a performance map to link specific

environmental parameters to the swarm’s performance. Future work could be aimed

at understanding the performance map in more detail and, in particular, explaining the

ruggedness of some regions. Further, behaviour in different regions of the map could be

analysed in greater detail by tracing individual robots and examining their behavioural

pattern. It is possible to direct the focus of the research towards the field of ALife and

investigate the environmental influence on theories like the optimal foraging theory.

The research into the environmental influence on the usefulness of different adapta-

tion mechanisms currently focuses on a single lifetime adaptation algorithm. Future

work could extend the analysis to other mechanisms for adding individual learning

and/or adaptation, as well as considering social learning as recently demonstrated by

[59, 60] to be effective in some scenarios. Further, it can be analysed whether algorith-

mic features can be mapped to resulting emergent behaviours. If successful, this could

pave the way to using ensemble methods, where the most appropriate mix of adaptation

mechanisms is selected from a wider pool based on the current environmental settings.

References

[1] Auerbach, J. E. and Bongard, J. C. (2012). On the relationship between environmen-
tal and morphological complexity in evolved robots. In Proceedings of the fourteenth
international conference on Genetic and evolutionary computation conference -
GECCO ’12, pages 521–528, New York, New York, USA. ACM Press.

[2] Baldwin, J. M. (1896). A New Factor in Evolution. The American Naturalist,
30(354):441–451.

[3] Barca, J. C. and Sekercioglu, Y. A. (2013). Swarm robotics reviewed. Robotica,
31(03):345–359.

[4] Bayindir, L. (2016). A review of swarm robotics tasks. Neurocomputing, 172:292–
321.

[5] Beni, G. (2005). From Swarm Intelligence to Swarm Robotics. In International
Workshop on Swarm Robotics, SR 2004, pages 1–9. Springer, Berlin, Heidelberg.

[6] Bernard, A., André, J.-B., and Bredeche, N. (2016a). Evolving Specialisation in
a Population of Heterogeneous Robots : the Challenge of Bootstrapping and Main-
taining Genotypic Polymorphism. Artificial Life 15: Proceedings of the Fourteenth
International Conference on the Synthesis and Simulation of Living Systems, pages
1–8.

[7] Bernard, A., André, J.-B., and Bredeche, N. (2016b). To Cooperate or Not to
Cooperate: Why Behavioural Mechanisms Matter. PLOS Computational Biology,
12(5):e1004886.

[8] Beyer, H.-G. and Schwefel, H.-P. (2001). Evolution strategies – A comprehensive
introduction. Natural Computing, 1:3–52.

[9] Bianco, R. and Nolfi, S. (2004). Toward open-ended evolutionary robotics: evolving
elementary robotic units able to self-assemble and self-reproduce. Connection
Science, 16(4):227–248.

[10] Bjerknes, J. D. and Winfield, A. F. T. (2013). On Fault Tolerance and Scalability
of Swarm Robotic Systems. pages 431–444. Springer, Berlin, Heidelberg.

[11] Blom, M. and Ekström, M. (2008). Extraction of an Energy model for Bluetooth
2.0 depending on transmission distance. Technical Report 1.

[12] Bongard, J. C. (2011). The ‘What’, ‘How’ and the ‘Why’ of Evolutionary Robotics.
In Doncieux, S., Bredeche, N., and Mouret, J.-B., editors, New Horizons in Evolu-
tionary Robotics, chapter 2, pages 29–35. Springer Berlin Heidelberg.

References 130

[13] Bongard, J. C. (2013). Evolutionary robotics. Communications of the ACM,
56(8):74.

[14] Boumaza, A. (2017). Phylogeny of Embodied Evolutionary Robotics. In Proceed-
ings of The Genetic and Evolutionary Computation Conference Companion 2017.
ACM.

[15] Brambilla, M., Ferrante, E., Birattari, M., and Dorigo, M. (2013). Swarm robotics:
a review from the swarm engineering perspective. Swarm Intelligence, 7(1):1–41.

[16] Bredeche, N. (2014). Embodied Evolutionary Robotics with Large Number of
Robots. In Artificial Life 14: Proceedings of the Fourteenth International Conference
on the Synthesis and Simulation of Living Systems, number 1, pages 272–273. The
MIT Press.

[17] Bredeche, N., Haasdijk, E., and Eiben, A. E. (2009). On-line, on-board evolution
of robot controllers. In Proceedings of the 9th international conference on Artificial
evolution, pages 110–121, Strasbourg. Springer-Verlag.

[18] Bredeche, N., Haasdijk, E., and Prieto, A. (2018). Embodied Evolution in Collec-
tive Robotics: A Review. Frontiers in Robotics and AI, 5.

[19] Bredeche, N. and Montanier, J.-M. (2010). Environment-driven embodied evolu-
tion in a population of autonomous agents. In Schaefer, R., Cotta, C., Kołodziej, J.,
and Rudolph, G., editors, Parallel Problem Solving from Nature, PPSN XI, volume
6239, pages 290–299, Krakov, Poland. Springer Berlin Heidelberg.

[20] Bredeche, N. and Montanier, J.-M. (2012). Environment-driven Open-ended
Evolution with a Population of Autonomous Robots. In Evolving Physical Systems
Workshop, East Lansing, United States.

[21] Bredeche, N., Montanier, J.-M., Liu, W., and Winfield, A. F. T. (2012).
Environment-driven distributed evolutionary adaptation in a population of au-
tonomous robotic agents. Mathematical and Computer Modelling of Dynamical
Systems, 18(1):101–129.

[22] Bredeche, N., Montanier, J.-M., Weel, B., and Haasdijk, E. (2013). Roborobo! a
Fast Robot Simulator for Swarm and Collective Robotics. CoRR, abs/1304.2.

[23] Brooks, R. A. (1986). A robust layered control system for a mobile robot. IEEE
Journal of Robotics and Automation, 2(1):14–23.

[24] Capodieci, N., Hart, E., and Cabri, G. (2016). Artificial Immunology for Collective
Adaptive Systems Design and Implementation. ACM Transactions on Autonomous
and Adaptive Systems, 11(2):1–25.

[25] Cheney, N., Bongard, J. C., and Lipson, H. (2015). Evolving Soft Robots in
Tight Spaces. In Proceedings of the 2015 on Genetic and Evolutionary Computation
Conference - GECCO ’15, pages 935–942, New York, USA. ACM Press.

[26] Cianci, C. M., Raemy, X., Pugh, J., and Martinoli, A. (2007). Communication in a
Swarm of Miniature Robots: The e-Puck as an Educational Tool for Swarm Robotics.
In Swarm Robotics, pages 103–115.

References 131

[27] Cliff, D., Husbands, P., and Harvey, I. (1993). Explorations in Evolutionary
Robotics. Adaptive Behavior, 2(1):73–110.

[28] Cussat-Blanc, S., Harrington, K., and Pollack, J. B. (2015). Gene Regulatory
Network Evolution Through Augmenting Topologies. IEEE Transactions on Evolu-
tionary Computation, 19(6):823–837.

[29] Dawkins, R. (1976). The Selfish Gene.

[30] Doncieux, S., Bredeche, N., Mouret, J.-B., and Eiben, A. E. (2015). Evolutionary
robotics: what, why, and where to. Frontiers in Robotics and AI, 2(March):4.

[31] Doncieux, S. and Mouret, J.-B. (2014). Beyond black-box optimization: a review
of selective pressures for evolutionary robotics. Evolutionary Intelligence, pages
1–23.

[32] Dorigo, M., Floreano, D., Gambardella, L. M., Mondada, F., Nolfi, S., Baaboura,
T., Birattari, M., Bonani, M., Brambilla, M., Brutschy, A., Burnier, D., Campo, A.,
Christensen, A. L., Decugniere, A., Di Caro, G., Ducatelle, F., Ferrante, E., Forster,
A., Gonzales, J. M., Guzzi, J., Longchamp, V., Magnenat, S., Mathews, N., Montes de
Oca, M., O’Grady, R., Pinciroli, C., Pini, G., Retornaz, P., Roberts, J., Sperati, V.,
Stirling, T., Stranieri, A., Stutzle, T., Trianni, V., Tuci, E., Turgut, A. E., and Vaussard,
F. (2013). Swarmanoid: A Novel Concept for the Study of Heterogeneous Robotic
Swarms. IEEE Robotics & Automation Magazine, 20(4):60–71.

[33] Duarte, M., Costa, V., Gomes, J., Rodrigues, T., Silva, F., Oliveira, S. M., and
Christensen, A. L. (2016). Evolution of Collective Behaviors for a Real Swarm of
Aquatic Surface Robots. PLOS ONE, 11(3):e0151834.

[34] Eiben, A. E. (2015). EvoSphere: The World of Robot Evolution. In Dediu, A.-H.,
Magdalena, L., and Martín-Vide, C., editors, Fourth International Conference, TPNC
2015, pages 3–19. Springer, Berlin, Heidelberg.

[35] Eiben, A. E., Haasdijk, E., and Bredeche, N. (2010). Embodied, On-Line, On-
Board Evolution for Autonomous Robotics. In Levi, P. and Kernbach, S., editors,
Symbiotic Multi-Robot Organisms, chapter 5.2, pages 362–384. Springer, Heidelberg.

[36] Eiben, A. E. and Jelasity, M. (2002). A critical note on experimental research
methodology in EC. In Proceedings of the 2002 Congress on Evolutionary Compu-
tation. CEC’02 (Cat. No.02TH8600), volume 1, pages 582–587. Ieee.

[37] Eiben, A. E. and Smith, J. E. (2003). What is an Evolutionary Algorithm? In
Introduction to Evolutionary Computing, Natural Computing Series, chapter 2, pages
15–35. Springer Berlin Heidelberg, Berlin, Heidelberg, 1st edition.

[38] Ellefsen, K. O. (2014). The Evolution of Learning Under Environmental Variabil-
ity. In Artificial Life 14: Proceedings of the Fourteenth International Conference on
the Synthesis and Simulation of Living Systems, pages 649–656. The MIT Press.

[39] Erbas, M. D., Winfield, A. F. T., and Bull, L. (2013). Embodied imitation-enhanced
reinforcement learning in multi-agent systems. Adaptive Behavior, pages 1–20.

References 132

[40] Fernández Pérez, I., Boumaza, A., and Charpillet, F. (2014). Comparison of
Selection Methods in On-Line Distributed Evolutionary Robotics. In ALife 14: Pro-
ceedings of the Fourteenth International Conference on the Synthesis and Simulation
of Living Systems, pages 282–289. The MIT Press.

[41] Floreano, D., Dürr, P., and Mattiussi, C. (2008a). Neuroevolution: from architec-
tures to learning. Evolutionary Intelligence, 1(1):47–62.

[42] Floreano, D., Husbands, P., and Nolfi, S. (2008b). Evolutionary Robotics. In
Siciliano, B. and Khatib, O., editors, Handbook of Robotics, pages 1423–1451.
Springer Berlin Heidelberg, Berlin, Heidelberg.

[43] Floreano, D. and Mondada, F. (1996). Evolution of homing navigation in a
real mobile robot. IEEE Transactions on Systems, Man and Cybernetics, Part B
(Cybernetics), 26(3):396–407.

[44] Floreano, D., Zufferey, J.-C., and Nicoud, J.-D. (2005). From Wheels to Wings
with Evolutionary Spiking Circuits. Artificial Life, 11(1-2):121–138.

[45] Gerkey, B., Vaughan, R. T., and Howard, A. (2003). The player/stage project:
Tools for multi-robot and distributed sensor systems. In Proceedings of the 11th
International Conference on Advanced Robotics (ICAR 2003), number Icar 2003,
pages 317–323, Coimbra, Portugal.

[46] Gomes, J., Duarte, M., Mariano, P., and Christensen, A. L. (2016). Coopera-
tive Coevolution of Control for a Real Multirobot System. In Handl, J., Hart, E.,
Lewis, P. R., López-Ibáñez, M., Ochoa, G., and Paechter, B., editors, Parallel Prob-
lem Solving from Nature – PPSN XIV: 14th International Conference, Edinburgh,
UK, September 17-21, 2016, Proceedings, pages 591–601. Springer International
Publishing, Cham.

[47] Gomes, J., Urbano, P., and Christensen, A. L. (2013). Evolution of swarm robotics
systems with novelty search. Swarm Intelligence, 7(2-3):115–144.

[48] Gross, R. and Dorigo, M. (2008). Self-Assembly at the Macroscopic Scale.
Proceedings of the IEEE, 96(9):1490–1508.

[49] Haasdijk, E. (2015). Combining Conflicting Environmental and Task Require-
ments in Evolutionary Robotics. In 2015 IEEE 9th International Conference on
Self-Adaptive and Self-Organizing Systems, pages 131–137. IEEE.

[50] Haasdijk, E., Eiben, A. E., and Winfield, A. F. T. (2013a). Individual, Social and
Evolutionary Adaptation in Collective Systems. In Kernbach, S., editor, Handbook
of Collective Robotics - Fundamentals and Challenges, chapter 12, pages 411–469.
Pan Stanford, Germany, 2013 edition.

[51] Haasdijk, E. and Heinerman, J. (2017). Quantifying Selection Pressure. Evolu-
tionary Computation, page EVCO_a_00207.

[52] Haasdijk, E., Smit, S. K., and Eiben, A. E. (2012). Exploratory analysis of
an on-line evolutionary algorithm in simulated robots. Evolutionary Intelligence,
5(4):213–230.

References 133

[53] Haasdijk, E., Vogt, P. A., and Eiben, A. E. (2008). Social learning in Population-
based Adaptive Systems. In 2008 IEEE Congress on Evolutionary Computation
(IEEE World Congress on Computational Intelligence), pages 1386–1392. IEEE.

[54] Haasdijk, E., Weel, B., and Eiben, A. E. (2013b). Right on the MONEE. In Blum,
C., editor, Proceeding of the fifteenth annual conference on Genetic and evolutionary
computation conference, pages 207–214, Amsterdam, The Netherlands. ACM New
York, NY, USA.

[55] Hart, E., Steyven, A., and Paechter, B. (2015). Improving Survivability in
Environment-driven Distributed Evolutionary Algorithms through Explicit Relative
Fitness and Fitness Proportionate Communication. In Silva, S., editor, Proceedings
of the 2015 on Genetic and Evolutionary Computation Conference - GECCO ’15,
pages 169–176, New York, New York, USA. ACM Press.

[56] Hauert, S., Zufferey, J.-C., and Floreano, D. (2009). Evolved swarming without
positioning information: an application in aerial communication relay. Autonomous
Robots, 26(1):21–32.

[57] Heidemann, J., Bulusu, N., Elson, J., Intanagonwiwat, C., Lan, K.-c., Xu, Y., Ye,
W., Estrin, D., and Govindan, R. (2001). Effects of Detail in Wireless Network
Simulation. In Proceedings of the SCS Multiconference on Distributed Simulation,
pages 3–11, Phoenix, Arizona, USA. Society for Computer Simulation.

[58] Heinerman, J., Drupsteen, D., and Eiben, A. E. (2015a). Three-fold Adaptivity in
Groups of Robots: The Effect of Social Learning. In Proceedings of the 17th annual
conference on Genetic and evolutionary computation, pages 177–183, New York,
New York, USA. ACM Press.

[59] Heinerman, J., Rango, M., and Eiben, A. E. (2015b). Evolution, Individual
Learning, and Social Learning in a Swarm of Real Robots. In 2015 IEEE Symposium
Series on Computational Intelligence, pages 1055–1062. IEEE.

[60] Heinerman, J., Zonta, A., Haasdijk, E., and Eiben, A. E. (2016). On-line Evolution
of Foraging Behaviour in a Population of Real Robots. pages 198–212. Springer,
Cham.

[61] Heinzelman, W. R., Chandrakasan, A., and Balakrishnan, H. (2000). Energy-
efficient communication protocol for wireless microsensor networks. In System
Sciences, 2000, pages 1–10.

[62] Hinton, G. E. and Nowlan, S. J. (1987). How learning can guide evolution.
Complex systems, 1(1):495–502.

[63] Hornby, G. S. and Pollack, J. B. (2002). Creating High-Level Components with a
Generative Representation for Body-Brain Evolution. Artificial Life, 8(3):223–246.

[64] Horneber, J. and Hergenroder, A. (2014). A Survey on Testbeds and Experimenta-
tion Environments for Wireless Sensor Networks. IEEE Communications Surveys &
Tutorials, 16(4):1820–1838.

[65] Hornik, K. (1991). Approximation capabilities of multilayer feedforward networks.
Neural Networks, 4(2):251–257.

References 134

[66] Hoverd, T. and Stepney, S. (2011). Energy as a driver of diversity in open-ended
evolution. In Lenaerts, T., Giacobini, M., Bersini, H., Bourgine, P., Dorigo, M., and
Doursat, R., editors, Ecal 2011, pages 356–363. MIT Press.

[67] Karafotias, G., Hoogendoorn, M., and Eiben, A. E. (2015). Parameter Con-
trol in Evolutionary Algorithms: Trends and Challenges. IEEE Transactions on
Evolutionary Computation, 19(2):167–187.

[68] Kodjabachian, J. and Meyer, J.-A. (1998). Evolution and development of neural
controllers for locomotion, gradient-following, and obstacle-avoidance in artificial
insects. IEEE Transactions on Neural Networks, 9(5):796–812.

[69] Kowaliw, T., Bredeche, N., and Doursat, R. (2014). Growing Adaptive Machines.
Springer Berlin Heidelberg.

[70] Lehman, J. and Stanley, K. O. (2008). Exploiting Open-Endedness to Solve
Problems Through the Search for Novelty. In Artificial Life XI, pages 329–336. MIT
Press.

[71] Li, W. and Shen, W. (2011). Swarm behavior control of mobile multi-robots
with wireless sensor networks. Journal of Network and Computer Applications,
34(4):1398–1407.

[72] Lipson, H. (2005). Evolutionary Design and Evolutionary Robotics. In Bar-Cohen,
Y., editor, Biomimetics, chapter 4, pages 129 – 155. CRC Press.

[73] Littman, M. L. (1995). Simulations combining evolution and learning. In In
Adaptive Individuals in Evolving Populations: Models and Algorithms: Santa Fe
Institute Studies in the Sciences of Complexity, pages 465–477. Addison-Wesley.

[74] Luke, S., Cioffi-Revilla, C., Panait, L., Sullivan, K., and Balan, G. (2005). MA-
SON: A Multiagent Simulation Environment. SIMULATION, 81(7):517–527.

[75] Macedo, J., Marques, L., and Costa, E. (2017). Robotic odour search: Evolving
a robot’s brain with Genetic Programming. In Marques, L. and Bernardino, A.,
editors, 2017 IEEE International Conference on Autonomous Robot Systems and
Competitions (ICARSC), pages 91–97, Coimbra, Portugal. IEEE.

