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26 Abstract:

27 Gregarine apicomplexans are unicellular organisms that infect invertebrate hosts in marine, 

28 freshwater and terrestrial habitats. The largest group of invertebrates infested on land is the 

29 insects. The insect order Psocoptera (booklice) has recently gained wider interest due to 

30 specimens occurring in stored food products and therefore being considered pest organisms. 

31 Biological control agents are often used to eliminate pest organisms. In this study we 

32 examined the psocid Dorypteryx domestica, an invasive psocid species that is spreading all 

33 over the world. We were able to isolate and describe a new gregarine species (Enterocystis 

34 dorypterygis sp. n.) infecting D. domestica. The trophozoites are panduri- or pyriform and 

35 their association/syzygy is caudo-frontal. The surface is inscribed by longitudinal epicytic 

36 folds covering the complete cell. Phylogenetic analyses of the SSU rDNA gene revealed an 

37 only weakly supported relationship  with two Gregarina species G. ormieri and G. 

38 basiconstrictonea, both from tenebrionid beetles. Gregarines have been proposed to have 

39 some potential as biological control agents for several insects. Identifying the gregarine 

40 species infecting pest organisms like psocids is a first step and prerequisite for the probable 

41 utilization of these parasites as biological control agents in the future.
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51 Introduction

52 Psocoptera is an order of small soft-bodied hemimetabolous insects commonly called psocids, 

53 barklice or booklice. There are around 2,000 species described in the world. The geographical 

54 origin of many domestic species remains unknown, as psocids have been transported by 

55 humans, via the holds of ships, in packing materials and trade goods (New, 1987). Dorypteryx 

56 domestica (Smithers, 1958) is an interesting psocid species that was originally described from 

57 human habitations in Zimbabwe, Africa and is an invasive species spreading all over the 

58 world since 1973 (Lienhard, 1977). Since then it has been detected from at least 16 European 

59 countries. 

60 A considerable number of psocids occur in buildings, such as human dwellings, food stores, 

61 warehouses and granaries (Baz and Monserrat, 1999; Mockford, 2003). In general, Psocoptera 

62 feed on algae, fungi, lichens, particles of organic debris, small eggs and dead bodies of insects 

63 (Mockford, 2003). Some species occur typically in domestic environments such as humid 

64 rooms, basements, damp walls where they feed on fungal hyphae and spores of moulds (Baz 

65 and Monserrat, 1999). A few psocid species occurring in buildings feed on the paste and 

66 bindings of old books as well as on the fungal spores and hyphae, which invade the pages 

67 (Mockford, 2003). In human dwellings, the main effect due to psocopteran presence in/on 

68 buildings is lowering property values (New, 1987). In Spain for example, three psocid species 

69 – one of them was Dorypteryx domestica – have been described as one cause for the 

70 propagation of the alga Pleurococcus on recently constructed buildings (Baz and Monserrat, 

71 1999), which is at least disfiguring, but might also have effects on the decay of the building 

72 material.

73 This insect order has only recently become of greater interest, when a large number of 

74 specimens have been found in stored products. Even though the infestation of food products 

75 by psocids rarely causes health problems in humans such as asthmatic reactions and allergies 
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76 from house dust (Spieksma & Smits, 1975; Mockford, 2003) or skin diseases (Conci and 

77 Franceschi, 1953; Agostini et al., 1982), it is still unhygienic and certain psocid species can 

78 even serve as intermediate hosts of some ruminant infecting cestodes (Svadzhian, 1963; 

79 Kuznetsov, 1966). 

80

81 Some psocids, like Dorypteryx domestica, may occasionally become a nuisance in 

82 habitations, or play a role as pest insects in stored food products. Parasites and predators are 

83 known be important natural regulators of pest population densities in some pest insects. So 

84 far, endoparasites (gregarines, cestodes, nematodes and fungi), ectoparasites (acari) and 

85 parasitoids (Hymenoptera) have been reported for psocids. As parasites can shape the 

86 community structure of their host organisms, it is important to gain knowledge on these 

87 parasites. Records on the occurrence of for example gregarines in psocids are sparse (e. g. 

