Skip to main content

Research Repository

Advanced Search

All Outputs (6)

Paper Supercapacitor Developed Using a Manganese Dioxide/Carbon Black Composite and a Water Hyacinth Cellulose Nanofiber-Based Bilayer Separator (2023)
Journal Article
Beg, M., Alcock, K. M., Titus Mavelil, A., O’Rourke, D., Sun, D., Goh, K., …Yu, H. (2023). Paper Supercapacitor Developed Using a Manganese Dioxide/Carbon Black Composite and a Water Hyacinth Cellulose Nanofiber-Based Bilayer Separator. ACS applied materials & interfaces, 15(44), 51100-51109. https://doi.org/10.1021/acsami.3c11005

Flexible and green energy storage devices have a wide range of applications in prospective electronics and connected devices. In this study, a new eco-friendly bilayer separator and primary and secondary paper supercapacitors based on manganese dioxi... Read More about Paper Supercapacitor Developed Using a Manganese Dioxide/Carbon Black Composite and a Water Hyacinth Cellulose Nanofiber-Based Bilayer Separator.

Preparation of Elastomeric Nanocomposites Using Nanocellulose and Recycled Alum Sludge for Flexible Dielectric Materials (2022)
Journal Article
Sun, D., Saw, B. L., Onyianta, A. J., Wang, B., Wilson, C., O'Rourke, D., …Lu, Z. (2023). Preparation of Elastomeric Nanocomposites Using Nanocellulose and Recycled Alum Sludge for Flexible Dielectric Materials. Journal of Advanced Dielectrics, 13(01), Article 2242008. https://doi.org/10.1142/s2010135x22420085

Flexible dielectric materials with environmental-friendly, low-cost and high-energy density characteristics are in increasing demand as the world steps into the new Industrial 4.0 era. In this work, an elastomeric nanocomposite was developed by incor... Read More about Preparation of Elastomeric Nanocomposites Using Nanocellulose and Recycled Alum Sludge for Flexible Dielectric Materials.

Processing and characterisation of water hyacinth cellulose nanofibres-based aluminium-ion battery separators (2021)
Conference Proceeding
Beg, M., Sun, D., Popescu, C., Alcock, K. M., Onyianta, A. J., O'Rourke, D., …Yu, H. (2021). Processing and characterisation of water hyacinth cellulose nanofibres-based aluminium-ion battery separators. In 2021 26th International Conference on Automation and Computing (ICAC). https://doi.org/10.23919/icac50006.2021.9594191

Water hyacinth is an invasive plant that can be converted to high value cellulose nanofibers. This study presents battery separators prepared from water hyacinth cellulose nanofibres (WHCNF) via a freeze-thawing crosslinking method, using polyethylen... Read More about Processing and characterisation of water hyacinth cellulose nanofibres-based aluminium-ion battery separators.

High aspect ratio cellulose nanofibrils from macroalgae Laminaria hyperborea cellulose extract via a zero-waste low energy process (2020)
Journal Article
Onyianta, A. J., O’Rourke, D., Sun, D., Popescu, C., & Dorris, M. (2020). High aspect ratio cellulose nanofibrils from macroalgae Laminaria hyperborea cellulose extract via a zero-waste low energy process. Cellulose, 27(14), 7997-8010. https://doi.org/10.1007/s10570-020-03223-5

Homogeneous high aspect ratio cellulose nanofibrils (CNFs) were prepared from Laminaria hyperborea (LH) seaweed cellulose without any initial mechanical, biological or chemical pre-treatments. Fourier-transform infrared spectrophotometry revealed tha... Read More about High aspect ratio cellulose nanofibrils from macroalgae Laminaria hyperborea cellulose extract via a zero-waste low energy process.

A process for deriving high quality cellulose nanofibrils from Water hyacinth invasive species (2020)
Journal Article
Sun, D., Onyianta, A. J., O’Rourke, D., Perrin, G., Popescu, C., Saw, L. H., …Dorris, M. (2020). A process for deriving high quality cellulose nanofibrils from Water hyacinth invasive species. Cellulose, 27, 3727-3740. https://doi.org/10.1007/s10570-020-03038-4

In this study, surface chemistry, the morphological properties, water retention values, linear viscoelastic properties, crystallinity index, tensile strength and thermal properties of water hyacinth (WH) cellulose were correlated with the degree of m... Read More about A process for deriving high quality cellulose nanofibrils from Water hyacinth invasive species.