Skip to main content

Research Repository

Advanced Search

All Outputs (9)

Opto-electrochemical variation with gel polymer electrolytes in transparent electrochemical capacitors for ionotronics (2024)
Journal Article
Kumar, C., Sebastian, A. K., Markapudi, P. R., Beg, M., Sundaram, S., Hussain, A., & Manjakkal, L. (2024). Opto-electrochemical variation with gel polymer electrolytes in transparent electrochemical capacitors for ionotronics. Applied Physics Letters, 124(11), Article 111603. https://doi.org/10.1063/5.0190801

Advanced flexible ionotronic devices have found excellent applications in the next generation of electronic skin (e-skin) development for smart wearables, robotics, and prosthesis. In this work, we developed transparent ionotronic-based flexible elec... Read More about Opto-electrochemical variation with gel polymer electrolytes in transparent electrochemical capacitors for ionotronics.

Screen Printed RuO2 Films for Energy Storage and Electrochemical Sensors (2024)
Presentation / Conference
Paul, F., Sam, V., Uppuluri, K., Beg, M., & Manjakkal, L. (2024, February). Screen Printed RuO2 Films for Energy Storage and Electrochemical Sensors. Poster presented at The 10th annual Innovations in Large-Area Electronics Conference (innoLAE 2024), Cambridge

Electrochemical Capacitors based on Organic Semiconductors and Metal Oxides (2024)
Presentation / Conference
Kanathedath, J., Nair, R., Peringath, A. R., Sasikumar, A., Paul, F., Beg, M., & Manjakkal, L. (2024, February). Electrochemical Capacitors based on Organic Semiconductors and Metal Oxides. Poster presented at The 10th annual Innovations in Large-Area Electronics Conference (innoLAE 2024), Cambridge

Paper Supercapacitor Developed Using a Manganese Dioxide/Carbon Black Composite and a Water Hyacinth Cellulose Nanofiber-Based Bilayer Separator (2023)
Journal Article
Beg, M., Alcock, K. M., Titus Mavelil, A., O’Rourke, D., Sun, D., Goh, K., …Yu, H. (2023). Paper Supercapacitor Developed Using a Manganese Dioxide/Carbon Black Composite and a Water Hyacinth Cellulose Nanofiber-Based Bilayer Separator. ACS applied materials & interfaces, 15(44), 51100-51109. https://doi.org/10.1021/acsami.3c11005

Flexible and green energy storage devices have a wide range of applications in prospective electronics and connected devices. In this study, a new eco-friendly bilayer separator and primary and secondary paper supercapacitors based on manganese dioxi... Read More about Paper Supercapacitor Developed Using a Manganese Dioxide/Carbon Black Composite and a Water Hyacinth Cellulose Nanofiber-Based Bilayer Separator.

Chemical synthesis of polyaniline and polythiophene electrodes with excellent performance in supercapacitors (2023)
Journal Article
Ramesh Peringath, A., Bayan, M. A., Beg, M., Jain, A., Pierini, F., Gadegaard, N., …Manjakkal, L. (2023). Chemical synthesis of polyaniline and polythiophene electrodes with excellent performance in supercapacitors. Journal of Energy Storage, 74(Part A), Article 108811. https://doi.org/10.1016/j.est.2023.108811

The emergence of portable electronics in miniaturized and intelligent devices demands high-performance supercapacitors (SC) and batteries as power sources. For the fabrication of such energy storage devices, conducting polymers (CPs) have significant... Read More about Chemical synthesis of polyaniline and polythiophene electrodes with excellent performance in supercapacitors.

Wearable Supercapacitive Ions Monitoring Sensors (2023)
Presentation / Conference
Titus Mavelil, A. T., Chandran, A. C., Sam, V., Beg, M., & Manjakkal, L. (2023, June). Wearable Supercapacitive Ions Monitoring Sensors. Poster presented at International Women in Engineering Day 2023, University of Aberdeen, Aberdeen

Individual Cell-Level Temperature Monitoring of a Lithium-Ion Battery Pack (2023)
Journal Article
Alcock, K. M., González-Vila, Á., Beg, M., Vedreño-Santos, F., Cai, Z., Alwis, L. S. M., & Goh, K. (2023). Individual Cell-Level Temperature Monitoring of a Lithium-Ion Battery Pack. Sensors, 23(9), Article 4306. https://doi.org/10.3390/s23094306

The work described herein details the deployment of an optical fibre strand with five fibre Bragg grating (FBG) sensors for individual cell-level temperature monitoring of a three-cell lithium-ion battery pack. A polymer guide tube with 3D printed pl... Read More about Individual Cell-Level Temperature Monitoring of a Lithium-Ion Battery Pack.

Processing and characterisation of water hyacinth cellulose nanofibres-based aluminium-ion battery separators (2021)
Conference Proceeding
Beg, M., Sun, D., Popescu, C., Alcock, K. M., Onyianta, A. J., O'Rourke, D., …Yu, H. (2021). Processing and characterisation of water hyacinth cellulose nanofibres-based aluminium-ion battery separators. In 2021 26th International Conference on Automation and Computing (ICAC). https://doi.org/10.23919/icac50006.2021.9594191

Water hyacinth is an invasive plant that can be converted to high value cellulose nanofibers. This study presents battery separators prepared from water hyacinth cellulose nanofibres (WHCNF) via a freeze-thawing crosslinking method, using polyethylen... Read More about Processing and characterisation of water hyacinth cellulose nanofibres-based aluminium-ion battery separators.