Dr Libu Manjakkal L.Manjakkal@napier.ac.uk
Lecturer
Purpose
Aluminium-doped zinc oxide thin films exhibit interesting optoelectronic properties, which make them suitable for fabrication of photovoltaic cell, flat panel display electrode, etc. It has been shown that aluminium dopant concentration and annealing treatment in reduced atmosphere are the major factors affecting the electrical and optical properties of aluminium doped zinc oxide (AZO) film. Here, the authors report the structural, optical and electrical properties of aluminium-doped zinc oxide thin films fabricated by dip coating technique and annealed in air atmosphere, thereby avoiding hazardous environments such as hydrogen. The aim of this paper was to systematically investigate the effect of annealing temperature on the electrical properties of dip-coated film.
Design/methodology/approach
Aluminium-doped ZnO thin films were prepared on corning substrates by dip coating method. Aluminium concentration in the film varied from 0.8 to 1.4 mol per cent. Films have been characterized by X-ray diffraction, scanning electron microscopy, atomic force microscopy, UV-visible spectroscopy and Hall measurements. The deposited films were heat treated at 450-600°C, in steps of 50°C for 1 h in air to study the improvement in electrical properties. Films were also prepared by annealing at 600°C in air for durations of 1, 2, 4 and 6 h. Envelope method was used to calculate the variation of the refractive index and extinction coefficient with wavelength.
Findings
The electrical resistivity is found to decrease considerably when the annealing time is increased from 1 to 4 h. The films exhibited high transmittance (>90 per cent) in the visible range, and the optical band gaps were found to change as per the Moss–Burstien effect, and this was consistent with the observed changes in the carrier concentration.
Originality/value
The study shows the effect of annealing in air, avoiding hazardous reduced environment, such as hydrogen, to study the improvement in electrical and optical properties of aluminum-doped zinc oxide films. Envelope method was used to calculate the variation of optical constants with wavelength.
Manjakkal, L., Packia Selvam, I., Potty, S., & Shinde, R. (2017). Electrical and optical properties of aluminium doped zinc oxide transparent conducting oxide films prepared by dip coating technique. Microelectronics International, 34(1), 1-8. https://doi.org/10.1108/mi-06-2015-0058
Journal Article Type | Article |
---|---|
Online Publication Date | Jan 3, 2017 |
Publication Date | 2017 |
Deposit Date | Aug 10, 2022 |
Journal | Microelectronics International |
Print ISSN | 1356-5362 |
Publisher | Emerald |
Peer Reviewed | Peer Reviewed |
Volume | 34 |
Issue | 1 |
Pages | 1-8 |
DOI | https://doi.org/10.1108/mi-06-2015-0058 |
Public URL | http://researchrepository.napier.ac.uk/Output/2890967 |
Healing and monitoring of chronic wounds: advances in wearable technologies
(2021)
Book Chapter
Design of data acquisition system for environmental sensors manufactured in LTCC technology
(2014)
Conference Proceeding
Planar impedancemetric NO sensor with thick film mixed dy-based oxides sensing electrodes
(2014)
Conference Proceeding
Electrochemical interdigitated conductimetric ph sensor based on RuO2 thick film sensitive layer
(2014)
Conference Proceeding
Multi-sensor system for remote environmental (air and water) quality monitoring
(2017)
Conference Proceeding
About Edinburgh Napier Research Repository
Administrator e-mail: repository@napier.ac.uk
This application uses the following open-source libraries:
Apache License Version 2.0 (http://www.apache.org/licenses/)
Apache License Version 2.0 (http://www.apache.org/licenses/)
SIL OFL 1.1 (http://scripts.sil.org/OFL)
MIT License (http://opensource.org/licenses/mit-license.html)
CC BY 3.0 ( http://creativecommons.org/licenses/by/3.0/)
Advanced Search