Skip to main content

Research Repository

Advanced Search

Modeling and control of hybrid machine systems — a five-bar mechanism case

Yu, Hongnian

Authors



Abstract

A hybrid machine (HM) as a typical mechantronic device, is a useful tool to generate smooth motion, and combines the motions of a large constant speed motor with a small servo motor by means of a mechanical linkage mechanism, in order to provide a powerful programmable drive system. To achieve design objectives, a control system is required. To design a better control system and analyze the performance of an HM, a dynamic model is necessary. This paper first develops a dynamic model of an HM with a five-bar mechanism using a Lagrangian formulation. Then, several important properties which are very useful in system analysis, and control system design, are presented. Based on the developed dynamic model, two control approaches, computed torque, and combined computed torque and slide mode control, are adopted to control the HM system. Simulation results demonstrate the control performance and limitations of each control approach.

Citation

Yu, H. (2006). Modeling and control of hybrid machine systems — a five-bar mechanism case. International Journal of Automation and Computing, 3(3), 235-243. https://doi.org/10.1007/s11633-006-0235-1

Journal Article Type Article
Publication Date 2006-07
Deposit Date Jun 15, 2022
Journal International Journal of Automation and Computing
Print ISSN 1476-8186
Electronic ISSN 1751-8520
Publisher Springer
Peer Reviewed Peer Reviewed
Volume 3
Issue 3
Pages 235-243
DOI https://doi.org/10.1007/s11633-006-0235-1
Keywords Hybrid machine (HM), Lagrangian systems, dynamics, computed torque control, sliding mode control
Public URL http://researchrepository.napier.ac.uk/Output/2879319