88 Geus, 1969; Sarkar and Haldar, 1980; Devetak et al., 2013) and there is no literature about 

89 protozoan pathogens found in natural populations of Dorypteryx domestica. In general 

90 gregarine apicomplexans infect marine, freshwater and terrestrial invertebrates. Due to the 

91 sheer number of insects in terrestrial habitats most eugregarines are described from terrestrial 

92 hosts. However, gregarines have been reported from less than 1% of all invertebrate species, 

93 leaving the gregarine fauna of 99% of potential invertebrate hosts to be discovered (Clopton, 

94 2000). Even though most gregarine species are described from insects, there are only five 

95 gregarine species described from around 12 psocopteran species (two only identified to genus 

96 level) belonging to 10 genera in Germany, Switzerland and India. There are four species of 

97 septate gregarines (Hyalospora psocorum, H. stenopoci, Liposcelius coronata and 

98 Ancyrophora similis) belonging to two families (Hirmocystidae Grassé, 1953; 

99 Actinocephalidae Léger, 1892) and three genera (Hyalospora Schneider, 1875; Liposcelius 

100 Sarkar & Haldar, 1980; Ancyrophora Léger, 1892). There is also one aseptate gregarine 
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101 (Enterocystis bengalensis) of the family Enterocystidae Codreanu, 1940 and the genus 

102 Enterocystis Zwetkow, 1926, known to infect psocids (Sarkar, 1983; Desportes and Schrével, 

103 2013). All available descriptions of these species are based on line drawings only (von 

104 Siebold 1839, Geus, 1969; Sarkar and Haldar, 1980; Sarkar, 1983). There are no 

105 ultrastructural or molecular data available for the species infecting Psocoptera hosts 

106 (Desportes and Schrével, 2013).

107

108 In the current study we set out to investigate Dorypteryx domestica from Slovenia for the 

109 presence of gregarines. We studied the general morphology and phylogenetic position of the 

110 gregarine found to parasitize D. domestica and we discuss the possibility of employing 

111 gregarines as biological control agents.

112

113 Material and Methods

114 Collection and isolation of organisms

115 Specimens of Dorypteryx domestica were collected by the second author from a basement of 

116 a house in Maribor, Slovenia (46°33'58.5"N 015°39'15.2"E). The gut content was released in 

117 0.9% saline solution by teasing apart the intestines of the psocid with fine-tipped forceps 

118 under a dissecting microscope (Zeiss Stemi 2000). The gut material was examined under an 

119 inverted microscope (Zeiss Axiovert A1) and parasites were isolated with a handdrawn glass 

120 pipette and washed three times in 0.9% saline solution, before being examined and 

121 photographed under the inverted microscope or prepared for DNA extraction.

122

123 Light and scanning electron microscopy

124 Light micrographs of specimens were taken with a digital camera Nikon DN100 attached to a 

125 microscope (Nikon E 800). Differential interference contrast (DIC) light micrographs were 
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126 taken with a 5 megapixel CMOS camera AxioCam Erc 5s, attached to an inverted microscope 

127 (Zeiss Axiovert1).

128 Between 10 and 20 specimens of the isolated gregarine species were prepared for scanning 

129 electron microscopy (SEM). Individuals were deposited directly into the threaded hole of a 

130 Swinnex filter holder, containing a 10 µm polycarbonate membrane filter (Millipore Corp., 

131 Billerica, MA), that was submerged in 10 ml of 0.9% saline solution within a small canister (2 

132 cm diam. and 3.5 cm tall). A piece of Whatman No. 1 filter paper was mounted on the inside 

133 base of a beaker (4 cm diam. and 5 cm tall) that was slightly larger than the canister. The 

134 Whatman filter paper was saturated with 4% (w/v) OsO4 and the beaker was turned over the 

135 canister. The parasites were fixed by OsO4 vapors for 30 min. Ten drops of 4% (w/v) OsO4 

136 were added directly to the saline solution and the parasites were fixed for an additional 30 

137 min. A 10-ml syringe filled with distilled water was screwed to the Swinnex filter holder and 