[76] Mavrovouniotis, M., Li, C., and Yang, S. (2017). A survey of swarm intelligence
for dynamic optimization: Algorithms and applications. Swarm and Evolutionary
Computation, 33:1–17.

[77] Millard, A. G., Timmis, J., and Winfield, A. F. T. (2014). Run-time detection of
faults in autonomous mobile robots based on the comparison of simulated and real
robot behaviour. In 2014 IEEE/RSJ International Conference on Intelligent Robots
and Systems, pages 3720–3725, Chicago, IL, USA. IEEE.

[78] Mitri, S., Wischmann, S., Floreano, D., and Keller, L. (2012). Using robots to
understand social behaviour. Biological reviews of the Cambridge Philosophical
Society, 88(1):31–9.

[79] Mondada, F., Bonani, M., Raemy, X., Pugh, J., Cianci, C. M., Klaptocz, A.,
Zufferey, J.-C., Floreano, D., and Martinoli, A. (2009). The e-puck, a Robot Designed
for Education in Engineering. In Proceedings of the 9th Conference on Autonomous
Robot Systems and Competitions, pages 59–65, Portugal.

References 135

[80] Montanier, J.-M. (2013). Environment-driven Distributed Evolutionary Adaptation
for Collective Robotic Systems. PhD thesis, Université Paris Sud - Paris XI.

[81] Montanier, J.-M. and Bredeche, N. (2011a). Embedded Evolutionary Robotics:
The (1+1)-Restart-Online Adaptation Algorithm. In Doncieux, S., Bredèche, N.,
and Mouret, J.-B., editors, New Horizons in Evolutionary Robotics, volume 341 of
Studies in Computational Intelligence, chapter 11, pages 155–169. Springer Berlin
Heidelberg, Berlin, Heidelberg.

[82] Montanier, J.-M. and Bredeche, N. (2011b). Surviving the Tragedy of Com-
mons: Emergence of Altruism in a Population of Evolving Autonomous Agents. In
European Conference on Artificial Life, pages 550–557. MIT Press.

[83] Mouret, J.-B. and Chatzilygeroudis, K. (2017). 20 Years of Reality Gap: a few
Thoughts about Simulators in Evolutionary Robotics. In Proceedings of The Genetic
and Evolutionary Computation Conference Companion 2017, Berlin. ACM.

[84] Mouret, J.-B. and Clune, J. (2015). Illuminating search spaces by mapping elites.
CoRR, abs/1504.0.

[85] Mouret, J.-B. and Tonelli, P. (2014). Artificial Evolution of Plastic Neural Net-
works : A Few Key Concepts. In Kowaliw, T., Bredeche, N., and Doursat, R., editors,
Growing Adaptive Machines, chapter 9, pages 251–261. Springer Berlin Heidelberg.

[86] Neal, M. and Timmis, J. (2003). Timidity: A Useful Mechanism for Robot
Control? Informatica Special Issue on Perception and Emotion Based Reasoning,
27(2):197–204.

[87] Nelson, A. L. (2014). Embodied Artificial Life at an Impasse Can Evolutionary
Robotics Methods Be Scaled? In 2014 IEEE Symposium Series on Computational
Intelligence (IEEE SSCI’14), Orlando, FL, USA. IEEE.

[88] Nelson, A. L., Barlow, G. J., and Doitsidis, L. (2009). Fitness functions in
evolutionary robotics: A survey and analysis. Robotics and Autonomous Systems,
57(4):345–370.

[89] Newport, C., Kotz, D., Yougu Yuan, Gray, R. S., Jason Liu, and Elliott, C. (2007).
Experimental Evaluation of Wireless Simulation Assumptions. SIMULATION,
83(9):643–661.

[90] Noble, J. and Franks, D. W. (2003). Social learning in a multi-agent system.
Computing and Informatics, 22(6):1001–1015.

[91] Nolfi, S. (2011). Behavior and Cognition as a Complex Adaptive System: Insights
from Robotic Experiments. In Gabbay, D. M., Hooker, C. A., Thagard, P., and Woods,
J., editors, Philosophy of Complex Systems, chapter 4, pages 443–463. Elsevier.

[92] Nolfi, S., Bongard, J. C., Husbands, P., and Floreano, D. (2016). Evolutionary
Robotics. In Siciliano, B. and Khatib, O., editors, Springer Handbook of Robotics,
pages 2035–2068. Springer International Publishing, Cham.

[93] Nolfi, S. and Floreano, D. (1999). Learning and evolution. Autonomous robots,
7(1):89–113.

References 136

[94] Nolfi, S. and Floreano, D. (2000). Evolutionary robotics : the biology, intelligence,
and technology of self-organizing machines. MIT Press.

[95] Noskov, N., Haasdijk, E., Weel, B., and Eiben, A. E. (2013). MONEE: Us-
ing Parental Investment to Combine Open-Ended and Task-Driven Evolution. In
Esparcia-Alcázar, A. I., editor, Applications of Evolutionary Computation, volume
7835, pages 569–578, Berlin Heidelberg. Springer.

[96] Oxford Dictionaries online (2014). Robot.

[97] Pfeifer, R. and Bongard, J. C. (2006). How the Body Shapes the Way We Think - A
New View of Intelligence. MIT Press.

[98] Pollack, J. B. and Lipson, H. (2000). The GOLEM project: evolving hardware
bodies and brains. In Proceedings. The Second NASA/DoD Workshop on Evolvable
Hardware, pages 37–42, Palo Alto, CA, USA. IEEE Comput. Soc.

[99] Potdar, V., Sharif, A., and Chang, E. (2009). Wireless Sensor Networks: A
Survey. In 2009 International Conference on Advanced Information Networking and
Applications Workshops, pages 636–641. IEEE.

[100] Rakshit, P., Konar, A., Bhowmik, P., Goswami, I., Das, S., Jain, L. C., and Nagar,
A. K. (2013). Realization of an Adaptive Memetic Algorithm Using Differential
Evolution and Q-Learning: A Case Study in Multirobot Path Planning. IEEE
Transactions on Systems, Man, and Cybernetics: Systems, 43(4):814–831.

[101] Renda, F., Giorgio-Serchi, F., Boyer, F., and Laschi, C. (2015). Locomotion
and elastodynamics model of an underwater shell-like soft robot. In 2015 IEEE
International Conference on Robotics and Automation (ICRA), pages 1158–1165.
IEEE.

[102] Reynolds, C. W. (1987). Flocks, herds and schools: A distributed behavioral
model. In Proceedings of the 14th annual conference on Computer graphics and
interactive techniques - SIGGRAPH ’87, volume 21, pages 25–34, New York, New
York, USA. ACM Press.

[103] Şahin, E. (2005). Swarm robotics: From sources of inspiration to domains of
application. In Şahin, E. and Spears, W. M., editors, Swarm robotics, pages 10–20.
Springer Berlin Heidelberg.

[104] Saska, M., Chudoba, J., Precil, L., Thomas, J., Loianno, G., Tresnak, A., Vonasek,
V., and Kumar, V. (2014). Autonomous deployment of swarms of micro-aerial
vehicles in cooperative surveillance. In 2014 International Conference on Unmanned
Aircraft Systems (ICUAS), pages 584–595, Orlando, FL, USA. IEEE.

[105] Sauze, C. and Neal, M. (2013). Artificial endocrine controller for power man-
agement in robotic systems. IEEE Transactions on Neural Networks and Learning
Systems, 24(12):1973–1985.

[106] Schmidhuber, J. (2015). Deep learning in neural networks: An overview. Neural
Networks, 61:85–117.

[107] Segura, C., Coello Coello, C. A., Segredo, E., and Aguirre, A. H. (2016). A
Novel Diversity-Based Replacement Strategy for Evolutionary Algorithms. IEEE
Transactions on Cybernetics, 46(12):3233–3246.

References 137

[108] Shi, Z., Tu, J., Zhang, Q., Liu, L., and Wei, J. (2012). A Survey of Swarm
Robotics System. In Tan, Y., Shi, Y., and Ji, Z., editors, Advances in Swarm
Intelligence: Third International Conference, ICSI 2012, Shenzhen, China, June
17-20, 2012 Proceedings, Part I, pages 564–572. Springer Berlin Heidelberg, Berlin,
Heidelberg.

[109] Silva, F., Correia, L., and Christensen, A. L. (2014a). Towards Online Evolution
of Control for Real Robots with odNEAT. In 3rd International Workshop on the
Evolution Physical Systems.

[110] Silva, F., Urbano, P., and Christensen, A. L. (2012a). Adaptation of Robot
Behaviour through Online Evolution and Neuromodulated Learning. In Pavón, J.,
Duque-Méndez, N. D., and Fuentes-Fernández, R., editors, Advances in Artificial
Intelligence – IBERAMIA 2012, pages 300–309, Cartagena de Indias, Colombia.
Springer Berlin Heidelberg.

[111] Silva, F., Urbano, P., and Christensen, A. L. (2014b). Online Evolution of
Adaptive Robot Behaviour. International Journal of Natural Computing Research,
4(2):59–77.

[112] Silva, F., Urbano, P., Oliveira, S. M., and Christensen, A. L. (2012b). odNEAT:
An Algorithm for Distributed Online, Onboard Evolution of Robot Behaviours. In
Adami, C., Bryson, D. M., Ofria, C., and Pennock, R. T., editors, Artificial Life 13,
pages 251–258. MIT Press.

[113] Sims, K. (1994). Evolving virtual creatures. In Proceedings of the 21st annual
conference on Computer graphics and interactive techniques - SIGGRAPH ’94,
pages 15–22, New York, New York, USA. ACM Press.

[114] Smith, C. and Jin, Y. (2014). Evolutionary Multi-Objective Generation of Recur-
rent Neural Network Ensembles for Time Series Prediction. Neurocomputing.

[115] Soltoggio, A., Bullinaria, J. A., Mattiussi, C., Dürr, P., and Floreano, D. (2008).
Evolutionary advantages of neuromodulated plasticity in dynamic, reward-based
scenarios. In Bullock, S., Noble, J., Watson, R. A., and Bedau, M. A., editors, ALIFE
IX, volume 2, pages 569–576, Cambridge, MA. MIT Press.

[116] Stanley, K. O., D’Ambrosio, D. B., and Gauci, J. (2009). A Hypercube-Based
Encoding for Evolving Large-Scale Neural Networks. Artificial Life, 15(2):185–212.

[117] Stanley, K. O. and Miikkulainen, R. (2002). Evolving neural networks through
augmenting topologies. Evolutionary computation, 10(2):99–127.

[118] Stepney, S. (2007). Embodiment. In Flower, D. and Timmis, J., editors, In Silico
Immunology, pages 265–288. Springer US, Boston, MA.

[119] Steyven, A. (2016). Interactive 3D Surface of mEDEA_rf Parameter Sweep
Landscape.

[120] Steyven, A., Hart, E., and Paechter, B. (2015). The Cost of Communication: En-
vironmental Pressure and Survivability in mEDEA. In Silva, S., editor, Proceedings
of the Companion Publication of the 2015 on Genetic and Evolutionary Computation
Conference - GECCO Companion ’15, pages 1239–1240, New York, New York,
USA. ACM Press.

References 138

[121] Steyven, A., Hart, E., and Paechter, B. (2016). Understanding Environmental
Influence in an Open-Ended Evolutionary Algorithm. In Handl, J., Hart, E., Lewis,
P. R., López-Ibáñez, M., Ochoa, G., and Paechter, B., editors, Parallel Problem
Solving from Nature – PPSN XIV, volume 9921 LNCS, chapter 86, pages 921–931.
Springer International Publishing AG.

[122] Steyven, A., Hart, E., and Paechter, B. (2017). An Investigation of Environ-
mental Influence on the Benefits of Adaptation Mechanisms in Evolutionary Swarm
Robotics. In Proceedings of The Genetic and Evolutionary Computation Conference
(GECCO 2017), Berlin. ACM.

[123] Sutton, R. and Barto, A. (1998). Reinforcement Learning: An Introduction.
IEEE Transactions on Neural Networks, 9(5):1054–1054.

[124] Sznajder, B., Sabelis, M. W., and Egas, M. (2012). How Adaptive Learning
Affects Evolution: Reviewing Theory on the Baldwin Effect. Evolutionary Biology,
39(3):301–310.

[125] Texas Instruments Inc. (2013). TI cc2420 Datasheet.

[126] Trianni, V. and Nolfi, S. (2011). Engineering the evolution of self-organizing
behaviors in swarm robotics: a case study. Artificial life, 17(3):183–202.

[127] Urzelai, J. and Floreano, D. (2001). Evolution of adaptive synapses: robots with
fast adaptive behavior in new environments. Evolutionary Computation, 9(4):495–
524.

[128] Vargas, P. A., Di Paolo, E. A., Harvey, I., and Husbands, P. (2014). The horizons
of evolutionary robotics. MIT Press.

[129] Waibel, M., Floreano, D., and Keller, L. (2011). A Quantitative Test of Hamilton’s
Rule for the Evolution of Altruism. PLoS Biology, 9(5):e1000615.

[130] Walker, J. H., Garrett, S. M., and Wilson, M. S. (2006). The balance between ini-
tial training and lifelong adaptation in evolving robot controllers. IEEE transactions
on systems, man, and cybernetics. Part B, Cybernetics : a publication of the IEEE
Systems, Man, and Cybernetics Society, 36(2):423–32.

[131] Wang, Q., Hempstead, M., and Yang, W. (2006). A Realistic Power Consumption
Model for Wireless Sensor Network Devices. In 2006 3rd Annual IEEE Communi-
cations Society on Sensor and Ad Hoc Communications and Networks, volume 1,
pages 286 – 295.

[132] Watson, R. A., Ficici, S. G., and Pollack, J. B. (1999). Embodied evolution:
embodying an evolutionary algorithm in a population of robots. In Proceedings
of the 1999 Congress on Evolutionary Computation-CEC99 (Cat. No. 99TH8406),
pages 335–342. IEEE.

[133] Watson, R. A., Ficici, S. G., and Pollack, J. B. (2002). Embodied Evolution:
Distributing an evolutionary algorithm in a population of robots. Robotics and
Autonomous Systems, 39(1):1–18.

[134] Winfield, A. F. T. (2012). Robotics: A Very Short Introduction. Oxford University
Press.

Appendix A

Publications

A.1 Improving Survivability in Environment-driven Dis-

tributed Evolutionary Algorithms through Explicit

Relative Fitness and Fitness Proportionate Com-

munication

Hart, E., Steyven, A., & Paechter, B. (2015). Improving Survivability in Environment-

driven Distributed Evolutionary Algorithms through Explicit Relative Fitness and

Fitness Proportionate Communication. In S. Silva (Ed.), Proceedings of the 2015 on

Genetic and Evolutionary Computation Conference - GECCO ’15 (pp. 169–176). New

York, New York, USA: ACM Press.

Improving Survivability in Environment-driven Distributed
Evolutionary Algorithms through Explicit Relative Fitness

and Fitness Proportionate Communication

Emma Hart
School of Computing

Edinburgh Napier University
Edinburgh, Scotland, UK
e.hart@napier.ac.uk

Andreas Steyven
School of Computing

Edinburgh Napier University
Edinburgh, Scotland, UK

a.steyven@napier.ac.uk

Ben Paechter
School of Computing

Edinburgh Napier University
Edinburgh, Scotland, UK

b.paechter@napier.ac.uk

ABSTRACT
Ensuring the integrity of a robot swarm in terms of main-
taining a stable population of functioning robots over long
periods of time is a mandatory prerequisite for building more
complex systems that achieve user-defined tasks. mEDEA
is an environment-driven evolutionary algorithm that pro-
vides promising results using an implicit fitness function
combined with a random genome selection operator. Mo-
tivated by the need to sustain a large population with suffi-
cient spare energy to carry out user-defined tasks in the fu-
ture, we develop an explicit fitness metric providing a mea-
sure of fitness that is relative to surrounding robots and
examine two methods by which it can influence spread of
genomes. Experimental results in simulation find that use of
the fitness-function provides significant improvements over
the original algorithm; in particular, a method that influ-
ences the frequency and range of broadcasting when com-
bined with random selection has the potential to conserve
energy whilst maintaining performance, a critical factor for
physical robots.

Categories and Subject Descriptors
I.2.8 [Artificial Intelligence]: Problem Solving, Control
Methods, and Search—Heuristic methods

Keywords
Evolutionary Robotics; Environment-driven; On-line Evolu-
tion

1. INTRODUCTION
Recent advances in technology both in hardware and soft-

ware [8] have fuelled visions of swarms of robots being sent
to remote or hazardous environments in which they will need
to survive over long periods of time. Environments will be
unknown and potentially dynamic, requiring autonomous
adaptation by the swarm. This has led to a number of recent
efforts to study evolution within a swarm as a mechanism

This is the author’s version of the work. It is posted
here for your personal use. Not for redistribution. The
definitive version was published in GECCO 2015

http://dx.doi.org/10.1145/2739480.2754688

for driving adaptation, as opposed to a mechanism for opti-
mising an explicit fitness function, as is common in much
work within evolutionary robotics. Montanier [12] notes
that this step is in fact a pre-requisite to studying any kind
of user-driven task behaviours within a robotic swarm in an
open-environment, as the former cannot be achieved if the
integrity of the swarm is compromised.

This type of evolution is often referred to as environment-
driven evolution [2]. Typical approaches such as [14] remove
the need for any central control, resulting in algorithms that
perform distributed and online evolution. An additional fea-
ture of environment-driven algorithms is that no explicit fit-
ness function is defined: instead, mate selection and repro-
duction depend on selection pressure provided only by the
environment yet need to lead to stable populations. A recent
example of this is the mEDEA algorithm (minimal Environ-
ment driven Distributed Evolutionary Adaptation) [3, 4, 5].
mEDEA relies on an implicit fitness function that results
from two potentially conflicting motivations for a robot: an
extrinsic motivation to cope with environmental constraints
in order to maximise survival ability and an internal motiva-
tion to spread its genomes across the population in order to
survive. A complex trade-off exists in which behaviours that
maximise mating opportunities might negatively impact sur-
vival efficiency, e.g. failing to maintain stable energy levels;
as a result, mEDEA (or an environment-driven EA) must
find some equilibrium between the two states.

The original version of mEDEA exploited a simple strat-
egy in which a robot continuously broadcast its genome
— this can be received and stored by any robot currently
within communication range. At the end of a generation,
each robot makes a random selection from its set of stored
genomes, applies a mutation operator, and then replaces its
current genome, exactly as in a (1,1) Evolution Strategy
[1]. Although there is no selection pressure on an individ-
ual basis, from a global perspective, the most widely spread
genomes will be selected more often on average. While this
achieved success in evolving stable populations in an open-
ended environment, it is of interest to attempt to improve
both the size of the swarms maintained and their net en-
ergy levels, in order that complex user-defined tasks can be
added in future. It is reasonable to assume that spare energy,
over and above that required to survive can be exploited to
achieve complex tasks, whilst a large swarm offers more po-
tential in terms of the tasks that might be accomplished.

