Skip to main content

Research Repository

Advanced Search

All Outputs (124)

An Evaluation of Domain-agnostic Representations to Enable Multi-task Learning in Combinatorial Optimisation (2025)
Presentation / Conference Contribution
Stone, C., Renau, Q., Miguel, I., & Hart, E. (2024, June). An Evaluation of Domain-agnostic Representations to Enable Multi-task Learning in Combinatorial Optimisation. Presented at 18th Learning and Intelligent Optimization Conference, Ischia, Italy

We address the question of multi-task algorithm selection in combinatorial optimisation domains. This is motivated by a desire to simplify the algorithm-selection pipeline by developing a more general classifier that does not require specialised info... Read More about An Evaluation of Domain-agnostic Representations to Enable Multi-task Learning in Combinatorial Optimisation.

An Open Intent Discovery Evaluation Framework (2024)
Presentation / Conference Contribution
Anderson, G., Hart, E., Gkatzia, D., & Beaver, I. (2024, September). An Open Intent Discovery Evaluation Framework. Presented at SIGDIAL 2024, Kyoto, Japan

In the development of dialog systems the discovery of the set of target intents to identify is a crucial first step that is often overlooked. Most intent detection works assume that a labelled dataset already exists, however creating these datasets i... Read More about An Open Intent Discovery Evaluation Framework.

Automated Human-Readable Label Generation in Open Intent Discovery (2024)
Presentation / Conference Contribution
Anderson, G., Hart, E., Gkatzia, D., & Beaver, I. (2024, September). Automated Human-Readable Label Generation in Open Intent Discovery. Presented at Interspeech 2024, Kos, Greece

The correct determination of user intent is key in dialog systems. However, an intent classifier often requires a large, labelled training dataset to identify a set of known intents. The creation of such a dataset is a complex and time-consuming task... Read More about Automated Human-Readable Label Generation in Open Intent Discovery.

Evaluating the Robustness of Deep-Learning Algorithm-Selection Models by Evolving Adversarial Instances (2024)
Presentation / Conference Contribution
Hart, E., Renau, Q., Sim, K., & Alissa, M. (2024, September). Evaluating the Robustness of Deep-Learning Algorithm-Selection Models by Evolving Adversarial Instances. Presented at 18th International Conference on Parallel Problem Solving From Nature PPSN 2024, Hagenburg, Austria

Deep neural networks (DNN) are increasingly being used to perform algorithm-selection in combinatorial optimisation domains, particularly as they accommodate input representations which avoid designing and calculating features. Mounting evidence fro... Read More about Evaluating the Robustness of Deep-Learning Algorithm-Selection Models by Evolving Adversarial Instances.

Identifying Easy Instances to Improve Efficiency of ML Pipelines for Algorithm-Selection (2024)
Presentation / Conference Contribution
Renau, Q., & Hart, E. (2024, September). Identifying Easy Instances to Improve Efficiency of ML Pipelines for Algorithm-Selection. Presented at 18th International Conference, PPSN 2024, Hagenberg, Austria

Algorithm-selection (AS) methods are essential in order to obtain the best performance from a portfolio of solvers over large sets of instances. However, many AS methods rely on an analysis phase, e.g. where features are computed by sampling solution... Read More about Identifying Easy Instances to Improve Efficiency of ML Pipelines for Algorithm-Selection.

Improving Efficiency of Evolving Robot Designs via Self-Adaptive Learning Cycles and an Asynchronous Architecture (2024)
Presentation / Conference Contribution
Le Goff, L., & Hart, E. (2024, July). Improving Efficiency of Evolving Robot Designs via Self-Adaptive Learning Cycles and an Asynchronous Architecture. Presented at GECCO 2024 Embodied and Evolved Artificial Intelligence Workshop, Melbourne, Australia

Algorithmic frameworks for the joint optimisation of a robot's design and controller often utilise a learning loop nested within an evolutionary algorithm to refine the controller associated with a newly generated robot design. Intuitively, it is rea... Read More about Improving Efficiency of Evolving Robot Designs via Self-Adaptive Learning Cycles and an Asynchronous Architecture.