138 the entire apparatus was removed from the canister containing seawater and fixative. Filters 

139 were washed with water and dehydrated with a graded series of ethyl alcohol. They were 

140 critical point dried with CO2. Filters were mounted on stubs, sputter coated with 5 nm of gold, 

141 and viewed under a scanning electron microscope (Hitachi). Some SEM data were presented 

142 on a black background using Adobe Photoshop CS5 (Adobe Systems Incorporated, San Jose, 

143 CA).

144

145 DNA isolation, PCR, cloning, and sequencing

146 Two individual trophozoites were isolated from the dissected hosts, washed three times in 

147 saline solution, and deposited into a 1.5-ml microcentrifuge tube. DNA was extracted using 

148 the MasterPureTM Complete DNA and RNA Purification Kit (Epicentre Biotechnologies, 

149 Madison, WI). Small subunit rDNA (SSU rDNA) sequences were PCR-amplified using a 

150 total volume of 25µl containing 2 µl of primer, 2.5 µl of DNA template, 20.5 µl of dH2O and 
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151 one PuReTaq Ready-to-go PCR Bead (GE Healthcare, Quebec, Canada). The SSU rDNA 

152 sequences from these species were amplified in one fragment (~1800 basepairs) using 

153 universal eukaryotic PCR primers F1 5´-GCGCTACCTGGTTGATCCTGCC-3´ and R1 5´-

154 GATCCTTCTGCAGGTTCACCTAC-3´. PCR was performed using the following protocol: 

155 After 4 cycles of initial denaturation at 94 °C for 4.30 min, 45 °C for 1 min and 72 °C for 1.45 

156 min, 34 cycles of 94 °C for 30 sec (denaturation), 50 °C for 1 min (annealing), 72 °C for 1.45 

157 min (extension), followed by a final extension period at 72 °C for 10 min. PCR products 

158 corresponding to the expected size were gel isolated using the UltraCleanTM 15 DNA 

159 Purification kit (MO Bio, Carlsbad, California) and cloned into the pSC-A-amp/kan vector 

160 using the StrataClone PCR Cloning Kit (Stratagene, AgilentTechnologies, California). Eight 

161 cloned plasmids were digested with EcoRI and screened for size. Two clones were sequenced 

162 with ABI big dye reaction mix using vector primers and internal primers oriented in both 

163 directions using the cycle sequencing technology on an ABI 3730XL sequencing machine 

164 (eurofins Genomics, Germany).

165 . 

166 The new SSU rDNA sequences were initially identified by BLAST analysis and subsequently 

167 verified with molecular phylogenetic analyses (GenBank Accession number for Enterocystis 

168 dorypterygis sp. n.: KY697695). 

169

170 Molecular phylogenetic analysis

171 The new SSU rDNA sequence was aligned with 116 other SSU rDNA sequences, 

172 representing the major lineages of gregarines (with an emphasis on terrestrial gregarines and 

173 environmental sequences) and dinozoans as relevant outgroup. The 117-sequence alignment 

174 was subsequently edited and fine-tuned using MacClade 4.08 (Maddison and Maddison, 

175 2005). The program PhyML (Guindon and Gascuel 2003) was used to analyze the 117-
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176 sequence alignment (774 unambiguously aligned sites; gaps excluded) with maximum-

177 likelihood (ML). Smart Model Selection selected a general-time reversible (GTR) model of 

178 nucleotide substitutions (Posada and Crandall, 1998) that incorporated invariable sites and a 

179 discrete gamma distribution (six categories) (GTR + G+ I + F model:  = 0.725 and fraction 

180 of invariable sites = 0.187) under the Akaike Information Criterion (AIC) (Guindon et al., 

181 2010). ML bootstrap analyses were performed on 500 pseudoreplicates, with one heuristic 

182 search per pseudo-replicate (Zwickl, 2006), using the same program set to the GTR model +G 

183 + I + F. Bayesian analysis of the 117-sequence dataset was performed using the program 

184 MrBayes 3.1.2 (Huelsenbeck and Ronquist, 2001). The programme was set to operate using 

185 the following parameters: nst=6, ngammacat=5, rates=invgamma. Parameters of Metropolis 

186 Coupling Markov Chains Monte Carlo (mcmc) were set to: nchains=4, nruns=4, temp=0.2, 

187 ngen=7000000, samplefreq=100, burninfrac= 0.5 (the first 50% of 70000 sampled trees, i.e. 