Within mEDEA, the evolutionary mechanism differs from
natural evolution that also drives adaptation in a number of
respects. Firstly, there is no form or crossover — variation

is provided only by a mutation operator — and hence the
emphasis is on the spreading of genomes rather than genes
as proposed by the Selfish Gene paradigm of Dawkins [7].
Secondly, as all robots broadcast their genome continuously
and with fixed radius, each robot has an equal opportunity
to pass on its genome, regardless of its quality. This latter
point is clearly not true in many natural systems. In nature,
an individual’s chance of reproduction is related to its fitness
relative to other individuals in its vicinity. Additionally, in-
dividuals mate selectively, choosing partners based on some
estimation of their quality. Some species broadcast their
quality through visual or behavioural displays: a peacock
displays its tail feathers, a bird of paradise ‘dances’. Fitter
individuals can attract the attention of a greater number of
potential mates.

Inspired by nature, we investigate the effect of introducing
a relative fitness measure into mEDEA. A robot makes an
estimate of its fitness to survive relative to those within its
broadcast range, thereby maintaining the distributed nature
of the algorithm. The value can be used in two ways:

• An individual robot can make an informed rather than
random selection from the genomes it has received ac-
cording to the relative fitness value

• The relative fitness value can be used to influence the
broadcasting behaviour of a robot to provide a bias
towards the spread of good genomes

The latter point changes the nature of the reproductive
strategy used in mEDEA from a ‘promiscuous’ one in which
there is indiscriminate broadcasting of a genome, to one in
which the spread of a genome (and therefore the probability
of it being collected) is dependent on its quality. Two novel
methods for influencing broadcasting are introduced: the
first causes the robot to adapt the probability with which it
broadcasts based on its fitness. The second causes the robot
to adapt the range over which it broadcasts its genome.
As in the original version of mEDEA, robots still make a
random selection from collected genomes; however, due to
the biased broadcasting methods, on average good quality
genomes are more likely to be collected than poorer ones.

Results for all approaches are compared to the original
mEDEA algorithm. Experiments show that both methods
perform equally well compared to the original algorithm.
Note however that broadcasting in the physical world is an
energy consuming operation; methods that reduce this en-
ergy in order to save battery by either reducing the range
or frequency of broadcasting are likely to be of considerable
benefit.

2. RELATED WORK
mEDEA was first proposed in [3]. The system was tested

under two scenarios: the first evaluated mEDEA in an en-
vironment providing limited pressure in which energy is ig-
nored and an agent survives as long as it collects at least
one genome. In the second, environmental pressure is intro-
duced by forcing robots to compete for limited resources in
order to gain energy. The algorithm was demonstrated to
be both efficient with regard to providing distributed evo-
lutionary adaptation in unknown environments and robust
to unpredicted changes in the environment. Furthermore,
given its lightweight nature, it was predicted to be suitable
for hardware and software setups that have limited compu-
tation.

Haasdijk et al [10] extended mEDEA so that in addition
to surviving and operating reliably in an environment, a
robot could also perform user-defined tasks. Survivor se-
lection is driven by the environment, whereas parent selec-
tion is driven by task performance. Their new framework
MONEE (Multi-Objective aNd open-Ended Evolution algo-
rithm) showed that task-driven behaviour can be promoted
without compromising environmental adaptation. Robots
accumulate credit for accomplishing particular tasks — this
credit value is transmitted along with a genome, and is
utilised in a fitness function to select parents, replacing the
random selection seen in mEDEA. The basic mEDEA set-
up is also altered by adding an ‘egg’ phase that occurs at
periodic intervals: during this phase, the stationary robot
collects genomes from passing robots — no genomes are col-
lected whilst a robot is moving.

Perez et al [13] study the impact of adding explicit se-
lection methods to the mEDEA algorithm in a task-driven
scenario. They evaluate four selection methods that induce
different intensities of selection pressure, using tasks that
include obstacle avoidance and foraging, finding that higher
selection pressure results in improved performances, espe-
cially in more challenging tasks.

Watson et al. [15] proposed an completely decentralised
algorithm for embodied evolution (EE). In their Probabilis-
tic Gene Transfer Algorithm (PGTA) robots exchange ran-
domly selected genes through short range communication.
The algorithm differs from other approaches in that is doesn’t
have a dedicated variation and replacement steps. Each
robot holds a single genome of which only individual genes
are replaced at runtime. Transmission frequency and gene
acceptance are based on the explicit fitness value of the re-
spective robot, which reflects its performance on a task.

Another strand of work of work worth mentioning is that
of Stanley et al. [11] who introduced the notion of Novelty
Search that promote the discovery of solutions that differ
from the ones already evolved. Solutions are selected for
novelty rather than objective fitness hence do not require
an explicit fitness function; however, the algorithm requires
global knowledge to calculate novelty hence cannot be used
as described in a purely distributed evolutionary algorithm.

Our proposal provides a novel contribution to the line of
work on mEDEA that started in [3] in adding an explicit
fitness function that is defined in relation to survival abil-
ity rather than task performance, and using this to provid-
ing two methods of influencing the rate of spread of good
genomes through the population. By providing a more ro-
bust mechanism for maintaining swarm integrity than pre-
vious work, we pave the way towards future work in which
it is possible to add user-defined tasks to a swarm operating
in an unknown environment, thereby increasing its utility.

3. ALGORITHM DESCRIPTION
mEDEA utilises an agent driven by a control architec-

ture whose parameters are defined by the currently active
genome. The genome defines the weights of an Elman recur-
rent neural network (RNN) consisting of 43 sensory inputs
and 2 motor outputs (translational and rotational speeds).
8 ray-sensors are distributed around the robot’s body. They
detect the proximity to the nearest object, the presence of
walls and other robots, whether it belongs to the same group
and the relative orientation between the two robots. An en-
ergy level input feeds the current level into the network. A
distance and angle sensor give the direction to the nearest
energy token. The RNN has 1 hidden layer with 8 nodes,

thus 434 weights are defined by the genome. This setup is
adapted from [3]. The original mEDEA algorithm is defined
in algorithm 1 — only the single step broadcast() is modi-
fied in this paper, therefore the reader is referred to [3] for a
detailed description of the concepts that underpin its design
and the specification of each of the other methods.

genome.randomInitialise();
while forever do

if genome.isNotEmpty() then
agent.load(genome);

end
for iteration = 0 to lifetime do

if agent.isAlive() and genome.isNotEmpty()
then

agent.move();
broadcast(genome);

end
end
genome.empty();
if genomeList.size() > 0 then

genome =
applyVariation(selectrandom(genomeList));
if agent.isAlive() == false then

agent.setAliveState(true);
end

end
else

agent.setAliveState(false);
end
genomeList.empty();

end

Algorithm 1: Pseudo code of the original mEDEA al-
gorithm by Bredeche et al. [4]

In brief: for a fixed period, robots move according to
their control algorithm, broadcasting their genome that is
received and stored by any robot within range. At the end
of this period, a robot selects a random genome from its
list of collected genomes and applies a variation operator.
This takes the form of a Gaussian random mutation oper-
ator, inspired from Evolution Strategies [1] which can be
easily tuned through a σ parameter. Robots that have not
collected any genomes become inactive, thus reducing the
population size.

At the start of each generation, a robot is initialised with
an energy E0. Every time step, the energy value is decreased
by one unit. Energy tokens are scattered in the environment.
If a robot moves over a token, its energy is increased by an
amount Etoken. An robot with energy=0 remains stationary
for the remainder of the generation.

The next section describes the proposed modifications to
mEDEA algorithm that we dub mEDEArf — mEDEA
with relative fitness.

3.1 mEDEArf

A robot calculates an estimate of its own fitness to survive
based on the balance between energy lost and energy gained,
δE : this term is initialised to 0 at t = 0 and is decreased by
1 at each time-step, and increased by Etoken if it crosses an
energy token. Given δE , a robot calculates its fitness relative
to the robots in a range r according to equation 1, where f ′i
is the relative fitness of robot i at time t, meansubi is the
mean δE of the robots within the subpopulation defined by

all robots in range r of robot i, and sdsubi is the standard
deviation of the δE of the subpopulation.

f ′i(t) =
δi(t)−meansubi(t)

sdsubi(t)
(1)

Note that f ′i is defined in relation to the ability of the
robot to survive in the environment; it records the net en-
ergy of a robot, accounting for energy expended and energy
gained by locating tokens. It differs from the explicit task-
driven fitness functions investigated by [13] that were con-
cerned only with task-driven selection, i.e optimising perfor-
mance on defined tasks; although one task investigated was
a foraging task that involved collecting tokens in a similar
manner to the one used here, the tokens did not influence
robot survival in that they did not contribute to the energy
of the robot and therefore its ability to stay alive.

The new explicit fitness function can be exploited in two
ways: it can either be transmitted with a genome and used
by an individual within a selection function or it can be
used to influence the rate at which a genome is broadcast,
thereby indirectly affecting its chances of being selected for
reproduction. The two approaches are described below.

3.1.1 Explicit selection mechanisms
The selectrandom(genomeList) method in mEDEA can

easily be replaced with an informed selection method that
uses the relative fitness measure to discriminate between
genomes. We investigate three well-known selection strate-
gies:
tournament-selection, roulette-wheel selection and an elitist
select-best strategy.

3.1.2 Biasing broadcasting of genomes
Alternatively, the spread of genomes can be biased by

adapting the broadcast() step in algorithm 1. In mEDEA,
robots make a random selection from their list of collected
genomes at the end of each generation. We propose two new
methods, both of which bias the spread of genomes through-
out the population in favour of higher quality ones based on
a robot’s estimation of its fitness f ′ relative to those in its
immediate surroundings.

• broadcast radius() adapts the range at which a robot
broadcasts depending on f ′

• broadcast probability() broadcast at a fixed range r with
the probability depending on f ′

Given f ′i , we define the probability of a robot broadcast-
ing using equation 2 that simply describes a function that
returns a probability 0 if f ′i is less than d0, probability=1 if
f ′i is greater than dmax standard deviations away from the
mean, and linearly interpolated between 0 and 1 otherwise.

pi(t) =

0 f ′i(t) <= d0
f ′
i(t)−d0

dmax−d0
d0 ≤ f ′i(t) < dmax

1 f ′i ≥ dmax

(2)

For the Broadcast probability() method, shown in case1 in
algorithm 2, the probability pi(t) is used directly to deter-
mine whether a robot broadcasts. For Broadcast radius(),
the probability pi(t) is converted to a broadcasting range
between 0 and a value rmax according to equation 3 — the
higher the relative fitness, the greater the broadcast range.

Note that range increases with the square root of the proba-
bility in order to maintain a proportional increase in broad-
cast area.

ri(t) = rmax ∗
√
pi(t) (3)

Both methods result in robots that have higher relative fit-
ness broadcasting their genome more than those with lower
relative fitness, hence biasing the quality of genomes that a
receiving robot collects. At the end of each generation, a
random selection of genome is made from those collected as
in mEDEA.

R ← all robots in simulation;

foreach robot i in R do
Ni ← getRobotsWithinMaxRadius(R);
if Ni > 0 then

f ′i ← calculate fitness relative to Ni ; // eq. 1

pi ← convert f ′i to probability; // eq. 2

else
pi = 0

end

switch exp do
// vary probability
case 1

if pi > rand() then
broadcast(rmax, currentGenome, σ);

end
end
// vary broadcast radius
case 2

ri ← adjustRadius(pi); // eq. 3
foreach robot j in Ni do

if distance(i,j) < ri then
broadcast(ri, currentGenome, σ);

end
end

end
endsw

end

Algorithm 2: Pseudo code of the algorithm that is exe-
cuted at every discrete time step of the simulation.

4. EXPERIMENTS
Three sets of experiments were undertaken, exploring the

effects of using the explicit selection mechanism, biasing
spread of genomes through altering the broadcasting mecha-
nism, and finally biasing spread and using explicit selection.

Explicit selection mechanisms.
The first set of experiments investigates the hypothesis

that replacing the random selection method in mEDEA with
a selection method that selects based on the relative fitness
value will increase both the average δE of the population
and number of robots alive Nalive at the end of the final gen-
eration when compared to the original mEDEA algorithm.
Three selection methods are investigated: binary tourna-
ment, roulette-wheel and an elitist select-best. These exper-
iments are labelled E1 (mEDEA), E1+t, E1+rw, E1+b to
denote the different selection methods.

Biased broadcasting of genomes.
Experiments were designed to evaluate the following hy-

potheses:

1. Biasing the spread of genomes via adapting the proba-
bility that a robot broadcasts based on its relative fit-
ness will improve the average δE of the population and
Nalive compared to the original mEDEA algorithm.

2. Biasing the spread of genomes via adapting the range
over which a robot broadcasts based on its relative
fitness will improve the average δE of the population
compared to the original mEDEA algorithm.

Note however that the new methods broadcast probability()
and broadcast range() introduce two adaptations compared
to the original algorithm: (1) the broadcast probability (and
therefore range) is variable across the population and (2) the
broadcast probability (and therefore range) is determined by
relative fitness. Thus in order to show that any improvement
in average δE can be attributed to the effect of introducing
the relative fitness term rather than simply a random varia-
tion, we perform additional control experiments as follows:

Rather than calculating the relative fitness of a robot ac-
cording to equation 1 using its own δi(t), we simply replace
it with xi — a random number drawn from a normal distri-
bution with mean ∆(t) and sd∆(t), where the ∆ terms refer
to the mean and standard deviation of the fitness of the
global population (the global fitness is used simply to en-
sure that the random value is drawn from an appropriate
range). New methods broadcast randomProbability() and
broadcast randomRange() then use equations 2 and 3 as pre-
viously described.These methods are introduced merely to
perform rigorous control experiments: we do not suggest
that this method would be used in practice as it requires
the calculation of a global parameter, contrary to the dis-
tributed nature of the algorithm.

Five different experiments are performed, where E1-E3
are controls and E4 and E5 evaluate the new methods.

• E1 records the mean δE of the robot population and
the number of active robots at the end of the final
generation using only the original version of mEDEA

• E2 records the same metrics as above using broad-
cast randomProbability()

• E3 records the same metrics as above using broad-
cast randomRange().

• E4 records the same metrics as above using broad-
cast probability().

• E5 records the same metrics as above using broad-
cast range().

4.1 Methodology
All experiments use Roborobo! by Bredeche et al. from

[6], as in the original simulations described with mEDEA.
Roborobo! is a multi-platform, highly portable, robot sim-
ulator for large-scale collective robotics experiments. With
respect to other robotic simulators, Roborobo! combines
(pseudo-)realistic modelling with fast-paced simulation and
thus falls somewhere in-between very realistic frameworks
such as Player/Stage [9] that tend to be very slow and agent-
based tool such as MASON that are extremely simplified
with respect to the environment. It focuses solely on large-
scale swarms of robots in a 2D environment and is based on
a Khepera/ePuck model and has already been used in more
than a dozen published research papers mainly concerned

with evolutionary swarm robotics, including environment-
driven self-adaptation and distributed evolutionary optimiza-
tion, as well as online onboard embodied evolution and em-
bodied morphogenesis.

All parameters used in the experiments are given in table
1. Simulation parameters are based on the original papers.
Experimental parameters were chosen following limited em-
pirical tuning. The maximum broadcasting range requires
sensible selection and should be chosen proportional to the
arena size.

Simulation parameters
Arena size 1024 pixel by 1024 pixel
Number of robots 100
Robot lifetime 1500 iterations
Food regrow time 500 iterations
Sensor range 32 pixel
Chromosome length 434

Experimental parameters
Number of runs 30
Maximum generations 500
Number of energy tokens 800
Energy value of token 100
Start energy 1200
Maximum range rmax 64
d0 0
dmax 2

Table 1: Simulation and Experimental Parameters
for all experiments

5. RESULTS AND ANALYSIS

Explicit selection by individuals.
Results from the experiments E1, E1+t, E1+rw, E1+b in

which the selectrandom(genome list) method in algorithm 1
is replaced with a selection method are shown in figure 1,
which compares the median1 energy and agents alive over 30
repeated runs for each of the four experiments listed. Adding
an explicit selection method based on a relative fitness value
relating to the ability of another robot to survive over the
generation has significant effect in the case of roulette wheel
and best selection when compared to mEDEA. Both of these
methods exert high selection pressure. In contrast, the low-
pressure tournament selection method shows little difference
to the random selection method of mEDEA. Wilcoxon rank-
sum tests confirm that the roulette-wheel and best methods
provide significantly different results for both energy and
Nalive, while no significant difference is observed with the
tournament selection method for either metric. The highest
pressure selection method best’ outperforms roulette-wheel
with statistically significant results at the 0.05 significance
level.

Biasing genome spread.
The next set of experiments examines the results of using

the two new broadcasting methods, comparing results to the
original mEDEA algorithm. Figure 3 clearly shows that ex-
periments E4 and E5 that introduce the new broadcasting
methods outperform both the original mEDEA algorithm
and the two control experiments. A Wilcoxon rank-sum test
with significance level α = 0.05 showed that the difference

1as a Shapiro-Wilk test showed that the results were not
normally distributed

0

500

1000

1500

0 100 200 300 400 500
generation

en
er

gy

experiment E1 E1+t E1+rw E1+b

(a) Energy

●●●●●●●●●●●●●●●●●●●●●●●●
●
●●●●●●●●●●●●●●●●● ●●●●●●●● ●●●●●●●● ●●● ●●●●●●● ●●●●●●●●●●●●●●0

500

1000

1500

2000

E1 E1+t E1+rw E1+b
experiment

en
er

gy

(b) Energy at gen 500

40

60

80

100

0 100 200 300 400 500
generation

ac
tiv

e

experiment E1 E1+t E1+rw E1+b

(c) Active robots

●

●

●

●

●

●●

60

70

80

90

100

E1 E1+t E1+rw E1+b
experiment

ac
tiv

e

(d) Active robots at gen 500

Figure 1: Explicit selection added to the mEDEA
algorithm

in final energy at generation 500 for both E4 and E5 was
statistically different to E1, E2 and E3, but that there is no
statistical difference between E4 and E5. The fact that E4

and E5 differ significantly from controls E2 and E3 show that
the differences in performance are not simply attributable
to varying the broadcast rate or range, but must be related
to the fact that the broadcast rate and range are adjusted
according to the estimate of fitness f ′ calculated by each
robot. A corresponding pattern is observed when examin-
ing the number of active robots. Plots (e) and (f) within
figure 3 clearly show that the number of genomes broadcast
significantly decreases with respect to the original methods,
but that is compensated for using the higher environmental
pressure achieved by adapting what is broadcast based on
the quality estimate f ′.