Understanding fitness landscapes in morpho-evolution via local optima networks (2024)
Presentation / Conference Contribution
Thomson, S. L., Le Goff, L., Hart, E., & Buchanan, E. (2024, July). Understanding fitness landscapes in morpho-evolution via local optima networks. Presented at Genetic and Evolutionary Computation Conference (GECCO 2024), Melbourne, Australia

Morpho-Evolution (ME) refers to the simultaneous optimisation of a robot's design and controller to maximise performance given a task and environment. Many genetic encodings have been proposed which are capable of representing design and control. Pre... Read More about Understanding fitness landscapes in morpho-evolution via local optima networks.

Ealain: A Camera Simulation Tool to Generate Instances for Multiple Classes of Optimisation Problem (2024)
Presentation / Conference Contribution
Renau, Q., Dreo, J., & Hart, E. (2024, July). Ealain: A Camera Simulation Tool to Generate Instances for Multiple Classes of Optimisation Problem. Presented at GECCO '24: Genetic and Evolutionary Computation Conference, Melbourne, Australia

Artificial benchmark datasets are common in both numerical and discrete optimisation domains. Existing benchmarks cover a broad range of classes of optimisation, but as a general rule have limited value due to their poor resemblance to real-world pro... Read More about Ealain: A Camera Simulation Tool to Generate Instances for Multiple Classes of Optimisation Problem.

Improving Algorithm-Selection and Performance-Prediction via Learning Discriminating Training Samples (2024)
Presentation / Conference Contribution
Renau, Q., & Hart, E. (2024, July). Improving Algorithm-Selection and Performance-Prediction via Learning Discriminating Training Samples. Presented at GECCO 2024, Melbourne, Australia

The choice of input-data used to train algorithm-selection models is recognised as being a critical part of the model success. Recently, feature-free methods for algorithm-selection that use short trajec-tories obtained from running a solver as input... Read More about Improving Algorithm-Selection and Performance-Prediction via Learning Discriminating Training Samples.

Learning Descriptors for Novelty-Search Based Instance Generation via Meta-evolution (2024)
Presentation / Conference Contribution
Marrero, A., Segredo, E., León, C., & Hart, E. (2024, July). Learning Descriptors for Novelty-Search Based Instance Generation via Meta-evolution. Presented at GECCO '24: Genetic and Evolutionary Computation Conference, Melbourne, Australia

The ability to generate example instances from a domain is important in order to benchmark algorithms and to generate data that covers an instance-space in order to train machine-learning models for algorithm selection. Quality-Diversity (QD) algorit... Read More about Learning Descriptors for Novelty-Search Based Instance Generation via Meta-evolution.

A Hierarchical Approach to Evolving Behaviour-Trees for Swarm Control (2024)
Presentation / Conference Contribution
Montague, K., Hart, E., & Paechter, B. (2024, April). A Hierarchical Approach to Evolving Behaviour-Trees for Swarm Control. Presented at EvoStar 2024, Aberystwyth

Behaviour trees (BTs) are commonly used as controllers in robotic swarms due their modular composition and to the fact that they can be easily interpreted by humans. From an algorithmic perspective, an additional advantage is that extra modules can e... Read More about A Hierarchical Approach to Evolving Behaviour-Trees for Swarm Control.

On the Utility of Probing Trajectories for Algorithm-Selection (2024)
Presentation / Conference Contribution
Renau, Q., & Hart, E. (2024, April). On the Utility of Probing Trajectories for Algorithm-Selection. Presented at EvoStar 2024, Aberystwyth, UK

Machine-learning approaches to algorithm-selection typically take data describing an instance as input. Input data can take the form of features derived from the instance description or fitness landscape , or can be a direct representation of the ins... Read More about On the Utility of Probing Trajectories for Algorithm-Selection.

Evolving Behavior Allocations in Robot Swarms (2024)
Presentation / Conference Contribution
Hallauer, S., Nitschke, G., & Hart, E. (2023, December). Evolving Behavior Allocations in Robot Swarms. Presented at IEEE Symposium Series on Computational Intelligence (SSCI 2023), Mexico City, Mexico

Behavioral diversity is known to benefit problem-solving in biological social systems such as insect colonies and human societies, as well as in artificial distributed systems including large-scale software and swarm-robotics systems. We investigate... Read More about Evolving Behavior Allocations in Robot Swarms.