188 the first 35000, were discarded in each run). The computation was performed on the CIPRES 

189 Science Gateway V 3.3 (Miller et al., 2010).

190

191

192 Results

193 Of 31 investigated psocopteran specimens, 21 were infected with gregarines, giving an 

194 infection prevalence of 68%. The mean intensity of infection was 13 gregarines per host with 

195 a range of 6-24 gregarines per host. 

196

197 Morphology of Enterocystis dorypterygis sp. n.

198 Enterocystis dorypterygis sp. n.: Trophozoites were isolated from the psocid Dorypteryx 

199 domestica (Smithers, 1958) (Psocoptera; Psyllipsocidae). The cell morphology showed 

200 general similarities with Enterocystis bengalensis from a psocid species (Psocathropos sp.) 
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201 described by Sarkar (1983). The cells were elongated and panduriform with a little 

202 indentation at the anterior end of the cell, but no septum (Fig. 1). Trophozoites were 59.3 ± 

203 6.9 µm (45.6– 69.0 µm, n = 35) long (mean ± SD; min–max; number) and 25.4±2.5 µm 

204 (21.5–30.7 µm, n = 35) wide at their widest part. The anterior end was mostly a bit globular 

205 and rounded, while the posterior end was more blunt (Fig. 1a-c). Some of the cells were more 

206 pyriform with a long anterior neck-like region (Fig. 1a). The round nucleus [7.8 (5.6-10) µm x 

207 8.7 (6.5-11), n = 21] was situated in the posterior half of the cell (Fig. 1a-b), but sometimes 

208 shifted to the anterior half (Fig. 1c-d). Gametocysts were spherical and the diameter was 30 

209 μm (25.5-39.2 μm; n=4). Associations between mature trophozoites (or gamonts) appear to be 

210 caudo-frontal (Fig. 1c-d). The SEM micrographs demonstrated that the whole cell surface was 

211 inscribed by longitudinal epicytic folds (~200) (Fig. 1e). Neither the anterior nor the posterior 

212 end was free of folds (Fig. 1e-f). The epicytic folds appeared to be arranged in waves along 

213 the longitudinal axis (Fig. 1e, g). In the middle of the cell, the density of folds was 6-8 

214 folds/micron (Fig. 1g). Trophozoites were stiff and capable of gliding movements.

215

216 Molecular phylogeny of Enterocystis dorypterygis sp. n.

217 Molecular phylogenetic analyses of the 117-sequence dataset produced a tree topology with a 

218 moderately supported clade of dinoflagellates (outgroup) and a moderately supported clade of 

219 apicomplexan sequences (Fig. 2). The deeper branches within the tree were all poorly 

220 resolved. Within the apicomplexans three clades were formed, consisting of (1) piroplasmids, 

221 coccidians, cryptosporidians, rhytidocystids, monocystids, neogregarines and mainly 

222 terrestrial eugregarines, (2) archi- and eugregarines from mainly polychaete hosts and (3) 

223 mainly eugregarines from ascidian, polychaete, nemertean and crustacean hosts. The new 

224 sequence of Enterocystis dorypterygis sp. n. clustered within the strongly supported clade of 

225 mainly terrestrial eugregarines comprised of the genera Amoebogregarina, Gregarina, 
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226 Leidyana, Protomagalhaensia and the as archigregarine considered Caliculium. The new 

227 sequence formed a low supported clade with two Gregarina species G. ormieri and G. 

228 basiconstrictonea both from tenebrionid beetles. Those three sequences formed a sistergroup 

229 to the strongly supported clade of Leidyana and Protomagalhaensia species. 