In the original mEDEA, as all robots broadcast indiscrim-
inately at the same fixed range, a very weak selection pres-
sure is created that results in genomes that have spread more
widely having more chance of being selected if we consider
the population as a whole. Behaviours that lead to a robot
coming in contact with more robots will result more spread-
ing of genomes and thus on average, a higher probability
of generating future offspring. In contrast, the more dis-
criminate methods of broadcasting proposed in this paper
create higher selection-pressure: genomes that have higher
relative fitness have more chance of being received by other
robots than lower fitness ones and thus are more likely to be
randomly selected.

Combining explicit selection with biased broadcasting.
Finally, we investigate the effect of combining explicit se-

lection within an individual with biased broadcasting, test-
ing each of the three selection methods in combination with
E4 and E5. Figure 2 shows boxplots of the results ob-
tained from using the two mEDEArf variants and mEDEA.
Each of the mEDEArf variants is significantly better in
terms of energy level and active robots compared to stan-
dard mEDEA using an explicit selection method, confirmed
using a Wilcoxon Rank-Sum test with a significance level
α = 0.05.

In order to easily contrast the new methods to the origi-
nal algorithm, figure 4 compares mEDEA, mEDEA+rw, and
the two new broadcasting methods combined with roulette
wheel selection and in table 2 we use the Wilcoxon test to
compare pairs of experiments with and without explicit se-
lection (indicated by Ei + s Ei respectively). Statistically
significant results are shown in bold.

The following comments can be made that summarise all
experiments. Where claims are made, they are evidenced by
data that is statistically significant as show in the table.

• Coupling the standard mEDEA algorithm with a high-
pressure explicit selection method results in a more
robust and sustainable population (higher energy and
more alive robots) than the standard mEDEA. How-
ever, using a low-pressure explicit selection method
does not result in any statistical difference.

• The new methods of biasing the spread of genomes
based on relative fitness combined with a random se-
lection method by individiual robts (E4, E5) result in a
more robust and sustainable population than mEDEA
(higher energy and more alive robots). However there
are no discernible differences between the two new
methods.

• Coupling the methods for biasing spread of genomes
(E4, E5) with an explicit selection method by individ-
uals robots improves on the standard mEDEA but in

●

●

●

●

●

60

70

80

90

100

E1 E4 E4+t E4+rw E4+b
experiment

ac
tiv

e

(a) broadcast probability(): active robots

●● ●

●

●

●●●●●

●

●●●

●

●●

●

●

●

●●●●●

●

●●●●

●

●●●●●●●

●

●●●●●●●

●

●●●

●

●●●●●●●●

●

●●
●
●●●●●●●

●

●●●●

●●●
●

●●●

●

●

●●●

●

●

●

●●●●●●

●

●

●

●

●

●●●

●●

●

●

●●●●

●

●●●●●●●●

●

●●●●●●●●●

●

●

●

●

●●●0

500

1000

1500

2000

E1 E4 E4+t E4+rw E4+b
experiment

en
er

gy

(b) broadcast probability:energy

●

●

●

●

●

●

●

0

25

50

75

100

E1 E5 E5+t E5+rw E5+b
experiment

ac
tiv

e

(c) broadcast range:active robots

0

500

1000

1500

2000

E1 E5 E5+t E5+rw E5+b
experiment

en
er

gy

(d) broadcast range():energy

Figure 2: Combining the biased broadcasting of
genomes with explicit selection by individuals.

most cases does not provide any significant advantage
over biasing the spread and using random selection,

0

500

1000

1500

0 100 200 300 400 500
generation

en
er

gy

experiment E1 E2 E3 E4 E5

(a) Energy

40

60

80

100

0 100 200 300 400 500
generation

ac
tiv

e

experiment E1 E2 E3 E4 E5

(b) Active robots

0

5

10

15

20

0 100 200 300 400 500
generation

ge
no

m
es

experiment E1 E2 E3 E4 E5

(c) Genomes broadcast

0

500

1000

1500

2000

E1 E2 E3 E4 E5
experiment

en
er

gy

(d) Energy at gen 500

●

●

●

●

●

●

●

60

70

80

90

100

E1 E2 E3 E4 E5
experiment

ac
tiv

e

(e) Active robots at gen 500

●

●

●●
●

●
●●
●

●

●

●

●

●

●

●

●
●

●

●

●

● ●

●

●

●

●●
●

●

●

●
●●
●

●

●
●

●
●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●●●
●●
●●
●
●●●

●

●
●

●

●

●
●
●

●●
●

●●

●

●

●

●
●

●●

●

●

●●

●

●
●
●

●

●●

●
●

●

●

●

●

●●
●

0

10

20

30

40

50

E1 E2 E3 E4 E5
experiment

ge
no

m
es

(f) Genomes broadcast at gen 500

Figure 3: mEDEA, control experiments and biased broadcasting: figures show the energy, number of active
robots and genomes received for each of the experiments E1-E5

with the exception of improving energy levels in the
case of E4 + s when compared to E4 alone.

• Using roulette-wheel selection combined with standard
mEDEA outperforms the two experiments in which
the spread of genomes is biased but individuals apply
random selection in terms of sustaining higher levels
of energy within the population, but has no significant
effect on the size of the sustained population. However,
note that using the explicit selection method comes at
a potentially high cost in terms of the number and
range of broadcasts required to implement this when
compared to the biased-broadcasting methods.

In summary, the results show that using mEDEA with a
relative fitness function that either promotes spread of good
genomes (via biasing what is transmitted) or promotes selec-
tion of genomes with high energy values (explicit selection)
result in swarms that sustain high energy levels and high
percentages of active robots when compared to the original
version.

However, when considering real, physical robots, it should
be clear that broadcasting comes with an overhead in terms
of the energy required to communicate. Two factors influ-
ence the cost of broadcasting in energy terms — the number
of broadcasts made and the broadcast range. For the explicit
selection and broadcast range() methods, the same number
of broadcasts are made — however broadcast range() re-
sults in a range of broadcast distances ≤ rmax, whereas
the explicit selection method combined with mEDEA al-
ways broadcasts at rmax, thus utilising greater energy. The
broadcast probability() method directly reduces the number
of broadcasts made with respect to mEDEA as weaker robots
broadcast less on average, thus saving energy. Hence, al-
though both methods of influencing genome choice can pro-
vide similar results, the methods that modulate the broad-
casting behaviours are preferable in reducing communication
overhead. When considering real-robots this factor can have
a significant impact on survival ability — in many real-life
scenarios, the ability to prolong battery life by reducing en-
ergy usage might well be critical.

E1 E4 E5

E4
Energy < 2.2e-16
Alive 3.079e-10

E5
Energy < 2.2e-16 0.3521
Alive 4.112e-10 0.4885

E1+s
Energy < 2.2e-16 2.13e-05 1.963e-07
Alive 6.207e-08 0.0684 0.1994

E4+s
Energy < 2.2e-16 1.227e-07 1.007e-05
Alive 1.222e-10 0.1076 0.2793

E5+s
Energy < 2.2e-16 0.5267 0.1288
Alive 3.287e-09 0.7715 0.7658

Table 2: p-values obtained from applying Wilcoxon’s
Rank Sum Test across pairs of experiments, includ-
ing biased-broadcast only and biased broadcasting
coupled with an explicit selection method

6. CONCLUSION AND FUTURE WORK
The paper has provided a number of extensions to an ex-

isting Environment Driven Evolutionary Adaptation algo-
rithm — mEDEA. The goal of the work is to show that
the integrity of the swarm can be maintained in a more ro-
bust manner than in the original work, while still retaining
the original distributed and online flavour of the algorithm
by using a fitness function that indicated fitness to survive.
Having introduced the new fitness function, two new meth-
ods were described that adapted either the broadcast range
or the probability of broadcasting of a robot, based on its
estimate of its relative fitness.

This biases the spread of genomes through the population,
with robots that are relatively fitter than their neighbours
able to spread their genomes more effectively: individual
robots perform a random selection from their store of (now
biased) genomes. A thorough analysis of the experimen-
tal results shows that a considerable gain in performance is
achieved, both in the number of active robots at the end of a
fixed period of evaluation, and in the energy levels sustained
by those robots.

The new fitness function was also evaluated within an
explicit selection method. Experiments showed that this

●

●

●

●

●

25

50

75

100

E1 E1+rw E4+rw E5+rw
experiment

ac
tiv

e

(a) Active robots at gen 500

●

●

●

●●●●●

●

●●●

●

●●

●

●

●

●●●●●

●

●●●●

●

●●●●●●●

●

●●●●●●●

●

●●●

●

●●●●●●●●

●

●●
●
●●●●●●●

●

●●●●

●●●
●

●●●

●

●

●●●

●

●

●

●●●●●●

●

●

●

●

●

●●●

●●

●

●

●●●●

●

●●●●●●●●

●

●●●●●●●●●

●

●

●

●

●●●0

500

1000

1500

2000

E1 E1+rw E4+rw E5+rw
experiment

en
er

gy

(b) Energy at gen 500

Figure 4: Comparison between vanilla mEDEA, mEDEA with explicit selection by individuals and mEDEArf

+ explicit selection by individuals

also provided significant improvements over mEDEA, and
slightly outperformed the biased broadcast methods in terms
of energy sustained. However, as we described above, this
comes with a higher cost than either of the biased broadcast
methods in terms of the energy used in transmitting. This
might be detrimental in a number of real-world scenarios
and hence the lower energy-cost methods are preferred.

An obvious extension to this work will include accounting
for the cost of broadcasting when calculating the net energy
of a robot that is used by the fitness function, to test whether
this will differentiate results from the two sets of experiments
desribed in this paper. The results provide a robust platform
for future experimentation in which user-defined tasks can
be added to examine the effects of mixing environment and
task driven evolution with a more robust swarm. Given the
lightweight nature of the algorithm, an obvious way forward
would also include testing on a real hardware platform in
the near future.

Acknowledgements
The authors would like to thank Nicolas Bredeche for pro-
viding the improved version of Roborobo!, the base of the
mEDEA algorithm implementation on which the experiments
are based on and the inspirational discussions at the FOCAS
summer school 2014.

7. REFERENCES
[1] H.-G. Beyer and H.-P. Schwefel. Evolution strategies –

a comprehensive introduction. Natural Computing,
1:3–52, 2001.

[2] R. Bianco and S. Nolfi. Toward open-ended
evolutionary robotics: evolving elementary robotic
units able to self-assemble and self-reproduce.
Connection Science, 16(4):227–248, 2004.

[3] N. Bredeche and J.-M. Montanier. Environment-driven
embodied evolution in a population of autonomous
agents. In R. Schaefer, C. Cotta, J. Ko lodziej, and
G. Rudolph, editors, Parallel Problem Solving from
Nature, PPSN XI, volume 6239, pages 290–299,
Krakov, Poland, 2010. Springer Berlin Heidelberg.

[4] N. Bredeche and J.-M. Montanier. Environment-driven
Open-ended Evolution with a Population of
Autonomous Robots. In Evolving Physical Systems
Workshop, East Lansing, United States, 2012.

[5] N. Bredeche, J.-M. Montanier, W. Liu, and A. F. T.
Winfield. Environment-driven distributed evolutionary
adaptation in a population of autonomous robotic
agents. Mathematical and Computer Modelling of
Dynamical Systems, 18(1):101–129, Feb. 2012.

[6] N. Bredeche, J.-M. Montanier, B. Weel, and
E. Haasdijk. Roborobo! a Fast Robot Simulator for
Swarm and Collective Robotics, CoRR, abs/1304.2,
Apr. 2013.

[7] R. Dawkins. The Selfish Gene. 1976.
[8] A. E. Eiben. Grand Challenges for Evolutionary

Robotics. Frontiers in Robotics and AI, 1(4):74, June
2014.

[9] B. Gerkey, R. T. Vaughan, and A. Howard. The
player/stage project: Tools for multi-robot and
distributed sensor systems. In Proceedings of the 11th
International Conference on Advanced Robotics
(ICAR 2003), number Icar 2003, pages 317–323,
Coimbra, Portugal, 2003.

[10] E. Haasdijk, B. Weel, and A. E. Eiben. Right on the
MONEE. In C. Blum, editor, GECCO2015, pages
207–214, Amsterdam, The Netherlands, 2013. ACM
New York, NY, USA.

[11] J. Lehman and K. O. Stanley. Exploiting
Open-Endedness to Solve Problems Through the
Search for Novelty. In Artificial Life XI, pages
329–336. MIT Press, 2008.

[12] J.-M. Montanier. Environment-driven Distributed
Evolutionary Adaptation for Collective Robotic
Systems. PhD thesis, Université Paris Sud - Paris XI,
Mar. 2013.

[13] I. n. F. Pérez, A. Boumaza, and F. Charpillet.
Comparison of Selection Methods in On-line
Distributed Evolutionary Robotics. In ALife2014,
2014.

[14] F. Silva, P. Urbano, S. Oliveira, and A. L.
Christensen. odNEAT: An Algorithm for Distributed
Online, Onboard Evolution of Robot Behaviours. In
C. Adami, D. M. Bryson, C. Ofria, and R. T.
Pennock, editors, Artificial Life 13, pages 251–258.
MIT Press, July 2012.

[15] R. A. Watson, S. G. Ficici, and J. B. Pollack.
Embodied Evolution: Distributing an evolutionary
algorithm in a population of robots. Robotics and
Autonomous Systems, 39(1):1–18, Apr. 2002.

A.2 The Cost of Communication: Environmental Pressure and Survivability in mEDEA148

A.2 The Cost of Communication: Environmental Pres-

sure and Survivability in mEDEA

Steyven, A., Hart, E., & Paechter, B. (2015). The Cost of Communication: Envi-

ronmental Pressure and Survivability in mEDEA. In S. Silva (Ed.), Proceedings of

the Companion Publication of the 2015 on Genetic and Evolutionary Computation

Conference - GECCO Companion ’15 (pp. 1239–1240). New York, New York, USA:

ACM Press.

The Cost of Communication: Environmental Pressure and
Survivability in mEDEA

Andreas Steyven
School of Computing

Edinburgh Napier University
Edinburgh, Scotland, UK

a.steyven@napier.ac.uk

Emma Hart
School of Computing

Edinburgh Napier University
Edinburgh, Scotland, UK
e.hart@napier.ac.uk

Ben Paechter
School of Computing

Edinburgh Napier University
Edinburgh, Scotland, UK

b.paechter@napier.ac.uk

ABSTRACT
We augment the mEDEA algorithm to explicitly account for
the costs of communication between robots. Experimental
results show that adding a costs for communication exerts
environmental pressure to implicitly select for genomes that
maintain high energy levels. We compare our two methods
which vary broadcasting based on the individuals fitness to
vanilla mEDEA bundled with an explicit selection method
under these new conditions and find that biasing broadcast-
ing has a negative effect on survivability.

Categories and Subject Descriptors
I.2.8 [Artificial Intelligence]: Problem Solving, Control
Methods, and Search—Heuristic methods

Keywords
Evolutionary Robotics; Environment-driven; Online Evolu-
tion

1. INTRODUCTION
In previous research [4] we implemented an explicit fit-

ness measure into mEDEA [1] that influences the spread of
genomes through the population in order to increase surviv-
ability, thus, ensure the integrity of the swarm. We dubbed
the algorithm mEDEArf — mEDEA with relative fitness.

In mEDEA a robot’s controller is encoded in its genome
which is constantly broadcast in a close range. A random
selection from a list of the received genomes during the gen-
eration determines the controller for the next generation.
In mEDEArf the broadcasting is varied either by reducing
the range or probability of broadcasting depending on the
explicit fitness value to favour the spread of genomes that
produce controller which maintain a higher energy balance.
We compared mEDEArf to mEDEA where the random se-
lection is replace with an explicit selection method.

Our results suggested that although using the relative fit-
ness value in either way improved survivability, adjusting

This is the author’s version of the work. It is posted
here for your personal use. Not for redistribution. The
definitive version was published in GECCO 2015 Compan-
ion

http://dx.doi.org/10.1145/2739482.2768489

the broadcasting mechanism should conserve energy. In this
paper we derive an energy model to account for the cost for
communication and implemented it into both algorithms to
test this hypothesis. We give a briefly overview of the ex-
periments conducted and the results obtained.

2. METHOD
Two different methods were introduced in mEDEArf that

change the broadcasting mechanism in mEDEA by varying
a) the probability to broadcast and b) adjusting the broad-
cast radius, in proportion to the fitness value. Both mecha-
nisms bias the broadcast towards fitter individuals. For an
in-depth description of the mEDEA algorithm and the de-
tails of our proposed modifications the reader is referred to
[1] and [4] respectively.

To calculate the cost of communication for the simulated
ePuck robots in Roborobo [2], we derive an energy model
based on the Free-Space Model [5] (equation 1) which is
used in wireless sensor network simulations. This field of
research makes extensive use of the low power communica-
tion modules used in experiments1 using the ePuck robot
platform [6].

Etx(n, d) = n× Eelec + n× εamp × d2 (1)

Eelec is the basic charge to run the module, εamp the costs
for signal amplification which is multiplied by the distance
squared and n represents the number of bits in a trans-
mission. n is constant as genome broadcasts only vary in
content, not length. Values for Etx(rmax) = 0.075 and
Etx(rmin) = 0.028 have been chosen following limited em-
pirical testing. The energy required for receiving is constant
and 7% higher than the Etx(rmax), due to the low-power
nature of the signals which requires signal reconstruction
circuits [7].

In order to evaluate the dependence on energy we amend
the experimental setup as follows: maximum energy per
robot adjusted from 2000 to 15000, initial energy of a robot
lowered to 750 (enough to survive half a generation) and
energy pucks limited to 75. Further, the algorithm was
adapted to prevent robots from broadcasting in empty neigh-
bourhoods to prevent fruitless genome distribution attempts.