A Feature-Free Approach to Automated Algorithm Selection (2023)
Presentation / Conference Contribution
Alissa, M., Sim, K., & Hart, E. (2023, July). A Feature-Free Approach to Automated Algorithm Selection. Presented at Companion Conference on Genetic and Evolutionary Computation, Lisbon, Portugal

This article summarises recent work in the domain of feature-free algorithm selection that was published in the Journal of Heuristics in January 2023, with the title 'Automated Algorithm Selection: from Feature-Based to Feature-Free Approaches'. Spec... Read More about A Feature-Free Approach to Automated Algorithm Selection.

Towards optimisers that `Keep Learning' (2023)
Presentation / Conference Contribution
Hart, E., Miguel, I., Stone, C., & Renau, Q. (2023, July). Towards optimisers that `Keep Learning'. Presented at Companion Conference on Genetic and Evolutionary Computation, Lisbon, Portugal

We consider optimisation in the context of the need to apply an optimiser to a continual stream of instances from one or more domains, and consider how such a system might 'keep learning': by drawing on past experience to improve performance and lear... Read More about Towards optimisers that `Keep Learning'.

Evolving Herding Behaviour Diversity in Robot Swarms (2023)
Presentation / Conference Contribution
Nitschke, G., Hallauer, S., & Hart, E. (2023, July). Evolving Herding Behaviour Diversity in Robot Swarms. Presented at Proceedings of the Companion Conference on Genetic and Evolutionary Computation, Lisbon, Portugal

Behavioural diversity has been demonstrated as beneficial in biological social systems, such as insect colonies and human societies, as well as artificial systems such as large-scale software and swarm-robotics systems. Evolutionary swarm robotics is... Read More about Evolving Herding Behaviour Diversity in Robot Swarms.

Generating diverse and discriminatory knapsack instances by searching for novelty in variable dimensions of feature-space (2023)
Presentation / Conference Contribution
Marrero, A., Segredo, E., Hart, E., Bossek, J., & Neumann, A. (2023, July). Generating diverse and discriminatory knapsack instances by searching for novelty in variable dimensions of feature-space. Presented at GECCO 2023, Lisbon, Portugal

Generating new instances via evolutionary methods is commonly used to create new benchmarking data-sets, with a focus on attempting to cover an instance-space as completely as possible. Recent approaches have exploited Quality-Diversity methods to ev... Read More about Generating diverse and discriminatory knapsack instances by searching for novelty in variable dimensions of feature-space.

Learning-Based Neural Ant Colony Optimization (2023)
Presentation / Conference Contribution
Liu, Y., Qiu, J., Hart, E., Yu, Y., Gan, Z., & Li, W. (2023, July). Learning-Based Neural Ant Colony Optimization. Presented at GECCO 2023, Lisbon, Portugal

In this paper, we propose a new ant colony optimization algorithm , called learning-based neural ant colony optimization (LN-ACO), which incorporates an "intelligent ant". This intelligent ant contains a convolutional neural network pre-trained on a... Read More about Learning-Based Neural Ant Colony Optimization.

To Switch or not to Switch: Predicting the Benefit of Switching between Algorithms based on Trajectory Features (2023)
Presentation / Conference Contribution
Vermetten, D., Wang, H., Sim, K., & Hart, E. (2023, April). To Switch or not to Switch: Predicting the Benefit of Switching between Algorithms based on Trajectory Features. Presented at Evo Applications 2023, Brno, Czech Republic

Dynamic algorithm selection aims to exploit the complementarity of multiple optimization algorithms by switching between them during the search. While these kinds of dynamic algorithms have been shown to have potential to outperform their component a... Read More about To Switch or not to Switch: Predicting the Benefit of Switching between Algorithms based on Trajectory Features.

A Quality-Diversity Approach to Evolving a Repertoire of Diverse Behaviour-Trees in Robot Swarms (2023)
Presentation / Conference Contribution
Montague, K., Hart, E., Paechter, B., & Nitschke, G. (2023, April). A Quality-Diversity Approach to Evolving a Repertoire of Diverse Behaviour-Trees in Robot Swarms. Presented at EVOStar 2023, Brno, Czechia

Designing controllers for a swarm of robots such that collabo-rative behaviour emerges at the swarm level is known to be challenging. Evolutionary approaches have proved promising, with attention turning more recently to evolving repertoires of dive... Read More about A Quality-Diversity Approach to Evolving a Repertoire of Diverse Behaviour-Trees in Robot Swarms.