230

231 Discussion

232 The majority of eugregarine species are reported from insects. Most of these belong to the 

233 septate gregarines (trophozoite devided into protomerite and deutomerite by a septum) and 

234 only a few belong to the aseptate gregarines (trophozoite composed of single compartment 

235 lacking the septum). As they have been reported from less than 1% of the known insect 

236 species the gregarine fauna of over 99% is still to be discovered (compare Clopton, 2000). A 

237 good example here are the Psocoptera, of the ~2000 described psocid species, only 10 have 

238 been reported to be infected with gregarine apicomplexans. In this study we were able to 

239 describe a new gregarine species (Enterocystis dorypterygis sp. n.) from a new psocid host 

240 species (Dorypteryx domestica).

241    

242 Enterocystis dorypterygis sp. n.

243 The new gregarine species isolated from the psocopteran D. domestica is an aseptate 

244 gregarine, and a first record of a gregarine infection in this psocid. The characteristic of a 

245 missing septum distinguishes the new species from all described septate gregarines 

246 (Hyalospora psocorum, H. stenopoci, Liposcelius coronata and Ancyrophora similis) 

247 infecting Psocoptera (nine species including: Peripsocus alboguttatus, Amphigerontia 

248 bifasciata, Psocus longicornis, P. quadripunctatus, Caecilius flavidus, Lachesilla quercus, 

249 Mesopsocus unipunctatus, Graphopsocus cruciatus, Stenopsocus immaculatus). All nine 

250 Psocoptera species are actually infected by H. psocorum (Geus, 1969), whereas all other 
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251 sepatate gregarine species are reported from just a single psocid host species (Desportes and 

252 Schrével, 2013). There is only one known aseptate gregarine species (Enterocystis 

253 bengalensis), which belongs to the family Enterocystidae Codreanu, 1940, and was described 

254 by Sarkar (1983) from Psocathropos (syn. Psocatropos) sp. in India. Desportes (2013) 

255 questions this identification and new species description as all other species belonging to the 

256 family Enterocystidae infect the aquatic larvae of Ephemoptera and not any Psocopteridae. 

257 The psocid genus infected with E. bengalensis is falsly named as Psocoptrips sp. in Desportes 

258 (2013). The families/genera/species of aseptate gregarines known to infect terrestrial and 

259 freshwater invertebrates, are all recorded from other invertebrates than Psocoptera. The newly 

260 described gregarine species is most similar to Enterocystis bengalensis than any other 

261 Enterocystis species, based on the morphology of the trophozoites and associations. Due to its 

262 smaller size and the different host species the described gregarine is considered a new 

263 Enterocystis species.

264

265 Molecular phylogeny of Enterocystis

266 Up to this date there is no reference sequence of any Enterocystis species available in any of 

267 the public databases such as GenBank. The sequence of our newly described species E. 

268 dorypterygis sp. n. clustered within the highly supported clade of mainly terrestrial gregarines 

269 (Fig. 2). The closest relatives were species of the genus Gregarina infecting Tenebrionidae, 

270 Leidyana and Protomagalhaensia both infecting Blattaria, all of which are septate 

271 eugregarines. This is an example of another aseptate eugregarine clustering within a clade of 

272 septate eugregarines, all infecting arthropods and in this case insects. It has been questioned 

273 before, if the separation of septate and aseptate gregarines, estblished by Chakravarty (1959) 

274 reflects the actual phylogenetic relationships of eugregarines (e.g. Rueckert et al., 2011). The 

275 current study and the study by Rueckert et al. (2011) clearly show that the septate 
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276 eugregarines do not form a monophyletic clade. Therefore, the taxonomic separation of 

277 sepatate and aseptate eugregarines based on a morphological feature (the septum) should be 

278 deemed invalid. What still remains uncertain is the evolutionary history of certain septate and 

279 aspetate gregarines infecting insects. At the moment there are two possible scenarios: i) 

280 according to Leander (2006, 2008) a lecudinid stem group gave rise to all other eugregarine 

281 lineages and the eugregarines of insects became comparmentalized by forming a transverse 

282 septum between cell regions, so there might be some lineages that remained without a septum 

283 or ii) it could be a loss of the septum giving rise to secondary aseptate gregarines as was 

284 suggested by Grassé (1953). The latter one also indicating that the septum is not a reliable 

285 character in gregarine taxonomy. One example of such an aseptate gregarine in an insect is 

286 the genus Gamocystis, which only presents a septum in a very early trophozoite stage 

287 (Clopton, 2000; Desportes and Schrével, 2013). No septum was detected in any of the 

288 observed trophozoit stages of E. dorypterygis sp. n. in this study.