3. EXPERIMENTS
Experiments were designed to evaluate the following hy-

pothesis: When accounting for the cost of communication,
biasing the spread of gnomes in mEDEArf outperforms con-
tinuous broadcast combined with an explicit selection in

1TI CC2420 in [3] and Bluetooth module LMX9820a in [6]

0

100

200

300

400

500

0 50 100 150
generation

en
er

gy

experiment
E1−em
E1−em+rw
E4−em
E5−em
20

40

60

80

0 50 100 150
generation

ac
tiv

e

experiment
E1−em
E1−em+rw
E4−em
E5−em

0

2

4

6

8

0 50 100 150
generation

ge
no

m
es

experiment
E1−em
E1−em+rw
E4−em
E5−em

0

50

100

150

0 50 100 150
generation

br
oa

dc
as

ts experiment
E1−em
E1−em+rw
E4−em
E5−em

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●
●

●

●

●

●

●
●

●

●
●●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●●

●

●

●

●

● ●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●
●●●
●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●
●

●

●●●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●●

●

●●

●
●●

●

●
●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

0

2500

5000

7500

E1−em E1−em+rw E4−em E5−em
experiment

en
er

gy

●

●●● ●●●

●
●

●

0

25

50

75

E1−em E1−em+rw E4−em E5−em
experiment

ac
tiv

e
●

●

●●●

●

●

●

●
●

●

●
●

●

●

●●

●
●●
●

●

●

●

●

●

●

●

●

●●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

0

500

1000

E1−em E1−em+rw E4−em E5−em
experiment

br
oa

dc
as

ts

●
●●

●

●

●

●

●

0

10

20

30

40

50

E1−em E1−em+rw E4−em E5−em
experiment

pu
ck

s

Figure 1: Figures show the energy, number of active robots and genomes received for each of the experiments
E1em, E1em+rw, E4em and E5em. Box plots showing values at generation 150.

terms of active robots and the maintained energy level at
the end of the last generation.

Four different experiments were conducted based on the
experiments in [4]: E1em: baseline experiment, vanilla mEDEA
using the energy model with random individual selection;
E1em+rw: as E1em, but using roulette-wheel selection as
individual selection method; E4em: using a fitness propor-
tionate probability to broadcast; E5em: varying the broad-
cast radius proportionate to the fitness.

4. RESULTS AND ANALYSIS
Figure 1 shows the median2 result over 30 repeated runs

at the end of the generation.
In E1em energy can be maintained by reducing broadcast-

ing or gathering energy pucks. In cases where the broadcast-
ing rate is fixed, avoiding others is the only option, which,
however, is not conducive to spreading the genome.

The results3 show that:
E1em broadcasts most and gathers the most pucks. At the

other extreme E4em (frequency variation) broadcasts least
and also gathers fewest pucks: it experiences the least pres-
sure to collect as it can maintain energy by reducing broad-
casting. However, the reduced environmental pressure leads
to a much slower increase in energy and fewer active robots
compared to the unbiased broadcast experiments.

In E5em, although there is the same amount of broadcast-
ing as in E1em, it does not lead to a significant difference
in active robots c.f. E4em. The evolved behaviour leads to
significantly fewer pucks being collected.

The mechanisms in E4em and E5em lower the environmen-
tal pressure by preventing less fit individuals from commu-
nicating. High fitness individuals will broadcast with high
probability or full range hence bear high costs; in contrast
low fitness robots rarely broadcast thus save energy. The
two methods differ in that in E5em even with r = 0 accord-
ing to eq. 1 there is still a basic cost.

2as a Shapiro-Wilk test showed that the results were not
normally distributed
3A Wilcoxon Rank-Sum test with a significance level α =
0.05 was used to determine statistical significance.

5. CONCLUSION
We introduced an energy model based on the Free-Space

model to account for the cost of communication in mEDEArf .
Experimental results showed this exerts environmental pres-
sure to implicitly select for genomes that maintain high en-
ergy levels. Comparing the method of varying the broad-
casting based on fitness to mEDEA alone and with roulette-
wheel genome selection shows that although marginal, the
latter approaches outperform the mEDEArf methods, as
they partially reverse the effect of the environmental pres-
sure.

6. REFERENCES
[1] N. Bredeche and J.-M. Montanier. Environment-driven

Open-ended Evolution with a Population of
Autonomous Robots. In Evolving Physical Systems
Workshop, East Lansing, United States, 2012.

[2] N. Bredeche, J.-M. Montanier, B. Weel, and
E. Haasdijk. Roborobo! a Fast Robot Simulator for
Swarm and Collective Robotics. CoRR, abs/1304.2,
Apr. 2013.

[3] C. M. Cianci, X. Raemy, J. Pugh, and A. Martinoli.
Communication in a Swarm of Miniature Robots: The
e-Puck as an Educational Tool for Swarm Robotics. In
Swarm Robotics, pages 103–115, 2007.

[4] E. Hart, A. Steyven, and B. Paechter. Improving
Survivability in Environment-driven Distributed
Evolutionary Algorithms through Explicit Relative
Fitness and Fitness Proportionate Communication.
Accepted at GECCO 2015, Madrid, 2015. ACM.

[5] W. R. Heinzelman, A. Chandrakasan, and
H. Balakrishnan. Energy-efficient communication
protocol for wireless microsensor networks. In System
Sciences, 2000, pages 1–10, 2000.

[6] F. Mondada, M. Bonani, X. Raemy, J. Pugh, C. M.
Cianci, A. Klaptocz, J.-C. Zufferey, D. Floreano, and
A. Martinoli. The e-puck, a Robot Designed for
Education in Engineering. In Proceedings of the 9th
Conference on Autonomous Robot Systems and
Competitions, pages 59–65, Portugal, 2009.

[7] Texas Instruments Inc. TI cc2420 Datasheet, 2013.

A.3 Understanding Environmental Influence in an Open-Ended Evolutionary Algorithm151

A.3 Understanding Environmental Influence in an Open-

Ended Evolutionary Algorithm

Steyven, A., Hart, E., & Paechter, B. (2016). Understanding Environmental Influence

in an Open-Ended Evolutionary Algorithm. In J. Handl, E. Hart, P. R. Lewis, M. López-

Ibáñez, G. Ochoa, & B. Paechter (Eds.), Parallel Problem Solving from Nature – PPSN

XIV (pp. 921–931). Springer International Publishing AG.

Understanding Environmental Influence in an
Open-Ended Evolutionary Algorithm

Andreas Steyven??, Emma Hart, and Ben Paechter

School of Computing, Edinburgh Napier University,
10 Colinton Road, Edinburgh, Scotland, United Kingdom

{a.steyven,e.hart,b.paechter}@napier.ac.uk

Abstract. It is well known that in open-ended evolution, the nature
of the environment plays in key role in directing evolution. However, in
Evolutionary Robotics, it is often unclear exactly how parameterisation
of a given environment might influence the emergence of particular be-
haviours. We consider environments in which the total amount of energy
is parameterised by availability and value, and use surface plots to ex-
plore the relationship between those environment parameters and emer-
gent behaviour using a variant of a well-known distributed evolutionary
algorithm (mEDEA). Analysis of the resulting landscape show that it
is crucial for a researcher to select appropriate parameterisations in or-
der that the environment provides the right balance between facilitating
survival and exerting sufficient pressure for new behaviours to emerge.
To the best of our knowledge, this is the first time such an analysis has
been undertaken.

Keywords: evolutionary robotics; parameter selection; environment-driven
evolution; distributed online adaptation

1 Introduction

Due to technological advances in both hardware and software, the vision of send-
ing swarms of robots into unchartered terrains to monitor and map environments
is becoming much closer to being realised. This brings significant new challenges
for evolutionary robotics, with the need for completely distributed evolutionary
algorithms to evolve controllers that enable robots to survive for long-periods of
time. The issue of survival is key if robots are to effectively accomplish any kind
of task: user-driven tasks cannot even be achieved if the integrity of the swarm
is compromised through lack of ability to survive.

A number of recent algorithms tackle this issue, notably mEDEA [1] and
its variations e.g. mEDEArf [7] and MONEE [6,4]. However, the emerging be-
haviours arising from the interactions of an open-ended evolutionary algorithm
with its environment are not well understood, perhaps in part due to the time-
consuming experimentation that needs to be done to conduct sweeps of the pa-
rameters that define the environment. It is common in optimisation to explore

?? This is the author’s version of the work. It is posted here for your personal use.
Not for redistribution. The definitive Version was published in PPSN XIV 2016,
http://dx.doi.org/10.1007/978-3-319-45823-6_86.

2 Andreas Steyven? ? ?, Emma Hart, and Ben Paechter

the relationship between algorithmic parameters and fitness. However, evolution-
ary robotics adds an additional dimension in that it is not only the algorithms
parameters that change but also the environmental parameters.

Given that it is the environment that provides the pressure to adapt in a
purely open-ended scenario, it is crucial to gain some understanding of these
landscapes. Particularly in simulation, it is easy to arbitrarily select environ-
mental parameters such as the number of available energy sources or their cor-
responding energy-values. However, arbitrary choices can inadvertently create
landscapes which have a major influence on the evolution of behaviour. For ex-
ample, assume a researcher wishes to investigate whether individual learning
speeds up environment-driven evolution: if an environment is created that has
too much energy available then it is unlikely to exert sufficient pressure for indi-
vidual learning to be beneficial or even emerge. Quantifying ‘too much’ (or ’too
little’) is of course difficult. In order to address this, we conduct an analysis of
an open-ended evolution algorithm operating in a variable environment. To the
best of our knowledge, this is the first time this has been attempted.

Using an open-ended evolutionary algorithm, mEDEArf [7], we consider
evolved behaviours in environments in which the total energy available is pa-
rameterised by two variables that determine the availability and value of energy
pellets within in the environment. Using a 3-dimensional visualisation of the
energy landscape for mEDEArf we show:

– the energy landscape contains three distinct regions: energy-poor, energy-
neutral and energy-rich, as well as a ‘dead-zone’ in which robots cannot
survive

– the energy-rich region is relatively large compared to other regions but is
very rugged

– that on the energy-neutral line, distinct behaviours evolve at different places
along the line

We propose that the energy-neutral region provides the most obvious settings
for conducting experimentation that aims to extend a robots ability to survive
or accomplish tasks.

2 Related Work

The completely distributed evolutionary algorithm for open-ended evolution
mEDEA was first proposed in [1]. It was tested using a scenario in which en-
vironmental pressure forces robots to compete for limited resources in order to
gain energy. The algorithm was demonstrated to be both efficient with regard
to providing distributed evolutionary adaptation in unknown environments, and
robust to unpredicted changes in the environment. The basic algorithm has been
extended in a number of ways.

Haasdijk et al [6] extended mEDEA so that in addition to surviving and op-
erating reliably in an environment, a robot could also perform user-defined tasks.
Their new framework MONEE (Multi-Objective aNd open-Ended Evolution al-
gorithm) showed initially that task-driven behaviour can be promoted without

Understanding Env. Influence in an Open-Ended Evolutionary Algorithm 3

compromising environmental adaptation. More recently, they investigated the
trade-off between the survival and task-accomplishment that evolution must
establish when the task is detrimental to survival, finding that task-based se-
lection exerts a higher pressure than the environment. Fernandez et al [3] study
the impact of adding explicit selection methods to the mEDEA algorithm in a
task-driven scenario. They evaluate four selection methods that induce differ-
ent intensities of selection pressure, using tasks that include obstacle avoidance
and foraging, finding that higher selection pressure results in improved perfor-
mances, especially in more challenging tasks. Hart [7] also extended mEDEA by
including selection based on a fitness value that was calculated relative to those
robots in the immediate vicinity, thus maintaining the decentralised nature of
the algorithm, and additionally using this relative fitness value to control the
frequency and range of broadcasting. Parameter tuning of algorithmic parame-
ters to optimise algorithmic task-performance was investigated by [5]. However,
to the best of our knowledge, no methodical investigation of environment pa-
rameter settings has been conducted: researchers tend to select arbitrary values
or simply use those defined in previous papers.

3 Algorithm Description

Evolution of robot controllers is performed by the mEDEArf , first introduced in
[7]. The algorithm is an extension of the original mEDEA algorithm of Bredeche
et al [1] with the addition of an explicit fitness measure. This influences the
spread of genomes through the population in order to increase survivability,
thus ensuring the integrity of the swarm.

mEDEArf utilises an agent driven by a control architecture whose parame-
ters are defined by the currently active genome. The genome defines the weights
of an Elman recurrent neural network (RNN) consisting of 16 sensory inputs,
one bias node (feeding into the hidden layer) and 2 motor outputs (translational
and rotational speeds). 8 ray-sensors are distributed around the robot’s body.
They detect the proximity to the nearest object and its type. The RNN has 1
hidden layer with 16 nodes, thus 322 weights are defined by the genome. This
setup is adapted from [1]. An overview of the algorithm is given in Algorithm 1
and reader is referred to [7] for more detail. In brief, for a fixed period, robots
move according to their control algorithm, broadcasting their genome that is
received and stored by any robot within range. At the end of this period, a
robot uses roulette-wheel selection to choose a genome from its list of collected
genomes according to a relative fitness value, and applies a variation operator.
This takes the form of a Gaussian random mutation operator, inspired from
Evolution Strategies. Robots that have not collected any genomes temporarily
become inactive, thus reducing the population size.

Each robot estimates its fitness in terms of its ability to survive based on the
balance between energy lost and energy gained, delta Energy (δE): this term is
initialised to 0 at t = 0 (when the current genome was activated) and is decreased
by 1 at each time-step, and increased by Etoken if it crosses an energy token.
Given δE , a robot calculates a fitness value which is relative to those robots in

4 Andreas Steyven? ? ?, Emma Hart, and Ben Paechter

a range r according to equation 1, where f ′i is the relative fitness of robot i at
time t, meansubi is the mean δE of the robots within the subpopulation defined
by all robots in range r of robot i, and sdsubi is the standard deviation of the
δE of the subpopulation.

f ′i(t) =
δi(t)−meansubi(t)

sdsubi(t)
(1)

Note that evolution is asynchronous, in keeping with the paradigm of a dis-
tributed algorithm without central control. If a robot runs out of energy and has
an empty genome list, it remains stationary until it receives a new genome from
a passing robot at which point it starts a new lifetime. Thus at any time-step,
each robot potentially has a different ‘age’.

genome.randomInitialise();
agent.load(genome);
while forever do

if genome.isNotEmpty() then
while lifetime < maxLifetime and energy > 0 do

agent.move();
if neighbourhood.isNotEmpty() then

rf = agent.calculateRelativeFitness(neighbourhood); // eq. 1

broadcast(genome,rf);

end

end
genome.empty();

end
if genomeList.size() > 0 then

genome = applyVariation(selectrhoulette−wheel(genomeList));
agent.load(genome);
genomeList.empty();

end

end

Algorithm 1: Pseudo code of our adapted version of the mEDEA algo-
rithm based on vanilla mEDEA by Bredeche et al. [1]

4 Method

All experiments are conducted in simulation using Roborobo! by Bredeche et al.
from [2]. A static environment is created, using an arena previously described in
[3,6,4]. The robot cannot pass through the outer and inner walls, however, it is
possible to broadcast through an obstacle. Energy tokens are randomly scattered
in the environment. If a robot moves over a token, its energy is increased by an
amount Etoken. The energy token disappears when consumed and reappears after
a fixed amount of time later at a different random location. Fixed parameters
describing the simulation are given in table 1.

Understanding Env. Influence in an Open-Ended Evolutionary Algorithm 5

Energy is consumed in three ways. There is a fixed cost to ‘living’ of 0.5 units
per timestep, regardless of whether the robot moves or not. A robot moving
consumes an amount of energy Em that is related to its rotational speed vrot,
translational speed vtrans, and their respective maximum values vrotMAX

and
vtransMAX

, and is given by

Em = (vrot/vrotMAX
+ vtrans/vtransMAX

)/4 (2)

Finally, a robot consumes energy when communicating. This is an important
factor in the real-word but one that it is often overlooked in simulation models.
The model used is exactly as described in [10], with an energy cost of ERX =
0.082 units for receiving and a cost of ETX(r) = 0.075 units for transmitting.

The goal of the experiments is to understand the energy landscape in terms
of the median δEnergy of a robot in the population as a function of the two envi-
ronmental parameters: count, the number of energy tokens available, and value,
the energy value of each token. Table 1 shows the ranges of values considered
for each parameter. Parameters are set before the beginning of the experiment
and remain fixed throughout. Each experiments was repeated for 5 independent
runs. This number is rather low for a noisy application of this type but was
chosen to speed up computation due to the high number of experiments that
had to be run in total.

Table 1: Simulation and Experimental Parameters for all experiments

Simulation parameters
Arena size 1024 pixel by 1024 pixel
Max. robot lifetime 2500 iterations
Token re-spawn time 500 iterations
Sensor range 196 pixel

Variable Parameters
Number of robots 50, 75, 100
Number of tokens (count) 0 - 1300 (in steps of 50)
Energy value per token (value) 0 - 1400 (in steps of 50)

Experimental parameters
Number of runs 5
Maximum iterations 375000 (= 150x2500)
Start energy 500
Maximum range rmax 128

Data is gathered from the robots every 2500 iterations. Recall from section
3 that each robot chooses a new genome once it has depleted all its energy
or reached the maximum lifetime, leading to asynchronous generation changes
throughout the population. Hence, the data gathered at each interval represents
a snapshot across robots of multiple ages and therefore does not necessarily
capture the peak performance of each robot (i.e. it may include very ‘young’
robots). However, given that the goal of the experiment is to understand the
interplay of the specific algorithm and environment under consideration, this is
not a relevant factor.

6 Andreas Steyven? ? ?, Emma Hart, and Ben Paechter

5 Analysis

Figure 1 shows three rotated 3-dimensional plots of surface obtained using 100
robots after 375,000 iterations. The x and y axes represent the count and value
variables, while the z axis represent the median δE of the robot population over
the last 2500 iterations. The grey plane marks a value for δE of zero, at which
point robots have an energy balance of zero, i.e. the same amount of energy as
they started the experiment with. Three broad regions are noticeable: a large
region in which the robots have positive δE (green and blue value above the grey
plane), a region lying on the plane itself, and finally a region below the plane
in which robots are spending more energy than they are collecting, i.e. δE< 0.
In order to explore this in more detail, a 2-dimensional top-down projection is
shown in figure 2 obtained from populations of 50, 75 and 100 robots, and is
discussed in detail below.

(a) rotated 90◦ right (b) centred (c) rotated 90◦ left

Fig. 1: View on the resulting surface from different angles. The figure was created
by plotting the median δE of the last 2500 iterations of the experiment. The grey
plane marks a value for δE of zero, at which point robots in an experiment have
an energy balance of zero. In other words, the same amount of energy as they
started the experiment with. A 3D model can be found at [9]

5.1 Different performance regions

Figure 2 shows clearly that the landscape is defined by four different regions:

A) Dead Zone: In this region, the environment does not provide enough energy
for the algorithm to evolve controller that can survive a full run. Low values for
both parameters, count and value result in the extinction of the whole robot
population within a few generations. The random genomes that the controllers
are initialised with generally result in a random spinning behaviour, rather than
movement. This random behaviour, combined with the lack of energy tokens
in the immediate vicinity in which the robot is born, mean that robots cannot
survive given its inability to move.