289

290 Based on our current knowledge we have decided to assign the gregarine species infecting the 

291 psocopteran Dorypteryx domestica to the genus Enterocystis. The two species Enterocystis 

292 dorypterygis sp. n. and E. bengalensis will be validated, as soon as molecular sequence data 

293 of the type species of Enterocystis or any other species belonging to this genus become 

294 available. 

295

296 Gregarines as possible biological control agents

297 Insects encompass a great number of pest species and so far several have been recorded as 

298 hosts of gregarine apicomplexans. The present knowledge on the interactions between pest 

299 insects and their pathogens is still insufficient. Gregarines infecting mosquitos have been 

300 mentioned in the literature as potential biological control agents with opposing views for a 
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301 few decades (Lantova and Volf, 2014). Whereas, the possibility of utilizing gregarines as pest 

302 control agents in cockroaches, grasshoppers, fleas, beetles and flies has only recently entered 

303 any form of discussion. 

304 Lopes and Alves (2005) for example tested the effect of gregarines on the susceptibility of 

305 cockroaches towards control measures. Blatella germanica adults infected with gregarines 

306 were more susceptible to the treatment with the fungus Metarhizium anisopliae and 

307 triflumuron than healthy cockroaches. Studies have shown that gregarines have an impact on 

308 fecundity, feeding and mortality rates in economically important grasshopper species, 

309 justifying the utilization of gregarine apicomplexans in biological control monitoring of these 

310 pest species (Pushkala and Muralirangan, 1997; Johny et al., 2000). Cat fleas, 

311 Ctenocephalides felis, are infected with the gregarine Steinina ctenocephali and Alarcon et al. 

312 (2011) were able to confirm its potential as biological control agent for this cat parasite. A 

313 few studies have also been carried out on beetles. Due to their high infection rate in the grey 

314 corn weevil, Tanymecus dilaticollis, gregarines play a role as natural regulators of the beetle’s 

315 population density (Takov et al., 2013). A few gregarines species have been reported in bark 

316 beetles (Curculionidae: Scolytinae) to date (Takov et al., 2011; Pernek et al., 2009; Yaman 

317 and Baki, 2010). Consequently, they could play a role as pest control agents against bark 

318 beetles in the future. 

319 Among Diptera or flies, phlebotomine sand flies (Psychodidae) and mosquitos (Culicidae) are 

320 important vectors of human pathogens. Gregarines infecting phlebotomine flies of the genera 

321 Lutzomyia and Phlebotomus were studied (Lantova et al., 2011; McCarthy et al., 2011) and 

322 the results suggested that they could possibly be an efficient control method of phlebotomine 

323 populations. Despite the fact that gregarines increased the mortality of immature stages in 

324 Phlebotomus sergenti and negatively affected the survival of adult flies, their potential for use 

325 in pest control is questionable as a result of several factors, including this pathogen’s strict 
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326 host specificity (Lantova et al., 2011). While the study of gregarines in Lutzomyia longipalpis, 

327 the vector of visceral leishmaniasis, suggested that they are a possible efficient control agents 

328 under natural conditions (McCarthy et al., 2011). 

329 In mosquitoes, the susceptibility of Culex bitaeniorhynchus to two species of Ascogregarina 

330 parasites naturally infecting Aedes mosquitoes was determined (Mourya and Soman, 2000). 

331 The gregarines caused high mortality of Culex mosquitoes, but were not able to complete their 

332 life cycle in the unnatural hosts. The survival of infected mosquitoes was significantly 

333 reduced. 