Understanding Env. Influence in an Open-Ended Evolutionary Algorithm 7

Fig. 2: Overview of landscape, as plot of the real data on the left and as a
cartoon version on the right. 4 different regions are shown: A) Dead Zone, B)
Lean Valley, C) Neutral Line, D) Excess Energy.

B) Lean Valley (negative δE): This region starts at the edge of the dead zone that
marks the point where there is just enough energy available that some robots
survive until the end of the experiment, i.e. it marks the point where a robot has
spent all its initial energy and started picking up tokens from the environment.
Moving down towards the bottom of the valley, an increasing number of robots
survive as there is more energy in environment, with the corollary that each robot
has less total energy — the energy available is shared between more robots. The
bottom of the valley marks the minimum δE that still enables survival. Moving
upwards out of the valley on the other side, robots gradually get better in both
harvesting energy from the environment and managing their residual energy
as a result of evolving better strategies. For example, good strategies optimise
movement, or avoid moving towards tokens in which there are other robots close
by.

C) Neutral Line (δE=0): This line marks the points in the environment where
the environment provides exactly enough energy to enable a robot to maintain
an energy balance of zero, i.e. the costs of moving and communicating are just
balanced by energy harvested.

D) Excess Energy (δE> 0): In the final region, in which both cost and value are
high, robots are able to locate more energy in the environment than is required
to maintain their initial energy E0, either due to the abundance of pucks or the
high energy value of pucks.

5.2 Environmental Influence on Behaviour

In order to properly understand the evolved behaviours that lead to the land-
scapes just described, a more detailed analysis is required. Figure 3 examines

8 Andreas Steyven? ? ?, Emma Hart, and Ben Paechter

pairings of (count, value) along the three dashed lines in 2, i.e. equivalent-value
(a-b), equivalent-count (c-d) and the diagonal in which count = value line (e-f).
The figure shows boxplots of the δE values at specific pairings of (count, value)
and the ratio of genome broadcasts made to unique genomes received over a
lifetime. The latter quantity leads to insights into behaviour as it relates to
the number of unique robots encountered by an individual robot: a robot will
broadcast indiscriminately to any robot in its range but will only collect unique
genomes. At the equivalent-count and equivalent-value lines, we fix the parame-
ter count and value respectively, and successively increase the other parameter
in steps of 50.

5 points are shown. The first point on a) corresponds to a total energy Etot

that is the same as the first points on graphs (c) and (e) below it etc.1. For a
specific value of Etot, then is clear that high value combined with low count
leads to robots that have increased δE when compared to robots with high
count but low value (graph (a) compared to graph (e)). Robots must therefore
evolve behaviours that enable them to seek out the rare but high-value pucks.
These robots also have high broadcast:genome ratios, suggesting the robots are
frequently coming into contact with the same robots. A possible explanation
lies in the fact that the robots appear travel in small groups, thus broadcasting
continually to the same robots; the rare occurrence of pucks leads to many robots
having to travel towards the same regions of the space. On the other hand, a
high count leads to robots that receive more unique genomes than in the high
value case: this is suggestive of a more random movement pattern that enables
each robot to encounter many unique robots during its lifetime. In this case there
is low selection pressure to evolve focused movement due to the abundance of
pucks.

5.3 Behaviours in the neutral region

We propose that the energy neutral region is of greatest interest for researchers
wishing to conduct research moving beyond genetic evolution of survival, for
example using individual or social learning [8] or task-driven research [4]. In
this region, on the one hand, robots are able to survive, while on the other, the
environment does not over-provide, thus ensuring that there is scope for robots
to learn novel behaviours. We further investigate three specific points within
this region there is approximately the same amount of energy available in the
environment (table 2). The table shows the median age increases with increas-
ing count — it is easier to maintain sufficient energy to survive as availability
increases. The lower median observed at low count reflects the fact that many
robots do not survive long. The time to find a new unique genome (age:genome)
is shortest at high count, reflecting frequent encounters with novel robots. Broad-
cast:genomes is highest at low count as observed in the previous section. All three
configurations lead to the same energy balance of 0, but diverse behaviours re-
sult in the gain in energy being offset by movement and broadcasting in each
case.
1 while this is exactly true for the first and third rows, in the middle row which

represents equal count/value it is necessary to approximate

Understanding Env. Influence in an Open-Ended Evolutionary Algorithm 9

0

1000

2000

3000

4000

c50
v1150

c100
v1150

c150
v1150

c200
v1150

c250
v1150

Count & Value

de
lta

E
ne

rg
y

robots
50
75
100

deltaEnergy

a)

0

50

100

150

200

250

c50
v1150

c100
v1150

c150
v1150

c200
v1150

c250
v1150

Count & Value

br
oa

dc
as

ts
:g

en
om

es

robots
50
75
100

broadcasts:genomes

b)

0

1000

2000

3000

4000

c250
v250

c350
v350

c400
v400

c450
v450

c550
v550

Count & Value

de
lta

E
ne

rg
y

robots
50
75
100

deltaEnergy

c)

0

50

100

150

200

250

c250
v250

c350
v350

c400
v400

c450
v450

c550
v550

Count & Value

br
oa

dc
as

ts
:g

en
om

es

robots
50
75
100

broadcasts:genomes

d)

0

1000

2000

3000

4000

c1150
v50

c1150
v100

c1150
v150

c1150
v200

c1150
v250

Count & Value

de
lta

E
ne

rg
y

robots
50
75
100

deltaEnergy

e)

0

50

100

150

200

250

c1150
v50

c1150
v100

c1150
v150

c1150
v200

c1150
v250

Count & Value

br
oa

dc
as

ts
:g

en
om

es

robots
50
75
100

broadcasts:genomes

f)

Fig. 3: Cuts through different parts of the landscape. Points towards different
behaviours in terms of exploration. a-b) value = 1150, vary count; c-d) count =
value; e-f) count =1150, vary value.

6 Conclusion

We have presented the first analysis of the fitness landscape (as a function of
environmental parameter) that results from running an open-ended evolutionary
algorithm (mEDEArf) in an environment that is parameterised by two values
that control the distribution of energy in the environment. Adjusting the avail-
ability and value of energy pucks results in the evolution of a range of different
behaviours. Rather than arbitrarily selecting parameters in which to study evo-
lution, we suggest that it is vital to understand how these choices will direct
evolution, by changing the selection pressure exerted by the environment.

Three distinct regions are observed in which the final energy balance can be
negative, neutral, or positive. A fourth region is found in which robots cannot
survive. We propose that the energy neutral region is a good region in which
to undertake experiments. It provides an environment in which robots are able
to survive, enabling experimentation, while at the same time, will reward new
behaviours which are able to more efficiently harness energy from the environ-

10 Andreas Steyven? ? ?, Emma Hart, and Ben Paechter

Table 2: Results obtained at three configurations within the neutral region
Robots

50 75 100

Count Value Age Age
Genome

Brodcasts
Genome

Age Age
Genome

Brodcasts
Genome

Age Age
Genome

Brodcasts
Genome

200 1150 770 107.94 46.61 767.5 63.86 28.99 667 49.97 21.18
500 500 1026.5 86.12 39.11 1038.5 52.39 25.93 928.5 41.26 19.67

1150 200 1173.5 79.83 33.43 1093 47.39 21.95 1059 36.52 15.49

ment. It is clear that the environment plays a key role in influencing what kind
of behaviours emerge, in that it is not the total amount of energy available that
matters but also the manner in which it is spread. Future work should be aimed
at understanding the landscape in more detail, and in particular, explaining the
ruggedness of some regions.

References

1. Bredeche, N., Montanier, J.M.: Environment-driven embodied evolution in a pop-
ulation of autonomous agents. In: Schaefer, R., Cotta, C., Koodziej, J., Rudolph,
G. (eds.) PPSN XI. vol. 6239, pp. 290–299. Springer Berlin Heidelberg (2010)

2. Bredeche, N., Montanier, J.M., Weel, B., Haasdijk, E.: Roborobo! a fast robot
simulator for swarm and collective robotics. CoRR abs/1304.2 (4 2013)

3. Fernández Pérez, I., Boumaza, A., Charpillet, F.: Comparison of selection methods
in on-line distributed evolutionary robotics. In: ALife’14. pp. 282–289. MIT Press
(2014)

4. Haasdijk, E.: Combining conflicting environmental and task requirements in evo-
lutionary robotics. In: 2015 IEEE 9th International Conference on Self-Adaptive
and Self-Organizing Systems. pp. 131–137. IEEE (9 2015)

5. Haasdijk, E., Smit, S.K., Eiben, A.E.: Exploratory analysis of an on-line evolution-
ary algorithm in simulated robots. Evolutionary Intelligence 5(4), 213–230 (2012)

6. Haasdijk, E., Weel, B., Eiben, A.E.: Right on the MONEE. In: Blum, C. (ed.)
Proceedings of GECCO ’13. pp. 207–214. ACM Press (2013)

7. Hart, E., Steyven, A., Paechter, B.: Improving survivability in environment-driven
distributed evolutionary algorithms through explicit relative fitness and fitness
proportionate communication. In: Silva, S. (ed.) Proceedings of GECCO ’15. pp.
169–176. ACM Press (2015)

8. Heinerman, J., Rango, M., Eiben, A.E.: Evolution, individual learning, and social
learning in a swarm of real robots. In: 2015 IEEE Symposium Series on Computa-
tional Intelligence. pp. 1055–1062. IEEE (2015)

9. Steyven, A.: Interactive 3D model of mEDEA rf parameter sweep fitness landscape
(2016), http://research.steyven.de/conf/ppsn2016/

10. Steyven, A., Hart, E., Paechter, B.: The cost of communication. In: Silva, S. (ed.)
GECCO Companion ’15. pp. 1239–1240. ACM Press (2015)

A.4 An Investigation of Environmental Influence on the Benefits of Adaptation
Mechanisms in Evolutionary Swarm Robotics 162

A.4 An Investigation of Environmental Influence on the

Benefits of Adaptation Mechanisms in Evolution-

ary Swarm Robotics

Steyven, A., Hart, E., & Paechter, B. (2017). An Investigation of Environmental Influ-

ence on the Benefits of Adaptation Mechanisms in Evolutionary Swarm Robotics. Pro-

ceedings of the 2017 on Genetic and Evolutionary Computation Conference - GECCO

’17 (8 pages). New York, New York, USA: ACM Press.

An Investigation of Environmental Influence on the Benefits of
Adaptation Mechanisms in Evolutionary Swarm Robotics

Andreas Steyven
Edinburgh Napier University

10 Colinton Road
Edinburgh, Scotland, UK
a.steyven@napier.ac.uk

Emma Hart
Edinburgh Napier University

10 Colinton Road
Edinburgh, Scotland, UK

e.hart@napier.ac.uk

Ben Paechter
Edinburgh Napier University

10 Colinton Road
Edinburgh, Scotland, UK
b.paechter@napier.ac.uk

ABSTRACT

A robotic swarm that is required to operate for long periods
in a potentially unknown environment can use both evolution
and individual learning methods in order to adapt. How-
ever, the role played by the environment in influencing the
effectiveness of each type of learning is not well understood.
In this paper, we address this question by analysing the
performance of a swarm in a range of simulated, dynamic
environments where a distributed evolutionary algorithm for
evolving a controller is augmented with a number of different
individual learning mechanisms. The learning mechanisms
themselves are defined by parameters which can be either
fixed or inherited. We conduct experiments in a range of
dynamic environments whose characteristics are varied so as
to present different opportunities for learning. Results enable
us to map environmental characteristics to the most effective
learning algorithm.

CCS CONCEPTS

•Computing methodologies → Mobile agents;

KEYWORDS

Evolutionary Swarm Robotics, Environment, Learning

ACM Reference format:

Andreas Steyven, Emma Hart, and Ben Paechter. 2017. An Inves-
tigation of Environmental Influence on the Benefits of Adaptation

Mechanisms in Evolutionary Swarm Robotics . In Proceedings of

GECCO ’17, Berlin, Germany, July 15-19, 2017, 8 pages.
DOI: http://dx.doi.org/10.1145/3071178.3071232

1 INTRODUCTION

Recent advances in technology are driving novel research
in swarm robotics, envisioning future applications in which
swarms might be sent to remote or hazardous environments
and in which they will need to survive over long periods of
time. As these environments will be unknown to the designer
a priori and are potentially dynamic, the swarm must be
able to continuously adapt its behaviour to ensure it both

GECCO ’17, Berlin, Germany

© 2017 ACM. This is the author’s version of the work. It is posted
here for your personal use. Not for redistribution. The definitive
Version of Record was published in Proceedings of GECCO ’17, July
15-19, 2017 , http://dx.doi.org/http://dx.doi.org/10.1145/3071178.
3071232.

maintains sufficient energy to survive, and to successfully
perform tasks.

The importance of being able to adapt over time has been
a subject of research within Evolutionary Robotics for some
time [20]. Adaptation often takes one or all of three forms:
evolutionary, individual and social learning. In evolution-
ary adaptation, information encoded on the genome adapts
through selection and reproductive operators over many gen-
erations. In individual learning, a robot can adapt its own
behaviour during the course of its lifetime, for example, up-
dating weight values in a neural network controller. Finally
in social learning, robots can exchange information during a
lifetime.

The relative benefits of mixing the different types of adapta-
tion have been studied both in simulation [3, 6] and hardware
[4, 10–12]. Typically, experiments are conducted in single
environment related to a specific task, therefore the role of
the environment in influencing the result is not made explicit.
An exception is recent work from Haasdjik [5] who explicitly
studied the effect of combining conflicting environmental and
task requirements in a simulated system. This showed that
high selective pressure exerted by a task can outweigh any
selective pressure from the environment. However, an arbi-
trary environment was defined to conduct experiments in,
leaving open the question of whether the same effects would
be observed in a different environment.

The goal of this paper is to investigate the interplay be-
tween evolution, individual learning and environment charac-
teristics. We consider a swarm which undergoes distributed
evolution of a neural-network based controller and is aug-
mented with an individual learning mechanism: this modifies
the information gleaned from the environment and fed to
the controller over the lifetime of a robot. Specifically, we
consider a swarm operating in an environment which is un-
known a priori and which robots must learn relative values
of positive and negative energy tokens. Each environment
contains n positive and n negative energy tokens. Positive
tokens increase the robot’s energy by v units of energy, while
negative ones reduce it by a fixed amount. As n, v vary, each
environment presents different opportunities for learning in
that there are a small number of high value tokens, or a large
number of low value tokens. In addition, tokens change their
nature across ’seasons’, i.e. tokens of a specific colour switch
value from negative to positive on a cyclical basis. This forces
the swarm to have to re-learn the effect of any given colour of
token every season. Various settings for individual learning

GECCO ’17, July 15-19, 2017, Berlin, Germany Andreas Steyven, Emma Hart, and Ben Paechter

are investigated in which the learning mechanism is either
fixed or has components that can be simultaneously evolved.
The following questions are investigated:

• How do the parameters of the environment (token
count, token value) influence the effectiveness of
different individual learning settings?

• How does the rate of change of a given environ-
ment influence the effectiveness of individual learning
mechanisms?

• How does the nature of the individual learning mech-
anism influence performance in different environ-
ments?

We augment a distributed evolutionary algorithm previ-
ously described in [9] with mechanisms for individual learning
in order to conduct experiments. Note that the goal is not to
propose a novel method of either individual learning or evo-
lutionary adaptation but to explore the relationship between
the environment and value of different types of adaptation.

2 RELATED WORK

A reasonable body of research exists in relation to combining
learning and evolution, and factors that influence this rela-
tionship [7, 13, 14]. The relationship of the two methods in a
swarm environment in which it is necessary to simultaneously
learn behaviours which enable reproduction in addition to
task performance is less well studied however. Haasdjik et
al propose a framework for evolution, individual and social
learning in collective systems, and consider the interaction
of evolution and individual learning in which the latter is
achieved by reinforcement learning [19]. Their experiments
show that in a collective system, it is possible for learning
to counteract evolution. A hiding-effect can occur in which
individual learning acts to mask the ill-adapted nature of
non-optimal agents and is therefore counter-productive. Al-
though a number of environments were investigated which
essentially modified the reward system, all environments were
static, and the relationship of the learning framework to spe-
cific parameterisations of the environmental features was not
examined.

A dynamically changing reward system was investigated
in [1] who proposed mEDEA, a completely distributed evolu-
tionary algorithm for open-ended evolution. Here, efficient
adaptation in a changing environment was demonstrated
using a set up that switched phases: in the free-ride phase,
there is no cost to movement therefore a robot only needs to
meet a single other robot to pass on its genome, while in the
alternating phase the robot is required to harvest energy in
order to move and therefore creating opportunties for passing
on its genome. Haasdijk et al [8] extended mEDEA to add
explicit task-selection in the MONEE framework [15]. In [5]
they examine in more detail the relative selection pressures
induced by task performance and survival in different envi-
ronments, finding that task performance is optimised even if
it reduces the lifetime of robots (and therefore their ability to
reproduce). Heinermann et al investigate the relationship be-
tween evolution, individual and social learning in real swarm

[10–12]. Here, the evolutionary part focuses on evolving a
suitable sensory layout, while the individual learning runs an
evolution strategy to learn the network weights during the
robot lifetime. Learnt weight vectors are broadcast to other
robots during the social learning phase. The main focus of
this work was to investigate the impact of social learning.
Individual learning is required to learn a controller and hence
cannot be omitted.

In contrast to the above, we consider scenarios in which
individual learning has the potential to improve evolved
behaviours, but is not essential. We investigate the relative
benefits of evolution and individual learning using a variety
of learning mechanisms and in a range of environments with
different features. The goal is to specifically relate the roles
of evolution and individual learning performance to features
of the environment.

3 OVERVIEW

A swarm operates in an open environment in which there are
two types of coloured tokens: driving over one colour increases
the robots energy while the other decreases it. Robots should
learn to avoid the negative token. However, a “seasonal”
change is imposed where the value of the token is reversed, i.e.
red becomes positive and blue negative or vice versa. A robot
must thus adapt any previously evolved behaviour. All robots
in the swarm evolve a neural network that controls their
behaviour through a distributed evolutionary algorithm [9] In
addition, they can exploit an individual learning mechanism
which can potentially learn the current value of a given
colour of token. This information modifies an input to the
evolved neural network. We investigate a number of types of
individual learning in which some components of the learning
mechanism can be either heritable, fixed or absent.

Experiments are conducted using the Roborobo simulator
[2]. The robots have 8 ray-sensors distributed around the
body and detect proximity to the nearest object and its
type. Each robot is controlled by an evolved Elman recurrent
neural network (RNN). The network has 16 sensory inputs
and 2 motor outputs (translational and rotational speeds).
The 16 inputs comprise of two information of each of the 8
ray-sensors, proximity and whether or not this object is an
energy token. Although the colour/type of the object is also
detected by the robot, it is not fed into the RNN as an input,
but only used in the adaptation mechanism1.