334

335 Gregarines do infect numerous invertebrates that are classified as pest organisms due to their 

336 negative impact on for example crops and human health. Understanding the gregarine-host 

337 interactions is crucial to make any progress in the possible utilization of gregarines to control 

338 aforementioned pests. The identification of gregarine species infecting these pest organisms 

339 examplified in this study by E. dorypterygis sp. n. infesting Dorypterix domestica is a first 

340 and essential step in that direction.

341

342 Taxonomic Summary

343 Superphylum Alveolata Cavalier-Smith, 1991

344 Phylum Apicomplexa Levine, 1980, emend. Adl et al., 2005

345 Class Conoidasida Levine, 1988

346 Subclass Gregarinasina Dufour, 1828

347 Order Eugregarinorida Léger, 1900

348 Family Enterocystidae Codreanu, 1940

349 Genus Enterocystis Zwetkow, 1926

350 Enterocystis dorypterygis sp. n. Devetak and Rueckert, 2017
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351 Species diagnosis: Trophozoites elongated and panduriform, little indentation at anterior end, 

352 but no septum. Trophozoites on average 59.3 µm long and 25.4 µm wide. Anterior end 

353 globular and rounded, posterior end more blunt. Some cells pyriform with a long anterior 

354 neck-like region. Round nucleus situated in the posterior half of the cell, sometimes shifted to 

355 the anterior half. Gametocysts spherical, diameter 30 μm. Associations caudo-frontal. Cell 

356 surface inscribed by longitudinal epicytic folds (~200), including anterior and posterior end, 

357 arranged in waves along longitudinal axis. Density of folds 6-8 folds/micron. Trophozoites 

358 stiff, capable of gliding movements.

359 Type host: Dorypteryx domestica (Smithers, 1958)  (Psocodea: Psyllipsocidae).

360 Site: Intestine.

361 Type locality: Maribor, Slovenia (46°33'58.5"N 015°39'15.2"E).

362 Type micrographs: Figs. 1a, e.

363 DNA sequence: Small subunit rDNA (Genbank Accession number: xxx).

364 Etymology: Species-group name dorypterygis is is a noun in the genitive case (Article 

365 11.9.1.3 of the ICZN 1999) derived from the genus-group name  Dorypteryx, referring to the 

366 host of the new Enterocystis species.

367
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519

520 Figure legends

521 Fig. 1: Differential interference contrast (DIC) light micrographs and scanning electron 

522 micrographs (SEM) of Enterocystis dorypterygis sp. n. from psocopteran Dorypteryx 

523 domestica. A-B) Differently shaped trophozoite cells with a flattened or rounded anterior end 

524 (mucron, arrowhead). The nucelus (n) is visible in the posterior half of the cell. C-D) Two 
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525 gamonts in caudo-frontal syzygy. The nucleus (n) here lies in the anterior part of the cell. The 

526 attachment zone is marked with a double arrowhead. E) SEM of a trophozoite cell showing 

527 epicytic folds (arrow) running longitudinallyand undulating (asterisk) along the whole cell 

528 including the mucron area (arrowhead). F) Higher magnification SEM of the anterior end with 

529 epicytic folds covering the mucron area. G) Higher magnification SEM of the longitudinal 

530 epicytic folds (arrows). Scale bars: A – 25µm; B – 15µm; C – 25µm; D – 35µm; E – 10µm; F 

531 – 2.5µm; G – 2.5µm.

532

533 Fig. 2: Phylogenetic tree of gregarine apicomplexans using dinoflagellate species as outgroup. 

534 This gamma-corrected maximum likelihood tree (-ln L = 17107.63238,  = 0.725, fraction of 

535 invariable sites = 0.187, 6 rate categories) inferred using the GTR model of substitution on an 

536 alignment of 117 small subunit (SSU) rDNA sequences and 774 unambiguously aligned sites. 

537 Numbers at the branches denote bootstrap percentage (top) and Bayesian posterior 

538 probabilities (bottom). When both values were below 50% or 0.50 numbers were not reported. 

539 Black dots on branches denote Bayesian posterior probabilities and bootstrap percentages of 

540 0.95/95% or higher.
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