3.1 mEDEA

Using the inputs and outputs just described, an RNN with 1
hidden layer containing 16 nodes is evolved by a distributed
evolutionary algorithm [9]. This algorithm is an extension
of mEDEA [1], and incorporates a selection mechanism
based on relative fitness. In brief, for a fixed period, robots
move according to their control algorithm, broadcasting their
genome that is received and stored by any robot within range.
At the end of this period, a robot uses fitness-proportionate

1the information cannot be encoded directly to the network without a
priori knowledge of the number of potential colours

Investigation of Environmental Influence on Adaptation Mechanisms GECCO ’17, July 15-19, 2017, Berlin, Germany

selection to choose a genome from its list of collected genomes
according to a relative fitness value, and applies a variation
operator. This takes the form of a Gaussian random mutation
operator, inspired from Evolution Strategies. Pseudo-code is
given in Algorithm 1.

load(currentGenome = randomInitialisedGenome);

while iteration ≤ maxIterations do
if hasGenome() then

if lifetime ≤ maxLifetime & energy > 0 then
move();

if neighbourhood.isNotEmpty() then
rf =calculateRelativeFitness(); // eq.1

broadcast(currentGenome,rf);

end

else
remove(currentGenome);

end

end

genomeList.addIfUnique(receivedGenomes);

if genomeList.size() > 0 then
genome = selectroulette−wheel(genomeList);
load(currentGenome =
applyVariation(genome));

genomeList.empty();

lifetime = 0;

end

end

Algorithm 1: Pseudo code of the adapted version of
the mEDEA algorithm with relative fitness mEDEArf

as introduced in [9] used with roulette-wheel as explicit
selection mechanism

Each robot estimates its fitness in terms of its ability
to survive based on the balance between energy lost and
energy gained, denoted (δE): this term is initialised to 0
at t = 0 (when the current genome was activated) and is
decreased according an energy-model described below that
accounts for both movement and the cost of communicating
for evolution, and increased by Etoken if it crosses an energy
token. Given δE , a robot calculates a fitness value which
is relative to those robots in the neighbourhood of range r.
according to equation 1, where f ′i is the relative fitness of
robot i at time t, meansubi is the mean δE of the robots
within the subpopulation defined by all robots in range r of
robot i, and sdsubi is the standard deviation of the δE of the
subpopulation.

f ′i(t) =
δi(t)−meansubi(t)

sdsubi(t)
(1)

There is a fixed cost to living of 0.5 units per timestep,
regardless of whether the robot moves or not. A robot moving
consumes an amount of energy that is related to its rotational
speed vrot, translational speed vtrans, and their respective
maximum values vrot-max and vtrans-max

Estep = 0.5 +

(
vrot

vrot-max
+

vtrans
vtrans-max

)
/4 (2)

The amount of energy spent on communication Ecom is
calculated using equation 3, where i and j are the number
of genomes received and transmitted respectively. The val-
ues arx = 0.0305, atx = 0.01379 and atx-amp = 0.000614
were determined based on the method described by [18]; the
reader is referred to this publication for a description of their
approach.

Ecom =
i∑

k=0

arx +

j∑

k=0

(
atx + btx-amp × d2

)
(3)

Equation 4 shows the change in energy at each simulation
step, where n is the number of tokens that have been collected
in that step.

E(t+ 1) = E(t)− Estep − Ecom + (ntoken × Etoken) (4)

3.2 Environment

In Evolutionary Robotics, it is often unclear exactly how
parameterisation of a given environment might influence
the emergence of particular behaviours. Often, the focus of
reported studies is on algorithm performance, without serious
consideration of how the choice of environment may influence
results. This is particularly important for an open-ended
distributed algorithm such as mEDEA in which survival
of robots is crucial for evolution to occur. To counter this,
Steyven et al [17] recently proposed a technique by which
preliminary experimentation could be used to generate a
surface-plot, highlighting regions of the parameter space in
which the environment provides the right balance between
facilitating survival and exerting sufficient pressure for new
behaviours to emerge. This enables a researcher to select
appropriate settings for experimentation. For example, for a
given task, on the one hand, there will be regions in which
the characteristics of the environment are such that robots
find survival to be trivial (e.g. food supplies are unlimited
and easy to find), and hence there is little pressure to evolve
specialised behaviours. On the other hand, environmental
characteristics which are harsh enough to cause individual
robots to die prematurely and therefore prevent any effective
evolution are also identified.

Using the algorithm described above, we conducted exper-
iments in an environment parameterised by two variables:
the number of energy tokens available, and the value of the
energy token. In each environment tested, there are n posi-
tive tokens with value v, and n negative tokens with value
-400. The delta-energy δE , i.e. difference between start and
end energy is recorded for multiple points in the parameter
space, resulting in the plot shown in figure 1. From this plot,
we identify three points to conduct experiments along the
energy neutral line, i.e the region in which the robot expends
as much energy as it acquires. This represents a region in
which selection-pressure from the environment to survive is
neither too small or too large to mask the behaviours we are

GECCO ’17, July 15-19, 2017, Berlin, Germany Andreas Steyven, Emma Hart, and Ben Paechter

0 200 400 600 800 1000 1200

0
20

0
40

0
60

0
80

0
10

00
12

00

count

va
lu

e

Figure 1: Overview of newly created surface land-
scape. The red line shows the Neutral Line, the
line where the surface plot crosses a plane drawn at
delta-energy (δE)=0.

*
Table 1: Environmental configurations: description
refers to the prevalence of energy tokens within the
environment.

Number of tokens Value per token Description

300 1150 Scarce
625 625 Balanced
1150 425 Abundant

interested in investigating. The points identified are specified
in table 1.

4 INDIVIDUAL LEARNING

The neural network described above has a set of binary inputs
(one for each sensor ray of the robot) that denote the pres-
ence (1) or absence (0) of a token (independent of its type).
Therefore, in an environment in which there are multiple
types of tokens, the only way for an individual to distinguish
between them is to pick up the token and observe the change
in energy. If the environment in which the robot operates
is known a priori, then clearly, the neural network could
be designed in order to include relevant information about
each token type. However, if the environment is unknown,
then the robot must learn to adapt to the different types and
values of tokens it may encounter.

We use an adaptation mechanism which enables a robot
to modify the value input to the RNN corresponding to a
token sensor: instead of simply having a binary input, the
robot uses a learned/evolved multiplier to adapt the token
input to a continuous value between −1 and 1.

Each time a previously unseen type of token is encountered
(detected by a sensor ray or through consumption2), a new
multiplier is added to the multiplier set. As tokens are usually

2The sensor rays of the robot are not evenly distributed around the
robot body. This can lead to the situation in which a robot drives
over the token before any of the sensor rays detected it.

detected before they are consumed, no information regarding
a new token’s value is known: the robot therefore randomly
initialises a value to associate with the type (x) of detected
token. Following consumption, the resulting change of energy
is detected by the robot and its learning mechanism can
modify the corresponding multiplier value (mx).

All multiplier values are adjusted every time a token is
consumed according to equation 5:

m′x = mx + LS ×
(
LR− Cx

Ctotal

)
×
(Vx

Vmax − Vmin

)
(5)

where mx is the current value for the multiplier for type
x; Cxis the number of tokens of type x collected; Ctotal is
the total number of all tokens collected; Vx is the value of
the token that has just been consumed and is therefore now
known to the robot (being equivalent to the change in energy);
Vmax, Vmin define the minimum and maximum values of all
tokens encountered so far. LR is a learning rate that controls
the magnitude of the change, and LS is either −1 or +1 and
simply inverts the direction of change; this is required to
adjust the learning mechanism to the internal value notation
of the neural network and can be adapted via evolution. The
learning mechanism is shown in Algorithm 2.

if tokenx is unknown then
multipliers.add(tokenx);

end

if tokenx is consumed then
tokenCounterx.update(tokenx);

totalTokenCount.update();

tokenV aluex.update(δE(t)− δE(t− 1));

totalV alueRange.update();

for mx in multipliers do
mx.update(); // eq. 5

end

end

Algorithm 2: Pseudo code of the steps carried out to
update all multipliers every time a token is encountered.

Three factors influence the learning mechanism: the initial
value assigned to a token Vx, the learning rate LR and the
associated sign LS. These factors can be randomly assigned,
fixed to some specific value, or can themselves be subject to
evolution. Allowing the learning sign to co-evolve enables
the learning mechanism to self-adapt to the internal value
convention of the neural network. Finally, enabling the
robot to evolve an appropriate starting value for each type
of token based on its experience may speed up learning in
some circumstances. Even though token values change over
seasons, inheriting a good starting value may be beneficial,
likely dependent on the rate of change of the environment.

Table 2 defines four variants of the learning algorithm that
we investigate in conjunction with the three environments de-
scribed in section 3.2. Note that in no case is any Lamarkian
evolution used, i.e. although the multiplier starting values

Investigation of Environmental Influence on Adaptation Mechanisms GECCO ’17, July 15-19, 2017, Berlin, Germany

Table 2: Learning scenarios investigated showing
heritability of information

Initial Value of Multiplier LR LS

Baseline 1 (all tokens) none n/a
IL random fixed evolved

EVO evolved none n/a
EVO+IL evolved evolved evolved

Table 3: Simulation and Experimental Parameters
for all experiments

Simulation parameters

Arena size 1024 px × 1024 px
Max. robot lifetime 2500 iterations
Token re-spawn time 500 iterations
Sensor range 196 pixel
Max. communication range rmax 128 pixel

Experimental parameters

Number of independent runs 30
Number of robots 100
Max. iterations 100,000
Start energy 500

are adapted over the course of a lifetime, they are never
written back to the genome and are therefore not inherited.

4.1 Experiments

An experiment is defined by a tuple <environment, seasonal
change rate, algorithm>. Three environments (see section 3.2)
and three different rates of seasonal change are investigated:
0 (no change, i.e. static environment), every 5000 iterations,
and every 15000 iterations. Note that the maximum lifetime
of a genome before it is replaced is 2500 iterations, so every
robot should go through at least one evolutionary generation
during the shorter (5000 iterations) season and at least 5
times in the 15000 season. In practice, as robots tend to die
before their maximum lifetime, more evolutionary cycles are
likely to occur.

Four algorithms are investigated as detailed in table 2.
Note that in the baseline experiments, all tokens have a fixed
multiplier of 1 and therefore the robots cannot distinguish
between tokens of different types. Thus, in total 36 (=3x3x4)
experiments are conducted. In each experiment, we record
the totalTokenRatio at the end of the season. This value is
the ratio of the number of collected token with positive value
divided by the sum of all collected token within that season.
A ratio of 0.5 shows that an equal amount of positive and
negative token was collected, below 0.5 more negative and
above more positive token, respectively.

Experimental and simulation parameters are given in table
3. Parameters associated with the learning mechanism are
given in table 4. The values for LRinitial and LRmax where
selected following limited empirical exploration.

Table 4: Learning parameter with their initial values
and ranges in which they can change during runtime
of the experiment.

Parameter Init. Value Value Range

Learning rate, LR 1.02 [LRmin, LRmax]
Min. LR, LRmin 1 fixed
Max. LR, LRmax 1.5 fixed
Multiplier of type x, mx random [−1, 1]
Learning sign, LS random [−1, 1]

The positive value of an energy token is determined by the
environment. In seasons when a token is negative, the value
is fixed -400 which is 80% of a robot’s initial energy.

Following 30 runs of each experiment, statistical anal-
ysis was conducted based on the method in [16] using a
significance level of 5%. The distributions of two results
were checked using a Shapiro-Wilk test. If both followed a
Gaussian distribution then Levene’s test for homogeneity of
variances was perfomed. For equal variances the p-value was
determined using an ANOVA test, otherwise using a Welch
test. A Kruskal-Wallis rank sum test was perfomed to deter-
mine the p-value if one of the results followed a non-Gaussian
distribution.

5 RESULTS

This section provides summarised results: detailed experi-
mental data is available as supplementary material. Table 5
shows the median totalTokenRatio for each of three individ-
ual learning mechanisms (EVO, EVO+IL, IL) in each of the
3 environments and for each value of seasonal change. The
values are compared to the result from the baseline exper-
iment each case, and statistical significance is indicated in
the table.

The EVO method (which evolves multiplier values but
has no adaption during a lifetime) outperforms the baseline
method in all three static environments (season change =
0). Here, evolution is able to determine appropriate values
for each multiplier type. However, in the dynamic environ-
ment, evolving the multiplier value is detrimental. In the
first season, evolution can find appropriate multiplier val-
ues (particularly in a long season). However, as soon as
the season changes, these become irrelevant; if these values
have spread sufficiently through the population it may take
considerable time for evolution to reverse this change, while
in the meantime, the robot will continue to collect negative
tokens.

The IL method (fixed learning rate and random initial-
isation of values) never outperforms the baseline method
in the static environment, and is worse than the baseline
in the dynamic environments. The magnitude of the effect
is highest in the seasonal change=5000 environment for a
balanced environment. It appears that the learning rate is
not sufficient to adapt a randomly initialised multiplier to
a suitable value while the randomness can actually bias the

GECCO ’17, July 15-19, 2017, Berlin, Germany Andreas Steyven, Emma Hart, and Ben Paechter

Table 5: Showing median of end values by seasonal change and Experiment for totalTokenRatio over generation
199 to 200 (N:30). ↓, ↔, ↑ indicate whether the value is lower, not different or higher respectively compared
to the baseline experiment. The number of arrows corresponds to the magnitude level of the effect size based
on a Vargha and Delaney A test. (1 = small, 2 = medium, 3 = large)

Experiment Evo IL Evo + IL
count 300 625 1150 300 625 1150 300 625 1150

Season value 1150 625 425 1150 625 425 1150 625 425

0 ↑↑↑ 0.5301 ↑↑↑ 0.5411 ↑↑↑ 0.5662 ↔ 0.5034 ↔ 0.5056 ↓ 0.4997 ↑↑↑ 0.5306 ↑↑↑ 0.5388 ↑↑↑ 0.5705

5k ↔ 0.4995 ↓ 0.4982 ↓ 0.4989 ↓ 0.5006 ↓↓ 0.4975 ↔ 0.5023 ↔ 0.5029 ↑↑ 0.5134 ↑↑↑ 0.5191

15k ↓↓ 0.496 ↓↓ 0.495 ↓ 0.4981 ↓ 0.4973 ↓ 0.4993 ↓ 0.5011 ↔ 0.4981 ↑↑ 0.5136 ↑↑↑ 0.5121

robot towards collecting a particular type. On average, this
is worse than the baseline case in which the robot has equal
preference for both types.

In contrast, with the exception of the two dynamic and
scarce environments, the EVO+IL method which evolves the
LR, LS and the multiplier values and also adjusts the latter
during lifetime, a significant improvement is observed with
respect to the baseline method. In the scarce environments,
the robots have little information available to them to inform
learning, as there are few tokens. When the environment
is changing rapidly this is particularly detrimental. In the
other environments, there are more tokens to learn from.
When this is coupled with the ability to both evolve useful
multiplier values and adapt them at a appropriate rate, the
swarm learns to adapt to the changing environments and
improves its behaviour in the static environment.

5.1 Influence of environmental parameters

Next, we examine the first question posed in section 1 in more
depth: under what environmental conditions is augmenting
evolution with an individual learning mechanism beneficial?

Table 6 provides a pairwise comparison of environments for
totalTokenRatio obtained at the end of each experiment. In
this table and subsequent ones, the symbols =, <,> indicate
whether the median values for totalTokenRatio are not signif-
icantly different, significantly smaller or larger respectively.
p-values below the significance level of 0.05 are written in
bold.

Table 6 clearly indicates that for the methods that include
an evolutionary component with the learning algorithm, then
in the static environment, abundant > balanced > scarce.
In contrast, when only a fixed individual learning mechanism
is used with no adaptation of learning rate, then the reverse
appears true; the token ratio is higher in the balanced and
scare environments is higher than in the abundant environ-
ment, with no significant difference between balanced and
abundant.

In the slow changing environment (15k), the general trend
is that abundant > balanced > scarce for all three mecha-
nisms. In the rapidly changing environment, a mixed pic-
ture emerges. For the EVO+IL mechanism, it is clear that
abundant > balanced > scarce. For EVO, the scarce envi-
ronment does not provide significantly different results to the

other two, whereas for IL, both scarce and balanced prove
harder than abundant, but scarce outperforms balanced.

5.2 Influence of Environmental Change

Table 7 illustrates how the rate of change of a given envi-
ronment influences the interaction between environmental
parameters and learning mechanisms. In 21/27 pairwise
comparisons, statistically significant results are observed.

In the scarce environments, there is a general pattern
that in terms of rate of change, static > 5k > 15k for all
mechanisms. In the balanced environments, the same general
pattern is observed, with the exception that for the IL and
EVO+IL mechanisms, no statistical differences are noted
between the 5k and 15k environments. In the abundant
environments, we also note the same general pattern as above,
except that for IL, the only significant result shows that
5k>15k significant, while in contrast, for EVO, 5k<15k.

5.3 Influence of learning mechanism

Table 8 provides a pairwise comparison of learning mecha-
nisms within different environments. 22/27 comparisons are
significant.

For the scarce environment, general pattern that EVO+IL
outperforms the other two methods in 4/6 cases, with no
statistical difference in the other two cases. In the balanced
environment, EVO+IL also clearly dominates both EVO
and IL. EVO dominates IL in the static and 5k experiments.
Finally, in the abundant environment, we again observe the
supremacy of EVO+IL, while IL dominates EVO in both of
the dynamic environments.

5.4 Analysis

The previous section showed that the EVO+IL clearly outper-
forms IL and EVO in all parameterisations of the environment
and for all rates of change. We examine its behaviour more
closely by plotting the normalised difference between the
number of positive tokens (p) and the number of negative
tokens (n) collected per season over time (i.e. p-n). This is
shown in figure 2 for the (scarce, balanced, abundant) envi-
ronments for the two cases in which the values of the tokens
change dynamically with seasons. The solid lines on the
graph represent this value combined over both seasons, while
the dashed and dotted lines represent the value in season 0
and season 1 respectively. All lines are smoothed over the

Investigation of Environmental Influence on Adaptation Mechanisms GECCO ’17, July 15-19, 2017, Berlin, Germany

Table 6: p-values of pairwise comparison of environments for totalTokenRatio (row vs. column) over genera-
tion 199 to 200

Experiment Evo IL Evo + IL
count 625 1150 625 1150 625 1150

Season value 625 425 625 425 625 425

0 300 1150 < 1.24e-07 < 3.02e-27 = 5.78e-01 > 7.33e-05 < 3.27e-02 < 1.44e-40
625 625 < 9.37e-16 > 7.87e-11 < 1.33e-32

5k 300 1150 = 4.55e-01 = 3.08e-01 > 7.89e-05 < 1.99e-02 < 3.87e-19 < 1.5e-32
625 625 > 1.22e-03 < 1.81e-17 < 5.88e-04

15k 300 1150 < 4.78e-02 < 1.58e-04 = 6.51e-01 < 4.11e-04 < 1.94e-16 < 9.56e-30
625 625 < 1.09e-08 < 1.44e-12 = 2.61e-01

Table 7: Showing p-values of pairwise comparison of seasonal change for totalTokenRatio (row vs. column)
over generation 199 to 200

Environment count:300 value:1150 count:625 value:625 count:1150 value:425
Experiment Season 5k 15k 5k 15k 5k 15k

Evo 0 > 9.09e-69 > 6.76e-55 > 1.2e-131 > 4.34e-99 > 6.91e-120 > 9.94e-88
5k > 1.89e-02 > 1.67e-05 < 6.04e-03

IL 0 > 2.54e-05 > 6.93e-09 > 4.05e-27 > 4.43e-20 = 1.03e-01 = 7.08e-01
5k = 7.61e-02 = 8.51e-02 > 8.33e-03

Evo + IL 0 > 2.82e-35 > 1.37e-31 > 1.76e-32 > 4.15e-32 > 3.41e-178 > 3.54e-118
5k > 1.7e-02 = 4.38e-01 = 7.19e-01

Table 8: Showing p-values of pairwise comparison of learning mechanism for totalTokenRatio (row vs. column)
over generation 199 to 200

Environment count:300 value:1150 count:625 value:625 count:1150 value:425
Season Experiment IL Evo + IL IL Evo + IL IL Evo + IL

0 Evo > 6.04e-35 = 6.64e-01 > 8.51e-77 = 4.32e-01 > 4.44e-82 < 1.5e-03
IL < 3.6e-26 < 6.66e-59 < 6.7e-150

5k Evo = 8.45e-01 < 3.18e-05 > 4.42e-06 < 3.36e-55 < 4.22e-15 < 9.94e-122
IL < 1.27e-04 < 3.6e-70 < 2.9e-80

15k Evo = 7.84e-02 < 8.55e-04 < 7.4e-03 < 1.09e-41 < 1.28e-08 < 3.11e-77
IL = 5.27e-02 < 5.83e-42 < 2.23e-72

relevant points. The continuous improvement in this metric
is clearly identified for EVO+IL, showing a generally robust
response to the changes in token value (i.e. an upward trend).
The abundant environment proves most straightforward to
learn in: having a large quantity of information of low-value
outweighs the situation in which a small quantity of high-
value information is available. In contrast, in the baseline
experiment in which no information is available as to token
value, the (p-n) metric continuously cycles. In this case,
the best that evolution can do is learn a token-avoidance
behaviour, as there is no means of distinguishing between
tokens.

6 CONCLUSION

We have investigated the performance of a number of adapta-
tion mechanisms that augment evolution of a neural network
controller. Adaptation mechanisms that included heritable

and fixed components were analysed in three different envi-
ronments in which both the number of learning opportunities
and the impact of the learning opportunity varied.

We show that an adaptation mechanism in which all compo-
nents evolve and are heritable (EVO+IL) copes well in static
and dynamic environments, and is able to learn to distinguish
between tokens of different value. In dynamic environments,
the greatest effect is observed when the environment contains
a large number of small learning opportunities. The fewer
the learning opportunities, the less effective the mechanism
becomes, despite the fact that the opportunities provide
more energy and therefore more information to the learning
mechanism.

In contrast, the EVO and IL mechanisms both prove to
be detrimental in a changing environment when compared
to the baseline scenario. No clear pattern emerges however
in terms of the magnitude of the effect with respect to the
number of learning opportunities present. The IL method

GECCO ’17, July 15-19, 2017, Berlin, Germany Andreas Steyven, Emma Hart, and Ben Paechter

15k, Evo + IL 15k, Baseline

5k, Evo + IL 5k, Baseline

0.0e+00 2.5e+05 5.0e+05 7.5e+05 1.0e+06 0.0e+00 2.5e+05 5.0e+05 7.5e+05 1.0e+06

−0.005

0.000

0.005

0.010

−0.008

−0.004

0.000

0.004

0.00

0.01

0.02

0.03

0.04

0.00

0.02

0.04

0.06

iteration

no
rm

al
is

ed
 d

iff
 (

p−
n)

/s

Count & Value c300v1150 c625v625 c1150v425

Figure 2: Normalised difference between positive
and negative tokens collected. Solid line is value
combined over all seasons, dashed = season 0, dotted
= season 1

never outperforms the baseline experiments, whereas EVO
is beneficial only in a static environment. In the latter case,
performance is greatest in the environment with most tokens,
and decreases as the number of tokens decreases.

The results clearly demonstrate the interaction between
the learning mechanism and environmental parameters. This
is of particular relevance for distributed algorithms such as
mEDEA in which environmental pressure influences repro-
ductive abilities. The huge variety of behaviour that were
displayed in different environments highlight how fundamen-
tal it is to not just select parameters at random, but to
perform a more thorough analysis. The emerging behaviour
using a single set of algorithmic parameter varied from giving
a massice advantage, to showing no difference, to even being
counter productive. Future work will extend the analysis
to other mechanisms for adding individual learning and/or
adaptation, as well as considering social learning, recently
demonstrated by [11, 12] to be effective in some scenarios.

REFERENCES
[1] Nicolas Bredeche and Jean-Marc Montanier. 2010. Environment-

driven embodied evolution in a population of autonomous agents.
In Parallel Problem Solving from Nature, PPSN XI, Robert
Schaefer, Carlos Cotta, Joanna Ko lodziej, and Günter Rudolph
(Eds.), Vol. 6239. Springer Berlin Heidelberg, Krakov, Poland,
290–299.

[2] Nicolas Bredeche, Jean-Marc Montanier, Berend Weel, and Ev-
ert Haasdijk. 2013. Roborobo! a Fast Robot Simulator for
Swarm and Collective Robotics. CoRR abs/1304.2 (apr 2013).
arXiv:1304.2888

[3] Kai Ellefsen. 2013. Balancing the Costs and Benefits of Learn-
ing Ability. In Advances in Artificial Life, ECAL 2013, Pietro
Liò, Orazio Miglino, Giuseppe Nicosia, Stefano Nolfi, and Mario
Pavone (Eds.). MIT Press, Taomina, 292–299.

[4] Jorge Gomes, Miguel Duarte, Pedro Mariano, and Anders Lyhne
Christensen. 2016. Cooperative Coevolution of Control for a
Real Multirobot System. Springer International Publishing, Cham,
591–601.

[5] Evert Haasdijk. 2015. Combining Conflicting Environmental and
Task Requirements in Evolutionary Robotics. In 2015 IEEE 9th

International Conference on Self-Adaptive and Self-Organizing
Systems. IEEE, 131–137.

[6] Evert Haasdijk, Agoston Endre Eiben, and Alan Frank Thomas
Winfield. 2013. Individual, Social and Evolutionary Adaptation
in Collective Systems. In Handbook of Collective Robotics -
Fundamentals and Challenges (2013 ed.), Serge Kernbach (Ed.).
Pan Stanford, Germany, Chapter 12, 411–469.

[7] Evert Haasdijk, P. A. Vogt, and Agoston Endre Eiben. 2008.
Social learning in Population-based Adaptive Systems. In 2008
IEEE Congress on Evolutionary Computation (IEEE World
Congress on Computational Intelligence). IEEE, 1386–1392.

[8] Evert Haasdijk, Berend Weel, and Agoston Endre Eiben. 2013.
Right on the MONEE. In Proceeding of the fifteenth annual
conference on Genetic and evolutionary computation conference,
Christian Blum (Ed.). ACM New York, NY, USA, Amsterdam,
The Netherlands, 207–214.

[9] Emma Hart, Andreas Steyven, and Ben Paechter. 2015. Improv-
ing Survivability in Environment-driven Distributed Evolutionary
Algorithms through Explicit Relative Fitness and Fitness Propor-
tionate Communication. In Proceedings of the 2015 on Genetic
and Evolutionary Computation Conference - GECCO ’15, Sara
Silva (Ed.). ACM Press, New York, New York, USA, 169–176.

[10] Jacqueline Heinerman, Dexter Drupsteen, and Agoston Endre
Eiben. 2015. Three-fold Adaptivity in Groups of Robots: The
Effect of Social Learning. In Proceedings of the 17th annual
conference on Genetic and evolutionary computation. ACM
Press, New York, New York, USA, 177–183.

[11] Jacqueline Heinerman, Massimiliano Rango, and Agoston Endre
Eiben. 2015. Evolution, Individual Learning, and Social Learning
in a Swarm of Real Robots. In 2015 IEEE Symposium Series on
Computational Intelligence. IEEE, 1055–1062.

[12] Jacqueline Heinerman, Alessandro Zonta, Evert Haasdijk, and
Agoston Endre Eiben. 2016. On-line Evolution of Foraging Be-
haviour in a Population of Real Robots. Springer, Cham, 198–212.

[13] Giles Mayley. 1996. Landscapes, Learning Costs, and Genetic
Assimilation. Evolutionary Computation 4, 3 (sep 1996), 213–
234.

[14] Stefano Nolfi and Dario Floreano. 1999. Learning and evolution.
Autonomous robots 7, 1 (1999), 89–113.

[15] Nikita Noskov, Evert Haasdijk, Berend Weel, and Agoston Endre
Eiben. 2013. MONEE: Using Parental Investment to Combine
Open-Ended and Task-Driven Evolution. In Applications of Evo-
lutionary Computation, A. I. Esparcia-Alcázar (Ed.), Vol. 7835.
Springer, Berlin Heidelberg, 569–578.

[16] Carlos Segura, Carlos A. Coello Coello, Eduardo Segredo, and Ar-
turo Hernandez Aguirre. 2016. A Novel Diversity-Based Replace-
ment Strategy for Evolutionary Algorithms. IEEE Transactions
on Cybernetics 46, 12 (dec 2016), 3233–3246.

[17] Andreas Steyven, Emma Hart, and Ben Paechter. 2016. Under-
standing Environmental Influence in an Open-Ended Evolutionary
Algorithm. In Parallel Problem Solving from Nature PPSN XIV,
Julia Handl et al. (Eds.). Vol. 9921 LNCS. Springer International
Publishing AG, Chapter 86, 921–931.

[18] Andreas Steyven, Emma Hart, and Ben Paechter. 2015. The Cost
of Communication: Environmental Pressure and Survivability in
mEDEA. In Proceedings of the Companion Publication of the
2015 on Genetic and Evolutionary Computation Conference
- GECCO Companion ’15, Sara Silva (Ed.). ACM Press, New
York, New York, USA, 1239–1240.

[19] R.S. Sutton and A.G. Barto. 1998. Reinforcement Learning: An
Introduction. IEEE Transactions on Neural Networks 9, 5 (sep
1998), 1054–1054.

[20] Joanne H. Walker, Simon M. Garrett, and Myra S. Wilson. 2006.
The balance between initial training and lifelong adaptation in
evolving robot controllers. IEEE transactions on systems, man,
and cybernetics. Part B, Cybernetics : a publication of the
IEEE Systems, Man, and Cybernetics Society 36, 2 (apr 2006),
423–32.

Appendix B

Adaptation Mechanism

B.1 Visualisation of Individual Learning Parameter

Each of the 12 plots in the following figures show the same algorithm deployed in a

different experimental configuration. The experiments are made up of three different

environments (rows), each experiencing four different rates of change (columns). The

rows show different environments (count: 300, value:1150; count: 625, value: 625;

count: 1150, value: 425), and the columns show different rates of change (no, every 5k,

15k and 30k iterations).

Data plotted in the individual scatter plots represents 10% of the population (ran-

domly sampled) and is taken from a single randomly selected run of the experiment.

Each of the two sub-graphs is a scatter plot, showing the value of the positive and

negative multiplier respectively. Note, the names "positive", for the upper sub-graph,

and "negative", for the lower sub-graph, refer to the initial value of the corresponding

token at the beginning of the experiment. Every genome has a data point on either of

the two sub-graphs. The values end-of-lifetime (x position), distance travelled (y-value)

and reproductive success (transparency; measured in number of offspring) are the same

in each sub-graph. The value of the multiplier (colour; a continues scale from -1 = red

to +1 = green) is unique to the corresponding sub-graph. The size of the dot shows the

B.1 Visualisation of Individual Learning Parameter 172

adaptation success of the individual genome: positive tokens collected per lifetime in

the upper sub-graph and the inverse ratio for negative tokens in the lower sub-graph.

The red/green lines below the y-axes is made up of dots, each representing the learning

sign LS of the individuals: red=negative and green=positive. Note that LS is negated in

the lower sub-graph.

1

F
ig
.
1:

E
vo

+
IL

(a
)
N
o
S
ea
so
n
al

C
h
an

ge

count:300,value:1150

(b
)
5k

S
ea
so
n
C
h
an

ge
(c
)
15
k
S
ea
so
n
C
h
a
n
ge

(d
)
3
0
k
S
ea
so
n
C
h
a
n
g
e

count:625,value:625 count:1150,value:425

2

F
ig
.
2:

E
vo

(a
)
N
o
S
ea
so
n
al

C
h
an

ge

count:300,value:1150

(b
)
5k

S
ea
so
n
C
h
an

ge
(c
)
15
k
S
ea
so
n
C
h
a
n
ge

(d
)
3
0
k
S
ea
so
n
C
h
a
n
g
e

count:625,value:625 count:1150,value:425

3

F
ig
.
3:

IL

(a
)
N
o
S
ea
so
n
al

C
h
an

ge

count:300,value:1150

(b
)
5k

S
ea
so
n
C
h
an

ge
(c
)
15
k
S
ea
so
n
C
h
a
n
ge

(d
)
3
0
k
S
ea
so
n
C
h
a
n
g
e

count:625,value:625 count:1150,value:425

	Table of contents
	List of figures
	List of tables
	1 Introduction
	1.1 Research Questions
	1.2 Contributions
	1.3 Methodology
	1.4 Publications
	1.5 Thesis Overview

	2 Background
	2.1 Robotics
	2.2 Evolutionary Robotics
	2.2.1 Swarm Robotics
	2.2.2 Controller

	2.3 From Centralised and Offline to Distributed and Online
	2.4 Algorithms for Distributed Online Evolution
	2.4.1 Probabilistic Gene Transfer Algorithm
	2.4.2 odNEAT
	2.4.3 mEDEA

	2.5 Drivers of Evolution
	2.5.1 Fitness Function
	2.5.2 Environment-driven Adaptation
	2.5.3 Environment-driven + Fitness Function

	2.6 Role of the Environment
	2.6.1 Morphology
	2.6.2 Influence of the Environment

	2.7 Combining Learning and Evolution
	2.7.1 Learning and Adaptation Mechanisms
	2.7.2 Individual and Social Learning

	2.8 Summary

	3 Using Relative Fitness to Improve Survivability in mEDEA
	3.1 Contribution
	3.2 Introduction
	3.3 The mEDEA Algorithm in Detail
	3.3.1 Algorithm Outline
	3.3.2 A Closer Look at the Key Steps

	3.4 mEDEA with Relative Fitness
	3.4.1 Explicit Selection Mechanisms
	3.4.2 Biasing Broadcasting of Genomes

	3.5 Hypotheses
	3.6 Experiments
	3.6.1 Methodology
	3.6.2 Experiment Set 1: Explicit Selection Mechanism
	3.6.3 Experiment Set 2: Varying the Broadcasting Mechanism

	3.7 Evaluation and Analysis
	3.7.1 Experiment Set 1: Explicit Selection Mechanism
	3.7.2 Experiment Set 2: Varying the Broadcasting Mechanism
	3.7.3 Combining Explicit Selection with Biased Broadcasting

	3.8 Summary and Conclusion
	3.8.1 Summary
	3.8.2 Conclusion

	4 Influence of Communication Cost on the Effectiveness of the Broadcasting Variation Mechanism in mEDEArf
	4.1 Contribution
	4.2 Introduction
	4.3 The Use of Energy in mEDEArf
	4.4 Improving the Energy Model in the Simulator
	4.4.1 Energy Consumption Characteristics of Hardware Communication Modules
	4.4.2 Free-Space-Model
	4.4.3 Calculation of Communication Costs for the Simulation
	4.4.4 Movement Dependent Living Costs
	4.4.5 The New Energy Model

	4.5 Hypothesis
	4.6 Experiments
	4.6.1 Methodology

	4.7 Evaluation and Analysis
	4.7.1 Methodology
	4.7.2 Influence of the Energy Model

	4.8 Summary and Conclusion

	5 Influence of the Environment on the Emergence of Behaviour
	5.1 Contribution
	5.2 Introduction
	5.3 Hypotheses
	5.4 Experiments
	5.4.1 Methodology
	5.4.2 Adaptation of mEDEArf for Experiments

	5.5 Evaluation and Analysis
	5.5.1 Different Performance Regions
	5.5.2 Environmental Influence on Behaviour
	5.5.3 Behaviours in the Neutral Region
	5.5.4 Results of a Different Environment

	5.6 Summary and Conclusion

	6 Influence of the Environment on the Benefit of Lifetime Adaptation
	6.1 Contribution
	6.2 Introduction
	6.3 Designing the Lifetime Adaptation Mechanism
	6.3.1 Scenario Overview
	6.3.2 The Individual Learning Mechanism

	6.4 Hypotheses
	6.5 Experiments
	6.5.1 Variations of the Adaptation Mechanism
	6.5.2 Selecting Environmental Configurations
	6.5.3 Sets of Experiments
	6.5.4 Energy Model and Updated Communication Costs

	6.6 Evaluation and Analysis
	6.6.1 Methodology
	6.6.2 Adaptation Mechanism
	6.6.3 General Observations
	6.6.4 Influence of the Adaptation Mechanism
	6.6.5 Influence of Environmental Parameters
	6.6.6 Influence of Environmental Change
	6.6.7 Analysis

	6.7 Summary and Conclusion

	7 Conclusion
	7.1 Summary
	7.2 Answers to Research Questions
	7.3 Discussion
	7.4 Future Work

	References
	Appendix A Publications
	A.1 Improving Survivability in Environment-driven Distributed Evolutionary Algorithms through Explicit Relative Fitness and Fitness Proportionate Communication
	A.2 The Cost of Communication: Environmental Pressure and Survivability in mEDEA
	A.3 Understanding Environmental Influence in an Open-Ended Evolutionary Algorithm
	A.4 An Investigation of Environmental Influence on the Benefits of Adaptation Mechanisms in Evolutionary Swarm Robotics

	Appendix B Adaptation Mechanism
	B.1 Visualisation of Individual Learning Parameter

